
Reducing the Latency and Area Cost of Core Swapping
through Shared Helper Engines

Anahita Shayesteh
�
, Eren Kursun

�
, Tim Sherwood

�
, Suleyman Sair

�
, Glenn Reinman

�
�

Computer Science Department, University of California, Los Angeles�
Computer Science Department, University of California, Santa Barbara�

Department of Electrical and Computer Engineering, North Carolina State University�
anahita, kursun, reinman � @cs.ucla.edu, sherwood@cs.ucsb.edu, ssair@ncsu.edu

Abstract
Technology scaling trends and the limitations of packaging

and cooling have intensified the need for thermally efficient
architectures and architecture-level temperature management
techniques. To combat these trends, we explore the use of core
swapping on a microcore architecture, a deeply decoupled pro-
cessor core with larger structures factored out as helper en-
gines. The microcore architecture presents an ideal platform
for core swapping thanks to helper engines that maintain the
state of each process in a shared fabric surrounding the cores,
reducing the impact of core swapping 43% on average while
showing promising thermal reduction. It also has favorable
performance when compared to other thermal management
techniques.

Furthermore, we evaluate alternative approaches to spend-
ing the area overhead of the additional microcore, including
larger microcores, CMP cores, and SMT cores with different
thermal management techniques.

1 Introduction and Motivation

Thermal characteristics of contemporary processors are cre-
ating significant challenges to microprocessor design. Various
trends threaten to make things even worse: the number of on-
chip transistors are dramatically increasing, feature sizes are
dropping to deep submicron levels, and supply voltage reduc-
tion is expected to slow down as it approaches noise margin
barriers. As a result, power densities and on-chip temperatures
are expected to increase even faster for the next generation of
processors.

Thermal issues have gained significant importance in the
past few years. Processor heating raises number of problems
that threaten vital aspects of the microprocessor design, such
as proper functionality, reliability, cost, and performance.

In recent years, dynamic thermal management (DTM) [5,
8, 9] has become an integral part of microprocessor design to
adapt to increasing on-chip temperatures. DTM usually
targets the removal of excessive heat from the processor after
a certain temperature threshold is reached. Thermal manage-

ment can cause performance degradation, as a result of reduced
clock frequency, voltage or temporarily shutting down the en-
tire chip. Therefore, efficient thermal management techniques
with less impact on processor performance are extremely de-
sirable.

Activity migration (i.e. core swapping) was recently pro-
posed as an efficient technique for power density reduction [7].
While core swapping has the potential to drastically alleviate
thermal problems, it can be plagued with two main drawbacks:
1) the latency overhead of performing a swap and 2) the area
overhead of retaining additional resources to perform the swap.
The latency overhead stems from both the time to propagate re-
sources required for computation to migrate from one core to
another and the warmup time for various predictors that may
not be migrated from one core to another.

In this paper we further explore the use of swapping an ap-
plication between multiple cores when a given core exceeds
thermal threshold, specifically attacking both the latency and
area overhead of swapping. Our cores feature a small, fast
pipeline augmented with helper engines [16]. All large struc-
tures are factored out of this microcore and are relocated as
helper engines, taking advantage of locality in the first level
structures. The helper engines buffer state during core swaps
and help reduce the overhead of swapping. We compare this
approach to current DTM techniques.

Our contributions include:
� We propose a thermally-triggered core-swapping tech-

nique as a DTM for dual-microcore architectures. Our
architecture solves the switching overhead problem in-
herent to core swapping by buffering the state in helper
engines. We compare the performance of core swapping
with other DTMs such as global clock gating and dynamic
frequency scaling.

� We study the area overhead of dual-microcore architec-
ture and investigate different architectures with compara-
ble area including SMT and CMP cores for a two appli-
cation workload.

The rest of this paper is organized as follows. In Section 2

Allocation
and Register

Rename

Functional
Units

L0 Register
File

L1 Data
Cache

L2
Cache

Fe
tc

hL0
I-Cache

Data
Prefetching

L0 Branch
Predictor

Value
Predictor

FTQ IQ

L1 Branch
Predictor

L1
I-Cache

L0 Data
Cache

L1 Register
File

commit

ROB

µ-core

Figure 1: The factored microcore architecture. Helper engines
(L1 Data Cache, L1 Instruction Cache, L1 Branch Predictor,
L1 Register File, Value Predictor and Data Prefetching) are
shown in lighter shade.

we discuss the prior work, followed by an introduction of the
architectures we investigate in Section 3. Section 4 presents the
methodology. We present the experimental results in Section 5
and concluding remarks are in Section 6.

