
Exploring the Limits of Leakage Power Reduction

in Caches

Yan Meng, Timothy Sherwood and Ryan Kastner

University of California, Santa Barbara

If current technology scaling trends hold, leakage power dissipation will soon become the dominant
source of power consumption. Caches, due to the fact that they account for the largest fraction of
on-chip transistors in most modern processors, are a primary candidate for attacking the leakage
problem. While there has been a flurry of research in this area over the Last several years, a
major question remains unanswered. What is the total potential of existing architectural and
circuit techniques to address this important design concern? In this paper, we explore the limits
in which existing circuit and architecture technologies may address this growing problem. We first
formally propose a parameterized model that can determine the optimal leakage savings based on
the perfect knowledge of the address trace. By carefully applying the sleep and drowsy modes,
we find that the total leakage power from the L1 instruction cache, data cache, and a unified L2
cache may be reduced to mere 3.6%, 0.9%, and 2.3%, respectively, of the unoptimized case. We
further study how such a model can be extended to obtain the optimal leakage power savings for
different cache configurations.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memo-
ries; C.0 [Computer Systems Organizations - General]: Modeling of Computer Architecture

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Limits, cache intervals, leakage power

1. INTRODUCTION

Power dissipation has become a major concern to those designing processors for
high performance desktops, servers, and battery-operated portable devices. Higher
energy dissipation requires more expensive packaging and cooling technology, which
in turn increases cost and decreases system reliability. There are fundamentally two
ways in which power can be dissipated: either dynamically (due to the switching
activity of repeated capacitance charge and discharge on the output of the millions
of gates), or statically (mainly due to sub-threshold and gate leakage [Kim et al.
2003; Rabaey et al. 2002]). Dynamic power consumption is proportional to the
square of the supply voltage, which reduces as process technology scales. While
the scaling down of transistor geometries enables the reduction of the dynamic

Authors’ addresses: Y. Meng, R. Kastner, Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara, Santa Barbara, CA 93106-9560; emails: yan-
meng@engr.ucsb.edu; kastner@ece.ucsb.edu; T. Sherwood, Department of Computer Science, Uni-
versity of California, Santa Barbara, Santa Barbara, CA 93106-9560; email: sherwood@cs.ucsb.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20xx ACM 0000-0000/20xx/0000-0001

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx, Pages 1–0??.

2 · Y. Meng, T. Sherwood and R. Kastner

0%

20%

40%

60%

80%

100%

1999
 2001
 2003
 2005
 2007
 2009

Year

L
ea

ka
ge

 P
ow

er
/T

ot
al

 P
ow

er

Fig. 1. Projected leakage power consumption as a fraction of the total power consumption ac-
cording to the International Technology Roadmap for Semiconductors [ITRS].

power, it worsens the leakage problem greatly. If current technology scaling trends
hold [ITRS], leakage will soon become the dominant source of power consumption,
and as such new techniques are needed to battle this growing problem.

The problem of leakage becomes more significant as threshold voltage, channel
length, and gate oxide thickness are reduced. Furthermore, the sub-threshold leak-
age, as a major component, stems from the need for a trade-off between dynamic
power and performance. Scaling down the transistor supply voltage reduces the
dynamic power dissipation. Yet, to maintain high switching speed under reduced
voltages, the threshold voltage must also be scaled. As the threshold voltage drops,
it is easier for current to leak through the transistor resulting in significant leak-
age power dissipation. The increases in device speed and chip density exacerbate
the leakage problem. New technologies targeted at reducing dynamic power and
increasing performance, such as low threshold voltage [Liu and Svensson 1993] and
gate oxide scaling [Lee et al. 2004], further increase the relative importance of leak-
age power [ITRS] (Figure 1).

Cache memories have long been used to reduce the ever-growing gap between
processors and memory. Modern processors typically provide two levels of on-chip
caches (e.g. separate L1 instruction and data caches and a unified L2 cache). In
these processors, a large and growing fraction of the total on-chip area, and an
even larger fraction of the total number of transistors, is consumed by caches.
Because they account for such a significant portion of the total chip real estate,
caches provide a healthy-sized target for designers to try circuit and architectural
optimizations with the goal of reducing leakage power. The central idea behind
most of these techniques is to exploit some form of temporal locality. By putting
infrequently or unused cache lines into low leakage mode, much of the power will
be reduced. By keeping frequently accessed cache lines active, total performance
will not be reduced significantly.

Though there are several circuit techniques and management schemes concerning
how and when to turn on or off individual cache lines, little work has been done to
explore the limit of how well such techniques can work. What is the best we could
hope to do with a given low power technology? The primary goal of this paper is

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 3

to explore these limits under different architectural and design assumptions in the
hope of guiding research effort on leakage power in much the way that Belady’s OPT
algorithm [Belady 1966] helps (and continues to help) in the study of replacement
policies.

There has been much work on leakage power reduction already, and any proposed
methods for calculating the limits of their effectiveness must be both general enough
to capture a variety of techniques, yet specific enough to provide useful bounds.
Our methods capture both state-preserving and state-destroying techniques, and
additionally we show how to optimally combine two such techniques into a hybrid
scheme. We show that, given perfect knowledge of the future address trace, there
exists a break-even point between Drowsy and Gated-Vdd. If the same cache line
is accessed twice in an interval of time less than or equal to this break-even point
then Drowsy mode should be used. If the same cache line is not used again within
an amount of time greater than the break-even point then more power can be saved
by turning off the cache line using Gated-Vdd. If these timings are known, then an
optimal policy can be achieved.

Clearly perfect knowledge of the future trace is not always known, but it serves
several purposes. First it provides an important bound. No management method
will be able to beat our power reduction scheme under the given circuit assump-
tions. Second, it demonstrates that there is still a great deal of potential for policy
decisions (when to turn a cache line on or off) to significantly reduce leakage power.
Finally, while perfect knowledge of future references cannot be known, it can often
times be approximated by architecture techniques such as address prediction or
prefetching [Meng et al. 2005].

In particular, we make the following contributions:

— We relate the potential savings that can be obtained from Drowsy and Gated-
Vdd techniques, under various assumptions for both the L1 instruction and data
caches, and the unified L2 cache.

— We show that with oracle knowledge of future accesses, a simple optimal
power management scheme can be derived from a small set of circuit parameters.

— In addition to showing the optimal leakage savings on a set of implementation
parameters, we develop a parameterized model to determine the optimal leakage
savings while the implementation technologies and architectures change over time.

— We show that while both Drowsy and Gated-Vdd schemes are useful on their
own, when combined, we can push the upper bounds of the leakage power savings to
96.4%, 99.1%, and 97.7% for the instruction cache, the data cache and the unified
L2 cache, respectively, with the 70nm implementation technology.

— We also show that the model can be applicable to explore the limits of leakage
power savings for different implementation technologies and cache configurations.

— In addition to the limits study for the L1 instruction and data caches, We
study the limits for L2 caches when both sleep and drowsy modes are employed.
Taking a large amount of area in modern processors, L2 caches exhibit themselves as
another interesting target to battle the leakage problem. Without careful attention
to power, L2 caches may overtake the chip’s power budget.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

4 · Y. Meng, T. Sherwood and R. Kastner

— We conduct the leakage study on different cache configurations to validate
our methods.

— Instead of examining the leakage reduction on only five benchmarks [Meng
et al. 2005], in this study we investigate our methods across all the SPEC2000
benchmark applications.

— We also empirically study the interval distribution to show how much per-
centage the short dead intervals contributes to the total leakage reduction.

The rest of the paper is organized as follows. We review related work and moti-
vate our limit study in Section 2. In Section 3, we propose our method for combining
the Gated-Vdd method and the drowsy method. We also explore the limit of leakage
power saving that we can potentially achieve using our hybrid scheme. A model
which parameterizes all the individual assumptions is also proposed. Section 4
describes our simulation setup and the benchmarks in our study, and shows the
results of our empirical study in exploring the upper bounds. We also study the
generality of the parameterized model on different cache configurations. We offer
concluding remarks in Section 5.

2. CIRCUITS AND ARCHITECTURES OF REDUCED CACHE LEAKAGE POWER

In order to derive a useful limit for leakage power reduction in caches, we must
first begin with a discussion of those related technologies so that our model will
be grounded in reality. In this section we review several circuit techniques, and
develop the general ideas of our approach.

