Energy Efficient Computation with Asynchronous Races

Advait Madhavan
Electrical and Computer

Timothy Sherwood
Computer Science

Dmitri Strukov
Electrical and Computer

Engineering Dept Department Engineering Dept
University of California, Santa University of California, Santa University of California, Santa
Barbara Barbara Barbara

advait@ece.ucsb.edu

ABSTRACT

By encoding information as digital signal propagation de-
lay, rather than conventional logic levels, some basic pro-
cessing operations become exceedingly energy efficient to
implement. The result of such a computation can then be
observed by relative timing differences between injected sig-
nals. We demonstrate the embodiment of such an approach
utilizing current starved inverters as delay elements and
characterize application-level artifacts of circuit-level vari-
ance. Specifically we chose the well-studied DNA sequence
alignment problem for comparison and we show that, for the
synthesized design, asynchronous races are 10X more energy
efficient and 4x denser at comparable speeds as compared
to prior approaches.

1. INTRODUCTION

With the end of Dennard scaling, system designers are
faced with a very interesting problem. While the pace of
Moore’s law is still causing miniaturization of transistors,
continually allowing us to pack more transistors on a chip,
our ability to power them all at once is being curtailed. This
problem, known as the dark silicon problem, is pushing gen-
eral purpose computing in the form of multicore processors
out of the way to make way for application specific acceler-
ators to keep up with the tremendous rate of performance
scaling that we are used to [5]. This approach of relaxing
the constraints of general purposeness looks promising as it
opens up a whole new spectrum of computation that has
the potential to provide orders of magnitude of performance
and energy advantages.

Approaches to specialization involve non-traditional digital
encodings such as logarithmic encoding to speedup multipli-
cation and division [12], or reducing complex computations
into simple repeatable steps that can be performed itera-
tively such as the CORDIC algorithm [13]. Some technolo-
gies go as far as to forgo logical completeness for the sake
of energy efficiency by utilizing the dynamics of the mate-
rial system involved to perform complex computations [2].
Most of these approaches toy with information representa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

DAC 16, June 05-09, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. .. $15.00
DOL http://dx.doi.org/10.1145/2897937.2898019

sherwood@cs.ucsb.edu

strukov@ece.ucsb.edu

tion and manipulation to make the set of operations that
are performed simple in the platform they are implemented
in, often leading to wins in both performance and energy
efficiency.

Our information representation is a timing delay, a choice
which simplifies a set of small, but powerful, processing op-
erations — operations that, for example, can be used to solve
dynamic programming algorithms. We develop low-energy,
asynchronous delay elements to implement these timing de-
lays, and design a completely asynchronous architecture by
deliberately engineering asynchronous race conditions. Com-
putations are then be performed by observing the relative
propagation times of signals injected into a configurable asyn-
chronous circuit, i.e. the outcome of races through the cir-
cuit.

Our specific contributions are:

e We design, for the first time, a full custom, synthe-
sized, asynchronous Race Logic array in 0.18 pum tech-
nology that can report similarity between 50-symbol-
long sequences and simulate its performance against
the well-studied DNA sequence alignment problem.

o We quantify the effect of process variations both from
a device and system level standpoint and show that at
least for the considered application process variations
have minimal impact on the performance and function-
ality of the asynchronous Race Logic.

e We show that the asynchronous Race Logic architec-
ture is up to 10x more energy efficient, and 4x denser
compared to previously reported synchronous and state
of the art systolic implementations, while also being
faster.

2. BACKGROUND
2.1 Main Idea of Race Logic

Race Logic encodes information in a timing delay [6]. To
understand how this might ever be useful, to begin let us
consider the problem of finding the longest path through a
directed acyclic graph (DAG) as shown in Fig. 1.

Each of the edges in the DAG is labeled with a weight, and
the longest path is of course simply the path from an input
to output walking through the largest sum of edge weights.
So how can a race condition compute this? The answer
is to make each weight a delay and make each node wait
around for the last of it’s inputs to arrive before informing
the nodes downstream. The simplest possible implementa-
tion achieving such operation is one where we enforce a set
of unit delays on the edges using flip-flops [6], and perform

(b)

(c)

_ delay
element

Figure 1: Example conversions of a DAG operation into a
race-based computation. (a) An example of a DAG with
weighted edges, (b) AND-type race computation calculating
the longest path, (c) OR-type computation calculating the
shortest path. The rectangular blocks represent delay ele-
ments that can be implemented in either a synchronous or
asynchronous way.

