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Abstract—Memory size has long limited large-scale appli-
cations on high-performance computing (HPC) systems. Since
compute nodes frequently do not have swap space, physical
memory often limits problem sizes. Increasing core counts per
chip and power density constraints, which limit the number
of DIMMs per node, have exacerbated this problem. Further,
DRAM constitutes a significant portion of overall HPC sys-
tem cost. Therefore, instead of adding more DRAM to the
nodes, mechanisms to manage memory usage more efficiently
—preferably transparently— could increase effective DRAM
capacity and thus the benefit of multicore nodes for HPC systems.

MPI application processes often exhibit significant data sim-
ilarity. These data regions occupy multiple physical locations
across the individual rank processes within a multicore node
and thus offer a potential savings in memory capacity. These
regions, primarily residing in heap, are dynamic, which makes
them difficult to manage statically.

Our novel memory allocation library, SBLLmalloc, automati-
cally identifies identical memory blocks and merges them into a
single copy. Our implementation is transparent to the application
and does not require any kernel modifications. Overall, we
demonstrate that SBLLmalloc reduces the memory footprint of
a range of MPI applications by 32.03% on average and up to
60.87%. Further, SBLLmalloc supports problem sizes for IRS
over 21.36% larger than using standard memory management
techniques, thus significantly increasing effective system size.
Similarly, SBLLmalloc requires 43.75% fewer nodes than stan-
dard memory management techniques to solve an AMG problem.

1. MOTIVATION

Memory dominates the cost of HPC systems. The density
of DRAM components double every 3 years while logic com-
ponents double every 2 years. Thus, memory size per core in
commodity systems is projected to drop dramatically, as Fig-
ure 1 illustrates. We expect the budget for an exascale system
to be approximately $200M and memory costs will account for
about half of that budget [21]. Figure 2 shows that monetary
considerations will lead to significantly less main memory
relative to compute capability in exascale systems even if we
can accelerate memory technology improvements [21]. Thus,
we must reduce application memory requirements per core.

Virtual memory and swapping can increase effective mem-
ory capacity. However, HPC applications rarely use them due
to their significant performance penalty and a trend towards
diskless compute nodes in order to increase reliability.
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Prior proposals to reduce memory footprints based on
Distributed Shared Memory (DSM) [14, 16] require users to
identify common data regions and to share memory explicitly
across nodes. These solutions require modifications to iden-
tify common data regions in the source code that make an
application difficult to port and to maintain. In addition, the
system can only benefit from similarities that the programmer
can explicitly identify, making it especially difficult to exploit
regions that are usually similar but not always. Our studies
show that this dynamic similarity is common in MPI programs.

Kernel level changes [7, 10, 13, 22, 23, 24] can reduce
the application changes required to leverage data similarity.
However, these solutions require more effort from system
administrators, which complicates their adoption in production
systems. The high performance computing (HPC) community



needs an automated, user-level solution that exploits data
similarity to reduce memory footprints.

We present SBLLmalloc, a user-level memory management
system that transparently identifies identical data regions
across tasks in an MPI application and remaps such regions
for tasks on the same node to use the same physical mem-
ory resource. SBLLmalloc traps memory allocation calls and
transparently maintains a single copy of identical data in a
content-aware fashion using existing system calls.

In this paper we make the following contributions:

e Detailed application studies that show identical data
blocks exist across MPI tasks in many applications;

e A user-level memory management library to reduce
memory footprints with no OS or application modifications;
e Scaling and overhead results of the library for a range of
input sizes for several large-scale applications;

e A demonstration that SBLLmalloc enables large problem
size executions that are impossible with the default memory
allocator due to out-of-memory errors.

Overall, our system transparently reduces peak memory
consumption of our test applications by up to 60% (32% on
average). More importantly, SBLLmalloc supports a 21.36%
larger problem size of IRS, an implicit radiation solver ap-
plication, using the same hardware resources. Further, we can
solve a problem of AMG, an Algebraic Multi-Grid solver, that
requires 128 nodes with the default allocator, using only 72
nodes with SBLLmalloc (i.e., 43.75% fewer nodes).

The paper is organized as follows. Section II motivates our
problem by showing the high degree of data similarity in MPI
applications. We describe the SBLLmalloc implementation of
our techniques to leverage this similarity in Section III. We
describe our experimental setup in Section IV and present
extensive results with SBLLmalloc in Section V.