Leakage power comes from transistors that are simply left on, and the easiest
way to think about reducing the amount of the consumed leakage power is to “turn
off” those transistors that are not needed. While this is the easiest to think about,
it is by no means the easiest to implement. One such approach, Gated-Vdd [Powell
et al. 2001], attempts to solve this problem by reducing leakage through the use
of a high threshold sleep transistor (between pull-down NMOS and virtual Vss)
to break the connection and thus increases the L1 cache line access time. This
transistor is in the read critical path which may impact performance, however we
only consider the potential for energy savings in this paper. This leakage reduction
technique is often called sleep mode, and this is the naming convention that we use
here. While efficient in saving leakage, sleep mode does not preserve the state of the
data. When a cache line is needed again after it has been put to sleep, it must be
re-fetched from lower levels of the memory hierarchy. This re-fetch is essentially an
extra cache miss, and this process can take many cycles depending on the memory
hierarchy, architectural assumptions, etc.

A different way of saving leakage power in the caches is to make use of multiple
supply voltages. When the cache line is left fully on, it will dissipate too much
leakage power. If Vdd is fully gated, it will use very little power, but the data is
lost. A compromise is to use a lower supply voltage when data is not needed for
a while. This will reduce the leakage power without losing the data. The trade-
off is that, while data will be preserved at this low supply voltage, it cannot be
accessed while in this state. Thus there is a small wakeup time associated with
changing from the lower voltage up to Vdd (hence the name “drowsy”). If this can
be implemented without adding a high-V th transistor in the read critical path as

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 5

the initial proposal, drowsy mode has the potential to achieve a smaller L1 cache
access time than sleep mode. Drowsy mode does not fully turn off the memory,
and thus does not reduce the leakage power as much as Gated-Vdd. For a piece of
data that is not going to be accessed for a very long time, sleep mode will be better
because it reduces more leakage power. For a piece of data that is accessed in a
moderate amount of time, drowsy mode will be better because there is not a large
re-fetch penalty. This sets up one of the fundamental questions answered in our
paper — how long is long enough for each mode?

While our paper attempts to address a previously unanswered question, there
is a great deal of prior work aimed at reducing leakage power in caches. Azizi
et al. [Azizi et al. 2003] introduced asymmetric dual-Vt SRAM cell caches(ACCs).
ACCs exploit the fact that in ordinary programs most of the bits in caches are
zeros for both the data and instruction streams, and provide significant leakage
reduction in the zero state. DRI-cache [Powell et al. 2001] uses the Gated-Vdd

technique to dynamically adjust the size of the active portion of the cache by
turning off a bank of cache lines based on the miss rates. DRG-cache [Agarwal et al.
2002] employs Gated-Vdd to reduce leakage power by turning off the gated-Ground
transistor, while data is restored when the gated-Ground transistor is turned on.
DTSRAM [H.Kim and Roy 2002] uses body biasing to separately control the Vt of
each cache line. To minimize the energy and delay overhead, a cache line is switched
to high Vt when it is not likely to be used anymore. Kaxiras et al. [Hu et al. 2002;
Kaxiras et al. 2001] proposed the cache line decay scheme to turn off the cache
lines in the dead periods of their cache generations using the Gated-Vdd technique.
Instead of placing both the tag and the data into the sleep mode, AMC [Zhou
et al. 2003] keeps the tag alive and tracks the miss rate with respect to the ideal
miss rate. This helps to dynamically adjust the turn-off interval and control the
overall performance. Velusamy et al. [Velusamy et al. 2002] used formal feedback-
control theory to adaptively adjust the cache decay interval and cache lines are
turned off accordingly. Another approach to reducing leakage power is called drowsy
cache [Flautner et al. 2002; Kim et al. 2004; 2002], which decreases the supply
voltage of idle cache lines. Specifically, all cache lines are periodically placed into
drowsy mode. [Kim and Mudge 2004] studied techniques for data retention with
lower supply voltage. [Hu et al. 2003] employed drowsy cache to exploit program
hot-spots and code sequentiality for instruction cache leakage management. Parikh
et al. [Li et al. 2004] compared Gated-Vdd and drowsy cache at different L2 latencies
with HotLeakage and showed Gated-Vdd is superior for a set of faster L2 latencies.
Heo [Heo et al. 2002] reduced bitline leakage by leaving bitlines open whose cache
banks are not accessed. Hanson [Hanson et al. 2001] found that for L1 caches,
MTCMOS, which is a state-preserving technique that operates multiple threshold
voltages, outperforms Gated-Vdd. In [Li et al. 2003], the authors presented several
architectural techniques that exploit the data duplication across the different levels
of cache hierarchy. They found that the best strategy in terms of energy and energy-
delay product is to place the L2 subblock into a state-preserving mode as soon as its
contents are moved to L1 and to reactive it only when it is accessed. Bai et al. [Bai
et al. 2005] investigated the impact of Tox and Vth on power performance tradeoffs
for on-chip caches. In contrast, [Sankaranarayanan and Skadron 2004; Zhang et al.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

6 · Y. Meng, T. Sherwood and R. Kastner

2002] studied software approaches. [Sankaranarayanan and Skadron 2004] decided
the decay interval through profiling and showed that the optimal decay intervals
can be estimated with a reasonable degree of accuracy using profiling. [Zhang et al.
2002] studied using compiler to insert power mode instructions that control the
voltage for the cache lines to control leakage energy.

All of the above approaches strive to develop a scheme for predicting when a
section of the cache should be put into a low power mode. They use some heuris-
tics based on either static analysis or run-time behavior to determine what mode
each line should be in. One major open question is: what is the best that these
approaches could hope to do? Clearly some of the cache lines will have to be left
in a high Vdd mode so they can be accessed, but how many and for how long? Are
these approaches the ultimate in policy leakage power reduction, or is there still
room for improvement?

3. CALCULATING THE LIMITS OF LEAKAGE POWER REDUCTION TECHNIQUES

Now that we have reviewed the circuit and architecture techniques employed to re-
duce leakage power, we describe how to calculate the savings that could be achieved
by an optimal approach.

3.1 Cache Intervals

Our analysis of the leakage power saving limit relies on the idea of breaking up the
life time of each cache line into a series of intervals. An interval is the time that a
cache line rests between two accesses. If an interval is very long then it would be
beneficial to put that cache line in sleep mode for the duration of that interval. If
an interval is very short, it should be simply left in a high-Vdd mode. If an interval
is somewhere in the middle, perhaps drowsy mode would be the best.

To illustrate the above situations, let’s take a two-level loop example (Figure
2) extracted from a human resource management application. It counts the total
number of people employed during a year. In the example, the interval (Iadd) of
the two consecutive accesses to the same instruction add depends on the size of the
inner loop. When the range of the inner loop variable j is large, the interval Iadd is
long, which indicates the cache line of add instruction should be put into sleep mode
to save leakage power. And when the range is very small, the interval Iadd is small,
which means this cache line should be left in the high-Vdd mode for fast accesses.
While the range is in the middle, the drowsy mode should be applied to save leakage
power without much performance cost. The idea behind our optimal scheme is to
determine what the best policy would be for each interval in the program, and then
to apply the appropriate leakage technique to that interval.

In an optimal approach, each interval can be thought of as atomic in the eyes of
the optimal policy. With oracle knowledge of the future address traces known (as
would be for an optimal approach), there should be no reason to perform any new
power saving techniques in the middle of an interval. Instead, the same technique
should have been applied for the entire duration of the interval as less power would
be consumed with the same penalty (for either wakeup or re-fetch).

One thing to note is the notion of live intervals and dead intervals. A live interval
starts when a new memory is brought into the cache frame, and ends after the last
access. Between the last access to a line of memory and the time it is evicted from

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 7

......

int i, j, sum, total;

int low(int);

int high(int);

......

for (total = 0, i = 0; i < 12; i ++)

{

 for (sum = 0, j = low(i); j < high(i); j ++)

 sum += a[j];

 sum *= i;

 add: total += sum;

}

......

