
Multi-Execution: Multicore Caching for Data-Similar
Executions

Susmit Biswas, Diana Franklin, Alan Savage, Ryan Dixon, Timothy Sherwood,
Frederic T. Chong

Department of Computer Science, University of California, Santa Barbara
{susmit, franklin, asavage, rsd, sherwood, chong}@cs.ucsb.edu

ABSTRACT

While microprocessor designers turn to multicore architec-
tures to sustain performance expectations, the dramatic in-
crease in parallelism of such architectures will put substan-
tial demands on off-chip bandwidth and make the memory
wall more significant than ever. This paper demonstrates
that one profitable application of multicore processors is the
execution of many similar instantiations of the same pro-
gram. We identify that this model of execution is used in
several practical scenarios and term it as “multi-execution.”
Often, each such instance utilizes very similar data. In con-
ventional cache hierarchies, each instance would cache its
own data independently. We propose the Mergeable cache
architecture that detects data similarities and merges cache
blocks, resulting in substantial savings in cache storage re-
quirements. This leads to reductions in off-chip memory
accesses and overall power usage, and increases in appli-
cation performance. We present cycle-accurate simulation
results of 8 benchmarks (6 from SPEC2000) to demonstrate
that our technique provides a scalable solution and leads to
significant speedups due to reductions in main memory ac-
cesses. For 8 cores running 8 similar executions of the same
application and sharing an exclusive 4-MB, 8-way L2 cache,
the Mergeable cache shows a speedup in execution by 2.5×
on average (ranging from 0.93× to 6.92×), while posing an
overhead of only 4.28% on cache area and 5.21% on power
when it is used.

Categories and Subject Descriptors

B.3.2 [MEMORY STRUCTURES]: Design Styles—Cache

memories; C.4 [Computer Systems Organization]: PER-
FORMANCE OF SYSTEMS—Design studies

General Terms

Design, Management, Measurement, Performance

Keywords

Data Similar Execution, Cache Design, CMP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

1. INTRODUCTION
As we move from tens to hundreds of cores on a chip, it is

easy to get lost trying to think of all the new ways this raw
performance potential can be unleashed on those traditional
applications we are all so comfortable with. Programming
these chips to be efficient on these traditional workloads is
important, but it is also quite tricky. As a single memory
stream scales to tens, hundreds, or even thousands of ref-
erence streams, the memory system will struggle to service
all the requests in a timely manner. Furthermore, even in
the embedded markets where these massively parallel cores
are already making inroads (e.g. Tilera TILE64[1], Am-
bric Am2045[2], and Nvidia GeForce GT200[3]), the effort
to modify these applications to be both correct and efficient
at those levels of parallelism is non-trivial.

One natural, but easily overlooked, way to make use of
this raw computational power of hundreds of cores is through
the execution of multiple copies of the same program with
different input data or parameters. When solving real prob-
lems (rather than running benchmarks), this model of par-
allelism is already common practice. For example, in the
machine-learning domain many poorly performing but seem-
ingly independent “learners” can be trained in parallel, and
the results can be combined together through a technique
called boosting. In fact, while these individual learners are
independent (in that there are no dependencies between pro-
cesses), they share something very important that is not typ-
ically exploited by the architecture: the contents of much

of their data. In this paper, we explore this interesting
under-explored class of applications, which we term “multi-
execution codes.”

One of the most interesting behaviors exhibited by this
class of application is that there often exists a high degree
of similarity across the data of different instances of the ap-
plication. We argue that this fact can be exploited through
novel architectural mechanisms to reduce the main memory
accesses, thereby speeding up execution (sometimes by a
factor of 4 or more). We believe that multi-execution could
become a useful model of execution as multicores scale be-
cause no software changes are necessary to take advantage
of a multicore system and, frankly, programmers (and even
non-programmers) already use it in many domains.

We select several applications from simulation, optimiza-
tion, database, and learning domains, and find that the sim-
ilarity of multi-execution working sets can be quite high, but
careful design is needed to exploit this similarity profitably
in a memory system. We present a low-overhead hardware
mechanism that can improve caching by merging identi-

cal data from different physical-memory regions belonging
to different processes, and thereby, reduce required off-chip
bandwidth by an order of magnitude and speedup the execu-
tion of programs. Implementing a cache architecture capable
of merging data dynamically poses interesting challenges to
support correctness, physical-memory sharing, process mi-
gration etc, which our proposed architecture solves success-
fully. Note that our mechanisms can be completely bypassed
when multi-execution is not utilized, resulting in no perfor-
mance degradation and a negligible power increase. The
main contributions of this paper are summarized in the fol-
lowing items:

1. We introduce the notion of “multi-execution” domain
and show that high data similarity exists across multi-
execution instances. We also discuss several scenarios
where multi-execution is useful.

2. We propose a Mergeable cache architecture which in-
creases cache capacity by merging cache lines with
identical content used by different processes, and con-
servatively improves performance by 2.5× on average
while incurring a modest increase in area and power
when in use.

In order to demonstrate the strength of our approach,
we have implemented a cycle-accurate simulation framework
based on PolyScalar[4] simulator. In this paper, we present
results with 8 applications including 6 benchmarks from the
SPEC2000 benchmark suite[5], libsvm, and icsiboost.

The remainder of the paper is organized as follows. We
motivate our approach in Section 2, describe the benchmarks
in Section 3, and explain the challenges and techniques of
implementing a Mergeable cache architecture in Section 4.
Section 5 illustrates the experimental methodology and 6
shows the results. We discuss previous approaches to reduc-
ing off-chip memory accesses in 7. Section 8 presents future
work, and finally the conclusions are drawn in Section 9.

2. MOTIVATION
The simplest and cheapest way to take advantage of multi-

ple processing cores is by running a separate sequential pro-
gram on each core in a multi-programmed approach. How-
ever, the demand for memory bandwidth increases super-
linearly with the number of cores in a chip when running un-
related programs on each core. When multiple cores share a
cache, effective cache size per core is reduced, which leads to
a super-linear increase in cache misses. Figure 1(a) depicts
the average number of L2 misses per 1000 (L1) data mem-
ory references for four applications. The number of off-chip
accesses decreases non-linearly as the size of the L2 cache
increases. Thus, we can expect that even small increases in
the effective cache capacity can lead to substantial increases
in performance and decreases in total system power (due to
DRAM access).