II. DATA SIMILARITY IN MPI APPLICATIONS

Memory capacity significantly limits problem sizes, as a
simple example demonstrates. As the problem size grows,
more nodes are necessary in order to meet the increased
memory requirements. Figure 3(a) shows a case study of AMG
from the ASC Sequoia benchmark suite [2] on a 128-node
system, each node having 8 GB of main memory. The default
memory management line shows that as the problem size
grows, the number of nodes necessary also grows.

Reducing memory requirements per process is desirable
because of the cost of memory and the gap between memory
size and computation power. Previous studies on cache archi-
tectures [5] found significant data similarity across concurrent,
yet independent, application runs. MPI applications composed
of SPMD (Single Program Multiple Data) processes more
prominently exhibit data similarity. We can leverage this
similarity across MPI tasks to reduce the memory footprint
in every node significantly. Figure 3(b) shows the reduction in
memory footprint that can be attained in the ideal case given
different amounts of data similarity. For example, with 70%
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Fig. 3: Content-aware memory management benefits

data similarity, a content-aware memory allocator can reduce
the memory footprint by over 60% for an 8-core node. Finally,
the content-aware memory management line in Figure 3(a)
shows the actual reduction in nodes necessary when using our
allocator. For example, a problem that normally requires 19
nodes can be solved with only 8 nodes.

We could reduce the memory footprint by identifying com-
mon objects statically and using shared memory. However, this
method requires significant programmer effort, which must
be repeated for each application in order to support scaling
without losing computational power. Further, data similarity
is dynamic, which further complicates manual solutions and
limits the effectiveness of static approaches.

We find that significant dynamic similarity exists in data
blocks across MPI tasks. We used Pin [19] to develop a
dynamic binary instrumentation tool to analyze the nature of
the data similarity. Our results indicate that data similarity
primarily occurs in heap-allocated regions. Thus, we use heap
management to merge identical data.

Our Pin tool characterizes identical data as Merged or
Remerged. The latter type captures data blocks that were
similar after initialization, and so could have been merged (i.e.,
Merged blocks), then diverge due to modifications but again
become identical later. Many applications exhibit this recurring
data similarity, as Figure 4 shows for AMG. A remerged
point indicates that the corresponding page undergoes merge
and write phases. A bar of height z at horizontal point y
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Fig. 4: Nature of merged blocks in AMG

indicates that x blocks stayed merged for y seconds. While
similarity is often transient (pages that stay merged for a
short duration) and many pages exhibit write-once behavior
(pages that are merged for the entire execution), many pages
are remerged repeatedly, even periodically. Figure 5(a), in
which our tool tracks malloc/free calls, clearly shows this
phased behavior in IRS.

Our goal is a portable, transparent, high-performance solu-
tion. We achieve transparency and portability by designing and
developing SBLLmalloc as a user-level library that intercepts
allocation invocations (malloc calls) and manages identical
data blocks using shared memory. Since we locate identical
data in shared-memory pages, we consider the impact of
block size on data similarity. Our experiments demonstrate that
sharing data blocks at fine granularity leads to larger memory
footprint reductions, as Figure 5(b) shows for IRS. Although
we achieve a larger benefit with a larger problem size, the
trend remains the same: smaller block sizes capture more
similarity. However, our user-level shared data management
requires large block sizes (at least page size) to keep overhead
manageable. Moreover, we find that smaller sized blocks, e.g.,
256KB, hardly increase the total mergeable data (often less
than 5%) as most allocated data blocks are large.

III. EXPLOITING DATA SIMILARITY

We designed SBLLmalloc to provide a portable, transparent
user-level mechanism to exploit data similarity in MPI tasks.
Our key challenge was that our goal of a transparent, user-
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Fig. 5: Block size analysis of IRS using Pintool

/% create allocation record =/
allocRecord = (AVLTreeDatax) CreateAVL ();

/% create semaphore /
mutex = sem_open (SEMKEY, ...);

/% open shared file =/
sharedFileDescr = shm_open(”/shared_region”, ...);

/% map system—wide zero page %/
zeroPage =(char)mmap(NULL, PAGE_SIZE, PROT_READ,
MAP_SHARED, sharedFileDescr, 0);

/% bit—vector to track sharing =/
shBV = (int =) mmap(NULL, , MAP_SHARED,
sharedFileDescr, ...);

Fig. 6: SBLLmalloc initialization routine

level mechanism severely limited the granularity of merges as
well as how and when we identify and merge pages.

The core components are POSIX locks and shared mem-
ory segments, through which we manage page mappings.
SBLLmalloc uses a shared memory pool that we obtain with
shm_open () to handle allocations of 4KB (the page size on
our experimental systems) or more. Smaller allocations use
the default allocator from glibc. Figure 6 shows our initializa-
tion pseudocode, which we invoke during MPI_Init. This
phase obtains the shared memory region and initializes key
data structures, such as the AVL tree that we use to track
allocations.

