
Reducing Cache Misses Using Hardware and Software Page Placement

Timothy Sherwood Brad Calder Joel Emer

Department of Computer Science and Engineering Alpha Development Group
University of California, San Diego Compaq Computer Corporation
fsherwood,calderg@cs.ucsd.edu emer@vssad.hlo.dec.com

Abstract
As the gap between memory and processor speeds continues

to widen, cache efficiency is an increasingly important component
of processor performance. Compiler techniques have been used
to improve instruction and data cache performance for virtually
indexed caches by mapping code and data with temporal locality
to different cache blocks.

In this paper we examine the performance of compiler and hard-
ware approaches for reordering pages in physically addressed caches
to eliminate cache misses. The software approach provides a color
mapping at compile-time for code and data pages, which can then
be used by the operating system to guide its allocation of physi-
cal pages. The hardware approach works by adding a page remap
field to the TLB, which is used to allow a page to be remapped to
a different color in the physically indexed cache while keeping the
same physical page in memory. The results show that software page
placement provided a 28% speedup and hardware page placement
provided a 21% speedup on average for a superscalar processor.
For a 4 processor single-chip multiprocessor, the miss rate was re-
duced from 8.7% down to 7.2% on average.

1 Introduction

A great deal of effort has been invested in reducing the impact of
cache misses on program performance. As with any other latency,
cache miss latency can be tolerated using compile-time techniques
such as instruction scheduling, or run-time techniques including
out-of-order issue, decoupled execution, or non-blocking loads. It
is also possible to reduce the latency of cache misses using tech-
niques that include multi-level caches, victim caches, and prefetch-
ing.

Many approaches have been examined to eliminate cache misses.
Hardware techniques include set-associative caches [23], pseudo-
associative caches [1, 5], group-associative caches [27], page col-
oring [22], predicting which data not to cache [18, 33], and pro-
viding conflict miss hardware with operating system support to
move pages [2]. Software techniques include program restructur-
ing to improve data [6, 26, 7, 25, 29] or instruction cache perfor-
mance [12, 15, 16, 24, 28], and compiler-directed page coloring for
multiprocessors to eliminate 2nd level cache misses for arrays [3].

When performing placement of instructions and data, the soft-
ware approaches have shown to eliminate a significant amount of
cache misses for virtually indexed caches. For a physically indexed
cache, the operating system needs to provide support for page col-

Published in the Proceedings of the International Conference on
Supercomputing, June 1999.

oring or compiler directed page placement, otherwise it is left to
chance which virtual pages will overlap in the physically indexed
cache. This can potentially lead to severe conflicts, which could
have been otherwise averted with careful placement.

In this paper, we examine both software and hardware tech-
niques for performing page placement to eliminate cache misses
for a physically indexed 2nd level cache. All of the techniques that
we examine leave the virtual address space completely untouched
in order to allow prior approaches to perform their best placement,
eliminating as many first level virtually indexed cache misses as
possible.

In performing this research, we break the 2nd level cache up
into N colors, where N is equal to the (number of cache sets *
block size) / page size. Intuitively a color is a page sized chuck
(group of sets) of the cache, where all accesses to a given page will
be of the same color. Therefore, two pages map to the same color
if they have the same location in the physically indexed cache. We
examine automated methods of mapping virtual pages to colors to
reduce cache misses. This coloring can then be used by the operat-
ing system to allocate pages or by the hardware to re-map physical
pages in the 2nd level cache.

Our software page placement algorithm performs a coloring of
virtual pages using profiles at compile-time. A physical page color
is produced for each code and data virtual page used during execu-
tion, to reduce 2nd level cache misses. This mapping table is then
passed to the operating system when the program starts executing.
The operating system uses this mapping as a hint during page allo-
cation in order to place virtual pages into physical pages of a given
color as indicated by the compile-time mapping.

Our hardware page placement approach for page placement
weakly decouples the 2nd level cache from the physical pages. This
is done by providing a remapping of where a physical page can be
found in the 2nd level cache through a page remapping field stored
in the TLB. This field is used as part of the index into the 2nd level
cache instead of the physical page number. The triggering of a
remapping is done by a small buffer of counters, to keep track of
high miss cache sets. When a set accrues enough misses relative to
its references, the hot pages using that set are remapped to elimi-
nate cache conflicts. The physical pages do not move in memory,
instead, only the location (color) of the page in the 2nd level cache
is changed.

The remainder of this paper details the design, implementation,
and analysis of page placement. Section 2 motivates the approach
by graphically demonstrating the 2nd level cache utilization and the
improvement from page placement. Section 3 describes work re-
lated to page placement. Section 4 describes the methodology used
to gather the results for this paper. Section 5 describes and provides
results for the software placement algorithm. Section 6 describes
and provides results for the hardware page placement architecture.

1

A

B

0

8

16

24

32

0

8

24

32

0

8

16

24

32

Instructiuons Executed

16

0

0

0 32M16M 48M

16M 32M 48M

48M32M16M

Groff reference footprint

Groff miss footprint

Groff interference footprint

C
ac

he
 C

ol
or

C
ac

he
 C

ol
or

C
ac

he
 C

ol
or

Figure 1: Cache footprints for Groff. The first graph shows the
density of L2 cache references during execution, the second graph
the density of misses, and the last graph the misses caused between
code and data pages. The darker the graph is the greater the num-
ber of references/misses to that group of sets during execution. At
point A on the miss footprint, striding behavior can be seen. Point
B is an example of the striped misses indicative of high conflict sets.

Section 7 provides results for using the hardware placement for a
single-chip multiprocessor. Finally, Section 8 summarizes the re-
sults and contributions of this work.

2 Motivation

To show why page placement is needed and works we will first
examine cache set usage during a program’s execution. Figure 1
shows the memory footprint for groff (a troff text formatter writ-
ten in C++) for a direct mapped 256K L2 cache with 32-byte lines.
Results are shown when breaking the cache up into sets grouping
them into 8K pages, which results in 32 colors. A color represents
a group of sets. The X-axis represents the execution of the pro-
gram over time in terms of number of instructions executed shown
in millions. The Y-axis shows the different colors (sets) in the L2
cache. Four lines are shown for each color, so each line represents
2K of a page. The darker the line is the greater the number of refer-
ences/misses to that group of sets during execution. Page allocation
was performed using Bin Hopping described in section 3.1.

C

16

24

32

0

8

16

24

32

0

8

Instructiuons Executed

Groff miss footprint w/ HW recolor

Groff miss footprint w/ SW placement

C
ac

he
 C

ol
or

C
ac

he
 C

ol
or

0

0

12M 32M 48M

48M32M12M

Figure 2: The improved cache footprints for groff using hardware
and software page placement. Point C is where a recolor occurs
and cache conflicts are removed.