There exists a domain of applications ideally suited to
take advantage of a large number of cores and achieve cache
compression by executing several instances of the same se-
quential program with small differences in parameters or in-
put data. We refer to this as the “multi-execution” domain.
Within this domain, the various instances of the program
have very similar data, but exactly where and when the
similarity occurs is not predictable. That is, any given piece
of data may go through phases of being identical and not

identical across multiple executions of the program. An al-
ternative to multi-execution is to write an explicitly parallel
program that takes many instances of an application and
explicitly shares redundant data. However, this approach is
labor intensive, difficult to get correct, often requires source
access to libraries and copyrighted/proprietary codes, and
can miss substantial data similarity that can only be discov-
ered with an efficient dynamic mechanism, as we show in
our study.

In this paper, several applications from a multi-execution
environment are inspected for opportunities to merge identi-
cal data. We find that a large amount of identical data exists
in cache lines owned by different processes. Four such appli-
cations are shown in Figure 1(b). The graph depicts the sim-
ilarity of the cache contents between two independent execu-
tions of these applications on the same input data and with
up to 50% variations in parameter values when each process
owns a private 1-MB direct mapped cache. Cache snap-
shots are taken every 10M accesses and results are shown for
the first 2 billion accesses only. We observe very high sim-
ilarity across executions of 300.twolf and 175.vpr, whereas
188.ammp shows high similarity in first 1.2 billion accesses.
255.vortex, on the other hand, shows very low similarity
across executions, and hence, is unable to benefit signifi-
cantly from cache line merging technique. The high similar-
ity across executions indicates that the effective capacity of
on-chip cache can be increased by merging cache lines.

3. APPLICATIONS
Benchmarks are selected from several domains such as

simulation, visualization, machine-learning etc. where multi-
execution is used in practice. In each of these domains, prac-
tical scenarios are used to construct input and parameter
variations up to 50%.

188.ammp is a computational chemistry application in
molecular dynamics from SPEC2000fp[5],which computes
the energy of the final configuration of a set of atoms in water
and protein. We varied the following parameters, which are
often varied to synthesize, purify or characterize phenomena
more effectively in domains of molecular biology and organic
chemistry[16]: mxdq works as a threshold to update the full
non-bonded list when atomic displacement is greater than
the value in angstroms. bbox is the bounding box dimension
used for computing potential energy. temp specifies the sim-
ulation temperature. Simulation can be performed with dif-
ferent values to measure sensitivity to temperature. mmbox

controls the fast multipole algorithm (FMM) for long-range
non-bond energy calculation, and when set to a non-zero
functions as a factor to compromise between accuracy and
speed. numstep specifies the number of steps used in the
line minimizer.

300.twolf, the TimberWolfSC placement and global rout-
ing package is used in the production process of microchips.
TimberWolfSC program uses simulated annealing as a heuris-
tic to find solutions for row-based standard cell design. The
global router adds extra cells known as feedthrus to com-
plete the route if enough space is not available between two
adjacent standard cells. The result of placement and rout-
ing are dependent on two parameters, row separation and
feedthru width, and several executions are performed in or-
der to discover the “magic numbers” for a design.

175.vpr(Versatile Place and Route) is a placement and
routing program that automatically synthesizes a technology-

0 1 2 3 4
Cache size (Megabyte)

10

20

30

40

50

L

2
M

is
s

/ 1
K

 m
em

o
ry

 r
ef

s

(a) Cache performance vs. size

500 1000 1500
References (Million)

20

40

60

80

100

%
 S

im
ila

ri
ty

 o
f

ca
ch

es

255.vortex
188.ammp
175.vpr
300.twolf

(b) Data cache similarity

Figure 1: Two factors contribute to the motivation of our approach. (a) shows the number of average L2
miss of four benchmarks for every 1000 data memory references. Cache performance has a super-linear
relationship with cache size. When the L2 cache is shared by multiple cores, effective memory per core
is reduced, increasing the miss rate. Merging duplicate cache lines to reduce cache requirements has the
potential to improve cache performance substantially, even with small increases in effective cache capacity.
(b) Similarity of cache contents between two executions of an application run with different input sets or
parameters. Cache snapshots are taken at an interval of 10M instructions for all runs while simulating 1
MB direct-mapped cache. Similarity is computed using line-by-line comparison of the caches and taking the
ratio of identical lines to total lines. 175.vpr, 300.twolf and 188.ammp show good similarity characteristics
whereas 255.vortex lacks similarity in cache footprint. Therefore, merging identical cache lines is expected
to improve the miss rate of L2 cache for all of these applications except 255.vortex.

mapped circuit in a Field-Programmable Gate Array using
combinatorial optimization. Finding an optimal routing de-
pends on choosing the optimal routing-channel-width. In
practice, many simulations are required with different val-
ues of routing-channel-width to find an optimal route[10], so
we vary this parameter in our experiments.

183.equake simulates the propagation of elastic waves
in large and heterogeneous valleys to find the time history
of the ground motion in the valley corresponding to a seis-
mic event. Computations are performed on an unstructured
mesh which resolves wavelengths locally using a finite ele-
ment method. The epicenter and intensity of earthquake are
varied. This would be used to explore how a structure or
terrain would respond to different potential earthquakes.

181.mcf is designed to find a solution to the single-depot
vehicle scheduling problems for a single depot and a homo-
geneous vehicle fleet occurring in the planning process of
public transportation companies. We simulate a scenario
where one of the trips is to be deleted due to budget ad-
justment. To find an optimal solution, several simulations
need to be performed with different input sets. We delete
one trip randomly and perform simulation on different sets
of inputs in parallel.

255.vortex is a single-user object-oriented database trans-
action benchmark. We simulate random insert, delete and
look up queries which are common database operations. How-
ever, with randomized queries on the same database the
similarity is low. We include vortex in our benchmarks to
show how our design performs when applications have little
similarity.