Fig. 2. The access interval example. The interval length of the consecutive accesses to the add
instructions depends on the range of the inner loop |high(i) − low(i)|.

the cache, it is regarded as dead. Besides turning off cache lines in dead periods
as the cache decay scheme does [Kaxiras et al. 2001], our method also explores the
live period of a cache generation, which demonstrates great potential for leakage
reduction. In fact we found that dead periods did not contribute a large amount of
leakage savings in the optimal case, because any long interval would be turned off
whether live or dead. The only additional savings that are achieved from considering
dead intervals are from short dead intervals, of which there are very few. Figure 3
is used to demonstrate such a point. It is drawn based on our experimental setup
(see Section 4.1). The x-axis shows the interval length and it is log2-scaled. The
y-axis shows the cumulative percentage of the live intervals over the sum of all live
intervals and dead intervals over the sum of all dead intervals of the unified L2
cache for crafty and vortex. As it can be seen, the curves of the dead-interval-crafty
and dead-interval-vortex arise when the interval lengths are large (greater than 220

cycles), and the short dead intervals only contribute an insignificant amount (less
than 1%) for the sum of all the dead intervals, which indicates that the short dead
intervals contribute little to the leakage power reduction. Thus, for the rest of this
paper we ignore the effect of live and dead intervals, and instead concentrate on
only the durations of the intervals.

3.2 The Optimal Approach

Our optimal approach works as follows. Given an interval distribution of cache
accesses, which can be obtained based on a memory configuration, our optimal
approach first classifies each cache access interval into one of the following three
types: sleep-mode optimal, drowsy-mode optimal and active-optimal, and applies
the appropriate mode on each interval to obtain the optimal leakage power saving.
If the size of an interval is very small (i.e. there are multiple consecutive accesses
within a short period of time), then it is best to leave the cache line in a fully active
(non-power saving) mode. If the size of an interval is long, then the best policy is
to completely turn off that cache line (sleep) and then re-fetch it when it is needed

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

8 · Y. Meng, T. Sherwood and R. Kastner

0%

20%

40%

60%

80%

100%

1
 3
 5
 7
 9
 11

13

15

17

19

21

23

25

27

Interval length (
2

x

 cycles)

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f
ti

m
e

live-interval-crafty
 dead-interval-crafty

live-interval-vortex
 dead-interval-vortex

Fig. 3. Cumulative distribution of live intervals and dead intervals of the L2 cache for crafty
and vortex. The total amount of short dead intervals only contribute little to the leakage power
reduction, while the long intervals play a major role.

again. The final case is if the interval size is neither very long nor very short. In
this case it is best to put the cache line into a drowsy state, which consumes a small
amount of power, has a small wakeup cost and has the advantage of retaining the
data values.

The key to dividing intervals into these categories is knowing the precise length
of an interval that should be put into sleep mode, drowsy mode or left active.
The interval length where the power saving mode changes is an inflection point.
There are two inflection points: one between sleep and drowsy modes and the
other between drowsy and active modes.

One thing to note is that our optimal approach will have no-effect on the per-
formance of the machine. Because we assume perfect access pattern knowledge, an
optimal approach can re-fetch any needed data just before it is needed and avoid
any performance impact. By exploiting this fact we can separate out the power
problems from the performance problems. Even though a just-in-time re-fetch or
perfect prefetching will not affect the performance of the machine, it does have a
power cost which we do consider in this paper. Figure 4 is used to illustrate this
point. In the sleep mode, due to turning off the cache line to save leakage power,
the data is not preserved. If the data is accessed again, it needs to be refetched,
and this refetching process may usually take several cycles. Without just in time
refetch (Figure 4(b)), the other parts of the whole system will have to stall for that
amount of cycles, waiting for the data to be ready. The stall will lead to signifi-
cant energy consumption as the big circle indicates. Similar things happen to the
drowsy mode. But the drowsy mode preserves the data and only takes a couple of
cycles [Kim et al. 2004] to wake up the cache line. So, without just-in-time refetch
(Figure 4(d)), the amount of energy the drowsy mode consumes is less than that
of the sleep mode during the system stalling, which is indicated by a small cycle.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 9� � � �access(i)
 access(i+1)
 Transition energy
�
Fetch energy

Energy consumption

due to system stall
(a) The active mode

�� Active energy
�
Drowsy energy

access(i)
 access(i+1)
� � �� � �
(b) The sleep mode w/o perfect prefetching

access(i)
 access(i+1)
� �� �
just before needed

 (c) The sleep mode w/ perfect prefetching

access(i)
 access(i+1)

(d) The drowsy mode w/o perfect prefetching

� � � �
access(i)
 access(i+1)

(e) The drowsy mode w/ perfect prefetching

just before needed

� � � �
Saved energy

Fig. 4. Using perfect prefetching to avoid performance degradation. Assuming
perfect access pattern knowledge, an optimal approach uses perfect prefetching to
refetch data just before it is needed and avoids stalling the whole system to reduce
energy consumption. � �

Duration
 Voltage

s1
 High to off

s2
 Always off

s3
 Off to high

s4
 High

d1
 High to low

d2
 Always low

d3
 Low to high

d1
 d3

s1
 s2

Drowsy

Sleep

d2

Voltage

Voltage

interval

length

interval

length

Vdd

Vdd

Vdd
low

s3

0

0

(a)
 (b)

� �

� � � �
� � � �

s4

: Dynamic power consumption

 due to an induced miss

*

*

Fig. 5. Time-voltage diagrams of sleep-mode and drowsy-mode. In Sleep-Mode the cache line is
essentially turned completely off and the power consumed drops to nearly zero. While beneficial
over a long period of time, there is a more significant overhead due to re-fetch. Drowsy-Mode has
a smaller overhead, but the cache line still consumes a measurable amount of power because the
voltage has not been completely turned off.

By contrast, with just-in-time refetch (Figure 4(c) and (e)), The data will be ready
when it is needed, avoiding stalling the rest parts of the whole system to wait for
data to be ready, which consequently saves power. It is worth noting that our
scheme calculates the optimal power savings for a given replacement policy, it does
not change the replacement policy to further save power.

For the convenience of illustrating how our approach works in general, we will use
(Figure 5(a) and (b)) to show how the inflection points are calculated. Figure 5(a)

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

10 · Y. Meng, T. Sherwood and R. Kastner

shows that the sleep mode and the drowsy mode require time to reduce the voltage
from high Vdd to off (s1) and from high to Vddlow

(d1), respectively. Also, there
is a similar time overhead in coming out of the mode (s3 or d3). For the sleep
mode, since the latency D of fetching data from L2 cache is longer than s3, there is
another overhead (s4 = D − s3) before the next access. We divided the life time of
an interval into several durations to illustrate these overheads. Figure 5(b) shows
the length of each duration s1, s2, s3, s4, d1, d2, d3 in an access interval of both a
sleep mode and a drowsy mode. The total length of the cache access interval using
the sleep technique is s = s1 + s2 + s3 + s4, and that of using the drowsy mode is
d = d1 + d2 + d3.

For the sleep mode, the data has been lost due to an induced miss [Kaxiras
et al. 2001] and must be re-fetched from the memory hierarchy. as such, there is a
significant amount of power consumed by the dynamic activity required to fetch the
data from the L2 cache, marked with “*” in Figure 5(b). This dynamic power cost
can be obtained from analytical models, such as the interconnect model based on
logical effort [Amrutur and Horowitz 2001] or the CACTI [Shivakumar and Jouppi
2001] model, which has been used in this paper.

The sleep-drowsy inflection point is derived as the access interval length when
the sleep and the drowsy modes consume the same amount of energy. If the interval
is of a length less than the inflection point then drowsy mode would be optimal. If
it is greater than the inflection point then sleep mode would be optimal. We denote
the leakage power consumption of each cache line as PL, which can be obtained
from the HotLeakage tool [Zhang et al. 2003], and the cost of dynamic power due
to an induced miss for the sleep mode as CD . The energy of a sleep mode interval
can be calculated as Equation 1:

ES =

4∑

i=1

PL(si) ∗ si + CD. (1)

Similarly the energy consumption using the drowsy model can be calculated as
Equation 2:

ED =

3∑

i=1

PL(di) ∗ di. (2)

When the two modes consume the same amount of energy, we reach Equation 3:

ES = ED. (3)

Applying the data in Figure 5(b) into Equation 3, we can calculate the sleep-
drowsy inflection point.