the “wait for last” operation with a single AND gate. The
system starts in a state of all 0, and a “race” is begun by
setting the inputs to 1 at the same time. The AND gate
will of course not propagate a 1 downstream until all in-
puts have arrived and are set to 1. The “score” of the node
is now equivalent to a time it takes for the signal (which
is typically injected at the root node) to propagate down
the graph to that node in question and the score of the
last node is simply the longest path. An equivalent shortest
path computation can be performed by replacing the AND
gates with OR gates that perform the “pass the first” oper-
ation. Hence MIN-MAX computations are performed using
OR/AND gates and ADD-BY-CONSTANT is performed by
delay chaining.

The computation considered in Fig. 1 is certainly too sim-
ple to justify the use of Race Logic though it points to
the potential computational power of such a simple sys-
tem. Such DAGs (albeit more complex than the ones in
Fig. la) are well known as visualizations/representations
of Dynamic Programming algorithms, and finding short-
est/longest paths are fundamental to a variety of applica-
tions including beat tracking in music information retrieval
systems, dynamic time warping for measuring similarity be-
tween time series and seam carving. Measuring similarity
between DNA strands is one particularly well studied ap-
plication with industry demands such a low energy, high
throughput and cost effectiveness. While the prior work
outperformed state of the art systolic implementations, a
severe limitation was that the design utilized registers as
delay elements and energy efficiency was limited by their
high activity factor. This problem was worsened by appli-
cation limitations of dynamic range which made area and
energy scaling even costlier. A more practical Race Logic

String ® —>
a b
() A CTGAGA ()

G Alc|T|G|_
?:A— Al1la]alal3
e T Cl4]1]4]4|3
5T T|4(4]1]|4(3
l ¢ Gl4|ala]1]3

G _|3[3]3]3]-

Ag_ }unit

cell

Figure 2: (a) Example of DNA sequence alignment DAG (edit
graph) for two particular strings P = "ACTGAGA” and Q
= "GATTCGA?” and (b) typical score matrix used in DNA
sequence alignment, transformed for race formulation.

architecture is presented section 3. Because such architec-
ture is application specific, we will first briefly discuss an
application itself.

2.2 DNA Sequencing

Today’s next generation sequencing methods churn out about
a billion bases in a single run (each of length 25-100 bases)
and millions of these sub-strings are required to be compared
against each other. As the technologies for DNA sequencing
continue to improve, the challenge is now in the processing
of the vast amount of information. A typical bottleneck op-
eration, whether it is in reference-assisted or de-novo DNA
sequencing [4], is solving approximate string matching prob-
lem. In a simplest case, it is a problem of finding a similarity
metric, also known as edit distance, between a query string
P and a reference string Q when both are of length N. To
compute the edit distance, a two-dimensional DAG, an edit
graph, is constructed, which is essentially a two-dimensional
representation of all the possible alignments between the two
input sequences as shown in Fig. 2a. Any specific alignment
is just a path in this graph where every edge corresponds
to an edit operation. In particular, the vertical arrows rep-
resent insertions, horizontal arrows represent deletions and
diagonal arrows represent matches.

To determine the relative merit of one particular align-
ment over another, e.g. to choose the alignment with the
maximum number of matches, the concept of a score matrix
(Fig. 2b) is introduced, which effectively defines the weight
for each edge in the edit graph. Determining the “goodness”
of the alignment is therefore finding either the shortest path
in the graph in which a match is assigned a lowest score
in the score matrix, or, conversely, the longest path where
matches are rewarded with high scores in the score matrix.

3. ASYNCHRONOUS RACE LOGIC

In the race formulation of the edit graph, as explained
above, a rising signal navigates the mesh of timing delays
and the computation performed is directly affected as a re-
sult of the differences in the timing of different paths. The
signal propagation time affects the final result, while the ef-
fect of those timing differences is unknown ahead of time.
While such behaviour might be similar to classical software
race condition, note that in Race Logic “race conditions” are
purposely introduced and are not non-deterministic in the
circuit sense. The way the signal races are resolved tell us

(a) (c)

Bl <[, Ad
%L, AL o
A B

(b)

Gate

Figure 3: Asynchronous Race Logic implementation of DNA
sequencing alignment problem: (a) Unit cell implementa-
tion,(b) layout of the unit cell shown in panel (a), (b) OR
gate design ensuring equal delay propagation(note: all tran-
sistors are minimum size), and (c) simplified non-inverting
delay element (real element also has cascode bias). In panel
(a) M;; is the output of the control circuit that determines
the match/mismatch condition and chooses the required de-
lay path based on the score matrix values.

about the degree of similarity between two sequences.

