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FPGAs combine the programmability of processors
with the performance of custom hardware. As they
become more common in critical embedded systems,
new techniques are necessary to manage security in
FPGA designs. This article discusses FPGA security
problems and current research on reconfigurable de-
vices and security, and presents security primitives
and a component architecture for building highly se-
cure systems on FPGAs.

Because FPGAs can provide a useful balance
between performance, rapid time to market, and flex-
ibility, they have become the primary source of com-
putation in many critical embedded systems.1,2 The
aerospace industry, for example, relies on FPGAs to
control everything from the Joint Strike Fighter to
the Mars Rover. Face recognition systems, wireless
networks, intrusion detection systems, and supercom-
puters, all of which are employed in large security ap-
plications, also use FPGAs. In fact, in 2005 alone, an
estimated 80,000 different commercial FPGA design
projects began.3

Because major IC manufacturers outsource most of
their operations,4 IP theft from a foundry is a serious
concern. FPGAs provide a viable solution to this
problem because the sensitive IP is not loaded onto
the device until after it has been manufactured and
delivered, making it harder for adversaries to target
a specific application or user. Furthermore, modern
FPGAs use bitstream encryption and other methods
to protect IP once it is loaded onto the FPGA or

external memory.

However, techniques beyond bitstream encryption
are necessary to ensure FPGA design security. To
save time and money, FPGA systems are typically
cobbled together from a collection of existing com-
putational cores, often obtained from third parties.
These cores can be subverted during the design phase,
by tampering with the tools used to translate the de-
sign to the cores or by tampering with the cores them-
selves. Building every core and tool from scratch is
not economically feasible in most cases, and subver-
sion can affect both third-party cores and cores devel-
oped in-house. Therefore, embedded designers need
methods for securely composing systems comprising
both trusted and untrusted components.

Reconfigurable systems

Several examples of FPGA applications can help il-
lustrate the utility of FPGAs, along with the need for
increased security. We choose encryption, avionics,
and computer vision examples because these appli-
cations demand high throughput and strong security.
We also provide background on FPGA architecture
and design flows to review the nuts and bolts of this
useful technology.
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Motivating examples

FPGAs are a natural platform for the implemen-
tation of cryptographic algorithms, given the large
number of bit-level operations required in modern
block ciphers. Because transformations also require
shifting or permuting bits, these operations can be
wired into the FPGA, thus incurring extremely low
overhead, and with parallelism where appropriate.
FPGA-based implementations of MD5, SHA-2, and
various other cryptographic functions have exploited
this sort of bit-level operation. Even public-key
cryptographic systems have been built atop FPGAs.
Similarly, there are various FPGA-based intrusion-
detection systems (IDS).

All this work centers around exploiting FPGAs
to speed cryptographic or intrusion-detection prim-
itives, but it is not concerned with protecting the
FPGAs themselves. Researchers are just now start-
ing to realize the security ramifications of building
such systems around FPGAs.

Cryptographic systems such as encryption devices
require strong isolation to segregate plaintext (red)
from ciphertext (black). Typically, red and black
networks (as well as related storage and I/O media)
are attached to the device responsible for encrypting
and decrypting data and enforcing the security pol-
icy; this policy ensures that unencrypted information
is unavailable to the black network.

In more concrete terms, Figure 1 shows an embed-
ded system with its components divided into two do-
mains, which we have illustrated with different shad-
ing. One domain consists of MicroBlaze0 (a proces-
sor), an RS-232 interface, and a distinct memory par-
tition. The other domain consists of MicroBlaze1, an
Ethernet interface, and another distinct partition of
memory. Both domains share an AES (Advanced En-
cryption Standard) encryption core, and all the com-
ponents are connected over the on-chip peripheral
bus (OPB), which contains policy enforcement logic
to prevent unintended information flows between do-
mains. An authentication function to interpret data
from a biometric iris scanner (which might be at-
tached to the RS-232 port) could be added to such
a layout. However, if the authentication required a
high degree of trustworthiness, the implementation
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Figure 1: A system consisting of two processors, a
shared AES (Advanced Encryption Standard) en-
cryption core, an Ethernet interface, and RS-232
interface, and a shared external DRAM (dynamic
RAM), all connected over a shared bus. (DDR: dou-
ble data rate; SDRAM: synchronous DRAM.) (Re-
vised from T. Huffmire et al., “Designing Secure Sys-
tems on Reconfigurable Hardware,” ACM Trans. De-
sign Automation of Electronic Systems (TODAES),
vol. 13, no. 3, July 2008, article 44. c©2008 ACM
with permission.5)

of the function would need to reside in a (new or
existing) trusted core.