The other inflection point is between drowsy and active modes. The drowsy-
active inflection point is calculated as the sum of the durations d1 and d3, within
which the voltage changes either from Vdd to Vddlow

or from Vddlow
to Vdd.

Note that the sleep-drowsy inflection point is the point at which sleep mode has
the potential to save power of drowsy mode. Sleep mode does not provide benefit
at small interval lengths because of the larger penalty associated with coming out
of sleep mode (the power of re-fetch) as opposed to drowsy mode. The only way
to save power on small interval lengths is to know exactly when the cache line will

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 11

be accessed again so that it can be brought out of sleep mode before the data is
needed. This is how an optimal leakage management scheme would take advantage
of it’s perfect knowledge.

When an interval between two accesses to the same cache line is longer than
the sleep-drowsy inflection point, using sleep mode has the potential to save more
leakage power. When an interval is less than the sleep-drowsy inflection point but
still greater than the active-drowsy inflection point, the drowsy mode saves more
leakage. When its interval length is less than the active-drowsy inflection point,
the cache line is always active and cannot have its leakage power reduced without
causing a delay in delivering the data.

Input: A set of intervals I
Output: Total leakage power saving
optimal leakage(I)

total saving := 0
i := 0
while (Ii ∈ I) do

if (|Ii| > b) then
total saving := total saving + sleep saving(|Ii|)

else if (|Ii| > a) then
total saving := total saving + drowsy saving(|Ii|)

else

no leakage power saving can be obtained
i := i + 1

end do
return(total saving)

Fig. 6. Algorithm to compute the optimal leakage power saving given an interval distribution.
Intervals are classified into one of the three categories based on the drowsy-active inflection point
a and the sleep-drowsy inflection point b: (0, a], (a, b], and (b, +∞). The Sleep mode is applied on
intervals within the range of (b, +∞); the Drowsy mode is applied on intervals within the range
of (a, b]; and the cache lines are left on for intervals within the range of (0, a].

Figure 6 details our optimal leakage power saving approach. By classifying cache
intervals into the three types and applying to them the appropriate leakage saving
mode, the maximal leakage power saving can be obtained as the accumulation of
the leakage saving over all access intervals, which provides us an upper bound for
optimal leakage power savings. It can be proved that based on the perfect knowledge
of the lengths of all intervals, the optimal leakage power saving can be achieved by
applying the proper operating mode on each interval.

3.3 Theorem of the Optimal Policy for Leakage Power Saving

In this section, after defining the relevant terms in our study, we provide the theorem
of the optimal policy for leakage power saving.

Definition 3.3.1. We define I={Ii} as a set of intervals, and the length of interval
Ii as |Ii| (|Ii| ∈ (0, +∞)).

Definition 3.3.2. For each interval Ii ∈ I, we define three possible operating
modes Tj ∈ T, whereT = {T1 = active, T2 = drowsy, T3 = sleep}, and the leakage
energy saving of the interval Ii working in the mode of Tj is defined as E(Ii, Tj).

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

12 · Y. Meng, T. Sherwood and R. Kastner

Definition 3.3.3. We define two inflection points, the active-drowsy inflection
point a and the sleep-drowsy inflection point b. The active-drowsy inflection point a

is defined as the sum of the durations within which the supply voltage changes either
from high to low or from low to high, i.e. a = d1 + d3. The sleep-drowsy inflection
point b is defined as the access interval length when the sleep and the drowsy modes
consume the same amount of energy, i.e. b = s1 +s2 +s3 +s4 = d1 +d2 +d3, where
si ≥ 0, dj ≥ 0 (i = 1, 2, 3, 4; j = 1, 2, 3).

Lemma 3.3.4. The active-drowsy inflection point a is less than the sleep-drowsy
inflection point b.

Proof. Because loads have physical capacities, the discharging process takes less
amount of time for the voltage dropping from high to low than from high to off, i.e.
d1 < s1. Similarly, the charging process takes less time for increasing the voltage
from low to high than from off to high, i.e. d3 < s3. Since there is no overlapping
time between si and sk (i 6= k, i, k = 1, 2, 3, 4) and si ≥ 0 (i = 1, 2, 3, 4), we can
conclude that the sum of the durations a = d1 + d3 < s1 + s3, and the sleep-drowsy
inflection point b = s1 + s2 + s3 + s4 is greater than s1 + s3. So, a is less than b.
Our study based on the 70nm technology process also justifies that a (6 cycles) is
less than b (1057 cycles) from the experimental perspective.

Theorem 3.3.5. Under the context of the independent model, where access in-
tervals of a cache block are independent from each other, we assume that for each
interval Ii ∈ I, one and only one of the three operating modes Tj ∈ T can be applied
for reducing leakage energy consumption based on the following policy:

(1) When the interval length |Ii| ∈ (0, a], the active operating mode or non-power
saving mode is applied.

(2) When the interval length |Ii| ∈ (a, b], the drowsy mode is applied.

(3) When the interval length |Ii| ∈ (b, +∞), the sleep mode is applied.

Then the maximal leakage saving can be obtained as the combination of the power
saving over all intervals Ii ∈ I, which gives an upper bound for optimal leakage
power saving.

Proof. We prove the theorem by contradiction. We divide the whole range of
the interval length (0, +∞) into three independent portions based on the active-
drowsy inflection point a and the sleep-drowsy inflection point b, i.e. (0, a]∪ (a, b]∪
(b, +∞) (see Lemma 1 that a < b). Suppose the energy saving M based on the
above assumptions is not maximal, then there must be another energy saving M ′

that is greater than M , which indicates that there is at least one interval Ii whose
operating mode T ′

j is different from Tj .
Figure 7 shows the function of interval vs. energy consumption. In the figure,

we can have the following derivations:

(1) The function is continuous and monotonically increasing.

(2) The slopes P1, P2 and P3 indicate the power consumptions within the interval
ranges of (0, a], (a, b] and (b, +∞) respectively.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 13

� � �
� � �

Interval

E
ne

rg
y

C
on

su
m

pt
io

n

a
 b

P1

P2

P3

Fig. 7. Energy consumption for each of the three operating modes and the lower envelope E(Ii, Tj)
function for minimal energy consumption.

Active

P(Active)

Sleep

P(Sleep)

Drowsy

P(Drowsy)

E
AD
 E
AS

E
SA
E
DA

Fig. 8. The optimal leakage power saving model. The circles indicates states and edges represent
transitions between states.

(3) For intervals in the range of (0, a], the minimal energy consumption can be
achieved through the active mode T1. For intervals in the range of (a, b], the
minimal energy consumption can be achieved through the drowsy mode T2.
For intervals in the range of (b, +∞), the minimal energy consumption can be
achieved through the sleep mode T3.

For a set of independent intervals, if at least one interval Ii was applied with T ′

j ,
not the corresponding mode Tj , then E(Ii, T

′

j) is greater than E(Ii, Tj) (above the
shadow area in Figure 7), giving the contradiction. Therefore, the maximal leakage
power saving can be obtained by the proposed policy.

3.4 The Generalized Model for Optimal Leakage Power Savings

After illustrating our optimal leakage power saving approach, we evolve our ap-
proach to a complete model that can capture the optimal leakage savings as con-
figurations and technologies change.

As Figure 8 depicts, the model has three states, which are indicated by the circles,
representing the three operating modes: Active, Drowsy, and Sleep. It also models
the transitions between states, demonstrated by the edges (self edges means that
the state remains the same in the next cycle). Each state is associated with its
static power consumption (P), and the weights (EAD , EAD , EAD , EAD) on the

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

14 · Y. Meng, T. Sherwood and R. Kastner

edges are the transition energy consumptions. For example, EAD is the energy
consumption when transiting from the state Active to the state Drowsy.

In the model, all the individual assumptions namely the durations, energy costs
of transitions between modes, the leakage power consumption of each mode, and
the intervals, are parameterized and used as inputs to the model. And the outputs
of the model are the optimal leakage saving percentages of using the optimal sleep,
optimal drowsy, and the optimal combining methods.

The model has been designed to explore the optimal leakage savings with pa-
rameterized architectural and design considerations, i.e. if the architectural con-
figuration changes(for example, cache configurations), the model can adapt to the
input change, and if a new low power mode is employed, the model can be easily
extended by adding a new state.

