Handout 5
 Random Walks

Consider a sea of molecules. Pinpoint one molecule and note its starting position at time 0 . Let this position define the coordinate origin. We will assume that, due to thermal motion, the particle on average makes a random jump of length l every τ units of time. The jump is random in the radial direction. This is called a random walk.

One could imagine the particle experiencing a very large number of jumps. We might interrogate the final position of the particle after n such jumps.

We could imagine performing many such experiments for the same particle, each time starting at the same location but with a different series of random jumps. What would be the expected $\langle x\rangle,\langle y\rangle,\langle z\rangle$ after n jumps if we averaged over all of these experiments? Some of the experiments will end up with positive x, while some negative, and similarly for the y and z directions. Since the particle has no bias to go in the positive or negative direction, the averages over the experiments must be

$$
\langle x\rangle=0 \quad\langle y\rangle=0 \quad\langle z\rangle=0
$$

On the other hand, we can ask how far the particle has traveled in absolute distance from its initial location. Let r_{n} be the distance traveled after n steps. Note that r_{n} is always a positive number, since it is a distance and not a coordinate. We will compute the average squared distance $\left\langle r_{n}^{2}\right\rangle$ over all possible experiments. We begin by noting that

$$
r_{n}^{2}=x_{n}^{2}+y_{n}^{2}+z_{n}^{2}
$$

Consider the case in going from step n to $n+1$:

$$
\begin{aligned}
r_{n+1}^{2}-r_{n}^{2} & =x_{n+1}^{2}-x_{n}^{2}+y_{n+1}^{2}-y_{n}^{2}+z_{n+1}^{2}-z_{n}^{2} \\
& =\left(x_{n}+\Delta x\right)^{2}-x_{n}^{2}+\left(y_{n}+\Delta \mathrm{y}\right)^{2}-y_{n}^{2}+\left(z_{n}+\Delta z\right)^{2}-z_{n}^{2} \\
& =\left(x_{n}+\Delta x\right)^{2}-x_{n}^{2}+\left(y_{n}+\Delta \mathrm{y}\right)^{2}-y_{n}^{2}+\left(z_{n}+\Delta z\right)^{2}-z_{n}^{2}
\end{aligned}
$$

$$
=2 x_{n} \Delta x+\Delta x^{2}+2 y_{n} \Delta y+\Delta y^{2}+2 z_{n} \Delta z+\Delta z^{2}
$$

Here, $\Delta x, \Delta y, \Delta z$ are the random amounts by which we change the length at one step. Notice that we have the constraint $\Delta x^{2}+\Delta y^{2}+\Delta z^{2}=l^{2}$ because these random amounts must add up to give the length of one jump. Therefore

$$
r_{n+1}^{2}-r_{n}^{2}=2 x_{n} \Delta x+2 y_{n} \Delta y+2 z_{n} \Delta z+l^{2}
$$

Now, we average over all possible (random) trajectories for the same starting point:

$$
\left\langle r_{n+1}^{2}-r_{n}^{2}\right\rangle=\left\langle 2 x_{n} \Delta x+2 y_{n} \Delta y+2 z_{n} \Delta z\right\rangle+l^{2}
$$

However, $\Delta x, \Delta y, \Delta z$ are random at each step and they are completely uncorrelated with the position of the molecule. That is, the amount of the random jump in the x direction, Δx, is unaffected by the x position of the molecule. Thus,

$$
\left\langle r_{n+1}^{2}-r_{n}^{2}\right\rangle=2\left\langle x_{n}\right\rangle\langle\Delta x\rangle+2\left\langle y_{n}\right\rangle\langle\Delta y\rangle+2\left\langle z_{n}\right\rangle\langle\Delta z\rangle+l^{2}
$$

But the averages of $\Delta x, \Delta y, \Delta z$ and of x, y, z are all zero, since the random walk has no net direction. Thus, we obtain

$$
\left\langle r_{n+1}^{2}-r_{n}^{2}\right\rangle=l^{2}
$$

Or

$$
\left\langle r_{n+1}^{2}\right\rangle=\left\langle r_{n}^{2}\right\rangle+l^{2}
$$

Starting at $n=0$,

$$
\left\langle r_{0}^{2}\right\rangle=0 \quad\left\langle r_{1}^{2}\right\rangle=l^{2} \quad\left\langle r_{2}^{2}\right\rangle=2 l^{2} \quad \ldots
$$

By recursion, therefore, we can write

$$
\begin{aligned}
\left\langle r_{n}^{2}\right\rangle & =n l^{2} \\
& =\frac{t}{\tau} l^{2}
\end{aligned}
$$

The LHS is called the mean squared displacement. It tracks the average squared distance of a particle at its random location at time t from its initial location. This kind of random movement is called Brownian motion and is a kind of diffusive process. Here, diffusive means that the motion is dominated by random fluctuations. In fact, we can define the diffusion constant using the above model,

$$
D \equiv \frac{l^{2}}{6 \tau}
$$

with

$$
\left\langle r^{2}\right\rangle=6 D t
$$