The first result to observe from these graphs is groff’s over-
all memory behavior. The first graph in Figure 1 shows the number
of references to each set/color over time. The results show that
some sets are not used at all, while others are accessed extremely
frequently. The latter of these are termed hot sets.

In the first part of the execution, groff spends some time
striding through memory, and then around 16 million instructions
the memory usage for groff converges to a consistent memory
pattern for the rest of the program’s execution. We found similar
memory behavior for several of the other programs we examined.
Adaptive page placement will perform very well for this type of
memory behavior.

The second graph in Figure 1 shows the number of misses to
each set over time. For groff there are only a handful of hot sets
with many misses, and these same sets had a high miss rate start-
ing around 16 million instructions through the end of execution.
Point A in this Figure shows the program striding through memory,
whereas point B points to a hot set with a high miss rate.

The third graph in Figure 1 shows only those misses that are
caused between the interference of instruction fetch misses and data
misses. As can be seen, many of the hot miss sets are caused be-
cause of the interference between code and data pages.

Figure 2 shows the cache usage over time for groff when us-
ing page placement described in Sections 5 and 6. The first graph
shows the misses when using hardware placement, and the second
graph when using software guided page placement. The hardware
placement graph shows four distinct places where the page place-
ment was performed. One place can be seen at Point C, where after
placement color 24 no longer has a high miss rate. Comparing this
graph to the miss graph in Figure 1, shows that the number of high
conflict sets (dark lines) has decreased significantly and that the us-
age of the cache is spread out more evenly over all the cache sets.
Similar results are seen for the software page placement results.

2

3 Related Work

There has been much research in the area of code, data, and page
placement to improve memory hierarchy performance. In this sec-
tion, we concentrate on prior work related to program placement to
reduce cache misses for physically indexed caches.

3.1 Operating System Page Allocation

The research by Kessler and Hill [21] represents an extensive ex-
amination of different operating system page placement algorithms
and their performance. They examined several mapping algorithms,
and found Page Coloring and Bin Hopping to provide good perfor-
mance.

Page Coloring maps consecutive virtual pages to consecutive
colors, and is used by Windows NT. Each virtual page modulo (the
number of cache sets * the block size) maps to the same color in a
physically indexed cache. Physical page allocation is performed by
the OS to maintain this mapping. This allows the compiler to po-
tentially use code and data placement techniques to help eliminate
cache misses by mapping data with temporal locality that should
not be put on the same page to different virtual pages with different
colors.

Bin Hopping allocates pages to sequential colors in the order
that page faults occur. This allows pages that are touched and cause
page faults close in time to map to different locations (colors) in the
cache. The Bin Hopping algorithm is used by existing operating
systems such as Digital Unix (OSF) for allocating pages. We use
Bin Hopping as our default page allocation algorithm for our base-
line configuration.

3.2 Software Guided Page Placement

Custom operating systems, such as Exokernal [10] and V++ [14]
have been designed that allow applications to provide their own
page replacement and page mapping policies.

Bugnion et. al. [3] recently examined using compiler directed
page coloring for arrays on multiprocessors. Their approach at
run-time generates a preferred coloring for data pages containing
arrays. The coloring is generated using compiler generated analy-
sis for the access patterns and the array sizes provided at run-time.
This coloring is then used as a hint to the operating system when it
performs its coloring. Our software guided placement extends their
research by applying the compiler directed approach to all data and
code pages instead of just to arrays by using profiles.

3.3 Hardware Support for Page Placement

The Impulse project provides a compiler controlled memory con-
troller [8]. The Impulse address space can be remapped by provid-
ing a new strided address calculation or an indirection vector for
an array. All remapped data accesses go through this address trans-
lation to compute the real location of the data. This can be very
efficient for optimizing sparse matrices, arrays with stride access,
and placing arrays in a given location in the L2 cache. Yamada
et. al. [35] proposed a similar approach for compiler controlled
memory layout, but for the first level cache. Our approach is sim-
pler, and requires less hardware. We only concentrate on providing
page remapping. One benefit is that our approach does not require
the extra stage of translation needed in the above work to find the
remapped data. Instead, our approach uses an extra field stored in
each TLB entry, which is used in the normal TLB translation to
determine where to locate the page in the physically indexed L2
cache.

Bershad et al. [2] examined using a small Cache Miss Look-
aside (CML) buffer that detects conflicts by recording the number

of cache misses to frequently referenced pages. Romer et. al. [30]
extended this work using counters and entries in the TLB to find
conflicting pages instead of the CML. The recoloring used in both
of these papers traps to the OS, which does a full copy of a page to
the new physical location to perform the recoloring. Our hardware
page placement approach is very similar to the CML approach, ex-
cept we do not move pages around in the physical address space.
Instead, we change the mapping (color) of the page in the phys-
ical indexed L2 cache in order to move the page as described in
section 6.

In the next section we will describe our experimental methodol-
ogy followed by our software and hardware page placement strate-
gies.

4 Methodology

To perform our evaluation, we collected information for 6 of the
SPEC95 benchmarks, and two C++ programs groff (a troff text
formatter) and deltablue (db++) (a constraint solution sys-
tem). The programs were compiled on a DEC Alpha AXP-21164
processor using the DEC C, C++, and FORTRAN compilers. We
compiled the programs under OSF/1 V4.0 operating system using
full compiler optimization (-O4 -ifo). We used ATOM [31] to
instrument the programs when gathering the page reference profiles
for software page placement.

The simulators used in this study are derived from the Sim-
pleScalar/Alpha 2.1 and 3.0 tool set [4], a suite of functional and
timing simulation tools for the Alpha AXP ISA. The timing simula-
tor executes only user-level instructions, performing a detailed tim-
ing simulation of an aggressive dynamically scheduled micropro-
cessor with two levels of instruction and data cache memory. Sim-
ulation is execution-driven, including execution down any specu-
lative path until the detection of a fault, TLB miss, or branch mis-
prediction. The baseline microarchitecture model is detailed in Ta-
ble 1.

Our baseline simulation configuration models a future genera-
tion microarchitecture. We’ve selected the parameters to capture
two underlying trends in microarchitecture design. First, the model
has an aggressive fetch stage, employing a variant of the collapsing
buffer[9]. The fetch unit can deliver two basic blocks from the I-
cache per fetch cycle up to 8 instructions. Second, we’ve given the
processor a large window of execution, by modeling large reorder
buffers and load/store queues.

We modified SimpleScalar to model a complete memory hier-
archy, with page allocation and bus contention. We modeled an
on-chip/near-chip L2 cache with a 6 cycle latency to access a direct
mapped L2 cache and a 7 cycle latency to access a 2-way associa-
tive L2 cache. An L2 miss has a 180 cycle latency for retrieving
data from main memory.