The model for optimal leakage power savings serves two major functions. First,
instead of being an abstract model, it is coded in C language and is publicly
available for cache leakage studies1. To use the tool, designers only need to feed
the following inputs into the C program, such as the transition energies obtained
from CACTI [Shivakumar and Jouppi 2001], the leakage power consumption from
HotLeakage [Zhang et al. 2003], the interval distribution from SimpleScalar [De-
sikan et al. 2001], and the duration parameters {s1, s2, s3, s4}. The tool will then
find out an optimal mode transition sequence that can achieve the maximal leak-
age power savings and output the optimal leakage saving percentages of using the
optimal sleep, the optimal drowsy, and the optimal combining methods. Second
and the most important is that this model was designed to explore the optimal
leakage savings under different architectural and design assumptions with the hope
of guiding research effort on leakage power study.

Concurrent to our work, similar approaches are being developed to guide policy
decisions in the domain of Computer Aided Design [Liu and Chou 2004]. In [Liu
and Chou 2004], the optimal energy mode transition sequence for generic devices is
calculated under a fixed delay constraint. Because of the complex timing involved
in a modern superscalar microprocessor, a simple timing model will not accurately
reflect the impact changing cache parameters. In our study on cache leakage we have
factored out any performance impact through perfect prefetching, which acts as a
guiding bound for those developing leakage reduction schemes. We have built our
model around the state of the art in leakage reduction techniques and show how
the most common techniques considered today can be mapped onto this simple
framework quickly and precisely. In addition, we have given a formal proof of
optimality, which has not been offered in their work.

4. EMPIRICAL STUDY

In Section 3, we discussed the limits of leakage power reduction techniques and
how they are calculated. In this section we show limit results gathered from actual
benchmarks with parameters extracted from modern processors and prior work.
Our objective is to evaluate the limits on some leakage power saving techniques
as applied to both the L1 instruction and data caches, and the L2 cache. We
show upper bounds on the possible savings using Sleep mode, Drowsy mode, or a

1http://express.ece.ucsb.edu/software/leakage.html

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 15

potential hybrid of the two. We also evaluate the generality of the parameterized
model in deriving the limits of leakage power savings from the perspectives of
different implementation technologies and different cache configurations.

4.1 Methodology

To test the amount of power that can be saved by using an improved leakage re-
duction technique, we employed detailed cycle-level simulation. The simulator we
use is a version of SimpleScalar closely resembling Compaq Alpha 21264 [Kessler
1999]. The execution core is a 4-wide superscalar pipeline, and the memory hierar-
chy includes a 64KB, 2-way set associative L1 instruction cache with a single-cycle
hit latency, a 64KB, 2-way set associative L1 data cache with a 3-cycle hit latency,
and a unified 2MB direct-mapped L2 cache with a 7-cycle hit latency. The main
memory system consists of 16 32MB DDR2 SDRAM chips [electronics 2002], for a
total main memory capacity of 512MB, with its access time 40ns, and access power
300mW. Because leakage is exponentially dependent on temperature, we use 85◦C
in our experiments. LRU is employed as the replacement policy throughout the
memory hierarchy. To calculate inflection points, we assumed a 500MHz processor
clock.

In order to capture the most important program behaviors while at the same time
reducing simulation time to reasonable levels, we used the simulation points that
were described and verified in SimPoint [Sherwood et al. 2002]. The benchmark
suite for this study consists of all the SPEC2000 benchmarks compiled for the Alpha
AXP ISA. Because modern processors typically have two levels of on-chip caches
(e.g. separate L1 instruction and data caches and a unified L2 cache), in the rest
of our empirical study, we will first explore the limits of the leakage power savings
for the L1 instruction and data caches. We will then conduct the limits study for
the L2 caches.

4.2 Limits Study for the L1 Instruction and Data Caches

In this section, we explain how the optimal approach works from the experimental
aspect in exploring limits of leakage power savings for the modern L1 caches by the
ways of how we calculate the inflection points, and how we optimally combine the
sleep and drowsy modes.

4.2.1 Calculating Inflection Points. Inflection points are the keys to choosing
the best power saving mode of a given interval distribution. An intervals with its
length greater than the sleep-drowsy inflection point is put into the sleep mode,
and an interval with its length less than the active-drowsy inflection point is left in
the active mode. For an interval with its length between the two inflection points,
it is put into drowsy mode to save power and has little performance impact.

Technology 70nm 100nm 130nm 180nm

Active-Drowsy point 6 6 6 6

Drowsy-Sleep point 1057 5088 10328 103084

Table I. Active-drowsy and drowsy-sleep inflection points depicted in cycles for different technolo-
gies.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

16 · Y. Meng, T. Sherwood and R. Kastner

To calculate inflection points with respect to different technologies, we used the
durations s1=30, s3=d1=d3=3 and s4=4 cycles [Li et al. 2004] (s2 and d2 are
dependent on an interval length). When we applied the parameters into Equation 1,
2 and 3, we obtained the inflection points for the L1 instruction and data caches
shown in Table I. The table shows that the value of the sleep-drowsy point decreases
while the technology scales down from 180nm to 70nm (These are the only currently
available technologies provided by the Hotleakage [Zhang et al. 2003] tool. If in the
future Hotleakage is extended to incorporate more technologies, our approach can
still be applied to obtain their inflection points). This is due to the fact that
the leakage power consumption per cache line increases while the dynamic energy
consumption caused by an induced miss decreases with technology scaling down
(see Equation 3).

Since 70nm is the most advanced technology that will be reached in a few years
according to ITRS [ITRS], we employed it and its corresponding sleep-drowsy
inflection point (1057 cycles) in the rest of our study on the L1 caches.

4.2.2 Combining Sleep and Drowsy Modes. With the inflection points calcu-
lated, the first question to be answered is how well a hybrid of sleep and drowsy
modes can perform versus sleep mode. If, in the optimal case for sleep mode, we can
perfectly predict the distances between access to cache lines then we can potentially
make use of sleep mode even if the cache line is accessed every 1057 cycles. In this
case, there will be little benefit from using drowsy mode for those cache lines that
are accessed more frequently than every 1057 cycles. However, if the threshold was
different, if the inflection point between drowsy and sleep modes changed dramat-
ically, there would be a point at which using both drowsy mode (for occasionally
accessed line) and sleep mode (for rarely accessed lines) would become beneficial.
The purpose of Figure 9 is to demonstrate this point. In our experiments, when a
sleep mode is applied, the dynamic power consumption due to an induced miss was
removed from the total leakage power savings.

The results in Figure 9(a) are derived based on the average leakage power savings
for both instruction and data caches across all the given benchmarks. Through this
figure, we examine the potential effectiveness of a pure sleep mode versus a hybrid
sleep/drowsy method where we change the minimum interval length that can be
put into sleep mode from 1057 to 10000. These results indicate that a hybrid
method (Sleep+Drowsy) can work consistently better than the sleep or the drowsy
method alone, especially if one is very conservative about which lines are put to
sleep. However, as the minimum sleep length approaches the sleep-drowsy inflection
point (decreases), the usefulness of applying the drowsy method in addition to the
sleep mode decreases. Under such conditions, the sleep mode removes most of the
leakage power and thus there is not much more for drowsy to save. While clearly
an implementable scheme will not have the luxury of perfect future knowledge, for
those that we do have knowledge for, sleep mode should be applied very aggressively.

Moreover, the figure depicts that the gap between the hybrid method and the
sleep mode for the data cache is much smaller than that for the instruction cache.
The reason is that the same cache block in the data cache tends to be less frequently
accessed than in the instruction cache, and the interval-lengths between consecutive
accesses are much longer. Hence, the sleep mode plays a much more important role

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 17

75%

80%

85%

90%

95%

100%

10
57

12
00

15
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

Interval (Cycles)

L
ea

ka
ge

 p
ow

er
 s

av
in

gs

Sleep(instruction cache)
 Sleep+Drowsy(instruction cache)

Sleep(data cache)
 Sleep+Drowsy(data cache)

(a) L1 Instruction and Data Caches

75%

80%

85%

90%

95%

100%

20
76

0

50
00

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

Interval (Cycles)

L
ea

ka
ge

 p
ow

er
 s

av
in

gs

Sleep(L2 cache)
 Sleep+Drowsy(L2 cache)

\

(b) Unified L2 Cache

Fig. 9. Comparison of the hybrid method vs. the sleep-mode method for different
sleep interval-lengths. The usefulness of applying the drowsy method to save leakage
power decreases as the sleep length approaches the sleep-drowsy inflection point.
For leakage power saving, the sleep mode plays a more important role in the L2
cache and the data cache than in the instruction cache. The L2 cache has larger
sleep intervals than the data cache.

in the data cache for the leakage power saving than in the instruction cache.
Finally, this figure also confirms that the small variances of the sleep-drowsy

inflection point will not change our findings significantly.