In the aviation field, both military and commer-
cial sectors rely on commercial off-the-shelf (COTS)
FPGA components to save time and money. In mili-
tary aircraft, sensitive targeting data is processed on
the same device as less-sensitive maintenance data.
Also, certain processing components are dedicated
to different levels of data in some military hardware
systems. Because airplane designs must minimize
weight, it is impractical to have a separate device
for every function or level. Allocation of functions
to provide separation of logical modules is a common
practice in avionics to resolve this problem and to
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provide fault tolerance–for example, if a bullet de-
stroys one component.

Lastly, intelligent video surveillance systems can
identify potentially suspicious human behavior and
bring it to the attention of a human operator, who
can make a judgment about how to respond. Such
systems rely on a network of video cameras and em-
bedded processors that can encrypt or analyze video
in real time using computer vision technology, such as
human behavior analysis and face recognition. FP-
GAs are a natural choice for any streaming appli-
cation because they can provide deep computation
pipelines, with no shortage of parallelism. Imple-
menting such a system would require at least three
cores on the FPGA: a video interface for decoding
the video stream, an encryption or computer vision
mechanism for processing the video, and a network
interface for sending data to a security guard’s sta-
tion. Each of these modules must be isolated to pre-
vent sensitive information from being shared between
modules improperly–for example, directly between
the video interface and the network.

FPGA architecture

FPGAs use programmability and an array of uniform
logic blocks to create a flexible computing fabric that
can lower design costs, reduce system complexity, and
decrease time to market, using parallelism and hard-
ware acceleration to achieve performance gains. The
growing popularity of FPGAs has forced practition-
ers to begin integrating security as a first-order design
consideration, but the resource-constrained nature of
embedded systems makes it challenging to provide a
high level of security.

An FPGA is a collection of programmable gates
embedded in a flexible interconnect network that can
contain several hard or soft microprocessors. FPGAs
use truth tables or lookup tables (LUTs) to imple-
ment logic gates, flip-flops for timing and registers,
switchable interconnects to route logic signals be-
tween different units, and I/O blocks for transfer-
ring data into and out of the device. A circuit can
be mapped to an FPGA by loading the LUTs and
switch boxes with a configuration, a method that is
analogous to the way a traditional circuit might be

mapped to a set of AND and OR gates.
An FPGA is programmed using a bitstream. This

binary data, loaded into the FPGA through specific
I/O ports on the device, defines how the internal re-
sources are used for performing logic operations. (For
a detailed discussion of the architecture of a modern
FPGA, see the survey by Compton and Hauck.1)

Design flow

Figure 2 shows some of the many different design
flows used to compose a single modern embedded sys-
tem. The FPGA implementation relies on several so-
phisticated software tools created by many different
people and organizations. Special-purpose processing
cores, such as an AES core, can be distributed in the
form of the hardware description language (HDL),
netlists (which are a list of logical gates and their in-
terconnections), or a bitstream. These cores can be
designed by hand, or they can be automatically gen-
erated by design tools. For example, the Xilinx Em-
bedded Development Kit (EDK) generates a soft mi-
croprocessor on which C code can be executed. There
are even tools that convert C code to HDL, including
Mentor Graphics Catapult C and Celoxica.

An example of an especially complex design flow is
AccelDSP, which first translates Matlab algorithms
into HDL; logic synthesis then translates this HDL
into a netlist. Next, a synthesis tool uses a place-
and-route algorithm to convert this netlist into a bit-
stream, with the final result being an implementation
of a specialized signal-processing core. Security vul-
nerabilities can be introduced into the life cycle inad-
vertently because designers sometimes leave “hooks”
(features included to simplify later changes or addi-
tions) in the finished design. In addition, the life cycle
can be subverted when engineers inject unintended
functionality, some of which might be malicious, into
both tools and cores.

