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Abstract

Wireless networks are making the vision of ubiquitous
computing o reality: users will be able to connect anytime
and anywhere from anything. To achieve this vision, the
next generation of wireless devices must learn about, and
adapt to, the transmission environment through a pro-
cess called channel estimation. In this paper, we describe
a cross-cutting approach to explore the design space to
solve the channel estimation problem on reconfigurable
devices. In particular we focus on the matching pursuit al-
gorithm, which is a fast and accurate iterative algorithm
for multipath channel estimation. Our methodology mod-
els modern reconfigurable devices as an array of BRAM-
level operation blocks (“BLOBs”), which act as flexible
data paths. With the model, we describe design techniques
and tradeoffs, resulting in novel optimizations at every
level in building an energy efficient MP core, from the
theory and algorithms to the bit level. We present results
from our design space exploration over a number of dif-
ferent parameters, including both high level characteris-
tics of the application, data and computation partitioning
schemes, and module- and bit-level low-power techniques.
The results demonstrate the effectiveness and efficiency
of our approach to building a high speed and low power
channel estimator. The total power saving is 25.4%. We
furthur show that the local, distributed computation is, on
average, 145% faster with minimum cost in power dissi-
pation, than the global, centralized computation.

1. Introduction

Wireless communication systems are rapidly becom-
ing the preferred method of network access, and recon-
figurable devices will certainly play an important role in
this new era [17, 20]. There are many computationally
challenging problems to be solved in this domain, and

the extreme time-to-market and rapidly shifting proto-
cols and standards make this an area ripe for a recon-
figurable solution. To meet the needs of performance
with low energy consumption for supporting ever in-
creasing bandwidths demands and increased connec-
tivity from multiple users, performance and energy ef-
ficient implementations are required and optimized at
all levels of wireless system design, from protocols to
signal processing and from system level design to phys-
ical design. At the heart of the next generation wire-
less devices is the ability to accurately estimate char-
acteristics of the channel. Once these characteristics
are determined, the device can correct for them to en-
able more simultaneous users, higher bandwidth, and
lower power communications. In this paper, we investi-
gate and apply optimization techniques in the algorith-
mic, architectural and bit levels to build an energy effi-
cient channel estimator in a modern reconfigurable de-
vice with high performance.

Channel estimation is a fundamental problem in
communication systems with the goal of characteriz-
ing the media over which communication is propa-
gating [18]. Wireless communication channels typically
contain multiple paths due to scattering effects, and
thus the received signal is composed of many delayed
and attenuated versions of the transmitted signal. The
received signals from multiple paths may be either de-
structive or constructive. When there is destructive in-
terference, the signal may be corrupted. The signal cor-
ruption problem may be alleviated by a process called
multipath channel estimation [23]. It is used to charac-
terize all of the significant transmission paths, and is
the key to building high speed wireless networks.

The overriding trend among the modern wireless
communication systems is that higher data rates and
bandwidth requires increasingly complicated physical
and data link layer approaches [23]. As such, more com-
putational power is required from the hardware. In or-



der to achieve high data rates using these complicated
transmission techniques, we must enable efficient and
flexible signal processing devices starting with channel
estimation algorithms. Unfortunately, hardware imple-
mentation has been largely ignored during the devel-
opment of channel estimation algorithms. While there
have been many theoretically-sound approaches pro-
posed for multipath channel estimation and multiuser
detection [14, 23], these approaches have not yet been
adopted by hardware designers because of the complex-
ity of the algorithms involved and the cost associated
with realizing them in an actual implementation.

In order to realize high bandwidth wireless commu-
nication schemes, we must develop tools and method-
ologies for efficient multiuser, multipath channel esti-
mation. To make the leap from theory to reality an
efficient and flexible high performance platform is re-
quired. Reconfigurable systems offer the necessary bal-
ance between flexibility and performance by allow-
ing the device to be configured to the algorithm at
hand [12]. Reconfigurable systems allow for the post-
fabrication programmability of software with the spa-
tial computational style most commonly employed in
hardware designs and are becoming an attractive op-
tion for implementing signal processing applications [5,
6, 15] because of their high processing power and
customizability. The inclusion of new features in the
FPGA fabrics, such as a large number of embedded
multipliers, microprocessor cores, on-chip distributed
memories, adds to this attractiveness. One such exam-
ple is software-defined radio (SDR) [4], which attempts
to provide an efficient and inexpensive mechanism for
the production of multimode, multiband, and multi-
functional wireless devices. The performance and flex-
ibility of reconfigurable devices make them viable and
ideal for implementing the SDR systems.