2 Related Work

The circuit design community has proposed a great deal
of work on dynamic power optimization techniques, which
are also used as dynamic thermal management techniques in
microprocessors in various forms. Such techniques include
dynamic voltage scaling (DVS) and dynamic frequency scal-
ing (DFS). In this section we will focus on the studies that
are close to our own and specifically target microprocessor
power/thermal optimization.

The Pentium 4 incorporates the existing stopclock, an archi-
tectural low-power logic mechanism that halts the clock signal
to the bulk of the processor [6]. whenever any of the ther-
mal sensors indicate that the die is hotter than critical temper-
ature.

Heo, Barr and Asanovic [7] proposed an activity migra-
tion technique for power density reduction. Activity migra-
tion reduces the temperature by moving the computation be-
tween multiple replicated blocks. They analyze multiple con-
figurations with some of the microprocessor units replicated or
shared. The study concludes that the best configuration has a
shared instruction cache, data cache, rename table, and issue
queue. Ghiasi et al. [12] suggested migration between asym-
metrical cores instead of symmetrical cores.

3 Core Swapping on a Microcore
We examine core swapping on a dual core version of a mi-

crocore architecture, where a set of larger structures are moved
out of the cores as helper engines. This results in a smaller core
size, with only the components necessary to maintain perfor-
mance included in the microcore. Components that are latency
tolerant become helper engines that are shared between the mi-
crocores.

Figure 1 illustrates our microcore architecture. The level
one data and instruction caches are moved out of the core pro-
cessor pipeline and replaced with a smaller L0 cache. The L0
extends the cache hierarchy, and therefore the L1 data cache is
accessed on an L0 miss.

Our architecture makes use of a basic block target buffer
(BBTB) [18], a branch address predictor that predicts an entire
basic block each cycle. The microcore design has a reduced
size BBTB in the core pipeline and adds a second level BBTB
as done in [11]. On a first level BBTB miss, the second level
BBTB is probed and fetch stalls until a response is received
from the second level.

A multi-level register file is used as proposed in [2]. The
basic differences are that they model an inclusive register file
hierarchy where the second level register file (RF1) includes
all the state contained in the first level register file (RF0). On a
branch misprediction, the second level register file recovers the
state of the first level register file. The register file is extended
with a second level structure, but the commit hardware and
ROB are completely decoupled as a helper engine, with only
tag allocation in the ROB impacting the core timing.

The architecture includes a stream buffer guided by a stride-
filtered markov predictor as proposed in [14]. There is also a
hybrid value predictor [17], predicting only load instructions.
The address and value predictors are moved further away from
the core pipeline of the microcore.

The microcore design provides a suitable framework for
core swapping for two main reasons:

� Performance efficiency: State buffering in helper engines
shared between cores reduces the core swapping overhead
significantly.

� Area efficiency: Resource duplication is limited to the
smaller microcores, while larger structures are shared be-
tween cores.

Core swapping can impact processor performance signif-
icantly. On a core swap, we flush the pipeline similar to a
branch misprediction. We need to propagate the first level reg-
ister file state, the store buffer, and the dirty cache blocks in
the L0 cache. Register file and store buffer state is copied to
the other core, and dirty cache blocks are written back to the
level one cache (the helper engine), which is shared between
the cores. We could also have used a writethrough policy with
our L0 data cache. We overlap copying register file and store
buffer state and writing back dirty blocks with the restart of
the pipeline on the new core. Our core swaps are triggered by
thermal sensors, removing the overhead of unnecessary core
swaps. When one core exceeds a thermal threshold, the appli-
cation workload is swapped to the other core.

The cold start effect of caches and predictors causes an even
more severe impact on the second core. These structures need
to warm up and depending on their size, there is an overhead
involved. The microcore architecture, with less state in the
core and more buffering between the cores, provides a very tol-
erant framework for core swapping, while decreasing the cost

microcore A

microcore B

HE HE HE

microcore A

microcore B

HE HE HE

microcore A

microcore B

HE HE HE

Microcore A
exceeds the

thermal threshold.

