Fundamentals study guide for midterm

Consider the following fundamental equations:

$$
\begin{array}{cc}
n d U=\delta Q+\delta W & n \Delta U=Q+W \\
W=-\int P_{e x t} d V^{t} & H=U+P V \\
C_{V} \equiv\left(\frac{d U}{d T}\right)_{V} & C_{P} \equiv\left(\frac{d H}{d T}\right)_{P}
\end{array}
$$

Consider also the specific case of an ideal gas, whose fundamental relations are:

$$
P V=R T \quad U=U(T) \text { only }
$$

In the following problems, use only these fundamentals as methods to reach your final answer. Avoid your book and notes; rather, challenge yourself to get to the answer independently.

Problem I

An ideal gas with constant heat capacity starts out at T_{1} and P_{1} (and $V_{1}=R T_{1} / P_{1}$). Derive for each of the following the correct expressions for the following seven quantities: $T_{2}, P_{2}, V_{2}, \Delta U$, $\Delta H, W / n, Q / n$.
(a) for a quasi-static isochoric process, if T_{2} is given.
(b) for a quasi-static isobaric process, if T_{2} is given.
(c) for a reversible isothermal process, if P_{2} is given.
(d) for a reversible adiabatic process, if T_{2} is given.

Problem 2

Prove the following for an ideal gas: (a) $H(T)$ only, and (b) $C_{P}=C_{V}+R$.

Problem 3

Show that $Q=n \Delta U$ and $Q=n \Delta H$ for quasi-static constant-volume and constant=pressure heating processes, respectively.

Problem 4

Heat per mole in the amount of Q / n is added to a system held at volume V. The system changes from $T_{1}, P_{1} \rightarrow T_{2}, P_{2}$. Find ΔU and ΔH if the system is (a) a nonideal gas and (b) an incompressible liquid.

Problem 5

An ideal gas is inside a piston maintained at constant temperature. If a compression process occurs but is not quasi-static (e.g., very fast), can one use the equation $W / n=R T \ln \left(V_{1} / V_{2}\right)$ to compute the work? Why or why not? Think of an example that demonstrates your reasoning.

Problem 6

An ideal gas undergoes the following quasi-static three-step cycle: (i) adiabatic expansion, (ii) isobaric expansion, (iii) isothermal compression. Draw the process on a PV diagram and write an expression for the net work in terms of the pressures and temperatures at each point. Is the net work positive or negative?

Problem 7

An ideal gas monatomic gas enters a turbine with velocity u_{1} through a opening of radius R_{1}. Its entering conditions are T_{1} and P_{1}. The gas exits the turbine through an opening of radius R_{2} and at T_{2}, P_{2}. Derive an expression for the work the turbine can generate per mole of gas.

Problem 8 (SVA 3.64)

Shown below is the Equation-of-State Decision Tree. For each item, indicate when each should be used and their relative advantages/disadvantages in process calculations.
(a) Ideal gas

(b) 2-term virial equation
(c) Cubic equation of state
(d) Lee/Kesler tables, Appendix E
(e) Incompressible liquid
(f) Rackett equation, Eq. (3.72)
(g) Constant β and κ
(h) Lydersen et al. chart, Fig. 3.16

Problem 9

An ideal monatomic gas with molecular weight M_{w} flows steadily through a well-insulated pipe of constant diameter. At point 1, the gas has velocity u_{1} and molar volume V_{1}. Due to frictional losses, the velocity at point 2 is reduced by 10%. Assume constant heat capacities.
(a) Write an expression for the temperature increase $T_{2}-T_{1}$.
(b) Write an expression for the pressure change P_{2} / P_{1} in terms of T_{1} and T_{2}.

Problem 10

At constant pressure, an ideal microwave delivers 500 W of energy to an 8 oz glass of water ($n \approx 13 \mathrm{~mol}$) initially at $20^{\circ} \mathrm{C}$. At atmospheric pressure, the latent heat of vaporization of water is $\Delta H_{\text {vap }}=40.6 \mathrm{~kJ} / \mathrm{mol}$. How long will it take for the entire glass to vaporize if the liquid has a constant heat capacity $C_{P}=75 \mathrm{~J} / \mathrm{mol} K$? Show a full analysis beginning with the first law.