Support Vector Machine (libsvm)[12] is an applica-
tion from machine-learning that requires the user to find the
best values for parameters C and γ using cross-validation.
C is used as the cost for optimization. It trains on the whole
training data set using these parameter values and provided
test data. A good model can be generated with careful se-

lection of C and γ values. Therefore, in practice, libsvm
is executed multiple times with different parameter values
to tune models for better accuracy[12]. We use a standard
texture dataset Satimage from UCI Repository of Machine
Learning Databases[8] as input, and vary these two param-
eters.

icsiboost is an implementation of Boosting[25], another
machine-learning technique. Several weak learners are em-
ployed in the process of learning, and rules discovered by
them are combined to create a more accurate set of rules by
voting. Traditional boosting algorithms are serial in nature,
but Lozano et al.[19] propose a parallel execution on the
same training set with randomized initial weights to achieve
significant speed up in the learning process. We have cus-
tomized icsiboost[6], an open-source boosting package, to
implement this technique, and assign random initial weights
to learning steps. The UCI Census Income dataset[8] is
used as input to this benchmark.

We have SPEC2000 train inputs for 300.twolf, 175.vpr,
255.vortex, and the Minnespec[17] inputs for simulating 188.

ammp, 181.mcf, 183.equake as ref inputs are too large for
cycle-accurate simulation of multiple cores. The standard
UCI dataset is used as input for libsvm and icsiboost. Sim-
ulations are run until completion to ensure that results are
not skewed due to the initialization phase. Characteristics
of these applications are summarized in Table 3.

4. THE MERGEABLE CACHE ARCHITEC-

TURE: CHALLENGES AND SOLUTIONS
Although the data similarity across instances of our multi-

execution applications is high, we need to design a cache
architecture that can take advantage of this similarity with-
out incurring excessive overhead. Specifically, our goal is
to design an efficient hardware technique that dynamically
finds identical data among different processes, merges such

Benchmark Description Input Modification Run Footprint (MB)
Length vsz rsz

175.vpr FPGA Place and Route routing-channel-width 3.3 B 2.67 1.35
181.mcf Combinatorial Optimization reduced trips 6.99 B 18.94 16.98

183.equake Seismic Wave Propagation epicenter and intensity 4.36 B 1.69 0.47
188.ammp Chemistry simulation parameters 6.13 B 96.72 39.91
255.vortex Database random insert, lookup 5.85 B 15.71 14.38
300.twolf Place and Route intercell gaps 4.13 B 11.60 10.35
libsvm Machine learning C and γ parameter 5.67 B 6.05 3.38

icsiboost Ensemble learning distribution of sample 2.30 B 29.45 18.03

Table 1: Benchmarks and input descriptions. The observed memory footprint sizes reported are average of
20 runs where resident memory size and virtual memory size are abbreviated as rsz and vsz respectively.

data, and splits them again when the processes write to the
data. We focus on data caches and assume that the OS can
map identical program code in our separate instances to the
same physical page, effectively merging instruction caching
by default. There are two significant technical issues which
need to be addressed in merging identical data blocks from
multiple processes.

1. Finding identical data to merge is an expensive opera-
tion if every access to the memory results in comparing
data with all valid cache lines. Searches must be mini-
mized while the opportunity for identifying mergeable
data is maximized.

2. Merged data needs to be organized in such a way that
data is quickly found in a standard cache access.

Efficiently searching for identical data: To solve the
first problem, we observe that applications are most likely to
have identical data located at the same virtual address (but
different physical addresses). Thus, we limit our searches to
only data having the same virtual address. To perform this
search efficiently, we must arrange to map all the relevant
virtual addresses to the same cache set.

Figure 2: Modification in cache addressing

To achieve this, we use a page coloring technique[9][23]
to place pages in DRAM. Although we restrict the OS in
mapping pages, the attributes of multi-execution workloads
are likely to compensate for the negative effects of such re-
strictions. As all the relevant processes running the same
program (with different inputs) have similar working sets in
the virtual address space, it is quite space-efficient to assign
the same virtual page of all processes in a multi-execution

workload to consecutive physical pages for any pages that
are candidates for merging. In this way, all bits in the phys-
ical address except the lowest (log2P) bits of the physical
page number will be identical for the same virtual address
across all processes where P is the number of processors.
We call this small set of bits that distinguishes the physical
addresses the Process Physical ID (PPID). Figure 2 shows
the location of the PPID with respect to the page number
and page offset.

This page coloring scheme is chosen because of its flexibil-
ity. If the entire memory were partitioned among the multi-
execution processes, physical memory space would be wasted
for shared pages containing instructions, and it would be
more difficult to dynamically share space with the operating
system and other processes. The blocks of pages reserved for
multi-execution processes are allocated dynamically in sets
of P pages and the PPID length is set to log2(P), where P

is the number of processors. The amount of merging is also
bound to the number of processors. If there are more pro-
cesses than processors in the system, merging can still occur,
but only between subsets of the processes. Those subsets are
treated as separate multi-execution workloads. If there are
fewer processes than processors, the operating system can
place non-merging pages (OS or instruction pages) in the
rest of the block of allocated pages or, if there are less than
half the number of processes, two sets of virtual pages can
fit in a single block. Finally, there is no loss of benefit from
spatial locality, because spatial locality is still maintained
within a page. Our scheme only stripes the process alloca-
tion at a page granularity.

There are two requirements to support merging physical
memory owned by different processes - quickly finding data
to merge and quickly finding merged data. For the first,
addresses from the same virtual page of different processes
need to be mapped to the same set in the cache. We accom-
plish this removing the PPID from the index to the cache
sets. Figure 2 shows the new index, which is taken from
the bits before and after the PPID. Thus, the same virtual
address in different processes (that are part of a potential
merging group) will share the same index. For the second, it
must be easy to recognize the addresses within the set that
are the same virtual address. The new tag is made up of
two parts - a subset of the original tag, which we call the
vTag, and the PPID. For any address that is the same vir-
tual address, the vTag will be identical, but the PPID will
differ.