Table 2 shows the two inputs used in gathering results for each
program. The first input train was used to gather the page refer-
ence profiles for software page placement. The second input test
was used to gather all the simulation results. Each program was
simulated for 100 million committed instructions plus the number
of instructions (in millions) shown in the Fast-Fwd column. The
detailed IPC and cache miss results were only gathered for the 100
million instructions after fast forwarding over initial startup code.
The Base IPC column shows the IPC when using a direct mapped
256K L2 cache with 32-byte lines, and this is used as our baseline
configuration. The next column shows the number of unique static
8K pages used during our simulation of each program. The Code
column shows the percent of these static virtual pages that were
code pages. The next two columns show the percent of misses to
the L1 instruction and data cache. The last column shows the num-
ber of references to the L2 cache in millions.

3

Fetch Interface delivers two basic blocks per cycle, but no more than 8 instructions total
Instruction Cache 32k 2-way set-associative, 32 byte blocks, 6 cycle miss latency
Branch Predictor hybrid - 8-bit gshare w/ 16k 2-bit predictors + a 16k bimodal predictor

8 cycle mis-prediction penalty (minimum)
Out-of-Order Issue out-of-order issue of up to 16 operations per cycle, 512 entry re-order buffer, 256 entry
Mechanism load/store queue, loads may execute when all prior store addresses are known
Architecture Registers 32 integer, 32 floating point
Functional Units 16-integer ALU, 8-load/store units, 4-FP adders, 1-integer MULT/DIV, 1-FP MULT/DIV
Functional Unit Latency integer ALU-1/1, load/store-2/1, integer MULT-3/1, integer DIV-12/12, FP adder-2/1
(total/issue) FP MULT-4/1, FP DIV-12/12
Instruction Cache 32k direct mapped, write-back, write-allocate, 32 byte blocks, 6 cycle miss latency
Data Cache 32k 2-way set-associative, write-back, write-allocate, 32 byte blocks, 6 cycle miss latency

four-ported, non-blocking interface, supporting one outstanding miss per physical register
Virtual Memory 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions complete

Table 1: Baseline Simulation Model.

Program Train Test Fast Fwd Base IPC # Pages %Code 32K-I 32K-D L2 Refs

groff paper-me someman 25M 1.49 74 64.9% 2.1% <0.1% 0.8 M
delta-blue train ref 9M 2.34 458 2.1% 0.6% 8.9% 2.1 M
compress short ref 0M 3.21 97 4.0% <0.1% 5.2% 0.9 M
go 2stone9 5stone21 5M 2.53 85 70.2% 0.5% 0.2% 0.9 M
gcc 1recog 1cp-decl 75M 1.24 515 32.5% 1.1% 1.0% 2.2 M
m88ksim train ref 325M 3.20 1332 27.9% 0.9% 0.1% 1.2 M
vortex train ref 12M 1.58 913 26.6% 2.0% 1.3% 2.7 M
tomcatv train ref 425M 1.69 71 37.9% 0.9% 0.1% 1.3 M

Table 2: General Program Statistics.

For the superscalar results we modeled a 256K L2 cache be-
cause the memory footprints of our benchmarks are smaller than
heavily used applications such as MS Office and commercial databases.
This can be seen in Table 2 where the number of pages used by 5
of our programs fits entirely within 1 Meg of memory, and the re-
maining 4 programs use from 4 Meg to 10 Meg of memory.

5 Software Page Placement

In order to allow software page placement, the compiler must have
some control over the virtual to physical mapping. In addition, it
has to have some cooperation from the operating system, which is
ultimately in control of the mapping. Previous work described an
implementation that allows a program at run-time to communicate
hints directly to the OS for which colors (in the 2nd level cache)
virtual pages containing arrays should be mapped to [3]. We as-
sume a similar type of support for our software page placement,
except the color mapping is generated at compile-time using pro-
files for all virtual code and data pages. Remember that the number
of colors in the L2 cache is N, where N is the (number of sets in the
L2 cache * block size) / page size. Therefore, the physical pages
are broken up into N colors.

The first step of our software page placement algorithm is to
use profiling to create a Temporal Relationship Graph (TRG) de-
scribing which pages are referenced near each other in time. Pages
with temporal relationships should avoid being placed in the same
color in order to eliminate cache misses. After the TRG profile
is created, all the virtual pages that were executed are assigned a
color using a greedy algorithm. After the coloring, a static array
is created that contains a mapping for all the popular virtual page
numbers and their corresponding colors. Virtual page numbers that
were not referenced enough use the default coloring of the operat-
ing system. When the program starts executing, it passes this color
mapping to the OS. The OS then keeps this mapping and uses it as

a hint for coloring when a page fault occurs.
The TRG and coloring algorithm used in this paper are derived

from our prior research into code [12] and data [6] placement to
eliminate first level cache misses. In the rest of this section we
describe these steps in more detail.

5.1 Building a Page Temporal Relationship Graph

Profiling is used to keep track of possible page conflicts by building
up a temporal relation graph during the execution of each of the
programs. A relationship bit matrix of size P � P , where P is the
number of pages, is used to find relationships between pages. A
second matrix, the conflict matrix, also of size P � P , is used to
keep track of the number of relationships between pages.

The relationship matrix is used to find a temporal relationship
between two page references A and B of the form A ! B ! A,
where! denotes sequential ordering of references to the pages A
and B. A reference to a page is any access to a code (instruction
fetch) or data (load or store) page. When a reference to a page B
occurs between two references of another page A, then the second
reference to A can result in a cache miss if B and A are mapped
to the same color. We keep track of relationships at the level of
1/4 the size of an 8K page rather than at the page level or at the
cache block. We examined keeping track of the relationships at
smaller granularities, and it provided no significant benefits for the
programs examined.