SBLLmalloc uses system calls mprotect, mmap, and
mremap to control access privileges (shared vs. private) and



/% allocate =/
void* ptr = (void =) mmap(NULL, size ,

/% read—only and private =/, —1, 0);

/% store allocation record =/
Avlinsert(ptr2offset(ptr), size);

Fig. 7: SBLLmalloc allocation routine

virtual-to-physical mappings (merging). It moves data between
physical pages for remapping with memcpy. Mapping changes
only the physical location, not the virtual location, so a remap
does not affect code correctness. We currently only consider
merging full pages since these mechanisms only work on a
per-page granularity.

We observe that many dirty pages (initialized data) contain
only zeros, so we apply an optimization that recognizes
zero pages. We map the zero pages in all tasks to a single
physical page. Zero page management further reduces memory
footprints by merging data regions within MPI tasks as well as
across them. Finally, we can use memset rather than memcpy
to reduce copy overhead.

Our library is transparent to applications. It must link to
our library, which then intercepts all accesses to malloc
(or new). SBLLmalloc provides its benefits by periodically
checking for identical data and merging pages. It marks
merged (shared) pages as copy-on-write, so a write to a merged
page triggers an interrupt, in response to which a handler
unmerges the page. Figure 7 shows that SBLLmalloc initially
allocates pages as read-only and private to the requesting
process. We track the allocation in our AVL tree, which is
a height-balanced data structure that provides fast searching.

Identifying identical pages is expensive so we limit attempts
to specific merge points that only compare pages with the same
virtual starting address and that have been accessed since the
last merge point. Since our goal is to reduce peak memory
usage, SBLLmalloc monitors node memory usage with internal
counters and only initiates the merge process when it exceeds
a configurable threshold (e.g., 80%) of the available physical
memory. For example, in a node with 12G B physical memory,
we could set this threshold to 8G B, assuming 2G'B is used
by system processes. In the merge process, one task moves
a private page to the shared space and sets it as read-only
using the mprotect call, as Figure 8 shows. Then other tasks
compare their private pages at the same virtual address with
the page. If a task’s page matches the shared page then we
map the shared physical page to the same virtual address of
its private page using mremap. Since each page is initially
read-only, any write to it causes a page fault that invokes the
SBLLmalloc STGSEGV handling routine that Figure 9 shows.
This routine makes the faulting page writable and invokes the
merge process if memory usage exceeds the threshold.

We merge pages in bulk to reduce overhead. We classify the
pages to be merged in three categories. A zero page indicates
that the page contains only zeros. A sharable page is a private
page for which there is no shared page in any process at the
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Fig. 8: Page merging process

if (permissionFault) {
/% change permission =/

mprotect (faultAddr, len, /% read/write #/);

/% change sharing state =/
UnsetSharingBit (shBV, faultAddr);

}

else
/% raise exception %/

if (... /% memory usage crosses threshold +/)

MergePages ();
Fig. 9: SBLLmalloc fault handler

same virtual address. A mergeable page has identical data as
a shared page in another process at the same virtual address.
SBLLmalloc maintains a queue of pending page addresses for
each of these categories. Figure 10 shows the state machine
that we use to categorize and to process groups of pages once
our interrupt handler observes that memory usage exceeds the
threshold. This state machine uses MergePendingPages
to perform the merging, which uses mmap, mremap, and
memcpy, as Figure 11 shows.

Not surprisingly, merge operations account for most of the
library’s overhead. Figure 12 shows the overhead of different
merge operations of several microbenchmarks on an Ubuntu
Linux box running on an AMD Phenom 9600 Quad-Core
system. Because mprotect calls dominate the overhead, we
group contiguous pages that require permission changes. We
maintain a queue of contiguous pages that should be shared or
mapped to the zero page. We apply the same optimization to
mremap operations. We analyze the overhead of the merge
operation in detail in Section V.