Traditionally, the performance metrics for signal
processing and indeed, most processing in general, have
been latency and throughput. Yet, with the prolifera-
tion of mobile, portable devices, it has become increas-
ingly important that systems are not only fast, but also
energy efficient. Currently, commercially available FP-
GAs either do not have both millions of gates and low-
power features, or their support for low power feature
is very limited. Purely relying on technology scaling
will fall short of computational capability for more ad-
vanced algorithms which are demanded by wireless sys-
tem in the near future. Thus, instead of studying low-
level optimization techniques, in this paper, we investi-
gate and apply algorithmic and architectural level op-
timization techniques for minimizing energy consumed
by FPGAs in building a multipath channel estimator.
Our techniques can also be used for a next generation

FPGA that has low power dissipation feature as well
as high computing power.

Our main contribution is a quantitative analysis of
several energy efficient techniques that has resulted in
novel optimizations at every levels, from the theory and
algorithms to the architecture and bitwidth. We de-
scribe our design and quantify the tradeoffs in terms of
channel estimation accuracy and the energy of our im-
plementation. We model the target reconfigurable de-
vice as an array of BLOBs and study the data and com-
putation partitioning problem through different archi-
tectural schemes. Along with employing the clock gat-
ing technique, our final result is an energy efficient MP
core that has been mapped onto a Virtex-II XC2V3000
FPGA, resulting in 25.4% of total power savings.

The paper is organized as follows. Section 2 gives
a high level overview of the matching pursuit algo-
rithm. Section 3 describes our reconfigurable computa-
tion model. In section 4, different energy design tech-
niques are presented for building the energy efficient
channel estimator. A summary and conclusions can be
found in Section 5.

2. Matching Pursuit
Channel Estimation

Algorithm for

2.1. Multipath Channel Propagation

Wireless communication channels typically contain
multiple paths due to scattering effects, and thus the
received signal is composed of many delayed and at-
tenuated versions of the transmitted signal [18]. For
outdoor communications, the scatterers may be build-
ings, mountains, etc., while for indoor communications,
the scatterers may be walls, furniture, etc. Path lengths
may vary greatly. We assume delay values 7 € [0,T),
where T is the symbol duration, which is reasonable in
most cases.

In this paper, the multipath spread is assumed to
be at most one symbol duration, which is characteris-
tic in current DS-CDMA systems [8, 11, 19]. The multi-
path channel with continuous-valued delays is approx-
imated by a sparse tapped-delay-line (TDL) filter with
discrete-valued delays (i — 1)T, for i = 1,2,..., N,
where 1/T; is the Nyquist sampling rate, and Nj is the
number of samples per symbol duration T [18]. Associ-
ated with each TDL path ¢ is a complex-valued chan-
nel coefficient f;, with the {f;} given by interpolation
of the true channel. A sparse channel is one in which
Ny << N, channel coeflicients are non-negligible. The
TDL representation of an example 5-path channel is
shown in Figure 1 (solid line).



TDL Channel Coefficients

— True
0.9- - - Estimated

0.8

0.71

0.6

0.51

0.4

Normalized Magnitude

)
1

) 1 1

1

2 25 3 35 4
-6
Delay [sec.] x10

Figure 1: Multipath channel estimation with MP.

Consider the case of a single user transmitting on
a multipath channel. The received signal after RF-to-
baseband down-conversion and A/D sampling is de-
noted by

r=S8f+n¢eCMN* (1)

where M is the number of training symbols, n is the
sampled additive white Gaussian noise vector, f =
[fo, f1, -+ fn.—1]" € CN+*1 is the channel coefficient
vector, and S € RMN:*Ns ig the characteristic signal
matrix. R and C represent the real and complex num-
bers, respectively, and (.)7 denotes the transpose oper-
ation. The ¢th column S; of S is the received signal due
to path ¢ if f; = 1, and in general f;S; is the received
signal due to path 4. S is given in [14] and is known
a priori, since it depends only on the CDMA spread-
ing sequence and the transmit and receive filters. Re-
ferring to the received signal model in equation (1), the
multipath channel estimation problem is that of com-
puting an estimate f of f, given S and the received
signal vector r containing noise n.