On each reference to a page A, all of the bits in the relationship
matrix on column A are set to 1, except (A,A). Next, all of the bits
in row A are checked for a conflict in the relationship matrix. For
each column X that has a bit set for row A in the relationship matrix,
a counter is incremented at (A,X) in the conflict matrix to represent
an interference edge between A and X. The only exception to this
is the matrix element (A,A) which is ignored because it represents
self interferences which are not particularly useful. The last step is

4

0 0 0
1 0 0
1 0 0

0 1 0
0 0 0
1 1 0

0 1 1
0 0 1
0 0 0

0 1 1
0 0 0
0 1 0

0 0 0
1 0 0
1 1 0

0 1 0
0 0 0
1 1 0

ref Bref Aref Bref Cref Bref A

0 0 0
1 0 0
0 0 0

0 0 0
1 0 0
1 1 0

0 1 1
1 0 1
1 1 0

0 1 1
2 0 1
1 1 0

0 0 0
0 0 0
0 0 0

0 0 0
1 0 1
1 1 0

A B C

A
B
C

+1 +1 +1 +1 +1

A
B
C

A B C

Conflict Matrix

Relationship Matrix

Figure 3: An example matrix for the reference stream: A,B,C,B,A,B. The top matrix row shows the relationship matrices, and the bottom
row shows the values in the conflict matrix. The matrix to the right of each reference is the matrix after performing the updates from the
corresponding reference.

to clear all the bits in row A in the relationship matrix.
Figure 3 shows an example of the profiling algorithm for refer-

ence stream A ! B ! C ! B ! A ! B, where A, B, and
C are pages. The top row of arrays are the relationship matrices,
and the bottom row are the corresponding conflict matrices for each
page reference. After the first reference to A the bits in the column
for A are set and the conflict matrix is initially all zeros. When ref-
erencing B, the row B is checked for set bits. A set bit is found at
(B,A) in the relationship matrix. Therefore, the conflict matrix ele-
ment (B,A) is incremented by 1. Next, all the bits in the column for
B are set (except (B,B)) in the relationship matrix. Finally, the row
B has its bits cleared in the relationship matrix. The second pair of
matrices in Figure 3, show the resulting matrices after processing
the first reference to B.

The final conflict matrix, once complete, contains for each pair
of pages a cost metric denoting how many times they have inter-
leaved their references, potentially causing cache conflicts. In-
tuitively pages with many interleaving references should not be
placed in the same color because the interleaving references might
kick each other out of cache frequently yielding high miss rates.
The TRG is then used by the placement algorithm to provide a low
conflict coloring.

To decrease the profiler’s memory usage, when storing the re-
lationship and conflict matrix, only the most frequently referenced
pages are tracked when building the TRG. Therefore, we first pro-
file the program to find the pages that account for up to 99% of all
the references. Relationships are only kept track of for these pages
when building the TRG. This significantly reduced the amount of
memory and computation time needed to generate the TRG.

5.2 Producing a Mapping Using Page Coloring

The final conflict matrix is the temporal relationship graph, and it
is used to build a coloring of pages to eliminate 2nd level cache
conflicts. The matrix is viewed as an undirected graph with pages
as vertices and temporal relations as edges. To convert the conflict
matrix to a TRG graph, each edge created between two pages X and
Y is assigned an edge weight equal to the sum of the two entries
(X,Y) and (Y,X) in the conflict matrix.

To create a page placement we must assign each node one of
the possible page colors. The total cost of assigning a page a given
color is determined by the sum of the relationship edge weights
in the TRG for pages already mapped to that color. To minimize
total cache conflicts we need to find a coloring with the smallest
possible cost. Since the problem is a superset of the k-coloring
problem, which has been shown to be NP-complete, a heuristic is
used.

The algorithm processes the TRG edges between pages from

the largest relationship edge to the least. When processing an edge
between 2 pages, either both of the pages will have already been
colored, both of the pages will be uncolored, or just one of the pages
will be uncolored. Each uncolored page for the edge calculates
the cost of assigning each of the colors to that page. The cost of
placing a page in a given color is calculated as the total cost of the
TRG edges between the uncolored page and all the pages already
assigned to that color. The smallest costing color is then assigned
to the uncolored page, marking the page as colored. This step is
repeated until all the TRG edges have been processed. After a page
is assigned its first color, that coloring is final, so a page is not
allowed to change colors.

No color is given to the pages that were not profiled, and the
infrequently referenced pages. Instead, the default page allocation
algorithm will be used for these pages by the operating system. In
this research we used Bin Hopping as described in section 3 as the
default operating system page allocation algorithm.

5.3 Software Results

We now show SimpleScalar results for the architecture described
in section 4 with a 256K L2 cache. We modeled a 256K L2 cache,
since most of the programs used less than 1 Meg of total mem-
ory during simulation. All the results in the section are shown for
simulating the test input, and using the train input to generate the
software page placement as shown in Table 2. This provides realis-
tic results in the sense that different inputs were used to profile the
program and a gather the simulation results.

Figure 4 shows the L2 cache miss rates for different associativ-
ities with and without software page placement. The results show
that there is no improvement in the L2 miss rate for deltablue,
which allocates and deallocates thousands of objects, and compress
which has a lot of L2 capacity misses. Other programs like m88ksim
and tomcatv show a significant reduction in miss rate when us-
ing software placement. The remaining programs have a lower miss
rate from software page placement even when using a 2-way asso-
ciative L2 cache.

Figure 5 shows the percent IPC speedup over the direct mapped
L2 for different L2 associativities with and without software page
placement. The results shows that the speedup seen by the direct
mapped cache with software page placement is higher than the 2-
way associative cache for groff, go, and tomcatv, even though
the 2-way associative cache has a slightly lower miss rate as seen
in Figure 4. The main reason for this is that we simulated a 6 cycle
access time for the direct mapped L2 and a 7 cycle access time for
the 2-way associative L2 cache to account for the additional delay
in performing the block selection.

It is interesting to note that the speedups for groff and vortex

5

0%

5%

10%

15%

20%

25%

30%

35%

40%

de
lta

blu
e

gr
of

f

co
m

pr
es

s
gc

c go

m
88

ks
im

vo
rte

x

to
m

ca
tv

av
er

ag
e

L2
 C

ac
he

 M
is

s
R

at
e

Direct

Direct w/ Software

2-way

2-way w/ Software

Fully Assoc

Figure 4: 256K L2 Cache Miss Rate. Results are shown for di-
rect mapped, direct mapped with software page placement, 2-way
associative, 2-way associative with software placement, and fully
associative.

0%

20%

40%

60%

80%

100%

120%

de
lta

blu
e

gr
of

f

co
m

pr
es

s
gc

c go

m
88

ks
im

vo
rte

x

to
m

ca
tv

av
er

ag
e

P
er

ce
nt

 S
pe

ed
up

 O
ve

r
D

ire
ct

 M
ap

pe
d

L2

Direct w/ Software

2-way

2-way w/ Software

Fully Assoc

Figure 5: Percent IPC speedup over direct mapped 256K L2 cache.
Results are shown for direct mapped with software page placement,
2-way associative, 2-way associative with software placement, and
fully associative 256K L2 cache.

are increased by 20% when using software page placement with a
2-way associative cache, when compared to the default 2-way as-
sociative cache results. One reason for this is that both groff
and vortex suffer from a large number of L2 misses to code
pages. The resulting software page placement reduced the percent
of code misses more than the percent of data misses. Data misses
can be much more tolerated on an out-of-order processor than code
misses. This implies that better results may be possible by giv-
ing priority to placing code pages over data pages in the 2nd level
cache, which we are examining as part of future research.