IV. EXPERIMENTAL METHODOLOGY

We describe our three sets of evaluations in this section. We
then describe the benchmark applications that we used.



for all pages{
/% map a group of pages in bulk
for all pages from the group{

if (... /% not dirty or already shared

MergePendingPages ();
else if (... /% this page is a zero page
if (... /% last page is
MergePendingPages ();

%/
#/)

#/)
not a zero page */)

else
/% add to list of
"to be mapped to zero” pages =/
else if (... /% no other process has
this page in shared region =/)

if (... /% last page is not a shareable page =/)
MergePendingPages ();
else
... /% add to list of shareable pages =/
else if (... /% content of this page matches
with the shared region /)
if (... /% last page is not a mergeable page =/)

MergePendingPages ();
else
/% add to list of mergeable pages =/
else
MergePendingPages ();

/% unmap the pages =/

MergePendingPages ();
Fig. 10: SBLLmalloc merge routine

if (... /% shareable pages =/) {

mmap (...); memcpy (...); mremap(...); }
if (... /% mergeable pages #/)

mremap (...);

if (... /% zero pages =/)
mmap (...);
/% set bit—vectors =/

Fig. 11: Heart of MergePendingPages routine

A. Inspection Experiments

Our first set of evaluations use a dynamic binary instrumen-
tation tool built with the Pin API (Pin-2.6) to monitor memory
accesses and to compare their contents across MPI tasks. We
use this tool to inspect various aspects of data similarity, such
as the effect of block size on merge behavior, as explained in
Section II. We use this tool on a Dell Optiplex 700 system
(2.8GHz,1GB DRAM, Core Duo 2, CentOS 4.2) along with
mpich-1.2.7 [12] as the underlying MPI implementation.

B. Scaling Experiments

For our other evaluation sets, we use a 128-node cluster with
8 Intel Xeon cores (2.66GH z) per node running the Chaos
operating system [11] (2.6.18 kernel). Each node has 12GB
memory. MVAPICH serves as our MPI implementation and we
compile all programs with gcc-4.1.2. We collect all statistics
using counters internal to the library. For timing results we
use the Linux time utility. We run the experiments multiple
times (typically between 2 and 10) and report the variation
along with the average.

Our second evaluation set consists of two types of scaling
experiments. Our problem size scaling experiments keep the
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Fig. 12: Overhead of operations
task count constant while changing the input parameters to

vary memory requirements. Our task scaling experiments
change the task count (and, thus core count used) per node.

C. Capacity Experiments

Our third evaluation set tests how well the library extends
the memory capacity limit. These tests use the same task count
as our problem size scaling experiments, but use input sets that
require close to 11G'B of memory per node, leaving 1GB for
system processes. We perform two types of experiments. The
first runs larger problems on the same node count and memory
capacity. The second runs the same problem using a smaller
node count and memory. Both types show that SBLLmalloc
enables larger problem sizes using an existing system than the
default memory management. The latter studies the capability
to solve a problem instead of memory footprint reduction effi-
ciency. We present this evaluation set for only two applications
(IRS and AMG) although all applications show this behavior.

D. Benchmarks

Our study uses four (AMG, IRS, LAMMPS, UMT) ASC
Sequoia Tier 1 benchmarks [2], seven applications from SPEC
MPI12007 [1], DT from the NAS Parallel Benchmarks [4], and
two real world applications, ParaDiS and Chombo.

We present results for the SPEC MPI2007 benchmarks that
use dynamic memory allocation and can be compiled success-
fully using GCC C or Fortran compilers. The remaining SPEC
MPI benchmarks either do not perform dynamic memory
allocation or cannot be compiled using gfortran. DT is the only
NAS benchmark that allocates memory dynamically; thus, we
do not study other NAS benchmarks. ParaDiS [8] computes
the plastic strength of materials by tracing the evolution of
dislocation lines over time. We experiment with only two data
sets because availability of proprietary data sets is limited.
Chombo [3] provides a distributed infrastructure for parallel
calculations such as finite difference methods for solving
partial differential equations over block-structured, adaptively
refined grids using elliptic or time-dependent methods. We
experiment with elliptic and Godunov AMR methods. We
provide brief descriptions of our benchmarks in Table I.



Benchmark Languages Description
K AMG Algebraic Multi-Grid linear system solver for unstructured mesh physics packages
) =] IRS C Implicit Radiation Solver for diffusion equations on a block structured mesh
2 g LAMMPS C Full-system science code targeting classical molecular dynamics problems
i UMT C, Python and Fortran  Single physics package code for Unstructured-Mesh deterministic radiation Transport
104.milc C Quantum Chromodynamics (QCD) application
— 107.leslie3d Fortran Computational Fluid Dynamics (CFD) application
= 122.tachyon C Parallel Ray Tracing application
&j E 128.GAPgeofem  C and Fortran Simulates heat transfer using Finite Element Methods (FEM)
5s 129.tera_tf Fortran 3D Eulerian Hydrodynamics application
132.zeusmp2 C and Fortran Simulates Computational Fluid Dynamics (CFD)
137.1u Fortran Computational Fluid Dynamics (CFD) application
NPB [4] DT C Models data communication with large graphs to evaluate communication throughput
=5 ParaDiS [8] C Computes plastic strength of materials by tracing dislocations
~ 2 Chombo [3] C++ Adaptive Mesh Refinement (AMR) package. Experiment with Elliptic and Godunov methods
TABLE I: Benchmarks
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V. RESULTS

In this section, we evaluate SBLLmalloc for each applica-
tion. We present results for the peak memory usage reduction
with problem size scaling and with scaling tasks per node as
well on the overhead of merging on execution time. We also
study the characteristics of merged pages to understand the
source of data similarity in three representative applications.