2.2. The Matching Pursuit Algorithm

The Matching Pursuit (MP) channel estimation al-
gorithm [3, 14] provides a low complexity approxi-
mation to the theoretical optimal solution, the Max-
imum Likelihood (ML) [14] solution, for sparse chan-
nels. Matching pursuits uses a process of successive
cancellation and single-coefficient channel estimation
to simplify the process.

The exact ML solution under the sparse channel con-
straint is given by

; _ argmin 2
f= fEh lr=sar}, (2)

where Ay, = {f:|f|=N;}. Since the chan-
nel estimation cost function minimized in equa-
tion (2) is non-convex, an exhaustive search is re-
quired. The complexity (in terms of the number
of scalar multiplications) of the optimal ML algo-
rithm is is (’)(MNSCJJ\\,T;Q“NFNf)) real scalar multi-
plications and (’)(ZMNSC% Q*NVs—N5)) real scalar ad-
ditions/subtractions, where the binomial coefficient
CN; = (N)/(Nf\(Ns — Np)!) and 1/(2Q) is the pre-
cision of the channel coefficient estimates. Clearly,
real-time implementation of ML channel estima-
tion is infeasible. By contrast, the MP algorithm [14]
is highly efficient.

The matching pursuit algorithm is obtained by pos-
ing the ML estimation problem in terms of sufficient
statistics, as follows.

—|lr = SfI* o 2Re{(VO) [} - FHAf, (3)

for signal parameter estimation and data symbol de-
tection [23] where VO = STr € CN+*1 and A = STS €
RN*Ns G is known a priori, as mentioned in Sec-
tion 2.1, and therefore S and A are pre-computed once
for all time and stored in memory. The computation of
V0 can be parallelized as N vector inner products (cor-
relations) V;* = STr. Since the columns S; of S are gen-
erated as filtered circular-shifted versions of the same
CDMA spreading sequence, the computation of V0 is
equivalent to matched filtering the received signal r us-
ing a filter matched to the spreading sequence.

MP maximizes equation (3) iteratively, one chan-
nel coefficient qu at a time, using a greedy approach in
which ¢; and qu are selected such that the increase in
equation (3) at each stage j is the largest possible. That
is, the multipath signal components are estimated via
successive interference cancellation. The algorithm is
summarized in Figure 2. To eliminate the need for di-
vision operations, the vector a, with ay = 1/A(k, k)
and A(k,k) denoting the kth diagonal element in A,
is pre-computed once for all time and stored in mem-
ory.

After each multipath successive interference cancel-
lation stage, V7 is updated at the start of the next stage
j as

VIie Vit — f Ay, (4)

Since the estimation of f via equation (3) depends only
on V0 and A, with A fixed, effectively the sufficient
statistic is updated to reflect cancellation of the sig-
nal due to path g;.

The algorithm terminates after stage j = Ny. In
practice, Ny can be determined on the fly based on | qu |
and/or the SNR. For the example in Figure 1, Ny = 15,
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Figure 2: The Matching Pursuit algorithm for channel esti-
mation.

M =1, and the MP channel estimate is shown (dot-
ted line) for an SNR of 20 dB (ratio of energy per sym-
bol to noise energy per symbol duration).

3. Reconfigurable Computation Model

The reconfigurable device paradigm is similar to that
of software defined radio, in that devices can be eas-
ily re-programmed for adaptive response to operating
conditions and applications. For instance, operating pa-
rameters including inter alia, frequency range, modula-
tion type, and/or output power limitations can be set
or altered. However, reconfigurable devices provide the
additional benefit of programmable hardware, which al-
lows the flexibility of software while yielding the high
performance of a hardware implementation [12]. The
performance and flexibility of reconfigurable comput-
ing systems make them ideal for implementing soft-
ware defined radio systems.

Reconfigurable devices are a regular arrangement
of programmable computational elements and commu-
nication structures, whose functionality is determined

through configuration bits. There is a wide range of re-
configurable devices, which can be roughly classified
by their granularity [12]. The granularity of a recon-
figurable device is the abstraction level used to pro-
gram or configure the device. FPGAs and CPLDs have
logical level of abstraction. Instruction level reconfig-
urable devices (e.g., PRISC, Chimaera and Garp [12])
consist of computational units that perform arith-
metic operations. Coarser grain reconfigurable de-
vices, e.g., PADDI, MATRIX, RAW, synchroscalar
and NAPA [12], have even larger programmable com-
putational units.

