Figure 11-1 *Essential Cell Biology* (© Garland Science 2010)
Figure 11-6 Essential Cell Biology (© Garland Science 2010)
Figure 11-7 Essential Cell Biology (© Garland Science 2010)
Figure 11-11 *Essential Cell Biology* (© Garland Science 2010)
Figure 11-12 Essential Cell Biology (© Garland Science 2010)
Figure 11-13 *Essential Cell Biology* (© Garland Science 2010)
Figure 11-14 Essential Cell Biology (© Garland Science 2010)
lateral diffusion

flexion rotation

flip-flop (rarely occurs)
Figure 11-17 Essential Cell Biology (© Garland Science 2010)
Figure 11-19 *Essential Cell Biology* (© Garland Science 2010)
α-helical Bundles
Example: Bacteriorhodopsin (PDB 1AP9)

β-Barrels
Example: Matrix Porin (PDB 1OMF, Subunit)
Figure 11-35 Essential Cell Biology (© Garland Science 2010)
Figure 11-31 Essential Cell Biology (© Garland Science 2010)
Figure 12-2 Essential Cell Biology (© Garland Science 2010)
Figure 12-12 *Essential Cell Biology* (© Garland Science 2010)
Figure 12-4 *Essential Cell Biology* (© Garland Science 2010)
Figure 12-21 Essential Cell Biology (© Garland Science 2010)
Figure 12-7 *Essential Cell Biology* (© Garland Science 2010)

(A) Electrochemical gradient when voltage and concentration gradients work in the same direction

(B) Electrochemical gradient when voltage and concentration gradients work in opposite directions
Figure 12-11 Essential Cell Biology (© Garland Science 2010)
Figure 12-15 *Essential Cell Biology* (© Garland Science 2010)
Figure 12-16 Essential Cell Biology (© Garland Science 2010)
(A) exact balance of charges on each side of the membrane
membrane potential = 0

(B) a few positive ions (red) cross the membrane from right to left, setting up a nonzero membrane potential
(A) K^+ channel closed, membrane potential = 0; more K^+ inside the cell than outside, but zero net charge on each side (positive and negative charges balanced exactly)

(B) K^+ channel open; K^+ moves out, leaving negative ions behind, and this charge distribution creates a membrane potential that balances the tendency of K^+ to move out
Figure 12-34 Essential Cell Biology (© Garland Science 2010)