A. Problem Size and Task Scaling

In Figure 13(a) we show the effect of problem size on
memory footprint reduction when running the problem on a
single node using 8 tasks for AMG. The left vertical axis
shows the absolute memory footprint for AMG tasks with and
without SBLLmalloc (presented with bars), and the right axis
shows the memory footprint with SBLLmalloc relative to the

default glibc malloc (presented with lines). A negative slope
of the line indicates that SBLLmalloc becomes more effective
with larger problem sizes. We observe a similar trend with the
task scaling experiments in Figure 13(b) where SBLLmalloc
shows more benefit with larger task counts per node. With 8
tasks and a large problem size, the resulting memory footprint
becomes less than 38% of the original. With one task per node,
merging zero pages reduces the memory footprint by 7%.

The overhead in the merge process depends on our trig-
ger threshold. Lowering it causes more frequent merging.
To determine merging overhead, we vary the threshold and
measure the execution overhead. In Figures 13(c) and 13(d),
we show results for two SBLLmalloc trigger scenarios. The one
identified by SBLLmalloc (40%) indicates executions in which
we set the memory usage threshold for the merge process to
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Fig. 16: Chombo results with Godunov solver

40% of the memory used with the default allocator. The other
use scenario corresponds to ones in which we set the threshold
to 80% of available physical memory. As each node has 12GB
of memory, leaving 2G'B for the system services, we set the
threshold as 8G B in this case. Setting the threshold as high as
8G B does not incur any runtime overhead when the memory
requirement is less than 8GB per node. Any problem larger
than 260 x 260 x 260 does not fit in a single node with the
default allocator, but problem sizes up to 340 x 340 x 340 fit
with SBLLmalloc. Thus, SBLLmalloc enables running small
problems with little or no overhead in a realistic use case,
i.e., a fixed and high memory threshold (e.g., 8GB), while

it reduces the memory footprint up to 62.45% for cases in
which memory is scarce at the cost of slowing execution by
6.54 —51.5% as shown by the variable threshold experiments,
SBLLmalloc (40%).

Memory footprint reductions for LAMMPS degrade slightly
with increased problem size, as Figure 14(a) shows. These
experiments use 128 MPI tasks, distributed across 16 nodes.
Our task scaling experiment, in which we vary the task
count per node from 2 to 8 by a factor of two in each
step, shows that more tasks per node increases the benefit
of SBLLmalloc, reducing the memory footprint by 32.5% per
node. Increasing the problem size is less likely to increase
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Fig. 18: Execution time versus memory footprint reduction trade-offs

redundant data as much as increasing the number of tasks. The
similarity in LAMMPS arises from zero pages associated with
its communication routines. The computation and memory
usage in LAMMPS scale with N/P where N is the number
of molecules and P is the process count. However, communi-
cation scales as (N/P)(/%). Thus, LAMMPS exhibits poorer
problem size scaling than other applications.

We use only two ParaDiS input sets: screw and form. Fig-
ure 15 shows that SBLLmalloc reduces the memory footprint
up to 53% and 72% for these data sets.

The AMR Godunov solver from the Chombo applica-
tion achieves larger benefits as problem size increases (Fig-
ure 16(a)). Similarly, Figure 16(b) shows that increases in
tasks per node also lead to more benefit. Specifically, we

observe 40 —44% memory footprint reductions while running
eight Chombo tasks per node. We also experimented with the
AMR Elliptic solver from Chombo, where we observe around
50% reduction in memory footprint, which arose solely from
merging zero pages. We are investigating the behavior with
this solver further, so we do not include those graphs.