Inside the cache, the vTag and PPID are stored separately
(Figure 3). The vTag is stored like a normal tag, but the

Figure 3: Mergeable cache architecture. When a line
is evicted from L1D cache and moved to L2, all lines
with identical vTags from the mapped cache set are
copied in CAM and compared for identical content.

PPID is stored as a bit vector (process flags) of length equal
to the number of processors. Each PPID corresponds to
a separate bit in the flag vector (multiple bits can be set
to denote sharers of a merged line). The vTag of the line
that is entering the L2 cache is compared with the vTags in
its cache set. Data from cache lines with matching vTags
are copied to the associative buffer or content-addressable-
memory (CAM) where search for a cache line with identical
content is performed. If a cache line with identical data and
vTags is found, the new line is not given a new slot in the
cache. Instead, the bit in the process flags corresponding
to the new address’ PPID is set. In other words, identical
cache blocks share a single cache block while different cache
blocks are allocated to lines with non-identical data.

Accessing merged data: When the L2 cache receives
a request, the vTag is used to match the tag field, and the
PPID is used to check the proper bit in the process flags
field. The vTag must be a perfect match, whereas the PPID
is expanded into a bit vector with a single high bit, and
a bitwise-and operation with a non-zero result indicates a
match. An access is considered a hit only if both the vTag
and process flag match. Because the process flag match-
ing can be performed in parallel to vTag matching, it adds
negligible delay along the critical path.

Architectural details: To maximize the on-chip storage
capacity of our system and simplify the merging and split-
ting of lines in the L2 cache, the L1 and L2 caches maintain
an exclusive policy. Each line may reside in either the L1
cache or the L2 cache, but never both. This means that the
L2 cache only contains items that have been evicted from
the L1 cache. This greatly simplifies merging and splitting.
A line enters the L2 cache as a result of an eviction from the
L1 cache and attempts to merge with a line already resid-
ing in the L2 cache. That line is no longer residing in any
L1 cache. In order to modify the line, it must be removed
from the L2 cache, placed into an L1 cache, and modified.
Therefore, no modifications to existing lines are ever made
in the L2 cache. This means that lines in the L2 cache are
not split up when modified. A merged line to be modified
is merely removed, which requires no more than setting the

proper process flag to 0. Though our implementation per-
forms merging in the L2 cache, this technique is applicable
in all lower level (L2, L3, etc.) shared caches.

The Mergeable cache first splits the address into two parts
- the vTag and the PPID which is then expanded to process
flags. If the tag in a conventional cache requires tagsize bits
per line, the new hardware needs (tagsize−log2(P)+P) bits
per line, where P is the number of processors. Along with
this increase of (P − log2(P)) bits per line, the Mergeable
cache also needs a CAM for comparing the data of a line
entering the cache to the data contained in the its set in the
cache. The length of each line in the CAM is equal to the
cache’s line size, and it contains the same number of lines
as the cache associativity. The area and power numbers for
the CAM are listed in Table 4.

Rows Area(mm2) Latency(ns) Power(nW)
2 0.0132 0.507 0.0048
4 0.0140 0.513 0.0055
8 0.0156 0.525 0.0071
16 0.0190 0.549 0.0102

Table 3: Overhead of 256-bit wide CAM obtained
using Cacti 4.2 for 45nm technology node.

The area of a 8-way CAM is 0.0156mm2 whereas the area
of a 4-MB, 8-way set associative cache in 45nm technology
node is found to be 16.84mm2 using Cacti [27]. Overall, a
Mergeable cache poses an overhead of 4.28% in area due to
the process flags and CAM. Power consumption is increased
by 5.21% and cycle time by 0.92%. The 5.21% estimate is
conservative, because more power is saved by reading only
cache lines whose vTags match into the CAM. For applica-
tions with low data similarity, as well as conventional work-
loads, the data-mergeability could be turned off by using
conventional mapping function and disabling the CAM to
reduce overhead on power and delay. For simplicity, we as-
sume static decisions in this work.

Finally, an additional optimization from our mergeable
cache is that we can augment our memory controller to be
aware of merged data. By transmitting the process flags, we
can transmit only one copy of the data but have it be written
to multiple places in memory. This requires one extra cycle
for each write-back of a merged line to transmit the process
flags.

5. METHODOLOGY
In this section, we describe our experimental methodol-

ogy and simulation framework which we have implemented
to evaluate the effectiveness of our scheme. The simulation
infrastructure is built on the PolyScalar[4] multiprocessor
simulator. PolyScalar is a multi-processor version of the
Simplescalar[15] simulation tool and uses PISA as the in-
struction set architecture. The configuration of the simu-
lated system is described in Table 5.

All caches maintain an exclusive policy in order to maxi-
mize the number of unique lines that can be stored on-chip.
That is, no line can be contained in more than one cache
at any time. We experiment with the following two cache
architectures in this study.

1. Shared Cache: processors share a large conventional
L2 cache with an LRU replacement policy.

2. Mergeable Cache: processors share a large, Mergeable
L2 cache with similar configuration as shared cache,

Cache Size Area Access Cycle Read
Type (MB) (mm2) Time (ns) Time (ns) Power (W)

Conventional 4 15.02 4.98 0.357 0.154
Mergeable 4 16.84 5.22 0.357 0.162

Table 2: Area, delay and power overhead of Mergeable cache obtained using Cacti 4.2 for 45nm technology node.

in which cache lines are merged if and only if their
contents match.

We simulate both instruction and data memory accesses in
the L2 cache but keep only a single copy of instruction cache
lines because the text section is shared by all the processes
running the same application. So, instruction memory ac-
cess has the same effect on a conventional L2 and mergeable
L2 cache.

6. RESULTS
In this study, we look at several aspects of the Mergeable

cache. First, we explore how it changes the off-chip traffic,
due to both L2 cache misses and L2 cache writebacks. We
then present cycle-accurate performance results. We con-
tinue with an analysis of the merging that occurs in the L2
cache. Finally, we discuss a major tradeoff that occurs be-
tween the addressing scheme used for merging and conflict
misses.