3.1 Top-Level Architecture

Similar to the work in [6], in our attempt to design asyn-
chronous Race Logic circuit for DNA sequence alignment
problem we make the most of its repetitive nature and par-
tition its implementation into unit cells. The unit cell for
an OR-type Race Logic is shown in Fig. 3a. There are three
inputs - top, left and diagonal, which receive a rising edge
from the preceding and adjacent cells, and the first arriv-
ing input is detected by an OR gate. The symmetric gate
design shown in Fig. 3b was used to aim for equal delay on
all “input to output” paths. The first arriving signal then
passes through three delay elements, the top and bottom
being always a constant delay for the considered applica-
tion (representative of a insertion/deletion) and the diago-
nal one, selected through the multiplexer, being dependent
on the match mismatch criterion.

The values of delay elements are set according to the par-
ticular score matrix. Though having fixed delays might be
acceptable in some cases [6], in this paper we consider a
more general case when the delay value can be programmed,
thus allowing asynchronous Race Logic to solving a broader
variety of alignment problems. Since Race Logic encodes
information in timing delay, the choice of delay element is
critical to the performance of the architecture. Though syn-
chronous delay elements such as D flip-flops can be clocked
at very high speeds and are less sensitive to process varia-
tions, they are area and energy intensive [6]. We next de-
scribe the implementation of programmable delay elements
and other design decisions for ensuring accurate timing in
the asynchronous Race Logic architecture.

3.2 Delay Element

One of the goals of this work is to design Race Logic in
which timing of delay elements is not determined by a clock
but by its own intrinsic delay. Ideally, such a delay element

should be controllable to account for an order of magnitude
of dynamic range, required for more general purpose graph
traversal applications, as well as be tolerant to supply, pro-
cess and mismatch variations.

Different schools of programmable delay elements such as
[14, 3, 7, 8, 11] were investigated. Capacitive control options
like the ones discussed in [14, 3] do not seem promising
due to square law scaling with respect to dynamic range
of the delay, which leads to prohibitively large area costs.
Problems of charge sharing in complex pull-down networks
as shown in [11] are addressed in [8] but suffers from a lot
of charge injection noise. We found that a cascode current
source, controlled by a variable resistor is best suited for our
application [10].

To elaborate more on the choice of delay element let us
consider Fig. 4. The standard way of constructing a delay
element is by charging a capacitor with a controllable current
and using a thresholding element to detect a voltage cross-
ing. This is generally implemented using an inverter and
controlling the current that is charging its output capaci-
tance and is known as a current starved inverter. Transis-
tors My and Mp behave like digital switches while the tran-
sistor Mg is the current control transistor that discharges
the output capacitance at a fixed rate, hence giving the re-
quired constant delay. The design decision at this point is
the placement of the current control transistor. In Fig. 4a
the current control transistor is placed in the discharge path
with its drain connected to the source of the NMOS switch,
while in Fig. 4b the current control transistor splits the out-
put node of the inverter.

Though the two topologies seem similar, transient simu-
lations reveal that charge sharing due to switching of M,
causes considerable differences in both timing and variabil-
ity. In the former case, the rising edge switches transistor
My into the linear region which causes charge sharing be-
tween Coue and Cint causing the output voltage to drop in-
stantaneously (not controllably) to Vbp X Cout/(Cint + Cout)-
This voltage is then discharged by the current control tran-
sistor Mcs. In the latter case, the rising edge causes Cint, to
be discharged through Mn quickly, while the output voltage
stays at Vpp. This is then followed by a controlled discharge
of the output node through Mcs.

Not only does the latter method produce longer and more
controllable timing delays for the same bias, but is less sus-
ceptible to mismatch variations as well. This is due to the
fact that output voltage starts discharging from Vpp in the
latter case vs Vbp X Cout/(Cint + Cous) in the former. The
capacitances Cint and Coyt are subject to mismatch varia-
tions and hence add uncertainty to the delay of the element.