6 Hardware Page Placement

The prior section showed that software profiled-guided page place-
ment provides improved cache performance with operating system
support. In this section we examine a hardware technique for al-
lowing a processor to make informed decisions as to where pages
should be placed in the 2nd level cache and aid in their placement.
Our page placement and remapping hardware mechanisms were
designed to take up as little chip area as possible and to be eas-
ily implementable in hardware, while still providing useful conflict
information and resolution. The rest of this section contains a de-
scription of each hardware mechanism and how it is used to per-
form hardware page remapping and placement.

6.1 Hardware Page Remapping

In order to be capable of significantly improving performance by
remapping pages at run-time, the cost associated with remapping a
page must be sufficiently small. In particular, performing an actual
move of data in main memory is clearly not cost effective. The cost

Page Tag Offset

Virtual TagHigh bits PC CC

TLB

Virtual Address

Main

Cache Address

Physical Address

L2
Cache

Memory

Figure 6: Page remapping hardware. The PC is the Physical Color,
where as CC denotes Cache Color. The Cache color bits, which
are used instead of the Physical Color bits when accessing the L2
cache, are the only new bits needed in the TLB.

CPU
L1 Instr
L1 Data

M
erged L2 C

ache

Main
Memory

Reference Counters

LTRC

SRC SMC

IMC

Conflict Detection

data

address address

data

Figure 7: A block model of different pieces of hardware used for
dynamic detection of conflicts. The figure depicts the Sampling and
Long Term Reference Counters (SRC and LTRC), the Sampling and
Interrupt Miss Counters (SMC and IMC).

of going all the way out to DRAM and back for each cache line in a
page would limit the applicability of page recoloring to only those
interferences that persist through the execution of a large program.
To avoid this we propose a modified TLB for fast page recoloring.

A traditional TLB contains fields for the virtual address tag and
the physical address. The lower bits of the physical address provide
the mapping into the L2 cache. We propose keeping a new field,
known as the cache color, which can provide an alternate mapping
into the L2 cache. When main memory is being accessed, then the
original physical address is used. However, when the L2 cache is
being accessed, the cache color bits are used rather than the low
order bits of the physical address. This means that to perform a
recolor the only steps that must be done are changing the cache
color bits along with flushing that page from the L2 cache. Figure 6,
shows how the addresses are created to index into the L2 cache and
main memory.

The three functions necessary for dynamic cache conflict re-
moval are conflict detection, conflicting page recognition, and cache
usage. Figure 7 shows the hardware page placement architecture.
The conflict detection mechanism informs the processor that there
is a cache color/set that is experiencing a lot of misses. The proces-
sor then queries the TLB to find the active pages that are mapped to
that color. The cache usage is kept track of by reference counters
for each color/set and is involved in helping find a new color for
the troublesome pages. Table 3 shows the parameters used for the
different parts of the architecture, which will be described later.

6

Number of Colors 32 colors (256K L2 / 8K page)
Number of Counters 128 counters (4 per color)
Sampling miss counter thresholds 128 upper, 64 lower

Interrupt miss counter trigger point
8 (when the counter reaches 8, the pro-
cessor is informed)

Sampling reference counter thresholds 256 upper, 256 lower

Long term reference saturation point
8 (the reference count cannot be incre-
mented above this value)

Table 3: Hardware Parameters.

6.2 Con
ict Detection

The conflict detection mechanism looks for hot sets as discussed
earlier in section 2. As described earlier, the cache sets are grouped
together into colors based on the size of the page. Conflict counters
are implemented in a buffer with an entry for each group of sets
(color). For the results in this paper, we provide 4 conflict buffer
entries per color. Therefore, each group of 2K cache sets has its
own counters.

Each conflict buffer entry has two counters. The first counter
is called the Sampling Miss Counter (SMC). It keeps track of page
misses during each sampling time period, and is cleared every quar-
ter million of executed instructions. The second counter is called
the Interrupt Miss Counter (IMC), and it accumulates the number
of times the SMC is above the sample threshold at the end of the
sampling time period.

At the end of the quarter million instruction sampling period,
all of the SMC counters are checked sequentially against an incre-
ment and decrement threshold. If the SMC counter is above the
increment threshold then the corresponding IMC counter is incre-
mented. Conversely if the SMC counter is below the decrement
threshold then its IMC is decremented. At the end of the update, all
the SMC counters are reset to zero and the process is started again.

A conflict interrupt is raised when an IMC counter reaches a
conflict threshold value of 8. Misses in hot sets will cause the SMC
to be constantly above it’s threshold, which will in turn cause the
IMC counter to be incremented until it reaches the threshold.

Once a problem set has been detected a conflict interrupt is
raised. At this point the OS only knows that there is an L2 cache
conflict problem, and it knows the group of sets in the cache caus-
ing the problem (i.e., the color of the conflict). To translate this
information into a list of actual pages to be recolored, we examine
the TLB to find the active pages that are mapped to that color/set.

6.3 Keeping Track of Page References

To decide where to place a page to be remapped we also keep track
of two reference counters for each group of 2K sets in the L2 cache.
These reference counters are used to find the cold sets to guide
which color to remap a hot page too.

The functionality of the two reference counters is similar to the
two miss counters described above. The first counter, Sampling
Reference Counter (SRC), is a saturating counter that counts the
number of references during the quarter of a million instruction
time interval. After each sampling period, if the SRC is above the
reference threshold then the second counter, Long Term Reference
Counter (LTRC) is incremented. If SRC is below the reference
threshold, then LTRC is decremented. When recoloring a page, the
LTRC for all the colors are examined to pick a cold color to place
the page. After each quarter of a million sampling interval, all the
SRC counters are cleared.

Table 3 shows the parameters used for the conflict and reference
counters used to gather the results in this paper for a 256K L2 cache
with 32-byte lines.

6.4 Page Relocation Algorithm

When page recoloring is triggered by the interrupt miss counter,
a conflict interrupt traps to the operating system causing the page
relocation algorithm to be invoked. The first step is to find the
actual pages that are causing the conflicts. This is accomplished by
walking the TLB looking for the pages that are mapped to the high
conflict colors.

Only the most recently accessed page in the TLB that maps to
the conflicting color is chosen for relocation. If other pages are still
causing conflicts, they will be recolored the next time a conflict
interrupt occurs. To relocate a page, the algorithm uses the 4 IMC
counters of the page’s current color to determine the parts of the
page that are having the most conflicts. The cost of placing a page
in a given color is calculated by taking each of the 4 IMC counters,
multiplying them by their corresponding LTRC counters for that
color, and then adding together these four calculations. The color
with the smallest cost is then chosen for the page.

