Problem Set No. 7

Due: Wednesday, February 23, 2011
Objective: To understand and perform calculations involving the entropy and the second law of thermodynamics for closed, open, and cyclical processes.

Note: \quad Numerical values for some problems have been changed from those in the book.

Problem 32 (thought problem)

A well-insulated container consists of two halves of equal volumes separated by a partition. On one half there an ideal gas. On the other, there is a vacuum. The partition is suddenly removed, and the gas expands. Your friend suggests that the entropy change is zero since this is an adiabatic process for which $\delta Q=0$. What is wrong with his assessment? What is the actual entropy change per mol?

Problem 33 (Smith, van Ness, Abbott, 5.2, page 190)

A Carnot engine receives $250 \mathrm{~kJ} / \mathrm{s}$ of heat from a heat-source reservoir at $525^{\circ} \mathrm{C}$ and rejects heat to a heat sink reservoir at $50^{\circ} \mathrm{C}$. What are the power developed and the heat rejected?

Problem 34 (Smith, van Ness, Abbott, 5.9, page 191)

A rigid vessel of $0.06 \mathrm{~m}^{3}$ volume contains an ideal gas, $C_{V}=(5 / 2) R$, at 500 K and 1 bar .
(a) If heat in the amount of 15 kJ is transferred to the gas, determine its entropy change.
(b) If the vessel is fitted with a stirrer that is rotated by a shaft so that work in the amount of 15 kJ is done on the gas, what is the entropy change of the gas if the process is adiabatic?

Problem 35 (Smith, van Ness, Abbot, 5.18e, page 193)

An ideal gas with constant heat capacities undergoes a change of state from conditions T_{1}, P_{1} to conditions T_{2}, P_{2}. Determine $\Delta H(\mathrm{~J} / \mathrm{mol})$ and $\Delta S(\mathrm{~J} / \mathrm{mol} / \mathrm{K})$ for the following conditions: $T_{1}=500 \mathrm{~K}, P_{1}=6.0 \mathrm{bar}, T_{2}=300 \mathrm{~K}, P_{2}=1.2 \mathrm{bar}, C_{P} / R=4$.

Problem 36 (Smith, van Ness, Abbott, 5.22, page 194)

A mass m of liquid water at temperature T_{1} is mixed adiabatically and isobarically with an equal mass of liquid water at temperature T_{2}. Assuming constant C_{P}, show that the total entropy change for this process is given by

$$
\Delta S^{t}=2 m C_{P} \ln \left[\frac{\left(T_{1}+T_{2}\right) / 2}{\left(T_{1} T_{2}\right)^{1 / 2}}\right]
$$

and prove that this is positive. What would be the result if the masses of the water were difference, say, m_{1} and m_{2} ?

Problem 37 (Smith, van Ness, Abbott, 5.26, page 194)

One mole of an ideal gas is compressed isothermally but irreversibly at $130^{\circ} \mathrm{C}$ from 2.5 to 6.5 bar in a piston/cylinder device. The work required is 30% greater than the work of reversible, isothermal compression. The heat transferred from the gas during compression flows to a heat reservoir at $25^{\circ} \mathrm{C}$. Calculate the entropy changes of the gas, the heat reservoir, and $\Delta S_{\text {total }}$.

Problem 38 (Smith, van Ness, Abbott, 5.28, page 194)

For a steady-flow process at approximately atmospheric pressure, what is the entropy change when:
(a) 40 lbmol of ethylene is heated from 500 to $1200{ }^{\circ} \mathrm{F}$?
(b) $10^{6} \mathrm{Btu}$ is added to 40 lbmol of ethylene initially at $500^{\circ} \mathrm{F}$?

Assume ethylene can be modeled as an ideal gas with T-dependent C_{P}.