The granularity gives a notion of the underlying free-
dom of the device. A coarse grain device limits your
flexibility. For example, you may be forced to store data
in a specific register and choose from a prespecified
set, of operations. A lower granularity level allows you
to specify arbitrary memory organizations and com-
plex customized functional units. These fine grain de-
vices can be configured to efficiently implement irreg-
ular functions. Furthermore, we can implement func-
tions using any data width, e.g. an 18 bit multiplier or
24 bit adder, which can be customized to the applica-
tion at hand. However, if we are executing only com-
mon operations, a coarser grain device will be the bet-
ter option, since these operations are implemented us-
ing fixed hardwired “ASIC” components. The prespec-
ified operations are built precisely for that operation
and do not incur the overhead associated with build-
ing it using programmable logic elements. For exam-
ple, a DSP application that requires a lot of word-size
addition and multiplications would be best suited to
a device with instruction level granularity. If an ap-
plication requires a bunch of Boolean operations, then
device with logic level reconfigurability would perform
the task most efficiently. In general, the more closely
the application data is matched to the granularity, the
more efficient the device will execute the application.

We choose a computational model that logically
and physically divides the fine grain logic fabric into
coarser grain BRAM-level operation blocks (BLOBs).
Each BLOB consists of a BRAM, fixed multiplier,
and neighboring CLBs. The CLBs are equally divided
across the BLOBs. For example, the target chip in
our experiments, Virtex-II XC2V3000 FPGA, has 3584
CLBs. Dividing by 96 (the number of BRAMs and
fixed multipliers) yields approximately 37 CLBs in each
BLOB. A BLOB is capable of performing any number
of simple instructions, e.g., multiplication (on the fixed
multiplier), addition (on the CLBs), and any other type
of custom instruction that can be implemented on the
CLBs. Additionally, it has an 18-Kbit BRAM that can
act as a register file, mini cache, etc. Each BLOB is es-



sentially a fully customizable data path, which causes
most of the system energy consumption and delay.

Dividing the reconfigurable device into BLOBs has
many advantages. First, we allow application develop-
ers to design using a higher level of abstraction. They
can view the reconfigurable device as a sea of proces-
sors, which is an increasingly common method for de-
veloping computational fabrics [12]. Second, since the
BLOBs are configurable at the logic level, we can pro-
gram the fabric using a variety of different data flow
and control methods, including SIMD and MIMD. Fi-
nally, the BLOB organization maintains the spatial
model of computation that allows the reconfigurable
device to perform a large number of parallel operations,
and therefore achieve high performance.

4. Energy Efficient Design Techniques

Energy and power are often used interchangeably,
however, they are not the same. Energy is the prod-
uct of average power dissipation and latency. There-
fore, it is necessary to understand power dissipation
and its effect on latency and vice versa in order to bet-
ter understand energy dissipation.

In this section, we will first briefly describe sources
of power dissipation in FPGA based reconfigurable de-
vices. We will then discuss techniques for achieving low
energy dissipation by one of the three methods: lower-
ing power dissipation, lowering latency, or lowering the
product of the power and latency, at different abstrac-
tion levels, from the arithmetic and architectural to
the algorithmic level. The result of our design is an en-
ergy efficient IP core that can be readily tuned to the
requirements of its applications and initiated in any
number of wireless devices.

4.1. Energy Dissipation in FPGA based
Reconfigurable Devices

Several studies on power dissipation of reconfig-
urable devices have appeared in recent works [16, 22].
These works review that power dissipation in recon-
figurable devices is primarily due to programmable
interconnects. For instance, in the Virtex-II, the dy-
namic power dissipated in the interconnects is about
50% to 70%, while the remaining is being dissipated in
logic, clock and I/O blocks. These results are different
from ASIC technology, where clock distribtion typically
dominates power dissipation [2]. The programmable in-
terconnects consist of multiple pre-fabricated row and
column interconnect wire segments of various lengths,
with used and unused routing switches attached to each
wire segment.

The second important factor that affects the power
dissipation in reconfigurable devices is resource utiliza-
tion. In typical reconfigurable system designs, a large
number of of the resources are not utilized and do not
have dynamic power dissipation.

Switching activity is another important factor that
is used to determine the amount of dynamic power dis-
sipation of each hardware resource. It depends not only
on the type of the design but on the input stimuli.