It is worth noting that Fig. 4 shows only a single bias node
for ease of explanation. In reality, the current control is per-
formed by both bias and cascode nodes with optimal biasing
to ensure minimal current variation with Vo, during the dis-
charge phase. The digitally switching transistors, My and
Mp are minimum sized, while the bias and cascode current
control transistors are sized to match the current mirrors in
the current source.

3.3 Current Source

The precision of the delay element, barring its own process
and mismatch variation, depends upon the precision of the
current that is discharging the output capacitance. Hence
the current source has a very important role to play. It

(a)

Vin

Figure 4: Current starved inverter topologies for variable
delay generation with (a) control transistor at the bottom
of the inverter stack and (b) control transistor splitting the
output of the inverter.

should be tolerant of process variations and should provide
a constant current independent of any power supply varia-
tions that may occur due to injection from digital switching
activity. Moreover, the current source should be a variable
one, preferably controlled by an external source, such that
variety of timing delays can be implemented. For the specific
case of comparison against work in [6], the dynamic range
of the delay does not need to be very large, but for imple-
mentation with real data (e.g. DNA nucleotide sequences
from NCBI [1]) the dynamic range needs to vary by about
an order of magnitude, hence requiring the current source
to produce low variability currents over such ranges.

In this regard an op-amp based current source was designed
that pins a fixed voltage across an off-chip variable resistor,
hence utilizing the resistor to act as the current control ele-
ment. This makes the design largely independent of process
and supply variations. The bias voltage thus generated is
then redistributed across all the required delay elements.
Depending upon the number of independent delays needed
(which is three for the considered case), replicas of the cur-
rent source are made with different resistances, each of them
variable, to tune to the required current. Another important
aspect of the current source design was to size the bias node
transistors relatively large, such that they would behave as
low impedance nodes and be more tolerant to charge injec-
tion from switching activity from nearby digital nodes.

The issue of charge injection into the bias nodes is a serious
one and can cause large systematic errors in the delay of the
circuit if not resolved. The Vis node of the delay elements
(Fig. 3c) are shared by the entire array and are hence sub-
ject to charge injection from the switching activity in the
bottom NMOS transistor. Though the entire array does not
switch repeatedly and simultaneously (which would cause a
large simultaneous charge injection event), there is switch-
ing activity which is staggered by the delay elements them-
selves. Here we suggest two solutions, which are referred to
as local bias and global bias, to overcome this problem. The
idea behind global biasing strategy is to use the area above
the entire array by high-quality MIM caps (4 fF/um?) and
bypass the bias nodes. The large value of the capacitance
significantly reduces variation in voltages from the injected
charge. Another, albeit more power hungry (local) solution
is to partition the array into blocks (e.g. 5 x 5 subarrays
used in this work) and regenerate the bias voltages locally
for each of these blocks while capping them with the afore-
mentioned MIM caps. This significantly reduces the load
on the primary bias network and decouples large sections
of switching activity from each other and hence provides a

more precise delay values.

4. RESULTS AND DISCUSSION

‘We have designed asynchronous Race Logic implementa-
tion for solving DNA sequence alignment problem for vari-
able string lengths from N =5 to N = 50. Data points were
fitted to analytical equations for all desired metrics shown in
Fig. 5. All the simulations were done in Cadence 6.1.0 using
the Silterra 0.18 pm process. Though the implemented de-
lay elements are programmable with roughly 10x dynamic
range, in the simulations we used specific score matrix in
Fig. 2b.

4.1 Simulation Results

For the purpose of comparison, similar to synchronous Race
Logic studies [6], we focus on two possible alignments result-
ing in the best and the worst case scores, which represent a
perfect match and a complete mismatch, respectively. (The
complete mismatch case results in 2N indels for a string
length of N and rather unlikely in practical applications -
see discussion in the next subsection.) Moreover, Dennard
constant-field scaling laws were applied to make sure that
the work in [6], which was performed in 0.5 micron, was
scaled down to effectively be in the same process. In ad-
dition, previously reported performance results for the syn-
chronous Race Logic were adjusted to account for larger dy-
namic ranges of the delays in the asynchronous Race Logic.