4.2.3 Exploring the Upper Bound. With the assumption of perfect-prefetching,
the upper bound of the leakage power saving was derived in Section 3 based on
the two inflection points. We now explore the leakage-power-saving limits of the
following methods assuming perfect knowledge of the future address trace:

— OPT-Drowsy: An optimal drowsy cache that has no performance penalty for
waking up data (although there is a power penalty as discussed in Section 3).

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

18 · Y. Meng, T. Sherwood and R. Kastner

0%

20%

40%

60%

80%

100%

am
m

p

ap
pl

u

ap
si

ar
t

bz
ip

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rl

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex

vp
r

w
up

w
is

e

av
er

ag
e

L
ea

ka
ge

 p
ow

er
 s

av
in

gs

OPT-Drowsy
 Sleep(10K)
 OPT-Sleep(10K)
 OPT-Hybrid

(a) Instruction Cache

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

am
m

p

ap
pl

u

ap
si

ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rl

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex

vp
r

w
up

w
is

e

av
er

ag
e

L
ea

ka
ge

 p
ow

er
 s

av
in

gs

OPT-Drowsy
 Sleep(10K)
 OPT-Sleep(10K)
 OPT-Hybrid

(b) Data Cache

Fig. 10. Comparisons of different leakage power saving schemes.

— OPT-Sleep(10K): An optimal cache line sleeping technique that puts to sleep
all intervals of a size greater than 10K with no performance penalty.

— Sleep(10k)2: Similar to the OPT-Sleep(10K) with the exception that instead
of optimally turning off any cache line that has an interval larger than 10K, the
line must now stay active for 10K and then may be optimally slept.

— OPT-Hybrid: The method that optimally combines drowsy and sleep modes
based on the inflection points without any performance penalty.

For the convenience of discussing the implementation of each technique, we define
an access interval of a cache line as Ti. OPT-Drowsy puts the line into the drowsy

2The sleep(10K) is similar to the cache-decay scheme in [Kaxiras et al. 2001], in which the decay
interval was set to be 10K cycles, and the extra leakage power consumed by the counter per cache
line was taken into account.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 19

mode during Ti, if Ti is greater than 6; while OPT-Sleep(10K) puts the cache line
into the sleep mode during Ti if Ti is greater than 10K. We also studied Sleep(10K)
to simulate the cache-decay scheme, whose decay interval is 10K. In this case, a
cache line is put into the sleep mode for (Ti-10K) cycles if Ti is greater than 10K.
The OPT-Hybrid is to put a cache line into the sleep mode during Ti if Ti is greater
than 1057, and to put it into the drowsy mode if Ti falls into the range of (6, 1057].
When Ti is less than 6, all the above methods keep the cache line active to insure
fast access time. When a sleep mode applied, the dynamic power consumption due
to an induced miss was removed from the total leakage power savings.

Figure 10 depicts the percent of leakage power in comparison with a cache with all
its cache lines constantly active for each benchmark application. Figure 10(a) shows
that for the instruction cache, the limit of leakage power saving that OPT-Hybrid
can achieve is 96.4%. It is 26% higher than Sleep(10K), 16% higher than OPT-
Sleep(10K), and 30% higher than OPT-Drowsy. For the data cache (Figure 10(b)),
the leakage power saving limit is 99.1%, which is 15% higher than the Sleep(10K),
12% higher than the OPT-Sleep(10K), and 33% higher than the OPT-Drowsy. The
results indicate that while the initial Drowsy and Sleep techniques devised are quite
effective, there is still far more potential left in these techniques. Indeed, the leakage
power savings for the optimal case are so large that it is fair to say that leakage
power would become an insignificant portion of the total overall power if these
savings could be realized. All these savings could be realized with new policies
for cache management. Of course realizing these optimal numbers requires perfect
knowledge of the address trace and timing, which is not typically possessed by a
management policy.

4.3 Limit Study for the Unified L2 Cache

In modern processors, a large number of the total on-chip transistors is consumed
by caches, particularly L2 caches. Different from L1 caches that are optimized for
performance, L2 caches are optimized for density and stability considering both
yield and process parameter variation, and its memory-cell size is usually smaller
than a L1 SRAM cell. The area overhead of implementing either drowsy or sleep
technique in L2 caches is about 5-8%, and sleep mode may cause instability of L2
memory cells[Kim et al. 2004]. However, as machines and working-sets grow, the L2
caches are becoming increasingly performance critical, and integrated even closer
to the processor (especially when a third level of hierarchy is added). In the future
it is likely that L2 caches will be heavily accessed by multiple processors, and will
be close enough to the logic that they may well be affected by heat dissipation
problems. For example even today, the L2 cache covers 37% of the alpha 21364
chip area and contains 85% of the total devices [et al. 2002]. In addition, L2 caches
have much larger miss penalty than L1 caches, because they have to go to main
memory to fetch data when L2 misses happen. Thus, without careful attention
to power, L2 caches may overwhelm the chip’s power budget. In this section, we
study the leakage reduction in L2 caches when both sleep and drowsy modes are
employed.

For applications where the access frequency of L2 caches is small, using high-
V th transistors in memory cells will significantly reduce leakage power. Yet, for
applications with large code and data footprints, more levels of cache hierarchy will

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

20 · Y. Meng, T. Sherwood and R. Kastner

0%

20%

40%

60%

80%

100%

am
m

p

ap
pl

u

ap
si

ar
t

bz
ip

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rl

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex

vp
r

w
up

w
is

e

av
er

ag
e

L
ea

ka
ge

 p
ow

er
 s

av
in

gs

OPT-Drowsy
 Sleep(1M)
 OPT-Sleep(1M)
 OPT-Hybrid

Fig. 11. Comparisons of different leakage power saving schemes for the direct-mapped L2 cache.

be needed to take advantage of locality, e.g. the Intel Madison processor [Madison]
has L2 caches which are frequently accessed. In those applications, solely applying
high-V th transistors in memory cells will reduce leakage but may lead to significant
performance impact, and dynamic management polices could be employed to trade
off power and performance. In this work, we assume two level caches, while our
optimal approach can be extended to study general multilevel caches. With the
most advanced 70nm implementation technology, we calculated the optimal sleep-
drowsy inflection point for the L2 cache as 20760 cycles, and the drowsy-active
point as 6 cycles.

Figure 9(c) shows the average leakage power savings of all the benchmarks. It
demonstrates how well the hybrid of sleep and drowsy modes can perform versus
sleep mode. From the figure, we can see that if we can perfectly predict the access
intervals of the L2 cache, there will be little benefit from using drowsy mode for
those cache lines that are more frequently accessed than 20760 cycles. Figure 9(c)
looks similar to Figure 9(b), however, they are different in scales. The L2 cache has
much larger sleep-drowsy inflection point than the data cache(Figure 9(b)), since
the miss penalty of the L2 cache is much larger than that of the on-chip data cache.

Figure 11 shows the comparison results of the four methods across all the bench-
marks, OPT-Drowsy, OPT-Sleep(1M), Sleep(1M)3, and OPT-Hybrid. The figure
shows that for the L2 cache, the limit of leakage power saving that OPT-Hybrid
can achieve is 97.7%. It is 21% higher than Sleep(1M), 7.6% higher than OPT-
Sleep(1M), and 31% higher than OPT-Drowsy, which indicates that there is still
far more potential left in the existing techniques.