Reconfigurable security prob-
lems

Design-tool subversion, composition, trusted
foundries, and bitstream protection are problems
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Figure 2: A modern FPGA-based embedded system in which distinct cores with different pedigrees and vari-
ous trust requirements occupy the same silicon. Reconfigurable logic, hardwired soft-processor cores, SRAM
(static RAM) blocks, and other soft IP cores all share the FPGA and the same off-chip memory. (BRAM:
block RAM; DSP: digital-signal processing; HDL: hardware description language; µP: microprocessor.)

often associated with reconfigurable hardware.

Design-tool subversion

The subversion of design tools could easily result in
malicious design being loaded onto a device. For ex-
ample, a malicious design could physically destroy
the FPGA by causing the device to short circuit.
In fact, major design-tool developers have few or
no checks in place to ensure that attacks on spe-
cific functionality are not included. However, we are
not proposing a method that makes possible the use
of subverted design tools to create a trusted core.
Rather, our methods make it possible to safely com-
bine trusted cores, developed with trusted tools (per-
haps using in-house tools that might not be fully op-
timized) with untrusted cores. FPGA manufacturers
such as Xilinx provide signed cores that embedded
designers can trust. Freely available cores obtained

from sources such as OpenCores might have vulnera-
bilities introduced after distribution from the original
source. However, a digital signature does not prevent
a vulnerability either.

The composition problem

Given that different design tools produce a set of in-
teroperating cores, and in the absence of an overar-
ching security architecture, you can only trust your
final system as much as you trust your least-trusted
design path.6 If there is security-critical functionality
(such as a unit that protects and operates on secret
keys), there is no way to verify that other cores can-
not snoop on it or tamper with it.

One major problem is that it’s now possible to copy
hardware, not just software, from existing products,
and industry has invested heavily in mechanisms to
protect IP. Few researchers have begun to consider
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the security ramifications of compromised hardware.
Industry needs a holistic approach to manage secu-

rity in FPGA-based embedded-systems design. Sys-
tems can be composed at the device, board, and net-
work levels. At the device level, one or more IP cores
reside on a single chip. At the board level, one or
more chips reside on a board. At the network level,
multiple boards are connected over a network. These
multiple scales of design present different potential
avenues for attack. Attacks at the device level can in-
volve malicious software as well as sophisticated sand-
and-scan techniques. Attacks at the board level can
involve passive snooping on the wires that connect
chips and the networks that connect boards as well
as active modification of data traffic. There are secu-
rity advantages to using a separate chip for each core,
because doing so eliminates the threat of cores on the
same device interfering with one another. This ad-
vantage must be weighed against the increased power
and area cost of having more chips and the increased
risk of snooping on the communication lines between
chips.

Composing secure system using COTS components
also presents difficulties:

• Did the manufacturer insert unintended func-
tionality into the FPGA fabric? Was the device
tampered with en route from the factory to the
consumer?

• Does one of the cores in the design have a flaw
(intentional or otherwise) that an attacker could
exploit? Have the design tools been tampered
with?

• Does a security flaw exist in the software running
on general-purpose CPU cores or in the compiler
used to build the software?

• If an embedded device depends on other parts
of a larger network (wired or wireless) of other
devices (a system of systems), are those parts
malicious?

We propose a holistic approach to secure system
composition on an FPGA that employs many differ-
ent techniques, both static and runtime, including
life-cycle management, reconfigurable mechanisms,

spatial isolation, and a coherent security architecture.
A successful security architecture must help design-
ers manage system complexity without requiring all
system developers to have complete knowledge of the
inner workings of all hardware and software compo-
nents, which are far too complex for complete anal-
ysis. An architecture that enables the use of both
evaluated and unevaluated components would let us
build systems without having to reassess all the ele-
ments for every new composition.