To remap a page to its new color, we invalidate all the cache sets
for the old color, moving all of the dirty blocks to the write back
buffer. This guarantees that none of the cache blocks for the page
we are moving are left behind in the old color. The cache color field
in the TLB entry for the page is then updated with the new color.
This provides an efficient implementation for the remapping.

The last thing that needs to be done before normal activities can
be resumed is to update the hardware counters. To make sure that
that a page is given a fair chance at it’s new color, the corresponding
interrupt miss counters are zeroed for only the old color and the new
color. In addition, the LTRC reference count for the new color is
set to the maximum threshold value of 8. This prevents this new
color from being chosen as a cold color if another conflict interrupt
is raised in the near future.

When there is no good place to recolor a page, then the conflict
detection interrupt is simply ignored. This occurs when there are
a lot of capacity misses. This situation is detected when the LTRC
counters are saturated for all the colors with a value of 6 or higher
in our implementation.

6.5 Implementation Issues

We assume shared pages are not candidates for recoloring. When
an application communicates to the OS that a page is to be shared,
the page is marked as shared in the page table and TLB, and we do
not relocate that page.

When an entry is removed from the TLB, its coloring and the
location of its data could be lost. This is taken care of by modifying
the page table to contain the cache color field when an entry is
evicted from the TLB. Therefore, when a page is brought back into
the TLB, it is given its old color back. This has the drawback of
increasing the size of each page table entry by 5 bits for a 32 color
L2 cache.

The cost of performing a coloring includes the cost of the in-
terrupt and the cycles it takes to recolor each page. We model this
in our simulations assuming it takes 200 cycles for each interrupt,
and 500 cycles to find a color for each page being recolored. These
numbers are similar to those used in prior studies [2, 17, 30], but
adjusted for an out-of-order processor.

6.6 Results

We now show SimpleScalar results for the architecture described
in Section 4 with a 256K L2 cache. We modeled a 256K L2 cache,
since most of the programs used less than 1 Meg of total memory
during simulation. Figure 8 shows the L2 cache miss rates for dif-
ferent associativities with and without hardware page placement.
There is no improvement in the L2 miss rate for m88ksim and
compress. The interrupt conflict counter threshold for these two

7

0%

5%

10%

15%

20%

25%

30%

35%

40%

de
lta

blu
e

gr
of

f

co
m

pr
es

s
gc

c go

m
88

ks
im

vo
rte

x

to
m

ca
tv

av
er

ag
e

L2
 C

ac
he

 M
is

s
R

at
e

Direct

Direct w/ Hardware

2-way

2-way w/ Hardware

Fully Assoc

Figure 8: 256K L2 Cache Miss Rate. Results are shown for di-
rect mapped, direct mapped with hardware page placement, 2-way
associative, 2-way associative with hardware placement, and fully
associative.

0%

20%

40%

60%

80%

100%

120%

de
lta

blu
e

gr
of

f

co
m

pr
es

s
gc

c go

m
88

ks
im

vo
rte

x

to
m

ca
tv

av
er

ag
e

P
er

ce
nt

 S
pe

ed
up

 O
ve

r
 D

ire
ct

 M
ap

pe
d

L2

Direct w/ Hardware

2-way

2-way w/ Hardware

Fully Assoc

Figure 9: Percent IPC speedup over direct mapped 256K L2 cache.
Results are shown for direct mapped with hardware page place-
ment, 2-way associative, 2-way associative with hardware place-
ment, and fully associative.

programs was never achieved, which resulted in 0 conflict inter-
rupts (recolorings), as seen in Table 4. The miss rate for gcc did
not see the improvement as seen from software placement, because
the cache performance was degraded by performing too many re-
colorings. The rest of the programs showed similar reductions in
the miss rate to the software page placement.

Figure 9 shows the percent IPC speedup over the direct mapped
L2 for different L2 associativities with and without hardware page
placement. Speedups of 0% to 104% are seen for the hardware
placement, but they are lower than those seen with software place-
ment. There are three reasons for this. First, the hardware page
placement architecture takes time to train to find a page that needs
to be recolored. Second, moving a page flushes all the cache sets
for the old color causing more cache misses to refill these cache
lines. Lastly, since we perform the recoloring in the OS each col-
oring has to pay the cost of an interrupt and the cycles needed to
recolor each page. The benefit of the hardware placement approach
over our software placement is that it can adapt to different inputs,
and the programs don’t need to be profiled to generate the place-
ment.

Table 4 shows cache miss statistics and coloring statistics for
the hardware placement for a 256K direct mapped L2 cache. The
first column shows the percent of L2 cache misses when both in-
structions and data are stored in the L2 cache. The second column
shows the percent of L2 cache misses if we assume all the refer-
ences to the data pages are not stored in the L2 cache. The third
column shows the percent of L2 cache misses if we assume that
no code pages are stored in the L2. In calculating these miss rates
the misses are all divided by the total number of potential data and
code L2 references. These results show the interference between
the code and data pages in the L2 cache. For example, if the ac-

Program I and D Instr Miss Data Miss # inter remaps/inter

delta-blue 27.3% 0.0% 26.9% 28 2.3
groff 7.3% 5.2% 1.1% 5 1
compress 37.8% 0.0% 37.7% 0 0
go 8.3% 6.7% 0.4% 9 1
gcc 18.2% 11.1% 3.6% 127 1.1
m88ksim 3.5% 2.9% 0.6% 0 0
vortex 15.0% 5.4% 7.9% 15 1
tomcatv 15.2% 14.3% 0.9% 733 1.2

Average 16.6% 6.0% 9.8% 115 1.3

Table 4: Hardware Recoloring Statistics.

cesses to code and data pages for gcc would never conflict in the
L2 cache, then the miss rate would be 14.7% (11.1% + 3.6%). In-
stead the miss rate is 18.2% because of the code pages conflicting
with the data pages. The remaining two columns in Table 4 shows
the number of conflict interrupts raised (number of recolorings),
and the number of pages recolored during each interrupt on aver-
age for each program.

7 Page Placement for Single-Chip Multiprocessor

In the previous two sections we showed that software and hard-
ware page placement can improve the performance of a wide-issue
superscalar processor. Software placement was shown to provide
slightly better performance than hardware placement, because of
the extra overhead of doing the hardware placement and time needed
to find the hot sets, which need to be recolored. Software place-
ment was shown to perform well for eliminating cache conflicts for
pages within a given application, but for some future generation
processors it may be just as important to eliminate 2nd level cache
conflicts between different applications. Hardware placement can
potentially perform much better than software placement for these
future generation processors, by eliminating conflicts between dif-
ferent applications.