3The sleep(1M) is similar to the cache-decay scheme in [Kaxiras et al. 2001], in which the decay
interval was set to be 1M cycles, and the extra leakage power consumed by the counter per cache
line was taken into account.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 21

Technology
 70nm
 100nm
 130nm
 180nm

Vdd (V)
 0.9
 1.0
 1.5
 2.0

Vth (V)
 0.1902
 0.2607
 0.3353
 0.3979

OPT-Drowsy (%)
 66.4
 66.6
 66.6
 66.7

OPT-Sleep (%)
 95.2
 85
 80.6
 61.5

OPT-Hybrid (%)
 96.4
 93.7
 91.3
 67.1

OPT-Drowsy (%)
 66.1
 66.6
 66.7
 66.7

OPT-Sleep (%)
 98.4
 96.9
 95.3
 63.2

OPT-Hybrid (%)
 99.1
 98.1
 97.3
 67.3
D
-C

ac
he

I-

C
ac

he

Table II. Optimal leakage saving percentages with technology scaling down.

4.4 Empirical Study with the Generalized Model

Also, we evaluate the generality of the proposed parameterized model from two
perspectives, one with different implementation technologies and the other with
different cache configurations.

4.4.1 Evaluating the Generality of the Parameterized Model with Different Im-
plementation Technologies. To show the generality of the parameterized model, we
also study the L1 instruction and data caches with 100nm, 130nm and 180nm pro-
cesses. Table II summarizes the optimal leakage saving percentages we can possibly
achieve by using OPT-Drowsy, OPT-Sleep, and OPT-Hybrid methods for each of
these technologies. Instead of using OPT-Sleep(10K) on intervals that are greater
than 10K cycles, we study OPT-Sleep to figure out what is the best leakage power
saving we can achieve by aggressively turning off all intervals that are greater than
the sleep-drowsy inflection point. The OPT-Drowsy and OPT-Hybrid methods are
the same as before. The results in the table are the average results over all the
benchmark applications.

The table illustrates that the leakage savings for both the instruction and the data
caches of using OPT-Hybrid increase with the technology scaling down from 180nm
to 70nm. The increment of the possible leakage savings is due to the decrement
of the sleep-drowsy inflection point. Moreover, the table shows that for the 180nm
technology implementation, the drowsy mode plays a more important role in saving
leakage power than the sleep mode does; while for the others, the sleep mode plays
a leader role. This can be also attributed to the large difference of the sleep-drowsy
inflection points. Finally, the table also reveals that more leakage savings can be
possibly achieved with the technology scaling down, which leaves us more space for
further improvement on leakage power savings.

4.4.2 Evaluating the Generality of the Parameterized Model with Different Cache
Configurations. To further evaluate the generality of the parameterized model on
studying the limits of leakage power reduction, we also conducted experiments on
L1 caches with different sizes, while the rest of the configurations remain the same.
Specifically, we studied 8KB, 16KB, and 32KB 2-way set associative instruction
and data caches with one-cycle latency. Figures 12 shows the on-average results
of different L1 caches. The results demonstrate that as the L1 cache sizes grow
larger, the percentage of the leakage power saving for each scheme (OPT-Drowsy,

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

22 · Y. Meng, T. Sherwood and R. Kastner

0%

20%

40%

60%

80%

100%

8K
 16K
 32K
 64K

L
ea

ka
ge

 p
ow

er
 s

av
in

gs

OPT-Drowsy
 Sleep(10K)
 OPT-Sleep(10K)
 OPT-Hybrid

(a) L1 Instruction Caches

0%

20%

40%

60%

80%

100%

8K
 16K
 32K
 64K

L
ea

ka
ge

 p
ow

e
sa

vi
ng

s

OPT-Drowsy
 Sleep(10K)
 OPT-Sleep(10K)
 OPT-Hybrid

(b) L1 Data Cache

Fig. 12. Comparison of different leakage power saving schemes for L1 caches with
different sizes.

Sleep(10K), OPT-Sleep(10K) and OPT-Hybrid) increases, and the drowsy mode
plays a more important role for smaller caches than the sleep mode does. This is
due to the fact that using smaller caches usually results in more frequent cache
misses, which lead to many small intervals (less than 10K cycles) due to frequent
replacements. Because of the existence of the small intervals, the drowsy mode
shares a significant portion in reducing leakage power.

In addition to study the leakage problem with different L1 cache sizes, we also
experimented with another configuration that has a different L2 cache configuration.
This configuration includes a 32KB 2-way set associative instruction cache with a
single-cycle hit latency, a 32KB 2-way set associative data cache with a two-cycle hit
latency, and a unified 1M 2-way set associative L2 cache with five-cycle hit latency.
The rest of the configuration, such as the main memory, replacement policy and
implementation technology, are the same as the previous configurations.

Figure 13 shows the comparison results of the smaller L2 cache for different leak-
age power saving techniques. For the purpose of comparison with the previous cache

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 23

0%

20%

40%

60%

80%

100%

am
m

p

ap
pl

u

ap
si

ar
t

bz
ip

2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

gc
c

gz
ip

lu
ca

s

m
cf

m
es

a

m
gr

id

pa
rs

er

pe
rl

m
k

si
xt

ra
ck

sw
im

tw
ol

f

vo
rt

ex

vp
r

w
up

w
is

e

av
er

ag
e

L
ea

ka
ge

 p
ow

er
 s

av
in

gs

OPT-Drowsy
 Sleep(1M)
 OPT-Sleep(1M)
 OPT-Hybrid

Fig. 13. Comparisons of different leakage power saving schemes for the new 2-way associative L2
cache.

configuration, the results here also include the results of all benchmarks and their
average. Note that due to the different cache configurations, the baseline of the to-
tal leakage power consumption of the new configuration (Figure 13) is different from
that of the previous configuration (Figure 10), even though the y-axis also indicates
the percent of total leakage power of which all lines remain constantly active. In
our experiments, we found that the total power averaged over all benchmarks for
the previous configuration was twice that of the new configuration.

From Figure 10 and Figure 13, we can make three observations. First, for OPT-
Drowsy, Sleep(1M) and OPT-Sleep(1M), there are still much room left for further
exploring circuit and architectural techniques to achieve the maximal leakage power
savings that OPT-Hybrid provides. Second, the percentages of leakage power sav-
ings for Sleep(1M) and OPT-Sleep(1M) on the new L2 cache are smaller than
those on the previous L2 cache. Third, the results of ammp and mcf clearly show
that OPT-Drowsy achieves more leakage power savings than Sleep(1M) and OPT-
Sleep(1M) with the new configuration, while OPT-Drowsy saves less leakage power
than either Sleep(1M) or OPT-Sleep(1M). The explanation for the above observa-
tions is that the new cache configuration has smaller L1 caches than the previous
configuration, which will generally result in a larger number of accesses to the L2
cache and smaller access intervals for the L2 cache lines. Since most of the power
savings are from the long intervals, the new cache configuration consequently only
achieves less power savings than the previous configuration. This confirms that the
parameterized model can be generalized to provide limits of leakage power reduction
for different cache configurations.

We would also like to mention that we had an initial exploration [Meng et al.
2005] of using a form of prefetching, such as next-line and stride-based techniques,
to approximate the optimal. The goal of prefetching is to accurately predict future
access patterns so that they can optimistically fetched from memory before their
use. We propose that prefetching can optimistically re-fetch data that has been
either turned off for sleep mode or put into a drowsy state. In our trial study, we
delivered the information of what is the best those employed prefetching techniques

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

24 · Y. Meng, T. Sherwood and R. Kastner

can help us to approach the optimal, and we thus did not take into consideration
the overhead of prefetching. Our evaluation of the potential usefulness of next-line
and stride-based prefetching toward reducing leakage power on the L1 instruction
and data caches shows that if prefetching can be used to guide sleep mode and
drowsy mode is used the other times then the leakage power dissipation will be
within a factor of 2.5 from the optimal.

5. CONCLUSIONS

Leakage power dissipation is quickly becoming a major concern in designing high
performance processors. In this paper we explore the limits to which known circuit
level techniques can be combined and employed to save cache leakage power using
new management methods and protocols. In addition, we developed a parame-
terized model to determine the optimal leakage savings while the implementation
technology changes over time. We find that it is possible with perfect knowledge of
the future address trace to reduce the amount of power dissipated by the instruc-
tion cache down by a factor of 5.3 from known techniques (2 for the data cache,
and 10 for the unified L2 cache). At this level, the leakage power of the cache
would become a less serious problem. Through the evaluation of generality of the
parameterized model, we found the model is robustly applicable to different caches,
which will provide helpful guidance for further researches in cache-level leakage
power reduction.