The application is
swapped to microcore B,

but state is still buffered in
the shared helper engines

Execution resumes
on microcore B.

Figure 2: Core Swapping

of core replication to a small factored core. We evaluate these
features in Section 5 by studying the performance and ther-
mal behavior of selected architectures with comparable area,
including core swapping.

4 Methodology

The simulator used in this study was derived from the Sim-
pleScalar/Alpha 3.0 tool set [4], a suite of functional and
timing simulation tools for the Alpha AXP ISA. The timing
simulator executes only user-level instructions. Simulation is
execution-driven, including execution down any speculative
path until the detection of a fault, TLB miss, or branch mispre-
diction. Our processor operates at a 5.6 GHz clock frequency.

We used 8 floating point and 8 integer benchmarks from
SPEC2000 set for our experiments. The programs were com-
piled on a DEC Alpha AXP-21164 processor using the DEC C
and C++ compilers under OSF/1 V4.0 operating system using
full compiler optimization (-O4-ifo). We simulate 100 Mil-
lion instructions after fast-forwarding an application-specific
number of instructions as proposed by Sherwood et. al in [13].
All benchmarks were simulated using the ref inputs.

4.1 Architectural Model

We have made significant modifications to SimpleScalar to
model the various speculative techniques and different con-
figurations in this study. In addition to modeling all of the
structures and latencies in the microcore architecture, we have
extended SimpleScalar to include a cycle accurate, execution
driven model of simultaneous multithreading (SMT) and chip
multiprocessing (CMP)

Table 1 presents the simulation parameters for the micro-
core architectures we explore in this paper. Cache and register
file access latencies are extracted from Cacti [15] for a 70nm
Technology at 5.6 GHz frequency. We modeled a 32 entry is-
sue window and an 8K entry gshare branch predictor.

4.2 Power and Thermal Simulator

A complete analysis of the static and dynamic power con-
sumption and resulting temperature characteristics of different
architectures is crucial to our study. We used process parame-
ters for a 70nm process at 5.6GHz with 1V supply voltage, in

Microcore
L0 Helper Engines

Instruction Window 256 entry ROB
and Physical RF 100 entry RF0 256 entry RF1
BBTB 256-entry 4-way SA 2048-entry 4-way SA
L1 Data 8KB 4-way SA, 32KB 4-way SA,
Cache dual port, 32 byte single port, 32 byte

block size, 2 cycle lat blocksize, 5 cycle lat
L1 Instruction 8KB 2-way SA , 32KB 2-way SA,
Cache single port, 32 byte single port, 32 byte

block size, 2 cycle lat block size, 4 cycle lat
Value Predictor none 2K-entry stride
(1 prediction/cycle) 8K-entry L2 markov
Address Predictor none 2K-entry stride
(1 prediction/cycle) 4K-entry markov
Stream Buffer none 32-entry FA buffer
Core Width 8-way issue, 4-way decode, 4-way commit
Memory and 150 cycle memory lat, 512KB 4-way SA unified
L2 Cache cache with a 64 byte block size and 12 cycle lat

Table 1: Simulation parameters.

order to have a better understanding of next generation submi-
cron, low supply voltage, aggressively clocked microproces-
sors.

We have incorporated Wattch [3] models for dynamic power
analysis of the microprocessor blocks. The experimental re-
sults we present are extracted with the most aggressive condi-
tional clocking strategy, where the dynamic power scales lin-
early with access to the ports.

For submicron technologies, such as 70nm, leakage
power constitutes a significant portion of the overall power.
We adapted leakage models from Hotleakage [19] in our
power/thermal simulator. The public version of Hotleakage
only provides a software implementation of the leakage mod-
els for the data cache. We have extended and modified the
tool significantly to accommodate other caches and cache-like
structures in the microprocessor. We also used leakage param-
eters from Hotleakage’s predetermined values specific to the
70nm process technology.

We use Hotspot’s [8] thermal resistance/capacitance models
and RC solvers for our analysis. Our power/thermal simula-
tor also incorporates the thermal runaway phenomena enabled
by the Hotleakage and Hotspot models. We used area values
for our various architectural blocks based on our analysis with
CACTI [15].