In particular, the following changes were made to the syn-
chronous architecture. For the dynamic range to be in-
creased from a factor of two in [6], to an order of magnitude,
the number of D flip-flops has to be increased from 1 to 4
(assuming logarithmic encoding), which in-turn adds extra
gates for score selection and latching. The latency is also
affected as a result of addition of extra logic levels in the
critical path between two D flip-flops, which manifests in
the slowing down of the clock. Another repercussion of each
unit cell housing 4 DFFs is in the power and energy, because
the clocked capacitance [6] dominates the energy scaling of
the synchronous architecture. The energy numbers that are
reported for the synchronous design are after clock gating
strategies, that attempt to reduce the third order energy
scaling that exists as a result of continuous clocking of the
entire Race Logic fabric. Nonetheless, the cubic scaling can
be reduced but not completely eliminated.

Fig. 5 shows various performance metrics for asynchronous
Race Logic and compare it with previously reported ad-
justed results for synchronous Race Logic. In general, even
with pessimistic assumptions regarding the increase in area
and energy of the synchronous design, asynchronous Race
Logic performs better in almost all metrics (and as a result
significantly outperforms highly-optimized conventional im-
plementation [6]) except for power density (Fig. 5d), which
is due to larger area of the synchronous architecture. The
global biasing implementation is much more energy efficient
and area efficient compared to local bias one. This is because
in the global bias case, the distribution of timing information
happens in terms of bias voltages which are gate-connected
and hence consume negligible power, while the MIM caps
supply any instantaneous charge required. In the local bias
case, once the global bias voltages are distributed, local bi-
ases are regenerated for 5 x 5 array regions, which contribute
to the cubic scaling of energy. This behavior is visible in the
Fig. 5c as the global bias case has square law energy scal-

x107

08 20 — : : : c)wo®
(a —Global Bias Area (b) Local Bias Best Case S
Local Bias Area 18 Local Bias Worst case s _--
: P -
107 £ |——Synchronous RL Area ——Global Bias Best Case . ’ 107 -
i 16|~ -Global Bias Worst case PR B
S —Synchronous RL Best Case ‘.
106 c 4r| = =Synchronous RL Worst case 7 - 1 “ 108
s -
& S s . 4 Q =
5 g .27 B8 ol S e
2 10° {10 , 7 1 <) 10
© > v <
[} o 8 27 1 é '
S0t 5 4 S jul, .
L6 L% N [v/ Local Bias Best Case
@ 22 < Local Bias Worst case
g 1 ——Global Bias Best Case
3 — 4 z w lobal Bi
10 ’JO E £ L0 d — -Global Bias Worst case
2 —Synchronous RL Best Case
i;_/ — -Synchronous RL Worst case
10° % 20 40 60 80 100 1075 20 40 60 80 100
0 20 40 60 80 100
q String Length, N String Length, N String Length, N
(d). — (e)w* . (f)
10 ocal Bias Bost Case e Tocal Bias Best Case Asynchronous worst case
Local Bias Worst case Local Bias Worst case — global/local
) 1 ——Global Bias Best Case —Global Bias Best Case
o \ lobal o g:oga} E\as EVors?case 2 X
1 — -Global Bias Worst case -
1S \ —Synchronous RL Best Case NE 10 \‘ ——Synchronous RL Best Case |1 E’ 10° \ \V *
g 102 i = =Synchronous RL Worst case o \ = =Synchronous RL Worst case| o
= @ 2 * 180
=] < Asynchronous * 130
2> & 10% =3 best case 90
B 2 = lobalflocal 65 Synchronous
2 10 o S ., g a5 worst case
[} 5 10
S 410
g . s \\ =
—
) S o
2 1° 3 oy 180
) © 08 c ° 130
o E 10 b L 3
[T 10t 90 Synchronous
2 = 65 best case
10t 106
0 20 40 60 80 100 20 40 60 80 100 101 10710 10° 108 107

String Length, N

String Length, N

Energy per comparison (J)

Figure 5: (a) Area, (b) latency, (c) energy per comparison operation, (d) power density, and (e) throughput as a function of

string length N for synchronous and asynchronous Race Logic.

(f) Energy-delay scatter plot for DNA string length N = 30,

showing scaling for Synchronous Race Logic vs Asynchronous. The points following the arrows show the best and worst case
results for the scaled synchronous Race Logic at different technology nodes.

ing and is considerably lower than the scaled synchronous
as well as the local bias case which have cubic behavior.