ACKNOWLEDGMENTS

The authors would like to thank reviewers for their valuable feedback on the
manuscript.

REFERENCES

Agarwal, A., Li, H., and Roy, K. 2002. Drg-cache: a data retention gated-ground cache for low
power. In Proceedings of Design Automation Conference (DAC 2002).

Amrutur, B. S. and Horowitz, M. A. 2001. Fast low-power decoders for rams. IEEE Journal
of Solid-State Circuits 36, 10, 1506–1515.

Azizi, N., Najm, F. N., and Moshovos, A. 2003. Low-leakage asymmetric-cell sram. IEEE
Transactions on Very Large Scale Integration Systems 11, 4 (Aug.).

Bai, R., Kim, N. S., Mudge, T., and Sylvester, D. 2005. Power-performance trade-offs in
nanometer-scale multi-level caches considering total leakage. In Proceedings of Design, Au-
tomation and Test in Europe (DATE 2005).

Belady, L. 1966. A study of replacement of algorithms for a virtual storage computer. IBM

Systems Journal 5, 2, 78–101.

Desikan, R., Burger, D., Keckler, S. W., and Austin, T. M. 2001. Sim-alpha: a validated ex-
ecution driven alpha 21264 simulator. Tech. Rep. TR-01-23, Department of Computer Sciences,
University of Texas at Austin.

electronics, S. 2002. Ddr2sdram datasheet mr16r1622.

et al., J. G. 2002. Power and cad considerations for the 1.75mbyte, 1.2ghz l2 cache on the alpha
21364 cpu. In Proceedings of GLSVLSI’02. New York, NY.

Flautner, K., Kim, N., Martin, S., Blaauw, D., and Mudge, T. 2002. Drowsy caches: sim-
ple techniques for reducting leakage power. In Proceedings of International Symposium on
Computer Architecture (ISCA 2002). Anchorage, AK.

Hanson, H., Agarwal, Hrishikesh, M., Keckler, S., and Burger, D. 2001. Static energy
reduction techniques for microprocessor caches.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

Exploring the Limits of Leakage Power Reduction in Caches · 25

Heo, S., Barr, K., Hampton, M., and Asanovic, K. 2002. Dynamic fine-grain leakage reduc-

tion using leakage-biased bitlines. In Proceedings of International Symposium on Computer
Architecture (ISCA 2002). Anchorage, Alaska.

H.Kim and Roy, K. 2002. Dynamic vt sram’s for low leakage. In Proceedings of ACM Interna-
tional Symposium on Low Power Design (ISLPED 2002).

Hu, J. S., Nadgir, A., Vijaykrishnan, N., Irwin, M. J., and Kandemir, M. 2003. Exploiting
program hotspots and code sequentiality for instruction cache leakage management. In Pro-
ceedings of International Symposium on Low Power Electronics and Design (ISLPED 2003).
Seoul, Korea.

Hu, Z., Kaxiras, S., and Martonosi, M. 2002. Let caches decay: Reducing leakage energy via
exploitation of cache generational behavior. ACM Transaction on Computer Systems.

ITRS. International technology roadmap for semiconductors. http://public.itrs.net.

Kaxiras, S., Hu, Z., and Martonosi, M. 2001. Cache decay: exploiting generational behavior
to reduce cache leakage power. In International Symposium on Computer Architecture (ISCA
2001). Gőteborg, Sweden.

Kessler, R. 1999. The alpha 21264 microprocessor’. In Proceedings of IEEE Micro. 24–36.

Kim, N., Flautner, K., Blaauw, D., and Mudge, T. 2002. Drowsy instruction cache: leakage
power reduction using dynamic voltage scaling and cache sub-bank prediction. In ACM/IEEE
International Symposium on Microarchitecture (MICRO 2002). Istanbul, Turkey.

Kim, N., Flautner, K., Blaauw, D., and Mudge, T. 2004. Circuit and microarchitectural
techniques for reducing cache leakage power. IEEE Transaction on Very Large Scale Integration
Systems 12, 2 (Feb.), 167–184.

Kim, N. and Mudge, T. 2004. Single vdd and single vt super-drowsy techniques for low-leakage
high-performance instruction caches. In Proceedings of International Symposium on Low Power
Electronics and Design(ISLPED 2004). Newport Beach, CA.

Kim, N. S., Austin, T., Blaauw, D., Mudge, T., Flautner, K., Hu, J., Irwin, M., Kandemi,

M., and Vijaykrishnan, N. 2003. Leakage current: Moore’s law meets static power. Com-
puter 36, 12 (Dec.).

Lee, D., Blaauw, D., and Sylvester, D. 2004. Gate oxide leakage current analysis and reduction
for vlsi circuits. IEEE Transactions on Very Large Scale Integration Systems 12, 2 (Feb.).

Li, L., Kadayif, I., Tsai, Y., Vijaykrishnan, N., Kandemir, M., Irwin, M. J., and Sivasubra-

maniam, A. 2003. Managing leakage energy in cache hierarchies. Journal of Instruction-level
Parallelism 5.

Li, Y., Parikh, D., Zhang, Y., Sankaranarayanan, K., Skadron, K., and Stan, M. 2004.
State-preserving vs. non-state-preserving leakage control in caches. In Proceedings of the 2004
Design, Automation and Test in Europe Conference(DATE 2004).

Liu, D. and Svensson, C. 1993. Trading speed for low power by choice of supply and threshold
voltages. IEEE Journal of Solid State Circuits 28, 1 (Jan.).

Liu, J. and Chou, P. 2004. Optimizing mode transition sequences in idle intervals for component-
level and system-level energy minimization. San Jose, CA.

Madison. Intel madison processor. http://www.intel.com.

Meng, Y., Sherwood, T., and Kastner, R. 2005. On the limits of leakage power reduc-
tion in caches. In Proceedings of International Symposium on High-Performance Computer
Architecture(HPCA-11). San Francisco, CA.

Powell, M., Yang, S., Falsafi, B., Roy, K., and Vijaykumar, T. N. 2001. Reducing leakage
in a high-performance deep-submicron instruction cache. IEEE Transactions on Very Large
Scale Integration Systems 9, 1 (Feb.).

Rabaey, J., Chandrakasan, A., and Nikolic, B. 2002. Digital Integrated Circuits A Design
Perspective(2nd Edition). Prentice-Hall.

Sankaranarayanan, K. and Skadron, K. 2004. Profile-based adaptation for cache decay. ACM
Transactions on Architecture and Code Optimization 1, 3 (Sep.).

Sherwood, T., Perelman, E., Hamerly, G., and Calder, B. 2002. Automatically characterizing
large scale program behavior. In Proceedings of International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2002). San Jose, CA.

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

26 · Y. Meng, T. Sherwood and R. Kastner

Shivakumar, P. and Jouppi, N. 2001. Cacti 3.0: An integrated cache timing, power, and area

model. Tech. Rep. WRL-2001-2, HP Labs Technical Reports. Dec.

Velusamy, S., Sankaranarayanan, K., Parikh, D., Abdelzaher, T., and Skadron, K. 2002.
Adaptive cache decay using formal feedback control. In Proceedings of 2002 Workshop on
Memory Performance Issues in conjunction with ISCA-29. Anchorage, Alaska.

Zhang, W., Hu, J. S., Degalahal, V., Kandemir, M., Vijaykrishnan, N., and Irwin, M. J.

2002. Complier-directed instruction cache leakage optimization. In Proceedings of International
Symposium on Microarchitecture (MICRO 2002). Istanbul, Turkey.

Zhang, Y., Parikh, D., Sankaranarayanan, K., Skadron, K., and Stan, M. R. 2003. Hotleak-
age: An architectural, temperature-aware model of subthreshold and gate leakage. Tech. Rep.
Tech. Report CS-2003-05, Department of Computer Sciences, University of Virginia. Mar.

Zhou, H., Toburen, M. C., Rotenberg, E., and Conte, T. M. 2003. Adaptive mode control: a
static power-efficient cache design. ACM Transcactions on Embedded Computing Systems 2, 3
(Aug.).

ACM Transactions on Architecture and Code Optimization, Vol. x, No. x, xx 20xx.