To obtain the power consumption information of the
target Xilinx chip XC2V3000, we did low-level simu-
lation of the VHDL codings of our design with Men-
tor Graphics Modelsim and generate simulation results
(.ved file). The input vectors for the simulation was ob-
tained from the high level simulation of the MP algo-
rithm. The design was synthesized using Xilinx Syn-
thesis Technology and the place and route file (.ncd
file) was obtained. These two files were fed into Xil-
inx XPower tool to evaluate the average power dissipa-
tion. Energy dissipation was obtained by multiplying
the average power by latency.

With good understanding of the sources of the power
dissipation and the way to obtain the power dissipa-
tion, we can now discuss design and optimization tech-
niques to achieve an energy efficient channel estimator,
from the bit level to the algorithmic level design.

4.2. Binding Energy Efficient IP Cores

As modern chips are increasingly providing high
computational power with the fixed components [24],
like microprocessor cores, embedded multipliers and
on-chip distributed memory, a very important factor
to consider in designing systems is to choose energy
efficient bindings and map operations onto available
hardware resources. Different bindings affect energy
consumption of the reconfigurable device greatly. For
example, embedded multipliers, such as those in the
Virtex-IT and Altera Stratix families, can be more en-
ergy efficient than the multipliers implemented with
CLBs. Our analysis shows that the energy consumed by
a CLB-based multiplier is approximately twice of the
energy consumption by an embedded multiplier core.

4.3. Bit Level Optimization — Bitwidth
Analysis

Floating point functional units take much longer ex-
ecution time and consume copious amount of power
than their fixed-point counterparts. Therefore, we em-
ploy the fixed point representation in the rest of our
study, which we show can provide reasonably accurate
results.
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Figure 3: The tradeoff of channel estimation accuracy vs. the
number of fized-point bits.

An important consideration for implementing the
matching pursuit algorithm is decision on the num-
ber of fixed-point bits. The larger the bitwidth, the
more accurate the estimation results. Conversely, big-
ger bitwidths lead to larger and slower functional units,
which has obvious negative effects on the latency and
power. Therefore, it is imperative to find a good trade-
off between accuracy, latency and power.

To explore the design space in this dimension, we
conducted bit-width analysis [9, 21]. Figure 3 shows
the results for the average squared error (ASE) of the
channel estimation vs. number of fixed-point bits for
SNRs of -10, 0, 10, and 20 dB, where SNR is defined as
the ratio of the desired signal energy to the noise signal
energy; both are measured over one symbol duration.
The results are averaged over three different multipath
channels, with 30 ensemble runs (different noise real-
izations) per channel. Referring to Figure 3, it is clear
that as SNR increases, the accuracy gets better, and 8
bits is sufficient over all SNRs to achieve accurate mul-
tipath channel estimation. Fewer number of bits (e.g.,
6 bits) can lead to minor improvements in performance
and power. This, however, comes at the cost of the
large system error. Conversely, large bitwidth (16 bits)
should not be used because it takes longer execution
and larger power consumption, and only can improve
the accuracy by a small degree. Therefore, a bitwidth
of 8 is used in our study, which hits a sweet spot be-
tween accuracy, performance and power.

4.4. Architectural Level Optimization —
Data and Computation Partitioning

Since reconfigurable devices provide the freedom to
map various architectures, choosing the appropriate ar-
chitecture affects the energy dissipation. Based on pre-
vious studies, interconnect dissipates a large amount

of power. Therefore, minimizing the number of long
wires or global communications between building logic
blocks is beneficial. In the following section, we discuss
the importance of the data and computation problem
for on-chip communications and evaluate different ar-
chitectures based on different schemes of partitioning
the MP data and computations to meet the needs of
low energy consumption.

4.4.1. Data and Computation Partition-
ing Problem Clock frequency has risen exponen-
tially over the years and the fraction of the chip
that is reachable by a signal in a single clock cy-
cle has decreased exponentially [10]. Architectures
that rely on global signals are quickly becoming infea-
sible [7]. Therefore, care must be taken to distribute
the data and operations onto reconfigurable sys-
tems in a manner that limits the amount of global
communication.

We formalize the data and computation partitioning
problem using the following architectural assumptions.

1. The programmable logic contains C' configurable
logic blocks (CLBs).

2. There are B BRAMs. Local BRAM can be uti-
lized by architectural synthesis tools for local in-
termediate data; however, it is only used for this
purpose.