One possible concern is that performance and energy effi-
ciency advantages may be lost when implementing circuits
with more aggressive and more practical CMOS process nodes,
in particular because asynchronous Race Logic might be
more sensitive to process variations due to its inherently
analog design, compared to a purely digital one. To ad-
dress this concern we first note that the relative area of the
circuitry, that is sensitive to mismatch variations in asyn-
chronous Race Logic, is approx. 30%, and therefore such
circuitry can be aggressively scaled without increasing vari-
ations. To further compare scaling behaviour, Fig. 5f shows
the estimated performance for scaling of the synchronous
design relative to the 180 nm asynchronous design in this
work. The latency estimates assume Dennard scaling, while
the energy estimates also account for leakage power at low
technology nodes. Though latencies of scaled synchronous
versions always outperform the asynchronous version, the
energy performance of the 180 nm asynchronous version is
comparable to the energy performance between 90 nm and
130 nm for the best case and between 45 nm and 90 nm for
the worst case. Moreover, in the next subsection we show
that for the considered application variations in delay can
be effectively tolerated at the functional level without much
penalty in performance or energy efficiency.

4.2 Variation Analysis

To understand how the Race Logic implementation of the
edit graph is affected by the delay variations in each of its
elements, and how it affects the functional correctness of the
overall architecture, a MatLAB model of the circuit archi-
tecture was designed into which variations were purposefully

introduced.

To make sure that our assumptions were realistic, we took
real data from the chromosome 1 of the Human Genome
and simulated the process of shotgun sequencing followed by
realignment Fig. 6a, which is a typical procedure in the de-
novo sequencing [4]. In shotgun DNA sequencing, a section
of the DNA sequence is split in into thousands of strands of
equal length at random locations. The strands can overlap
which defines its coverage. Fig. 6¢ shows an example of
score histogram when comparing a particular DNA string
with others in a given section with an overall number of
nucleotides being 20 times the number of nucleotides in the
section (coverage of 20).

We then use Monte Carlo technique to simulate signal
propagation timing (i.e. score) in the Race Logic fabric
for two pairs of DNA strings (Fig. 6b). In each run of
Monte Carlo simulation, delay elements were initialized by
adding normally distributed random variable with specific
standard deviation to the exact delay value determined from
the score matrix. The chosen values of standard deviations
are crudely representative of pessimistic and optimistic sce-
narios for process and mismatch variations in the simulated
180 nm process. An interesting detail is that, though vari-
ations for each delay element are symmetric around mean
value, the total score is almost always lower compared to
the exact value. This is an artifact of OR-type Race Logic
which favors fast signals over the slow ones.

The detailed analysis of the results of Fig. 6 suggests practi-
cal and efficient solution for tolerating variations and noise in
asynchronous Race Logic. Indeed, it is known that the prob-
ability of small similarity regions in DNA strings is fairly
high and goes down exponentially as the length of the simi-
larity goes up [9]. Therefore, the similarity threshold can be

(a) original sequence (b) 2500

e Score = 111, 59 Tafh
; 2000 ez ity vt mion
- [Score = 170, 5% variation
shot- S 1500| [Score = 170, 10% variation
gunned 38 |
short 1000y
reads 500f
0. " . N " N
100 120 140 160 180
Score value
(c) , . : : . ‘ : ,
10000 }
. 1000}
c f ; 1
3 100! scores of interest
o t)\ |
10} H”ﬂ]
! o

o ogalaena a
40 60 80 100 120 140 160 180

Score value

Figure 6: Preliminary variation study: (a) A cartoon of shot-
gun sequencing process, (b) Monte Carlo simulations (10,000
runs) of the alignment scores for two particular pairs of DNA
strings for the OR-type Race Logic with variation-prone de-
lay elements, and (c) representative score statistics in human
genome shotgun sequencing. The reference DNA strings is
the same in both panels (b) and (c). The query strings used
in panel (b) were chosen such that their alignment scores
with the reference DNA string correspond to the start and
very end of the hump in the score distribution, which is high-
lighted with red arrows. (The simulation results show that
the distributions on both panels are rather insensitive to the
particular choice of DNA strings.)

defined below which the strings would be assumed similar by
chance and not due to genuine alignment. Practically, that
means that for OR-type Race Logic we could define a cer-
tain threshold beyond which the architecture will not look
for similarity and move on to the next string. As Fig. 6¢
shows there are only few strings, e.g. with scores below 100,
which should be considered for alignment, while the vast
majority of strings would be discarded. Interestingly, this
means that with an increasing dynamic range, the best-case
(rather than worst case) paths become more representative
of a typical situation.