Off-Chip Traffic: The Mergeable cache reduces off-chip
traffic in two ways. First, it merges identical data, leading
to higher on-chip capacity and to fewer DRAM requests for
data. Second, when merged data is evicted from the cache,
it can transmit the data only once. An extra cycle is used
transferring the process flags bit vector, and the DRAM con-
troller writes the one line of data to multiple locations.

In Figure 4, we show the L2 misses for all of the bench-
marks using the dark bar. One miss in the L2 cache affects
performance substantially as DRAM access latency is on
the order of hundreds of cycles. As the number of cores in
processors scales, the miss rate of the L2 cache increases.
By merging duplicate cache lines, the Mergeable cache in-
creases cache capacity per core, thereby reducing requests
to DRAM.

We can see that the mergeable cache reduces the number
of L2 cache misses by up to 9x in icsiboost. We also see that,
in general, the savings due to merging increases as the num-
ber of processes increases. There are two notable anomalies,
vortex and vpr. They illustrate the tradeoff with the Merge-
able cache - as the number of processes increases, there is an
increase in conflict misses in sets with little merging. This
will be discussed in more detail at the end of this section.

Not only does the Mergeable cache decrease the number
of DRAM accesses due to L2 misses, when a merged line
is evicted from the L2 cache, that data is transmitted to
DRAM in a single transaction. In our cycle-accurate re-
sults, we incur an extra cycle to transmit the process flags bit
vector. Note that without this optimization, although the
number of L2 misses might decrease, the Mergeable cache
configuration could potentially require a very similar num-
ber of writebacks, as each merged eviction is expanded into
several writebacks.

The light bar in Figure 4 illustrates the savings due to a
decrease in writebacks. Note that as the number of pro-
cesses increases, for most applications, the percentage of
merged writebacks decreases, leading to less savings due to

merged writebacks. This may seem counterintuitive, be-
cause it would seem that more merging should imply more
merged writebacks. As the degree of merging increases,
the merged lines get accessed more often, decreasing their
chances of being evicted. So it is possible for increases in
merging not to directly translate to increases in the eviction
of merged lines. In fact, the decrease in writebacks has little
relationship to the decrease in L2 misses. Another coun-
terintuitive result is vpr. It has fewer L2 misses with the
Mergeable cache than with the conventional cache yet it in-
curs more writebacks. This is due to an increase in L1 cache
accesses and misses, both due to differences in the branch
mispredictions.

Performance: We begin by showing the effect that in-
creasing the number of processors has on our applications.
We measure the effects of increasing the number of processes
(2, 4, 8; 1 process per processor core) for a fixed amount of
cache (4-MB) and associativity (8-way). Figure 5 shows
that the Mergeable cache performs better than a conven-
tional cache on average, though the individual results vary
depending on the similarity in the application. For appli-
cations with high similarity, the Mergeable cache produces
significant speedup, as exhibited by libsvm, icsiboost and
twolf. In addition, as the number of processes increases, the
benefit of the Mergeable cache increases across almost all
applications. The increase of DRAM traffic observed ear-
lier in vpr is reflected in the speedup graphs. The speedup
increases from 2 to 4 processors due to merging, but de-
creases again at 8 processors due to an increase in L2 cache
misses. Finally, in our application with the lowest amount
of sharing, the line-merging technique results in a slowdown
for vortex. Overall, the Mergeable cache outperforms shared
conventional cache configurations by a factor of 2.5×, on av-
erage.

Merging Analysis: One interesting advantage of the
Mergeable cache is that it can dynamically discover merge-
able cache blocks which software mechanisms cannot with-
out incurring large overhead for merging data blocks. In
particular, the Mergeable cache can merge both dirty and
clean blocks. A technique such as copy-on-write only ex-
ploits merging of clean data. Figure 6(a) shows the distri-
bution of the number of times a line is written for every
line which gets merged in the L2 cache. Most of the merged
data is dirty, meaning a pure copy-on-write-based sharing
is not capable of exploiting this phenomenon. Figure 6(b)
breaks down the distribution of merged lines which are dirty
to demonstrate that in many of the applications, merging is
also exploiting more than just data that is initialized only
once. Intuitively, similarity in input parameters results in
large similarity in both control flow and data values. To
get more insight we hand-analyzed four benchmarks to find
the regions of code and data structures that lead to merg-
ing in L2 cache. We analyzed a few of the top-hitting en-
tries and found that more than 20% of the accessed merged
data is dynamic, as shown in the code snippets. Sharing

Processors 2 - 8 Branch Penalty 3 Cycles
Issue/Commit Width 8/8 DRAM Latency 200 Cycles

I-Fetch Q 8 Mem Ports 2
LSQ Size 64 System Bus Transfer Rate 8GB/s
RUU Size 128 L2 Cache 4MB, 8 way, 32 byte lines

ALU/FPU/Mult/Div 4/4/1/1 L2 Latency 6 Cycles
Branch 2-level, 1024 Entry L1 I-Cache 32KB + 32 KB, Direct Mapped

Predictor History Length 10 L1 D-Cache 32 byte lines
BTB size 2048 L1 I,D-Cache Ports 4

RAS entries 8 L1 Latency 1 Cycle

Table 4: Configuration of the simulated processors. The L2 cache size is held constant as the number of
processors increases.

2-am
m

p

4-am
m

p

8-am
m

p

2-equake

4-equake

8-equake

2-icsiboost

4-icsiboost

8-icsiboost

2-libsvm

4-libsvm

8-libsvm

2-m
cf

4-m
cf

8-m
cf

2-tw
olf

4-tw
olf

8-tw
olf

2-vortex

4-vortex

8-vortex

2-vpr

4-vpr

8-vpr

0.0

0.5

1.0

O
ff

-c
h

ip
 a

cc
es

se
s

L2 Misses
L2 Writebacks

Figure 4: The graph shows the number of DRAM requests (normalized to conventional cache case) for
Mergeable caches as the number of processors increases. The x-axis shows the number of cores and the
benchmark. The amount of off-chip traffic increases with the number of cores per processor, leading to a
slowdown in application execution. The dark bar shows that the L2 miss rate is typically reduced by merging
identical data. The light bar shows the decrease in writebacks due to the Mergeable cache writing merged
lines as a single transaction.