Heo, Barr and Asanovic [7], argue that most heat is dissi-
pated vertically on the microprocessor chip, as the wafer thick-
ness is much smaller than the chip area. Therefore, they as-
sume infinite lateral resistances, although it leads to the worst
case temperature gradients. We follow their example, and tune
HotSpot to only consider the vertical component of tempera-
ture. Lateral modeling, while possible with HotSpot, is unre-
alistic without a more accurate floorplan of the various archi-
tectures we consider.

4.3 Dynamic Thermal Management Techniques

We used some thermal threshold values for the dynamic
thermal management techniques. Critical thermal threshold,
is the maximum tolerated temperature for proper functionality
(timing data errors are likely after this value). DTM needs to be
activated at this temperature. Safety thermal threshold, is the
safety temperature for DTM to deactivate during the cooling
down. We assume that the critical thermal threshold is 82 � C
and the safety thermal threshold is 79 � C for the 70nm tech-
nology process we are investigating according to the ITRS [1]
projections and results from [8].

We have incorporated an idealized version of dynamic fre-
quency scaling for the experimental analysis. Our DFS has two
different frequency settings: 5.6GHz for the normal operation
and 4GHz for thermal relief, which gets activated as soon as
on-chip temperatures reach the 82 � C critical thermal thresh-
old. Usually there is a large latency (on the order of � secs)
incurred every time the frequency is adjusted, which results in
significant performance penalties in dynamic frequency scal-
ing schemes. Skadron et al. [8] report 10 � sec for the non-
idealized version of DFS. In our dynamic frequency scaling
implementation there is no overhead, delay or penalty involved
with changing the frequency of the processor.

We implemented global clock gating similar to Pentium 4
as discussed in Section 2. The global clock signal is shut
down, whenever on-chip temperatures exceed the critical ther-
mal threshold of 82 � C. The processor resumes normal oper-
ation after the chip temperatures cool down below the safety
threshold of 79 � C.

Our thermally-triggered core swapping mechanism gets ac-
tivated when a core reaches 82 � C. The runs with this architec-
ture assume an extra core (identical to the main core) that can
be used to offload an application when one core overheats. The
computation is migrated to the cooler core until the active core
heats above the critical thermal threshold and another swap is
required.

5 Experimental Results

In this section we compare the performance impact of core
swapping to other DTMs on the microcore architecture. In
particular, we examine the ability of the microcore to buffer
state when core swapping, resulting in minimal degradation in
performance. We further study the area overhead of duplicat-
ing the microcore, and investigate different architectures with
comparable area. We use the power/thermal simulator frame-
work discussed in Section 4 to explore different alternatives of
simultaneous multithreading (SMT) and chip multiprocessing
(CMP).

5.1 Core Swapping Performance Overhead
Core swapping can impact processor performance signifi-

cantly. Figure 3 illustrates how this impact can be reduced by
buffering state in helpers that are shared between two cores.

0

0.2

0.4

0.6

0.8

1

am
mp

ap
plu ap

si ar
t

bz
ip2

cra
fty

eq
ua

ke

fac
er

ec
ga

lge
l

ga
p

gc
c

gz
ip

mgr
id

pe
rl

tw
olf

vo
rte

x

N
o

rm
al

iz
ed

 I
P

C

Core swapping, no state buffering
Core swapping, state buffering in shared helpers

Figure 3: Core swapping overhead with and without buffering

Core swapping is thermally triggered and its impact directly
depends on the characteristics of the benchmark. For bench-
marks that heat up more, swapping occurs more frequently
and results in more degradation. Benchmarks such as bzip2,
mgrid, and perl have higher temperatures and suffer more
from core swapping, as we will show in next section.

The first bar presents the performance impact when helpers
are flushed on every core swap. Values are normalized based
on a similar architecture with no core swapping. The average
53% degradation reflects the cold start effect of caches and
predictors after a core swap. The second bar demonstrates the
efficiency of buffering state in our shared helpers. The impact
of core swapping is reduced to an average of merely 10%.

5.2 Single Application Workload
Core swapping has an area overhead from the duplication

of core resources. The microcore design reduces this cost by
sharing larger structures among cores and limiting the duplica-
tion to a small microcore. We extracted area numbers for most
of the architectural blocks using CACTI [15], and used [10] for
structures that could not be easily modeled with CACTI. Our
data indicates that duplicating the microcore only increases our
overall chip area by 25%. In this section we study alternative
architectural designs with a comparable increase in area as well
as alternative thermal management techniques.