3. The CLBs and BRAMs are equally distributed
across the chip. Furthermore, we assume that the
CLBs and BRAMs are equally divided into B
BLOBs where each group consists of 1 BRAM and
C/B CLBs.

4. CLBs can read/write data in the BRAM of the
same group, which is called local access with a
total latency of I clock cycles. If CLBs access
data stored in BRAMs from another group (called
a remote access), it takes a total r clock cycles
(r =1+ d) since we assume an average of d clock
cycles will be taken because of the longer r out-
ing distance. Note that d is dependent on the dis-
tance of the BRAM that is being accessed.

4.4.2. Data and Computation Partitioning Be-
fore going into details of the specific data and compu-
tation distributions schemes, we provide stripped down
overview of the matching pursuit algorithm presented
in its full, formal, mathematical glory in Section 2. MP
compares the received signal vector r with time de-
layed versions of a known training sequence that it ex-
pects to receive from a transmitting user. The S ma-
trix represents these time delayed training sequences.
The i-th column in the S matrix corresponds to the
training sequence delayed by i samples. The training



sequence can be viewed as the transmitting device sig-
nature. The transmitting device sends its signature be-
fore sending data, so that the receiver can characterize
the wireless channel between the transmitting device
and itself. It then uses this channel estimate to demod-
ulate future unknown data that it receives from that
transmitting user. The data in the S is calculated us-
ing the signature (training sequence), CDMA spread-
ing sequence and the transmit and receive filters, all of
which are known a prior 1.

Matched filtering boils down to multiplying each
sample of the received vector r with the corresponding
sample of a column in the S matrix. Then, we accumu-
late all of these multiplied values to get a single value.
This value represents the correlation of the received sig-
nal vector (r) with a time delayed version of the train-
ing sequence (S;). The correlation value between r and
column S; corresponds to the likelihood that the re-
ceived signal has been delayed by ¢ samples. However,
it is important to note that multipath may cause de-
structive or constructive interference. Therefore, a high
correlation value does not necessarily mean that the re-
ceived signal has a path delayed by that number of sam-
ples.

Matching pursuits works by performing matching
filtering of the received signal with all of the de-
layed training sequences (again, corresponding to the
columns of the S). It takes the delay with the highest
correlation and subtracts that signal from the received
signal vector. The algorithm iterates, continually can-
celing more signals, until it finds a sufficient character-
ization of the channel. Matched filtering takes a large
majority of the computation time in MP, hence we fo-
cus on data and computation distribution for the filter.
We evaluate different data and computation partition-
ing schemes for trading off energy and delay, and apply
the optimal partitioning scheme into building the en-
ergy efficient MP core.

An important consideration for implementing the
matching pursuit algorithm is the distribution of the
data and computation. The matching pursuit algo-
rithm and, in particular, the matched filtering, ex-
hibits enormous opportunity for parallelization. Each
matched filter operation can be performed in paral-
lel. This corresponds to computing the received signal
and path delays correlations in parallel. Furthermore,
each multiplication of the matched filter can be per-
formed in parallel. This corresponds to computing the
samples of the received vector and path delay in par-
allel. However, we must then accumulate all of these

1 Please see [14] for exact method to calculate the values of the S
matrix.

sample correlations. The fastest method of doing this
would be through the use of an adder tree. This would
allow us to compute the matched filter in O(logz|r|)
time at the expense of O(|r|?) multipliers. While the
number of samples varies depending on the spreading
sequence, typically, you need around 100 samples for
the training sequences (we use 88 samples in our ex-
periments). This would require approximately 10000
multipliers, which is far more resources that is avail-
able on even the largest reconfigurable devices. Even
if such a device did exist, and we can easily extrapo-
late Moore’s Law a few years to where such a device
exists, we can rarely afford to devote the entire sys-
tem to matched filtering. Therefore, it is imperative
that we study the relationship of performance and de-
sign parameters between different data and computa-
tion partitioning schemes.

Seeing how the fully parallel scheme is infeasible,
we must look to alternative schemes to serialize parts,
if not all, of the operations to different tradeoff de-
sign metrics, e.g. delay, throughput, area, power, etc.
Matched filters involve a quite large amount of data. A
poor data distribution will result in large data trans-
fer times, which can eliminate all of the benefits gained
through the parallelization. Therefore, it is necessary
to carefully distribute the data onto the target device
to achieve good performance. The two-dimensional na-
ture of the S matrix guides us to the following two
schemes for data distribution.