2-am
m

p

4-am
m

p

8-am
m

p

2-equake

4-equake

8-equake

2-icsiboost

4-icsiboost

8-icsiboost

2-libsvm

4-libsvm

8-libsvm

2-m
cf

4-m
cf

8-m
cf

2-tw
olf

4-tw
olf

8-tw
olf

2-vortex

4-vortex

8-vortex

2-vpr

4-vpr

8-vpr

2-average

4-average

8-average

0

2

4

6

S
p

ee
d

u
p

conventional cache
mergeable cache

Figure 5: Speedup for all benchmarks simulated with 4-MB, 8 way L2-cache having 32 Byte block while
running 8 instances of each application. Mergeable cache show speedup in all benchmarks except in 255.vortex
where Mergeable cache suffers from alignment of dissimilar data in the same cache set resulting in increased
conflict misses. We analyze this case later in detail.

this data would require substantial synchronization using a
shared memory programming model.

Discussion: The Mergeable cache shows significant po-
tential in identifying and merging identical data in order to

reduce off-chip traffic. By reducing the L2 miss rate and
merging writebacks to DRAM, the Mergeable cache experi-
ences an average of 2.5x speedup with less than 6% power
and area overhead. Despite these benefits, the Mergeable

Bench Min Dyn. Code Snippets
Similarity

libsvm 60% svm.cpp:294 sum+ = px→value ∗ py→value;
mcf 25% implicit.c:261 if(tail→time + arcin→org cost > latest)

mcfutil:85 node→potential = node→basic arc→cost + node→pred→potential;
vpr 23% route.c:1082 if(heap[ito + 1]→cost < heap[ito]→cost)

dimbox.c:132 if(netptr→flag == 1)
twolf 28% dimbox.c:184,214,257 ttermptr = termptr→termptr;

dimbox.c:185,215,258 ttermptr→flag = 1;

Table 5: We hand-analyzed four applications to find the dynamic data structures that account for more than
20% of the hits in merged cache lines, which are illustrated by these code snippets.

ammp equake libsvm mcf twolf vortex vpr0

20

40

60

80

100

L
in

es
 e

vi
ct

ed
 f

ro
m

 L
1D

Clean Line Merged in L2
Dirty Line Merged in L2
Not Merged in L2

(a) L1D writeback distribution

ammp equake libsvm mcf twolf vortex vpr0

20

40

60

80

100

D
is

tr
ib

u
ti

o
n

 o
f

M
er

g
ed

 D
ir

ty
 B

lo
ck

s

>=10
6 - 9
2 - 5
1

(b) L2 Merged lines distribution

Figure 6: When a line from L1D cache is evicted, it
can be merged in L2 cache. In figure (a), we show the
distribution of lines being written in L2 cache. In
figure (b), we break down the dirty merged lines into
(i)lines that are written only once,(ii) lines which are
written and merged 2 - 5 times, (iii) 6 - 9 times, and
(iv) lines which are written and merged more than 10
times. It can be observed that the amount of write-
once data is quite low which illustrates the need for
dynamic data merging capability.

cache has one disadvantage, which is that the addressing
scheme, which is the key to tractable merging, can lead to
an increase of conflict misses in sets with little data similar-
ity. Because all cache lines with the same virtual address
belonging to different processes have been mapped to the
same set in the cache, if no sharing occurs, this can lead
to an increase in conflict misses for this set. This is espe-
cially detrimental because the programs are identical, so it
is highly likely that all processes will be using the same vir-
tual addresses at the same time. As the number of processes
grows, the pressure on the associativity increases, magnify-
ing this problem. This effect is most obvious in vortex, where
there is a slight slowdown when the Mergeable cache is used.

Because multi-execution workloads are used to execute
the same multi-execution workload many times (i.e. when a

new design is completed, or a new data point for an earth-
quake needs to be generated), we find it reasonable to as-
sume that the user will try the machine with and without
merging in order to get the best performance. For vortex,
the user would turn off the merging capability and suffer no
performance degradation.

mcf ammp vortex twolf
0

5

10

15

N
o

rm
al

iz
ed

 L
2

M
is

se
s conventional addressing (index and tag)

merged addressing (PPID in tag)

Figure 7: Normalized L2 misses comparing indexing
schemes. The conventional cache divides the address
between tag, index, and offsets. The new scheme
uses bits before and after the PPID for the index,
and the PPID and vTag of the tag. No merging is
performed to show the effect of only the indexing
scheme.

While this solution makes the Mergeable cache usable for
all multi-execution workloads, this phenomenon is observed
in more than just vortex. An application may have low
data similarity either temporally or spatially. Temporally-
low data similarity would be phases where a low percentage
of the current working set is identical. Spatially-low data
similarity would mean that while some sets in the cache
have high similarity, another nontrivial number of sets in the
cache do not have high similarity, leading to conflict misses
in specific sets in the cache. So even applications that benefit
overall from the Mergeable cache may have portions of the
data that would incur fewer misses in a conventional cache.

Figure 7 shows this phenomenon. In this graph, the two
addressing schemes are compared, without the benefit of
merging. The graph shows that for vortex, the addressing
scheme used in the Mergeable cache, in which the PPID is
not used in the index, would lead to more than 3× as many
L2 cache misses if it were not for some merging. Even more
surprising is that in twolf, the addressing scheme would lead
to 11× more L2 cache misses, yet this is not a poorly per-
forming application using the Mergeable cache. It is only the
high degree of merging in twolf that leads to speedups. The
degradation of benefit in L2 cache misses observed by vpr in

Figure 4 is also due to conflicts in non-merged data. Thus,
several applications could benefit even more from a hybrid
scheme that dynamically divides the cache into two segments
- one that performs merging and another that uses conven-
tional addressing. Our initial explorations have shown that
the design is non-trivial, with static partitionings giving very
mixed results. We will explore such a design in future work.