The trusted-foundry problem

FPGAs provide an important security benefit over
ASICs. When an ASIC is manufactured, the sensi-
tive design is transformed from a software descrip-
tion to a hardware realization, so the description is
exposed to the risk of IP theft. For sensitive mil-
itary content, this could create a national security
threat. Trimberger explains how FPGAs address the
problem for the fabrication phase, but the security
problem of preventing the design from being stolen
from the FPGA itself remains and is similar to that
of an ASIC.7

Bitstream protection

Most prior work relating to FPGA security focuses on
preventing IP theft an securely uploading bitstreams
in the field. Because such theft directly impacts the
“bottom line,” industry has already developed sev-
eral techniques to combat FPGA IP theft, such as
encryption, fingerprinting, and watermarking. How-
ever, establishing a root of trust on a fielded device
is challenging because it requires incorporating a de-
cryption key into the finished product. Some FP-
GAs can be remotely updated in the field, and in-
dustry has devised secure hardware update channels
that use authentication mechanisms to prevent a sub-
verted bitstream from being uploaded. These tech-
niques were developed to prevent an attacker from
uploading a malicious design that causes unintended
functionality. (Trimberger provided a more extensive
overview of bitstream protection schemes.7)
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Reconfigurable security solu-
tions

Solutions to reconfigurable security problems fall into
two categories: life-cycle management and a secure
architecture.

Life-cycle management

Clearly, industry needs an approach to ensure the
trustworthiness of all the tools involved in the com-
plex FPGA design flow. Industry already deals with
this life-cycle management problem with software
configuration management, which covers operating
systems, security kernels, applications, and compil-
ers. Configuration management stores software in a
repository and assigns it a version number. The rep-
utation of a tool’s specific version is based on how
extensively is has been evaluated and tested, the ex-
tent of its adoption by practitioners, and whether it
has a history of generating output with a security
flaw. The rationale behind taking a snapshot in time
of a particular version of a tool is that later versions
of the tool might be flawed. For example, because
automatic updates can introduce system flaws, it is
often more secure to delay upgrades until the new
version has been thoroughly tested.

A similar strategy is needed for life-cycle protection
of hardware to provide accountability in the develop-
ment process, including control of the development
environment and tools, as well as trusted delivery
of the chips from the factory. Both cores and tools
should be placed under a configuration management
system. Ideally, it should be possible to verify that
the output of each stage of the design flow faithfully
implements the input to that stage through the use
of formal methods such as model checking. However,
such static analysis suffers from the problem of false
positives, and a complete security analysis of a com-
plex tool chain is not possible with current technol-
ogy, owing to the exponential explosion in the number
of states that must be checked.

An alternative is to build a custom set of trusted
tools for security-critical hardware. This tool chain
would implement a subset of the commercial tool

chain’s optimization functions, and the resulting de-
signs would likely sacrifice some measure of perfor-
mance for additional security. Existing research on
trusted compilers could be exploited to minimize
the development effort. A critical function of life-
cycle protection is to ensure that the output (and
transitively the input) does not contain malicious
artifacts.8 Testing can also help ensure fidelity to re-
quirements and common failure modes. For example,
it should consider the location of the system’s entry
points, its dependencies, and its behavior during fail-
ure.

Life-cycle management also includes delivery and
maintenance. Trusted delivery ensures that the
FPGA has not been tampered with from manufac-
turing to customer delivery. For an FPGA, mainte-
nance includes updates to the configuration, which
can occur remotely on some FPGAs. For example,
a vendor might release an improved version of the
bitstream that fixes bugs in the earlier version.

Secure architecture

Programmability of FPGAs is a major advantage for
providing on-chip security, but this malleability in-
troduces unique vulnerabilities. Industry is reluctant
to add security features to ASICs, because the edit-
compile-run cycle cost can be prohibitive. FPGAs,
on the other hand, provide the opportunity to incor-
porate self-protective security mechanisms at a far
lower cost.

Memory protection. One example of a runtime
security mechanism we can build into reconfigurable
hardware is memory protection. On most embedded
devices, memory is flat and unprotected. A reference
monitor, a well-understood concept from computer
security, can enforce a policy that specifies the legal
sharing of memory (and other computing resources)
among cores on a chip.9 A reference monitor is an ac-
cess control mechanism that possesses three proper-
ties: it is self protecting, its enforcement mechanisms
cannot be bypassed, and it can be subjected to anal-
ysis that ensures its correctness and completeness.10

Reference monitors are useful in composing systems
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Figure 3: Sample layout for a design with four cores
and a moat size of two. There are several different
drawbridge configurations between the cores. (IOB:
I/O block; CLB: configuration logic block.)

because they are small and do not require any knowl-
edge of a core’s inner workings.