When looking for alignments with small scores in such score
distribution, variations and noise can be resolved efficiently
by slightly increasing the threshold. For example, for the
10%-variation case all strings of interest with a score value
below 90 can be detected by setting the threshold to ~ 92
and the penalty of such adjustment would be identifying few
false-negative strings whose score is in between 90 and 100.
From Fig. 6, it is clear that the increase in runtime due to
threshold adjustment and additional work of finding false
negative would present just a minor overhead considering
that most of the time will be spend screening the strings
with high (> 100) scores.

S. CONCLUSION

Our objective was to design an asynchronous Race Logic
array and in particular address some issues pertinent to syn-
chronous implementation such as third order energy scaling
and difficulty with handling of a more complex score matrix.
To accomplish this goal we propose an asynchronous archi-
tecture in which the delay is controlled by current starved
inverter based delay element. This design allows for a larger
dynamic range at lower area and energy costs. As a specific
example, we implemented the well-studied shotgun DNA se-
quence alignment problem and compared synchronous ver-

sus asynchronous design styles. The simulation results for
the synthesized design in 0.18 pm technology show that,
asynchronous implementation is at best 10X more energy
efficient, 4x denser and has slightly smaller delays as com-
pared to synchronous one, which by itself significantly out-
performed conventional highly-optimized systolic array im-
plementation for sequence alignment problem. Moreover, we
study the effects of process variations at both a device and
system level and show that for at least the considered ap-
plication, the process and mismatch variations have limited
impact on the asynchronous Race Logic performance and
functionality.

Acknowledgment

This work is partly funded by NSF grants CCF-1017579
and CCF-1528502. The authors would like to thank Luke
Theogarajan and Melika Payvand for insightful discussions.

6. REFERENCES

[1] Ncbi blast webpage.
http://www.ncbi.nlm.nih.gov/blast/.

[2] A. Adamatzky and B. de Lacy Costello. On some
limitations of reaction—diffusion chemical computers in
relation to voronoi diagram and its inversion. Physics
Letters A, 309(5):397-406, 2003.

[3] P. Andreani, F. Bigongiari, et al. A digitally controlled
shunt capacitor cmos delay line. Analog Integrated
Circuits and Signal Processing, 18:89-96, 1999.

[4] R. Ekblom and J. B. Wolf. A field guide to
whole-genome sequencing, assembly and annotation.
Evolutionary applications, 7(9):1026-1042, 2014.

[5] H. Esmaeilzadeh, E. Blem, et al. Dark silicon and the
end of multicore scaling. In Computer Architecture
(ISCA), 2011 38th Annual International Symposium
on, pages 365-376. IEEE, 2011.

[6] A. Madhavan, T. Sherwood, and D. Strukov. Race
logic: a hardware acceleration for dynamic
programming algorithms. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International
Symposium on, pages 517-528. IEEE, 2014.

[7] N. Mahapatra, A. Tareen, and S. Garimella.
Comparison and analysis of delay elements. Midwest
Symposium on Circuits and Systems, pages 473—-476,
2002.

[8] M. Maymandi-Nejad and M. Sachdev. A digitally
programmable delay element: design and analysis.
IEEE Transactions on Very Large Scale Integration,
11:871-878, 2003.

[9] R. Mott. Alignment: statistical significance. eLS, 2005.

[10] P. Mroszczyk and P. Dudek. Tunable cmos delay gate
with reduced impact of fabrication mismatch on
timing parameters. In New Circuits and Systems
Conference (NEWCAS), 2018 IEEE 11th
International, pages 1-4. IEEE, 2013.

[11] M. Saint-Laurent and M. Swaminathan. A digitally
adjustable resistor for path delay characterization in
high-frequency microprocessors. In Mized-Signal
Design, 2001. SSMSD. 2001 Southwest Symposium on,
pages 61-64. IEEE, 2001.

[12] E. E. Swartzlander and A. G. Alexopoulos. The
sign/logarithm number system. IEEFE Transactions on
Computers, 24(12):1238-1242, 1975.

[13] J. E. Volder. The cordic trigonometric computing
technique. Electronic Computers, IRE Transactions
on, (3):330-334, 19509.

[14] R. Zhang and M. Kaneko. A feasibility study on
robust programmable delay element design based on
neuron-mos mechanism. Proceedings of the 24th edition
of the great lakes symposium, pages 21-26, 2014.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