The local scheme distributes the S matrix into
BLOBs by column (see Figure 4). Additionally, the re-
ceived vector r is replicated and distributed to
each BRAM. Therefore, each BLOB computes a
matched filtering of r and a delayed training se-
quence. This sequentializes the computation of the
individual matched filters, but computes all of the fil-
ters in parallel.

The BLOB is configured as a multiply-accumulate
(MAC) datapath, using the fixed multiplier and an
adder implemented on the CLBs. This scheme uses dis-
tributed local control logic, i.e. each BLOB is controlled
locally. This requires a BLOB for each filter, which is
equal to the number of samples (88 in our case).

One could also imagine distributing multiple
columns into the same BLOB. This provides a trade-
off between execution time and area. Since the BRAM
has limited number of ports, we would have to se-
quentialize the matched filtering for each column
in the BLOB in all but the smallest column shar-
ing schemes. For example, if two columns S; and S; 11
are distributed in the same BLOB, then the computa-
tion of the matched filter S, ;r follows the computa-
tion of matched filter S{r.



Figure 4: The local scheme for computing matched filter out-
puts. Matriz S are partitioned into columns, which are then
distributed into block RAMs. Each matched filter shares an
embedded multiplier and an adder, and its output is from a
multiplication and accumulation (MAC) unit.

The global scheme distributes the S matrix into the
BLOB by row (see Figure 5). Here, matched filters are
computed in parallel, while the path correlations are
computed sequentially. More precisely, the matched fil-
ter sample multiplications are computed in parallel,
and the accumulate stage requires an adder tree. The
adder tree is fully pipelined to allow overlapping exe-
cution of multiple matched filter accumulate stages.

Each sample of the received vector r is divided into
the BRAM of the BLOB. The BLOB is simply config-
ured to perform multiplication. The accumulate stage
is computed separately and requires global control logic
and data transfers of the multiplied samples from each
BLOB.

Once again, we can tradeoff execution time for area
by assigning multiple rows to each BLOB. This cor-
responds to sequentializing the matched filter opera-
tions. Each sample present in the BLOB would be exe-
cuted in parallel, since we are limited by the number of
ports on the BRAM and the number of multipliers that
we implement in the BLOB. This would still require a
separate adder tree, however, we can start perform-
ing MACs within the BLOB. Once again, consider the
case where we partition two rows S; and Sjy1 onto the
same BLOB. In this case, we could perform two multi-
plications, corresponding to the two samples from ev-
ery path delay from S. However, we could also accumu-
late these two samples locally and send the two sam-
ple accumulated result to the adder tree for accumula-
tion of the full delayed path. The BLOB data path here
would resemble the data path from the local scheme.
As both schemes move towards more serial implemen-
tations, we would indeed reach a point where the global

pipelined adder-tree
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Figure 5: The global scheme for computing matched filter out-
puts. Matriz S are partitioned into rows, which are then dis-
tributed into block RAMs. Each match filter uses Ns number
of multipliers and its output is from the pipelined adder-tree,
which combines the multiplication results.

and local schemes are equivalent. This would happen
when both schemes become fully sequentialized.
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Figure 6: The tradeoff of performance vs. power by using both
the local and the global scheme.

Figure 6 shows the results of performance and power
consumption vs. granularity (number of columns or
number of rows partitioned into each block RAM
for the local scheme and the global scheme, respec-
tively). The figure illustrates that for both schemes as
the number of columns/rows of the S matrix packed
into the same block RAM increases, the execution
time increases linearly and the power consumption
of hardware resources decreases exponentially. This
observation can be explained by understanding that
each matched filter is sequentially executed if multiple
columns/rows are within one block RAM, which takes
less power consumption but longer execution time. De-
pending on different system requirements, designers
can follow the curve to implement the matched filters
optimally. In the situation where high data rate is re-



quired, the best implementation is to employ the local
scheme and distribute every column into each block
RAM to achieve the best performance.

When we compared the best results of the each in-
dividual scheme in terms of performance and energy
consumption (see Figure 6 and Figure 7), we can see
that the local scheme can achieve faster execution time
(376ns faster) and less energy consumption (4143nJ
less) than the global scheme. This is primarily due to
the fact that the pipelined adder-tree enlarges the sys-
tem delay caused by a large amount of global commu-
nication across the chip. Therefore, the local scheme
with one column in each BLOB is employed in our de-
sign, which can achieve the least amount of global com-
munications and the lowest energy consumption.
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Figure 7: The energy consumptions by using both the local and
the global schemes.