The problem size in IRS is increased by changing the
number of zones per domain or the number of domains. Fig-
ure 17(a) shows that memory footprint reductions are nearly
constant as we change the number of domains. Figure 17(b)
indicates that increasing the task count per node gives larger
benefit and SBLLmalloc can reduce the memory footprint by
over 32% with a task per core per node. We experiment with
different merge thresholds for IRS as well (Figure 18(a)), and
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we observe that we can reduce the memory footprint by 40%
in exchange for higher overhead (33.33%). Using a better
trade-off point, we can still reduce the memory footprint by
23.3% with an execution time overhead of 12.89%. We present
the trade-off results for other benchmarks in Figures 18(b),
18(c) and 18(d). Suitable trade-off points provide significant
memory footprint reductions for these applications. Again,
SBLLmalloc targets cases in which traditional memory man-
agement prevents running problem sizes due to available phys-
ical memory constraints. Therefore, as shown in Figure 13(d),
SBLLmalloc does not degrade performance when the memory
requirement is low, but enables running large problems using
the same amount of physical memory.

SPEC MPI2007 executes the benchmarks with multiple
inputs, so we present the results as an average with error-
bars, as shown in Figure 19. We observe that most of these
benchmarks show significant data similarity being exploited
by SBLLmalloc. However, SBLLmalloc provides little benefit
to UMT (only 0.3% as Figure 20 shows). Similar behavior
is observed in [29.tera_tf and 137.Iu. Thus, we observe
that some applications do not exhibit significant similarity
that SBLLmalloc can exploti. However, applications that use
large matrices typically benefit from SBLLmalloc. For the 14
benchmarks that we studied, SBLLmalloc reduces memory
footprint by over 32% on average and up to 62%.

B. Beyond the Limit of Memory Capacity

We have shown the potential to run problems larger than
the actual capacity of a node with our experimental results
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in Section V-A. In this section we compare SBLLmalloc to
using disk space to increase attainable problem sizes. We
then perform experiments that demonstrate how SBLLmalloc
effectively increases the system size for IRS and AMG.

Swapping, which could serve as an alternative to SBLLmal-
loc, has high overhead due to the high latency of disk accesses.
As the compute nodes in our experimental HPC system lack
hard disks, we cannot perform swap-space experiments on it.
Therefore, we performed an experiment on a 64-bit RedHat
OS based Linux server with 6GB of physical memory. We
ran large AMG problems, starting from problems that have
low memory requirements to ones that require more than the
available physical memory. Figure 21 shows that when the
memory footprint is more than 80% (4.8G'B) but less than
6G B, SBLLmalloc incurs runtime overhead while a swapping
solution does not since the problem still fits in the available
memory. However, we observe more than 45X overhead with
swapping for problems that require more than the available
physical memory. An AMG problem of size 260 x 260 x 260
did not complete in 2 days whereas SBLLmalloc enabled it to
complete within less than 30 minutes.

IRS requires a cubic number of cores. Therefore, we experi-
ment with 512 cores in a 64-node subset, which can fit at most
a problem with 884,736,000 zones. With SBLLmalloc, we
can run a problem with 1,073,741, 824 zones, i.e., a problem
21.36% larger while using the same hardware resources.

We exhaust the entire memory of 128 nodes by fitting an
AMG problem size of 2096 x 1048 x 1048. An attempt to run
even larger problems without using SBLLmalloc results in an



// matrix diagonal data matrix allocation
// malloc 584278016 Ox2aaac2ecf000
diag_data =

hypre_CTAlloc (double, diag_i[local_num_rows]);

// matrix diagonal data index allocation
// malloc 292139008 0x2aaabl1834000
diag_j = hypre_CTAlloc(int, diag_i[local_num_rows]);

Fig. 23: AMG large matrix data and row index allocation

out-of memory error. With SBLLmalloc the same size problem
can be solved using just 72 nodes, requiring 43.75% fewer
nodes. We show the trade-off between execution speed and
node usage in Figure 22.

C. Characterization of Similarity

Perhaps counterintuitively, we find significant dynamic data
similarity across MPI processes in a wide set of applications.
Gaining insight to the data and code structures that exhibit this
similarity not only could reshape our intuition but also iden-
tify typical algorithmic patterns that SBLLmalloc particularly
suits. Thus, we might identify new applications that would
benefit from our approach. For this reason, we analyze three
representative applications: AMG, which benefits most from
SBLLmalloc; LAMMPS, which shows moderate similarity
from primarily zero pages; and 122.tachyon, a parallel ray-
tracing application, which exhibits moderate data similarity.

AMG uses the Algebraic Multi-Grid kernel to solve partial
differential equations (PDEs). In this process it solves smaller,
related problems to reach an approximate solution, which
reduces the iterations required to solve the target problem.
These matrices are in a sparse matrix format in which the
actual data and the row indices are stored in vectors. As shown
in Figure 23, these two data structures are very similar across
MPI tasks, where the largest allocation corresponds to the
actual data matrix and the second largest one corresponds to
the row indices. Similarly many other allocations for initial-
izing large matrices are dynamically merged and written as
Figure 24 shows. Our knowledge of the application indicates
that that this similarity arises from inherent structure in the
matrices that correspond to the PDEs.