Figure 4 compares the performance and thermal behavior of
our microcore architecture in presence of different DTM tech-
niques, including core swapping. The upper half of the figure
shows the performance in BIPS for different benchmarks, and
the lower half illustrates the heating behavior of the investi-
gated architectures. This latter component shows the percent-
age of cycles for which at least one block exceeds the indicated
temperatures: 75 � C, 79 � C, 82 � C and 85 � C. Darker colors in
the lower graphs indicate higher temperatures. The rest of the
figures in this section are similarly constructed.

Our detailed thermal analysis considers all of the possi-
ble overheating blocks. Although some of the hotspots were
common among different benchmarks, such as the register
file, load-store queue, etc, others varied across the different
benchmarks and configurations. Even though the location of
hotspots can provide a level of insight, the thermal behavior of
the architecture can also be captured by the number of cycles
that any of the blocks exceed a given thermal threshold.

B
IP

S
No DTM GCG DFS Large Core-DFSCore Swap Large Core

0

4

8

12

16

ammp applu apsi art bzip2 crafty equake facere galgel gap gcc gzip mgrid perl twolf vortex avg

0%

20%

40%

60%

80%

100%

>75° >79° >82° >85°

Figure 4: Thermal and Performance behavior of different architectures with and without DTM

As mentioned earlier in Section 1, performance degrada-
tion is commonly experienced with dynamic thermal manage-
ment techniques. The degradation usually comes from various
sources such as frequency decrease, voltage reduction, clock
gating. Performance degradation might be quite significant de-
pending on the DTM technique.

The first and fifth bars demonstrate results without thermal
management of any kind. The first bar is our default microcore
and the fifth bar is the microcore with larger resources. This
latter bar doubles critical processor resources including the is-
sue window (64-entry issue window), the first level data and
instruction caches, and the first level branch predictor. The
second and third bars show our microcore with global clock
gating and idealized dynamic frequency scaling. The fourth
bar presents core swapping results. The final bar represents
the larger microcore with DFS.

For example benchmarks bzip2 and mgrid see temper-
ature greater than 85 � C almost all the time when no thermal
management is applied, and all DTMs impact their perfor-
mance significantly.

Note that for many benchmarks, temperature frequently ex-
ceeds the thermal threshold, 82 � C. These results should be
considered as an upper bound for performance that can not be
achieved. It would require sustained operation at a temperature
beyond the critical thermal threshold, and a processor operat-
ing under such conditions would likely have timing, data and
reliability complications.

Although global clock gating seems to be more effective
in reducing the temperature in most benchmarks than DFS, it
has a very significant performance penalty from frequently dis-
abling the global clock signal. On average global clock gating

sees 47% degradation on performance, running under critical
threshold all the time.

Thanks to state buffering in the helper engines, core swap-
ping is able to come close to the performance of the architec-
ture without any DTM in most cases, seeing an average of 12%
impact on performance. Core swapping is extremely effective
at thermal management, reducing the temperature below 79 � C
at least 80% of the time for all benchmarks and well above
95% of the time for many benchmarks. Even galgel, which
spends over half its execution time over 82 � C is able to reduce
its temperature below 79 � C around 93% of the time using core
swapping, with only an 8% degradation in BIPS.

Our results with core swapping, indicate that helper engines
rarely heat up to critical temperatures, due to fewer number of
accesses to those structures. For benchmarks we simulated,
the block or blocks overheated were always inside the micro-
core. This is crucial for the effectiveness of our core swapping
method in reducing the temperature.

For many applications, temperatures are still above the
threshold with DFS, such as bzip2, galgel and perl. This
indicates that our DFS strategy requires an even lower fre-
quency to provide thermal relief to these applications, but at
an even greater cost to performance. Despite a 70% drop in
performance bzip is still above 85 � C around 90% of the time
with DFS. The benchmark gap operates in lower frequency
mode almost 99% of the time in order to reduce the tempera-
ture, yet it is still above the 85 � C temperature threshold 97% of
the time. Our DFS on average, sees 23% degradation on per-
formance with 14% of execution cycles above critical thresh-
old of 85 � C.