Two interesting choices for future high-end processor designs
include Simultaneous Multithreading (SMT) [32] and Single-Chip
Multiprocessor (CMP) [13]. Both of these designs have the ability
to run several processes concurrently on-chip sharing parts of the
memory hierarchy at a fine (instruction) level of parallelism. All the
processes running concurrently on an SMT processor share the first
level caches and share a combined L2 cache. In the CMP processor,
each on-chip processor has their own L1 caches and TLB, but they
all share a common L2 cache.

Our hardware approach for eliminating L2 conflicts has the
ability to eliminate 2nd level cache conflicts on an SMT and CMP
processor by remapping pages eliminating conflicts between differ-
ent processes executing concurrently.

In this section we examine the miss rate performance for a 4
processor CMP. We used ATOM [31] to simulate a CMP memory
hierarchy, where each processor has its own L1 data and instruction
cache and TLB, using the same sizes and latencies described in
section 4. For the 2nd level cache we simulated a 1 Meg and 2 Meg
direct mapped cache. A CMP machine can be used to run parallel
programs or several different processes at once, which is more like
a server workload and what we modeled. To gather our results we
interleaved the execution of 4 different programs and their accesses
to the memory hierarchy.

Figure 10 shows the miss rates for the 4 processor CMP for two
groups of programs for a 1 Meg and 2 Meg direct mapped L2 cache.
The first group of programs contains groff, gcc, m88ksim and
tomcatv which have a lot of L2 misses due to instructions. The
other group compress, deltablue, go, and vortex have a
high number of data misses. Results are shown for using Page Col-

8

0%

2%

4%

6%

8%

10%

12%

14%

groff-gcc-m88ksim-tomcatv deltablue-compress-go-vortexP
er

ce
nt

 L
2

C
ac

he
 M

is
s

R
at

e
fo

r
a

4
P

ro
ce

ss
or

 C
M

P
1 Meg Direct Page Coloring

1Meg Direct Bin Hopping

1Meg Direct Bin Hopping w/ HW

2 Meg Direct Page Coloring

2Meg Direct Bin Hopping

2Meg Direct Bin Hopping w/ HW

Figure 10: CMP L2 Cache Miss Rate for a 1 Meg and 2 Meg 2nd
level direct mapped cache with and without hardware page place-
ment.

oring and Bin Hopping as described in section 3. On a CMP, we
modeled a form of global Bin Hopping allocation which allocates
pages as faults occur on any of the 4 processors. Global Bin Hop-
ping will most likely be more beneficial than Page Coloring on a
CMP for non-parallel workloads, since Page Coloring is mainly
used to eliminate misses within a single application. In compar-
ison, global Bin Hopping can potentially help eliminate conflicts
between processes as well as within a process. In Figure 10, the 1
Meg results show that the miss rate is reduced from 5.8% down to
4.5% when using hardware placement for the first set of programs,
and from 11.6% down to 9.9% for the second set of programs.

8 Summary

In this paper we examined the performance of software and hard-
ware page placement for a superscalar processor, and hardware
page placement for a single-chip multiprocessor.

The superscalar results showed that software placement pro-
vides a 28% speedup on average for a direct mapped L2 cache, and
increased the speedup from 31% to 36% for a 2-way associative
cache. The hardware results provided a 21% speedup over a direct
mapped L2 cache, and an absolute increase in speedup of 2% when
using a 2-way associative cache on average. The best performance
was seen for groff, where an additional 20% speedup was seen
when using either software or hardware page placement for a 2-way
associative cache.

For the Single-Chip Multiprocessor, we showed that global bin
hopping across all processes for a 1 Meg L2 cache had a miss rate
of 8.7%. This performed better than the average miss rate of 9.5%
for Page Coloring. When using hardware page placement the miss
rate was reduced down to 7.2% on average.

We showed that page placement is important especially for elim-
inating conflicts between code and data pages. Effective page place-
ment will be of increasing importance as memory latencies grow
and future processor designs like CMP and SMT put increased
stress on the shared 2nd and 3rd level caches.

8.1 Page Placement vs Increasing Associativity

There are several situations when page placement may be advanta-
geous over simply increasing cache associativity. The most notable
are speed, use of commodity parts for off chip caches, and power.

One reason for using page placement over high associative caches
is speed. As cache associativities increase, both their cycle and ac-
cess times increase [34]. Therefore, decreasing the miss rate using
page placement without adding additional associativity could pro-
vide overall better performance.

Off chip L2 and L3 caches will most likely be direct mapped.
One reason for this, is the use of commodity SRAMs for off chip

caches. In order to make commodity SRAMs act as associative
caches the associativity class (the way) needs to be determined be-
fore it can proceed with the cache access. This serialization of tag
lookup with cache access can increase the total access time by a sig-
nificant amount, which makes a direct mapped design attractive for
off chip caches. Applying hardware and software page placement
for these physically indexed off chip caches can be very beneficial.

Another compelling reason to use a low associative cache is
for reduced power consumption. Power consumption increases be-
tween 25% to 50% with an increase in associativity [11, 20]. This is
of serious concern in many low power designs, such as the Stron-
gARM, because up to 50% of the total processor power is dissi-
pated in the cache. To reduce power usage, the cache associativity
needs to be kept low. A conflicting design goal is to also keep the
miss rate low in order to save power, since a cache miss will drive
another level of memory, consuming more power. Page placement
can be used to help reduce the number of misses for these low as-
sociative cache designs.

8.2 Future Directions

For future work we plan on examining the performance effects of
combining code [12, 15] and data placement [6, 26] techniques for
virtually indexed first level caches in combination with the page
placement techniques presented in this paper. In addition, we plan
to compare the performance of page placement to other hardware
techniques (e.g., victim caches [19]) used to reduce the miss rate
for low associative caches.

One of the results we found in this study was the importance of
placing code pages over data pages. Latencies due to data misses
are much easier to mask in an out-of-order processor than code
misses. One way to improve our page placement algorithm is to
give priority to placing code pages. This would further reduce the
number of misses for code pages at the sacrifice of allowing more
data misses. Another potential optimization is to enhance the re-
placement policy used for unified caches to give priority to cache
blocks containing code over cache blocks containing data. Another
possible optimization is to provide separate victim buffers for code
and data cache blocks. We are currently investigating the perfor-
mance benefit of these different design aspects.

Another possible use of hardware page placement is dynamic
load balancing cache usage between multiple threads or processors
sharing an L2 cache. By placing pages in certain locations in the
L2 cache we can restrict processes to a fixed area in the cache. The
area can be expanded dynamically to fit the individual working set
sizes and cache usage, and processes with non-conflicting working
sets can be mapped to the same area in the cache.