Figure 25 shows the merging and writing profiles of three
representative allocations in a single MPI task. The largest one,
which the bottom profile shows, corresponds to Figure 23. In
this figure, the Y coordinate shows the page addresses of each
allocation. A blue point in the figure indicates merging of
a page and a black point at the same Y coordinate further
along the X axis, which represents time, indicates a write
to that page that causes its unmerging. The first set of blue
points in a vertical line corresponds to merging after calloc
initializes the pages to zeros. A tilted black line indicates the
initialization of this region, after which the merging process
starts again, merging the matrix for almost the entire execution.
The other two profiles correspond to allocations described in
Figure 24. Importantly, many pages incur multiple merge and
unmerge events, which demonstrates that a technique such as
SBLLmalloc is required to exploit the similarity.

// strenth matrix generation

// malloc 292139008 Ox2aaaec445000

hypre_CSRMatrixJ (S_diag) =
hypre_CTAlloc(int, num_nonzeros_diag);

// Ruge Coarsening routine

// malloc 281165824 0x2aab007e4000

ST_j = hypre_CTAlloc(int,jS);

// interpolation process matrix data allocation
// malloc 73154560 0x2aab0628f000
P_diag_data = hypre_CTAlloc(double, P_diag_size);

// new matrix allocation

// in hypre_BoomerAMGInterpTruncation

// malloc 73064448 0x2aab0d6e3000

P_diag_data_new = hypre_CTAlloc(double,P_diag_size);

// allocation for matrix transpose operation

// in hypre_CSRMatrixTranspose

// malloc 73064448 0x2aaaeddf5000

AT_data = hypre_CTAlloc(double, num_nonzerosAT);

// hypre_BoomerAMGBuildCoarseOperator:
// RAP data allocation
// malloc 72818688 0x2aaaf3a6a000

RAP_diag_data = hypre_CTAlloc(double, RAP_diag_size);

Fig. 24: Vectors allocated to solve smaller problems
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Fig. 25: Representative AMG merge and write profiles

LAMMPS is a classical molecular dynamics simulation. At
the end of each time step, every MPI process makes a list of
nearby atoms, which it transmits to neighboring processors.
These messages are then unpacked, as Figure 26 shows. Merge
and unmerge profiles indicate that these unpacked data pages
exhibit similarity across MPI tasks. They primarily are zero-
pages although a small fraction (=10%) are non-zero pages.

122.tachyon is an image rendering application from SPEC
MPI 2007 that shows moderate data similarity. Interestingly,
this similarity is primarily from sharing non-zero pages. We
show the merge and write behavior of large regions for this
application in Figure 27, and the explanatory code snippet in
Figure 28. While rendering an image, all MPI tasks allocate



// malloc 43847680 Ox2aaacad3f000
special = atom—>special =
memory—>grow_2d_int_array (
atom—>special ,nmax,
atom—>maxspecial , “atom:special”);

// malloc 30355456 0x2aaaccaa4000
dihedral_type = atom—>dihedral_type =
memory—>grow_2d_int_array (
atom—>dihedral_type ,nmax,
atom—>dihedral_per_atom ,

“atom: dihedral_type”);

Fig. 26: Contributors to LAMMPS similarity
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a buffer to hold a part of the image. This data structure
exhibits significant similarity across tasks. We performed
this experiment with multiple data sets to observe the same
behavior. In function rendercheck () all MPI tasks of
122.tachyon allocate large buffers to hold the rendered scene.
As the execution progresses, this buffer is modified and then
merged as illustrated by the sequences of blue, black and blue
points that correspond to the same page location in the middle
profile in Figure 27.

These three applications provide useful insight into data
similarity across MPI processes. IRS, which is dominated by a
conjugate gradient solver, has a similar underlying algorithmic
nature to AMG so we expect to observe the significant
data similarity that it exhibits. Like LAMMPS, many other
applications benefit from zero pages. For example, the AMR
Elliptic solver obtains around 50% memory reductions due
to sharing of zero pages. Applications like 122.tachyon that
have very regular access patterns often have high, dynamic
data similarity across MPI processes. We have also examined
a parallel version of another popular ray tracing application,
POV-Ray. We observe significant similarity even in small
runs. However, we do not present this application due to
inavailability of large input data sets, although it incurs a
large memory footprint to render complicated scenes. We will
characterize the data similarity in more applications as part of
our future work.