Using a CAM for data comparisons leads to an increase
in design complexity and potential overhead in power us-
age. However, the Mergeable cache decreases the number
of DRAM accesses, thereby reducing the power usage of
the bus and DRAM. Using DRAMsim[33], we evaluated the
traces of DRAM accesses while running 8 instances of icsi-

boost on a conventional cache and a Mergeable cache. In the
presence of a Mergeable cache, a 2GB DRAM (667MHz)
consumes 129.37mW on average, whereas 296.15mW of power
is consumed when a conventional cache is used. In short, a
mergeable cache increases processor power usage but reduces
overall memory system power usage and demonstrates sig-
nificant speed up in executing applications from the multi-
execution domain.

7. RELATED WORK
Several prior proposals use compiler and architectural sup-

port to reduce main memory access and in turn speed up
execution. In order to reduce memory stalls, Mahlke et
al.[14] propose a profile-guided data partitioning technique.
Thread level speculation[11][31] using compiler and architec-
tural support speeds up application execution by spawning
speculative threads. Though these techniques speed up ex-
ecution significantly, with increasing number of cores in a
chip, the demand for memory bandwidth is also increased.

In order to reduce memory access, several cache optimiza-
tion schemes have been proposed. Chang et al. proposed
cooperative caching technique[13] in a multiprocessor to re-
duce off-chip access using a cooperative private cache either
by storing a single copy of clean blocks or providing a victim-
cache-like, spill-over memory for storing evicted cache lines.
An orthogonal study, which has similar motivation as our
work, is the data cache compression technique as proposed
by Alameldeen et al. [7]. Compressing the L2 data results in
reduction of the cache space required to store data. The au-
thors reduce the off-chip accesses and thus save bandwidth.
However, compressing and decompressing cache lines add
extra overhead in cached data accesses leading to larger ac-
cess latency.

Kleanthous et al. proposed CATCH[20] to store unique
contents in instruction cache by means of hashing, but their
proposed system does not support modifications in cached
data. In an execution DBI tool such as Valgrid[22], this
approach might lead to inconsistencies. Another technique
which motivates our approach is the copy-on-write[32] mech-
anism used in virtual machines and operating systems. In
the copy-on-write technique, data initially shared by multi-
ple processes become different once one of them writes to
it and separated memory regions never merge again. In
the VMWare ESX server, content based page searching is
performed by using comparison of hashes created from page
content. However, data sharing at a page granularity results
in low benefit, while increasing the overhead by perform-
ing linear search for identical pages. Moreover, VM-based
schemes are employed primarily to reduce main memory
footprint only by exploiting idle cycles in application exe-

cution. In compacting virtual machine memory it is an im-
pactful technique, but reducing memory footprint while run-
ning applications not only increases the execution time, but
consumes memory bandwidth as well. In our scheme, cache
lines are merged at memory write operations and sharing is
done at a finer granularity while keeping search latency low.
Multiversion Memory[30] stores multiple versions of the data
to increase fault tolerance. We take a different approach in
this work and propose merging similar data to reduce main
memory accesses. Cache line merging can be performed in-
dependently from other techniques, and hence can be used
as another optimization along with existing techniques.

8. FUTURE WORK
First, we will explore hybrid cache architectures that get

the benefit of both the conventional addressing scheme to
reduce conflicts and the merging of identical data. We will
explore a dynamic cache-partitioning technique which will
be able to manage mergeable data more efficiently, adjusting
for different amounts of sharing. For applications with low
data similarity, dynamic partitioning promises lower system
overhead.

Future work will also expand the uses of the multi-execution
model. There are several practical scenarios in domains of
simulation, visualization, security etc. where multiple in-
stances of the same application are executed with minor
variation of parameters or input data e.g. the device fabrica-
tion process requires many Monte Carlo simulations[21] with
minor variation in device parameters to design variation-
tolerant devices. In the machine learning domain, ensem-
ble learning[29] technique uses several poor learners to de-
velop finer models. Scientific computing and simulations
often require application specific processor[18] designs for
faster computations whereas we propose minor modification
in cache architecture. More applications of multi-execution
exist in the image processing domain as well e.g. the tech-
nique of hiding data in images[28] often requires several runs
with different parameters to enhance the strength of hiding.
It would also be possible to improve performance of redun-
dant multithreading[24][26] based fault tolerant systems us-
ing our technique.

Furthermore, the multi-execution paradigm could be fur-
ther expanded to include simultaneously executing programs
that are similar, but not identical. Different programs using
many of the same libraries, for example, may be good candi-
dates for multi-execution support. Since we have taken great
care to support both low and high-similarity cases in our
memory system design, it is our hope that a low-overhead
multi-execution system can be used to support a wider scope
of applications than explored in this initial study.

9. CONCLUSION
We observe that that a large amount of data is identi-

cal across “multi-execution” applications. In this paper, we
identify such programs from various domains and propose a
Mergeable cache technique which compacts the cache foot-
print by merging duplicate cache lines owned by different
processes and significantly reducing main memory accesses.
While running unrelated applications, data merging can be
completely bypassed by power gating to reduce power con-
sumption. The Mergeable cache leverages the similarity
across “multi-execution” applications to save on cache space

and speed up the execution of applications. Specifically,
when 8 processors running 8 multi-execution instances share
an exclusive 4-MB, 8-way L2 cache, the Mergeable cache
speeds up execution up to 6.92× and 2.5× on average, while
posing an overhead of only 4.28% in area and 5.21% in power
when in use.

10. ACKNOWLEDGEMENTS
The authors would like to thank Mohit Tiwari, Banit

Agrawal, Bronis R. de Supinski, Vishwakarma Singh, Kr-
ishna Puttaswamy, Ayswarya Sundaram, Darshan Thaker
and the anonymous reviewers for providing useful feedback
on this paper. This work was supported in part by the Na-
tional Science Foundation under Grant No. 0855889 and
CAREER Grant award MRI-0619911 to Diana Franklin,
Grant No. FA9550-07-1-0532 (AFOSR MURI) and NSF
0627749 to Frederic T Chong, Grant No. CCF-0448654,
CNS-0524771, CCF-0702798 to Timothy Sherwood.