4.5. Algorithmic Level Optimization —
Module Disabling

At the algorithmic level, a lot of optimizations can
be conducted [12], with a strong impact on the system’s
power consumption. The MP algorithm is designed for
easily parallelization, ie. the BLOB-level computation
of each path can run independently of others. This en-
ables the clock gating technique to disable BLOBs that
are not in use or have been detected during the compu-
tation. By disabling the unnecessary computation mod-
ules, the power dissipation can be reduced. In MP, for
instance, after canceling a significant path, the compu-
tation of this path is useless but still consumes power.
With the BLOB model of the execution of each path,
the implementation can exploit clocking gating to dis-
able the computation modules of those detected paths.

As discussed in [13], for radiolocation applications
the MP stopping criterion can not only ensure that
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Figure 8: Percentage of power savings with the algorithmic
level optimization.

the most significant paths are accurately detected, but
guarantee detection of the direct path, which can be
consequently used to measure the line of sight distance
from the transmitter to the receiver using the TOA-
based method. When the stopping condition is met
based on the stopping criterion, the MP core can be
simply switched off to further save power.

In FPGAs, clock gating can be realized either by
using primitives such as BUFGMUX to switch from a
high frequency clock to a low frequency clock [20] or
by introducing a sleep transistor to switch the unnec-
essary modules off [1].

To study the power consumption of the total on-chip
hardware resources, we divide the resources into three
types: unused, active, and disabled parts. The unused
part is the amount of hardware resources that are not
contribute to building the MP core. The active part in-
cludes the resources that are always actively executing,
which contribute to both dynamic and static power dis-
sipation. The disabled part has no dynamic switching
and thus only contributes to static power consumption.

Figure 8 shows the percentage of the total power
consumption as the paths are detected and canceled by
disabling the unnecessary modules during the compu-
tation. From the figure, we can see that the unused part
consumes 1.67% of total power consumption. When we
apply the algorithmic level optimization for achieving
low power, the power consumption decreases linearly
as the detected paths are successively canceled, and for
each cancellation the power saving is about 1.69% com-
pared with leaving all the canceled paths active. Af-
ter detecting 15 paths, the MP terminates, resulting in
a total power saving of 25.4%, and running 216 times
faster than executing the MP algorithm on an 2.17GHz
AMD Athlon XP microprocessor with 1GB RAMs.



5. Conclusion

Wireless connectivity is playing an increasingly im-
portant role in communication systems. To meet the
demands of higher data rate and higher multi-user ca-
pacity, channel estimation has been employed as the
key to modern communication algorithms. Given the
frequency with which new wireless protocols are devel-
oped and deployed, an ASIC based approach is a poor
option due to it’s lack of programmability. On the other
side, with the computational demands that the cur-
rent generation of signal processing algorithms place
on a device, a microprocessor simply could not pro-
vide enough throughput. A reconfigurable device pro-
vides an excellent balance between these two extremes,
and also presents an unique opportunity to designing
and optimizing the signal processing algorithms in con-
cert with the actual hardware implementation. In this
paper, we described a cross-cutting approach to explore
the design space to solve the channel estimation prob-
lem on reconfigurable devices.

As high performance and energy efficient implemen-
tations remain as a design challenge, we focused on
building a high speed and energy efficient matching
pursuit IP core, which has been optimized at all levels
of the system design: bit, architecture, and algorithm
levels. At the bit level, we have studied the tradeoff of
energy consumption vs. accuracy. At the architectural
level, we have investigated many different data and
computation partitioning schemes, and found that an
effective way of partitioning an application is to treat
the reconfigurable device as a collection computational
blocks, where each block has a single block of mem-
ory and an associated set of computational abilities.
We call each of these logical units a BRAM-level oper-
ational block, or “BLOB”. We have demonstrated that
by keeping both the control and the data signals local
to each BLOB to the greatest extent possible, the im-
plementation can achieve the highest performance and
the least energy consumption. At the algorithmic level
where the decision has the strong impact on the sys-
tem power consumption, we have employed the clock
gating technique to disable the unnecessary computa-
tion modules, achieving 25.4% of total power savings,
which can execute 216 times faster than running the al-
gorithm on a state of the art microprocessor.
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