The actual scaling of frequency in DFS can have a signifi-

cant performance impact if used often. However, we have used
an idealized DFS implementation (see Section 4) that does not
see this impact when transitioning between frequencies. De-
spite this advantage, core swapping is still able to outperform
DFS.

The configurations with larger resources demonstrate one
alternative use of the area overhead of core swapping. In some
cases, the use of this overhead to instead increase the struc-
tures of the microcore has a clear performance advantage, 6%
speed up over our baseline architecture on average – but this
does nothing to alleviate the thermal problem. Even with ide-
alized DFS on these larger resources, the performance impact
is either too great or the thermal alleviation is not sufficient for
safe operation.

5.3 Two Application Workload

In this section we consider the trade-off between using this
extra core to run a second application instead of core swap-
ping. It is important to note that the design space for chip ca-
pable of supporting two threads is quite large, but we believe
that the results we present in this section highlight some inter-
esting observations that will be explored in future work. Each
application runs on a separate microcore with its own distinct
set of helper engines. This approach (CMP) does not make
use of core swapping, but can use dynamic frequency scaling
(DFS) to independently scale the frequency of either core.

We compare this CMP approach to a microcore that has
been enhanced with SMT to run two applications on a single
core. This architecture also has a different set of helper engines
per thread. One alternative is to simply have one SMT core
running both threads without any DTM. Another is to have
two SMT cores, but use core swapping to migrate both threads
together from one core to the next. A final option is to have
only one SMT core, but make it proportionately larger SMT
(to compensate for the added area of the second core), and ex-
plore this with and without DFS.

Figure 5 displays the comparison between the SMT and
CMP architectures. We constructed 16 set of benchmarks. The
first bar shown on the graph is a single SMT core with no ther-
mal management. The second bar shows two SMT cores that
use core swapping for thermal management – both applications
exist on only one core at a time and migrate together. The third
bar is a larger single core SMT with double size issue window,
caches, and branch predictor to compensate for the area over-
head of core swapping. Again, this provides an alternative way
to spend that area overhead. The fourth bar is this same archi-
tecture with DFS – both applications and set of helpers run in
same frequency at all times. The last two bars show two single
threaded CMP cores without any thermal managment and with
our idealized DFS respectively.

CMP is able to outperform SMT for a number of bench-
marks when no DTM is used on either architecture. The bench-
mark mixes of bzip2.galgel and perl.lucas are two
examples of this. This is because these cores have comparable

issue widths and resources (except for the larger SMT core).
When SMT resources are increased to account for second core
on CMP, the larger SMT can outperform CMP for many bench-
marks. On average there is 17% performance speed up for both
these alternative designs compared to baseline SMT architec-
ture. Unfortunately, all of these alternatives see a significant
number of cycles of thermal violation. SMT has lower temper-
atures than CMP for some applications – this is directly related
to the improvement in BIPS seen by CMP. As the difference in
BIPS grows, so does the difference in the temperature profile.

However, when thermal management is applied, core swap-
ping shows the lowest impact of an average of 3% on perfor-
mance for successful thermal alleviation. The other alterna-
tives with DFS are either not able to retain comparable perfor-
mance or not able to sufficiently alleviate the thermal problem.
SMT with larger resources, sees an impact of %20 degrada-
tion due to frequency scaling, while 12% of cycles are above
critical threshold. Similarly frequency scaling on CMP, de-
grades performance 19% on average, leaving 15% of cycles
above 85 � C. Note that our implementation of DFS allows the
processor to run at temperatures higher than the critical 82 � C-
threshold in the lower frequency. A more realistic implementa-
tion would further impact the performance of DFS, but would
allow more thermal alleviation.

6 Summary

We have explored the use of core swapping on a microcore
architecture, a deeply decoupled processor core with larger
structures factored out as helper engines. Core swapping is
complicated by two factors: the cost of migrating an appli-
cation from one core to another and the area overhead of the
additional core for thermal management. Microcores enable
efficient core swapping by buffering processor state in shared
helper engines that reduce startup costs when switching to a
new core. And they are small enough to reduce the area over-
head of core replication.

Our results demonstrate that our microcore reduces the im-
pact of core swapping significantly, on average 43% while
showing promising thermal reduction ability. It also has fa-
vorable performance (as measured in BIPS) when compared
to other DTM techniques such as GCG and an idealized ver-
sion of DFS.