Spatial isolation. Although synthesis tools can
generate designs in which the cores are intertwined,
increasing the possibility of interference, FPGAs pro-
vide a powerful means of isolation. Because applica-
tions are mapped spatially to the device, we can iso-
late computation resources such as cores in space by
controlling the layout function,11 as Figure 3 shows.
A side benefit of the use of physical isolation of com-
ponents is that it more cleanly modularizes the sys-
tem. Checks for the design’s correctness are easier
because all parts of the chip that are not relevant to
the component under test can be masked.

McLean and Moore provide similar concurrent
work.12 Although they do not provide extensive de-
tails, they appear to be using a similar technique to
isolate regions of the chip by placing a buffer between

them, which they call a fence.

Tags. As opposed to explicitly monitoring at-
tempts to access memory, the ability to track infor-
mation and its transformation as it flows through a
system is a useful primitive for composing secure sys-
tems. A tag is metadata that can be attached to in-
dividual pieces of system data. Tags can be used as
security labels, and, thanks to their flexibility, they
can tag data in an FPGA at different granularities.

For example, a tag can be associated with an in-
dividual bit, byte, word, or larger data chunk. Once
this data is tagged, static analysis can be used to
test that tags are tightly bound to data and are im-
mutable within a given program. Although tech-
niques currently exist to enhance general-purpose
processor with tags such that only the most privileged
software level can add or change a tag, automatic
methods of adding tags to other types of cores are
needed for tags to be useful as a runtime protection
mechanism. Early experiments in tagged architec-
tures should be carefully assessed to avoid previous
pitfalls.13

Secure communication. To get work done, cores
must communicate with one another and therefore
cannot be completely isolated. Current cores can
communicate via either shared memory, direct con-
nections, or a shared bus. (RF communication might
be possible in the future). For communication via
shared memory, the reference monitor can enforce the
security policy as a function of its ability to control
access to memory in general. For communication via
direct connections, static analysis can verify that only
specified direct connections are permitted, as we dis-
cussed earlier. Such interconnect-tracing techniques
can be applied at both the device and board levels.

Communication via a shared bus must address sev-
eral threats. If traffic sent over the bus is encrypted,
snooping is not a problem. To address covert chan-
nels resulting from bus contention, every core can be
given a fixed slice of time to use the bus. Although
various optimizations have been proposed, this type
of multiplexing is clearly inefficient, because a core’s
needs can change over time.
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Future work

Embedded devices perform a critical role in both the
commercial and military sectors. Increasingly more
functionality is being packed onto a single device to
realize the cost savings of increased integration, yet
researchers have yet to address on-chip security. FP-
GAs can have multiple cores on the same device op-
erating at different trust levels. Because FPGAs are
at the heart of many embedded devices, new efficient
security primitives are needed. We see opportunities
for future work in multicore systems, further inte-
gration of our security primitives, reconfigurable up-
dates, and both covert and side channels.

Multicore systems

As computing changes from a general-purpose
uniprocessor model with disk and virtual memory
to a model in which embedded devices such as cell
phones perform more computing tasks, a new ap-
proach to system development is needed. Most fu-
ture systems will likely be chip multiprocessor sys-
tems running multiple threads, SoCs with multiple
special-purpose cores on a single ASIC, or a compro-
mise between those two extremes on an FPGA. When
the number of cores becomes large, communication
between the cores over a single shared bus is impracti-
cal, and the use of direct connections (such as grid or
mesh communication) becomes necessary. New tech-
niques are necessary to mediate secure, efficient com-
munication of multiple cores on a single chip. System
design under this new model will require changes to
the way in which implementations are developed to
ensure performance, correctness, and security.