Acknowledgments

We would like to thank the anonymous reviewers for their useful
comments. In addition, we would like to thank Amitabh Srivistava
and Alan Eustace for providing ATOM, and Todd Austin and Doug
Burger for providing SimpleScalar. This work was funded in part
by NSF CAREER grant No. CCR-9733278, a gift from Microsoft,
and a grant from Compaq Computer Corporation.

9

References

[1] A. Agarwal and S. D. Pudar. Column-associative caches: A technique
for reducing the miss rate of direct-mapped caches. Proceedings of
the 20th Annual International Symposium on Computer Architecture,
21(2):179–190, May 1993.

[2] B. Bershad, D. Lee, T. Romer, and J.B. Chen. Avoiding conflict misses
dynamically in large direct-mapped caches. In Proceedings of the 6th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 158–170, October 1994.

[3] E. Bugnion, J. Anderson, T. Mowry, M. RosenBlum, and M. Lam.
Compiler-directed page coloring for multiprocessors. In Seventh In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, October 1996.

[4] D.C. Burger and T.M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342, University of Wisconsin, Madison,
June 1997.

[5] B. Calder, D. Grunwald, and J. Emer. Predictive sequential associa-
tive cache. In Proceedings of the Second International Symposium on
High-Performance Computer Architecture, February 1996.

[6] B. Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data
placement. In 8th International Conference on Architectural Support
for Programming Languages and Operating Systems, October 1998.

[7] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations for
improving data locality. Proceedings of the 6th International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, 28(5):252–262, October 1994.

[8] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brun-
vand, A. Davis, C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a smarter memory controller. In Pro-
ceedings of the Fifth International Symposium on High-Performance
Computer Architecture, January 1999.

[9] T.M. Conte, K.N. Menezes, P.M. Mills, and B.A. Patel. Optimization
of instruction fetch mechanisms for high issue rates. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture,
pages 333–344, June 1995.

[10] D. Engler, M. Kaashoek, and J. O’Toole Jr. Exokernel: An operat-
ing system architecture for application-level resource management. In
Proceedings of the Fifteenth Symposium on Operating Systems Prin-
ciples, December 1995.

[11] K. Ghose and M.B. Kamble. Energy efficient cache organizations
for superscalar processors. In Power-Driven Microarchitecture Work-
shop, June 1998.

[12] N. Gloy, T. Blockwell, M.D. Smith, and B. Calder. Procedure place-
ment using temporal ordering information. In 30th International Sym-
posium on Microarchitecture, December 1997.

[13] L. Hammond, B. Nayfeh, and K. Olukotun. A single-chip multiproc-
ssor. IEEE Computer, Special Issue on Billion-Transistor Processors,
September 1997.

[14] K. Harty and D.R. Cheriton. Application-controlled physical memory
using external page cache management. In Proceedings of the Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-V), October 1992.

[15] A.H. Hashemi, D.R. Kaeli, and B. Calder. Efficient procedure map-
ping using cache lince coloring. In Proceedings of the SIGPLAN ’97
Conference on Programming Language Design and Implementation,
pages 171–182, June 1997.

[16] W.W. Hwu and P.P. Chang. Achieving high instruction cache per-
formance with an optimizing compiler. In 16th Annual International
Symposium on Computer Architecture, pages 242–251. ACM, 1989.

[17] B. Jacob and T. Mudge. A look at several memory management units,
tlb-refill mechanisms,and page table organizations. In Eigth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October 1998.

[18] T. Johnson, M. Merten, and W. Hwu. Run-time spatial locality detec-
tion and optimization. In 30th International Symposium on Microar-
chitecture, December 1997.

[19] N. P. Jouppi. Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers. In Pro-
ceedings of the 17th Annual International Symposium on Computer
Architecture, pages 364–373, May 1990.

[20] M.B. Kamble and K. Ghose. Analytical energy dissipation models for
low-power caches. In Proceedings of the 1997 International Sympo-
sium on Low Power Electronics and Design, pages 143–148, 1997.

[21] R. Kessler and M. Hill. Page placement algorithms for large real-
indexed caches. Transactions on Computer Systems, 10(4), November
1992.

[22] R. E. Kessler. Analysis of Multi-Megabyte Secondary CPU Cache
Memories. TR 1032, Computer Sciences Department, UW–Madison,
Madison, WI, July 1991.

[23] R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpensive im-
plementations of set-associativity. Proceedings of the 16th Annual
International Symposium on Computer Architecture, 17(3):131–139,
1989.

[24] S. McFarling. Program optimization for instruction caches. In Pro-
ceedings of the Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS
III), pages 183–191, April 1989.

[25] K. McKinley, S. Carr, and C. Tseng. Improving data locality with
loop transformations. Transactions on Programming Languages and
Systems, 18(4), July 1996.

[26] P. Panda, N. Dutt, and A. Nicolau. Memory data organization for
improved cache performance in embedded processor applications.
Transactions on Design Automation of Electronic Systems, 2(4), Oc-
tober 1997.

[27] J. Peir, Y. Lee, and W. Hsu. Capturing dynamic memory reference
behavior with adaptive cache topology. In Eigth International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, October 1998.

[28] K. Pettis and R. C. Hansen. Profile guided code positioning. Pro-
ceedings of the SIGPLAN ’90 Conference on Programming Language
Design and Implementation, 25(6):16–27, June 1990.

[29] G. Rivera and C.-W. Tseng. Data transformations for eliminating con-
flict misses. In Proceedings of the SIGPLAN ’98 Conference on Pro-
gramming Language Design and Implementation, June 1998.

[30] T. Romer, D. Lee, B. Bershad, and J.B Chen. Dynamic page map-
ping policies for cache conflict resolution on standard hardware. In
Proceedings of the 1st Symposium on Operatingy Systems Design and
Implemenation, pages 255–266, November 1994.

[31] A. Srivastava and A. Eustace. ATOM: A system for building cus-
tomized program analysis tools. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 196–205.
ACM, 1994.

[32] D.M. Tullsen, S.J. Eggers, and H.M. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In 22nd Annual International
Symposium on Computer Architecture, pages 392–403, June 1995.

[33] G. Tyson and M. Farrens. Managing data caches using selective cache
line replacement. International Journal of Parallel Programming,
25(3), June 1997.

[34] S. J.E. Wilton and N. P. Jouppi. An enhanced access and cycle time
model for on-chip caches. Tech report 93/5, DEC Western Research
Lab, 1994.

[35] Y. Yamada, J. Gyllenhaal, G.Haab, and W. W. Hwu. Data relocation
and prefetching for large data sets. In 27th International Symposium
on Microarchitecture, pages 118–127, December 1994.

10