Additionally, we evaluated alternative approaches to spend-
ing the area overhead of the additional microcore, including
larger microcores, CMP cores, and SMT cores, all with DFS.
Our results indicate that while additional core on CMP and
larger resources on SMT can improve performance, even an
idealized version of DFS can hurt their performance signifi-
cantly.

Acknowledgments
We would like to thank the anonymous reviewers for pro-

viding useful comments on this paper. This work was funded
by an NSF CAREER grant.

SMT - no DTM SMT - Core Swap CMP - DFSCMP - no DTMSMT - Large Resources SMT - Large Resources-DFS

ammp applu apsi art bzip2 crafty equake facerec galgel gap gcc gzip mgrid perl twolf vortex
crafty apsi gcc ammp galgel equake eon twolf lucas gzip art eon vpr lucas applu gap

0

5

10

15

20

25

30
B

IP
S

Thread 0 Thread 1

0%

20%

40%

60%

80%

100%

>75° >79° >82° >85°

avg

Figure 5: Thermal and Performance behavior of different architectures for two-thread workloads with and without DTM.

References

[1] In International Technology Roadmap for Semiconductors,
2003.

[2] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Reduc-
ing the complexity of the register file in dynamic superscalar
processors. In Proceedings of the 34th Annual International
Symposium on Microarchitecture, Dec. 2001.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimization. In
27th Annual International Symposium on Computer Architec-
ture, pages 83–94, June 2000.

[4] D. C. Burger and T. M. Austin. The simplescalar tool set, ver-
sion 2.0. Technical Report CS-TR-97-1342, U. of Wisconsin,
Madison, June 1997.

[5] D.Brooks and M.Martonosi. Dynamic thermal management for
high-performance microprocessors. In International Sympo-
sium on High-Performance Computer Architecture (HPCA-7),
pages 171–182, Jan. 2001.

[6] S. Gunther, F. Binns, D. Carmean, and J. Hall. Managing the im-
pact of increasing microprocessor power consumption. In Intel
Technology Journal Q1, 2001.

[7] S. Heo, K. Barr, and K. Asanovic. Reducing power density
through activity migration. In International Symposium on Low
Power Electronics and Design, Aug. 2003.

[8] K.Skadron, M.Stan, W. Huang, S.Velusamy, K. Sankara-
narayanan, and D. Tarjan. Temperature-aware microarchitec-
ture. In 30th Annual International Symposium on Computer Ar-
chitecture, pages 2–13, June 2003.

[9] C.-H. Lim, W. Daasch, and G.Cai. A thermal-aware superscalar
microprocessor. In International Symposium on Quality Elec-
tronic Design, pages 517–522, Mar. 2002.

[10] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In Proceedings of the 24th An-
nual International Symposium on Computer Architecture, pages
206–218, June 1997.

[11] G. Reinman, T. Austin, and B. Calder. A scalable front-end
architecture for fast instruction delivery. In 26th Annual Inter-
national Symposium on Computer Architecture, May 1999.

[12] S.Ghiasi and D.Grunwald. Thermal management with asym-
metrical dual core designs. Technical Report CU-CS-965-03,
University of Colorado, 2003.

[13] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Auto-
matically characterizing large scale program behavior. In Pro-
ceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems,
Oct. 2002.

[14] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream
buffers. In 33rd International Symposium on Microarchitecture,
Dec. 2000.

[15] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache
timing, power, and area model. In Technical Report, 2001.

[16] J. E. Smith. Instruction-level distributed processing. IEEE Com-
puter, 34(4):59–65, Apr. 2001.

[17] K. Wang and M. Franklin. Highly accurate data value prediction
using hybrid predictors. In 30th Annual International Sympo-
sium on Microarchitecture, pages 281–290, Dec. 1997.

[18] T. Yeh and Y. Patt. A comprehensive instruction fetch mecha-
nism for a processor supporting speculative execution. In Pro-
ceedings of the 25th Annual International Symposium on Mi-
croarchitecture, pages 129–139, Dec. 1992.

[19] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotleakage: A temperature-aware model of subthresh-
old and gate leakage for architects. In University of Virginia
Dept of Computer Science Tech Report CS-2003-05, Mar. 2003.