11. REFERENCES
[1] Tilera TILE Multicore Processors:

http://www.tilera.com/products/processors.php.
[2] Ambric Am2000 Family Massively Parallel Processor

Array: http://www.ambric.com/products/index.php.
[3] Nvidia GT200 Series:

http://www.nvidia.com/object/geforce gtx 280.html.
[4] PolyScalar:

http://users.csc.calpoly.edu/∼franklin/PolyScalar/Home.htm.
[5] SPEC CPU2000: http://www.spec.org/cpu/.
[6] icsiboost: http://code.google.com/p/icsiboost/.
[7] A. R. Alameldeen and D. A. Wood. Adaptive Cache

Compression for High-Performance Processors. In ISCA
’04: Proceedings of the 31st Annual International
Symposium on Computer Architecture, pages 212–223,
Washington, DC, USA, 2004. IEEE Computer Society.

[8] A. Asuncion and D. Newman. UCI Machine Learning
Repository, University of California, Irvine, School of
Information and Computer Sciences, 2007.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[9] S. Bederman. Cache Management System Using Virtual
and Real Tags in The Cache Directory. IBM Technical
Disclosure, 21(11), April 1979.

[10] V. Betz and J. Rose. VPR: A New Packing, Placement and
Routing Tool for FPGA Research. In FPL ’97: Proceedings
of the 7th International Workshop on Field-Programmable
Logic and Applications, pages 213–222, London, UK, 1997.
Springer-Verlag.

[11] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and
D. I. August. Revisiting the Sequential Programming
Model for Multi-Core. In Proceedings of the 40th
IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 69–84, December 2007.

[12] C.-C. Chang and C.-J. Lin. LIBSVM: a Library for
Support Vector Machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[13] J. Chang and G. S. Sohi. Cooperative Caching for Chip
Multiprocessors. In ISCA ’06: Proceedings of the 33rd
Annual International Symposium on Computer
Architecture, pages 264–276, Washington, DC, USA, 2006.
IEEE Computer Society.

[14] M. Chu, R. Ravindran, and S. Mahlke. Data Access
Partitioning for Fine-grain Parallelism on Multicore
Architectures. In MICRO ’07: Proceedings of the 40th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 369–380, Washington, DC, USA,
2007. IEEE Computer Society.

[15] Douglas C. Burger and Todd M. Austin. The SimpleScalar
Tool Set, Version 2.0. Technical Report CS-TR-1997-1342,
University of Wisconsin, Madison, June 1997.

[16] K. C. Elliott. Varieties of Exploratory Experimentation in
Nanotoxicology. History and Philosophy of the Life
Sciences, 29(3), 2007.

[17] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A New
SPEC Benchmark Workload for Simulation-Based
Computer Architecture Research. IEEE Computer
Architecture Letters, 1(1):7, 2006.

[18] T. Kurihara, E. Kamada, K. Shimada, and T. Shimizu. A
RISC Processor for SR8000: Accelerating Large Scale
Scientific Computing with SMP. In IEEE Symposium on
High Performance Chips(HOT CHIPS), 1999.

[19] F. Lozano and P. Rangel. Algorithms for Parallel Boosting.
In ICMLA ’05: Proceedings of the Fourth International
Conference on Machine Learning and Applications, pages
368–373, Washington, DC, USA, 2005. IEEE Computer
Society.

[20] M. Kleanthous and Y. Sazeides. CATCH: A Mechanism for
Dynamically Detecting Cache-Content-Duplication and its
Application to Instruction Caches. In Design, Automation
and Test in Europe, 2008 (DATE ’08), pages 1426–1431.

[21] M. Nedjalkov, H. Kosina, and S. Selberherr. Monte Carlo
Algorithms for Stationary Device Simulations. Mathematics
and Computers in Simulation, 62(3-6):453–461, 2003.

[22] Nicholas Nethercote and Julian Seward. Valgrind: A
Framework for Heavyweight Dynamic Binary
Instrumentation. In Proceedings of ACM SIGPLAN 2007
Conference on Programming Language Design and
Implementation (PLDI’07), San Diego, California, USA.

[23] J.-K. Peir, W. W. Hsu, and A. J. Smith. Functional
Implementation Techniques for CPU Cache Memories.
IEEE Transactions on Computers, 48(2):100–110, 1999.

[24] J. Ray, J. Hoe, and B. Falsafi. Dual Use of Superscalar
Datapath for Transient-Fault Detection and Recovery. In
Proceedings of the 34th ACM/IEEE International
Symposium on Microarchitecture, (MICRO-34), pages
214–224, December 2001.

[25] Robert E. Schapire. The Strength of Weak Learnability.
Machine Learning, 5:197–227, 1990.

[26] E. Rotenberg. AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors. In FTCS ’99:
Proceedings of the Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing, pages 84–91,
Washington, DC, USA, 1999. IEEE Computer Society.

[27] S. Wilton and N. Jouppi. CACTI: An Enhanced Cache
Access and Cycle Time Model. IEEE Journal of
Solid-State Circuits, 31(5):677–688, May 1996.

[28] K. Solanki, N. Jacobsen, S. Chandrasekaran, U. Madhow,
and B. S. Manjunath. High-Volume Data Hiding in Images:
Introducing Perceptual Criteria into Quantization Based
Embedding. In Proceedings of the IEEE International
Conference on Acoustics Speech and Signal Processing
(ICASSP), volume 4, pages 3485–3488, May 2002.

[29] P. Sollich and A. Krogh. Learning With Ensembles: How
Overfitting Can Be Useful. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neural
Information Processing Systems, volume 8, pages 190–196.
The MIT Press, 1996.

[30] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood.
Fast Checkpoint/Recovery to Support Kilo-Instruction
Speculation and Hardware Fault Tolerance. (TR-1420),
October 2000.

[31] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The
STAMPede Approach to Thread-Level Speculation. ACM
Transactions on Computer Systems, 23(3):253–300, 2005.

[32] C. A. Waldspurger. Memory Mesource Management in
VMware ESX Server. SIGOPS Operating Systems Review,
36(SI):181–194, 2002.

[33] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes,
A. Jaleel, and B. Jacob. DRAMsim: A Memory System
Simulator. ACM SIGARCH Computer Architecture News,
33(4):100–107, 2005.