D. Summary

Our study shows that SBLLmalloc reduces the memory
footprint of running MPI tasks on multicore nodes by exploit-
ing their inherent data similarity. Also, several applications

// malloc 669536256 0x2aaaada20000
scene—>img = (unsigned char =) malloc(
scene—>hres * scene—>vres * 3);

Fig. 28: Contributors to 122.tachyon similarity

show high data similarity from zero pages. For example, the
Chombo AMR Elliptic solver demonstrates about 50% reduc-
tion in memory footprint only from zero pages while running 8
MPI tasks per node. SBLLmalloc reduces the memory footprint
across all applications with which we experimented by 32% on
average with each node running eight MPI tasks. SBLLmalloc
enables problem sizes that are larger than can be run with the
default memory allocation method using the same node count
or would require many more nodes.

VI. RELATED WORK

SBLLmalloc builds upon prior research in multiple do-
mains. We adapt the mechanisms used in user-level distributed
shared memories and perform content-based page merging.
Our preliminary work [6] established the basic ideas behind
SBLLmalloc while this paper contains much greater detail
about the implementation and its optimization and presents
a thorough evaluation.

DSM systems [9, 14, 15, 16, 18, 20] use similar virtual
memory management techniques with a different goal. We
optimize memory usage within a node. DSM systems provide
the shared memory programming paradigm across nodes by
sharing some physical memory. Thus, nodes can access a large
pool of shared memory along with limited in-node memory.
User level libraries implement software DSMs, similarly to
SBLLmalloc. However, DSMs provide limited benefits to
HPC systems due to latency and coherence traffic across
nodes. SBLLmalloc can provide significant HPC benefits by
effectively increasing total system memory size by implicitly
sharing data pages within a node and, thus, avoiding the need
for complex software coherence protocols in contrast to DSM’s
explicit data sharing across nodes.

Several researchers have investigated in-memory compres-
sion techniques, which are complementary to SBLLmalloc,
in order to increase the effective DRAM capacity. Operating
systems such as Sprite [10] used compression to reduce
memory usage. Wilson et al. proposed efficient hardware
structures [24] for faster compression and decompression to
reduce the overheads. A compression cache [22] for Linux was
proposed by Tuduce et al. for managing the amount of memory
allocated to compressed pages. Extending SBLLmalloc with
this technique on infrequently used pages, which we keep as
future work, could reduce memory footprints even further.

Most OSs support some copy-on-write mechanism, which
simply and efficiently limits identical read-only data to a
single copy. However, simple copy-on-write techniques cannot
support merging of duplicate but modified data. We exploit
these techniques to detect when identical pages diverge.
Waldspurger [23] incorporated searching for identical data
in virtual machines (VMs) such as VMWare’s ESX server,



Xen VMM [17]. Their technique performs content-based page
searching by creating hashes from page contents and using
hash collisions to detect identical pages. Disco [7] incorporated
transparent page sharing in the OS by explicitly tracking page
changes in kernel space. Our system, which does not require
any OS modifications, performs byte-by-byte comparisons
similarly to the ESX server.

Biswas et al. [5] studied the similarity across multiple
executions of the same application, as several scenarios ex-
hibit including machine learning and simulations. SBLLmalloc
could apply to them. “Difference Engine” (DE) uses colli-
sions of hashes computed from the page contents to identify
identical pages under Xen VMs [13]. DE reduces memory
footprints significantly when applied to infrequently accessed
pages and combined with partial page merging. However, these
approaches require special hardware or OS components while
SBLLmalloc only requires a user level library.

VII. CONCLUSIONS

We have presented SBLLmalloc, a user-level library that
efficiently manages duplicated memory across MPI tasks on a
single node, for use in applications in which the problem size
is limited by main memory size (due to cost or reliability
concerns). SBLLmalloc uses system calls and interrupts to
perform its work, requiring no OS or application changes. We
perform two optimizations: identifying zero pages across and
within tasks and finding identical pages at the same virtual
address across tasks. Identifying identical data and merging
pages incurs high overhead. With optimizations and careful
choices on when to merge, we achieve near native execution
speed with substantial memory footprint reduction.

On average we observe a 32% reduction in memory foot-
prints. SBLLmalloc supports problem sizes 21.36% larger for
IRS than the standard memory allocator while using the same
resources. Alternatively, we can reduce the nodes required
to run a large AMG problem by 43.75%. Both zero pages
and identical pages contribute to the overall performance.
Our analysis demonstrates that the the data similarity across
MPI processes is dynamic and the sources vary significantly
across application domains. Nonetheless, most domains exhibit
some dynamic similarity, which SBLLmalloc provides the
mechanism to exploit for memory footprint reductions.
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