Further integration of security primi-
tives

Our recent work has shown that by physically locat-
ing computations in different chip regions, and by
validating the hardware boundaries between these re-
gions, an efficient new mechanism for ensuring isola-
tion is possible.11 However, if a computing resource,
such as an encryption unit, must be shared among
security domains, then a temporal scheme (possibly

based on data tagging) might be required. We are
pursuing development of formal and practical meth-
ods that cooperatively apply spatial schemes, tem-
poral schemes, and tagging to a design in a way that
meets security requirements and minimizes overhead.

Reconfigurable updates

Many modern FPGAs can dynamically change part
of their configuration at runtime. Partial reconfigu-
ration makes it possible to update the circuitry in a
fielded device to patch errors in the design, provide a
more efficient version, change algorithm parameters,
or add new data sets (such as Snort IDS rules). The
avionics industry, for example, would like the abil-
ity to update systems in flight as a fault tolerance
measure. Also, some supercomputers have partially
reconfigurable coprocessors.

A dynamic system is more complicated and diffi-
cult to build than a static one, and this is true of the
security of such a system as well. In many cases, se-
cure state must be preserved across updates. A hot-
swappable system is especially challenging because
state must be transferred from the executing core to
the updated core. In addition, data from the execut-
ing core must be mapped to the updated core, which
might need to store the same data in a completely
different location as the previous version.

In fact, the practical difficulties of implementing
systems that employ partial reconfiguration has pre-
vented its widespread use. The costs of dealing with
these complexities are rarely worth the savings in on-
chip area, which doubles every year anyway. How-
ever, practitioners should understand the security im-
plications of partial reconfiguration as it applies to
dynamic updates. For example, and updated core
might have different security properties than the pre-
vious core. We are investigating the requirements for
partial reconfiguration within our security architec-
ture.

Channels and information leakage

Even if cores are spatially isolated, they might still be
able to communicate through a covert channel. In a
covert-channel attack, a high core leaks classified data
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to a low core that is not authorized to access classified
data directly. The high source is also constrained by
rules that prevent it from writing directly to the low
destination. A covert channel is typically exploited
by encoding data into a shared resource’s observable
state, such as disk usage, error conditions, or pro-
cessor activity. Classical covert-channel analysis in-
volves enumerating all shared resource and metadata
on chip, identifying the share points, determining if
the shared resource is exploitable, determining the
bandwidth of the covert channel, and determining
whether remedial action can be taken.

A side channel is slightly different from a covert
channel in that the recipient is an entity outside the
system that observes benign processing and can in-
fer secrets from those observations. An example of
a side-channel attack is the power-analysis attack, in
which the power consumption of a crypto core is ex-
ternally observed to extract the cryptographic keys.
Finally, there are overt illegal channels (such as di-
rect channels or trap doors). An example of a direct
channel is a system that lacks memory protection.
A core can transmit data to another core simply by
copying it into a memory buffer.

Clearly, new techniques are necessary to address
the problem of covert, side, and direct channels in
embedded systems. In theory, a design could be stat-
ically analyzed to detect the presence of possible un-
intended information flows, although the scalability
of this approach runs into computability limits. We
are continuing to investigate solutions to this prob-
lem.

We have described a security architecture and
a set of static and runtime primitives that work to-
gether to separate cores so that they do not interfere
with one another, but this is only part of the pic-
ture. A successful approach must combine life-cycle
management and a coherent security architecture for
policy enforcement. The security architecture we de-
scribe here uses a set of primitives that complement
one another, including a reference monitor for mem-
ory protection and a separation strategy that uses
spatial isolation and interconnect tracing.

Designing any trustworthy complex system is chal-
lenging, and given the relative immaturity of current
FPGA design approaches in which multiple compu-

tational cores from different sources are combined us-
ing commercial tools, the current state of embedded-
systems security leaves much to be desired. Indus-
try and its customers can no longer take hardware
security for granted. Clearly, embedded-design prac-
titioners must become acquainted with these prob-
lems and with related new developments from the
computer security research field, such as the secu-
rity primitives we’ve described here. Practitioners
must also adapt the rich body of life-cycle manage-
ment tools and techniques that have been created for
trustworthy software development and apply them to
hardware design. A path toward ensuring the secu-
rity of the tools and the resulting product is neces-
sary to provide accountability throughout the devel-
opment process. The holistic approach to system de-
sign we’ve described here is a significant step in that
direction.
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