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Introduction

Regularity of mappings plays an essential role in mathematical
control theory.

Few examples: theory of stabilizability, theory of accessibility.

Real analytic vs. smooth

Mathematics and Physics
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Time-varying vector fields and their flows

Time-varying vector fields with measurable dependence on time
arise naturally in control theory.

An operator approach for studying time-varying vector fields and
their flows.

The R-algebra Cν(M) and a suitable locally convex topology on
Cν(M) plays an essential role in this framework.

Cν-vector fields

There is a one-to-one correspondence between Cν-vector fields on M and
derivations of the R-algebra Cν(M).

Cν-maps

There is a one-to-one correspondence between Cν-maps from M to M
and unital-algebra homomorphisms of the R-algebra Cν(M).
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Topology on space of C ν-sections

Let (E ,M, π) be a Cν-vector bundle. The C∞-topology on Γ∞(E )
is classical.

C∞-topology

The locally convex C∞-topology on Γ∞(E ) is defined using a family of
seminorms

p∞K ,m = sup
{
‖D(r)X (x)‖

∣∣∣ x ∈ K , |(r)| ≤ m
}
.

Chol-topology

The Chol-topology on the space Γhol(E ) is defined as the compact-open
topology, i.e., the topology generated by the family of seminorms

pholK = sup {‖X (x)‖ | x ∈ K} .
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Topology on space of C ν-sections

The Cω-topology on Γ∞(E ) is defined using the fact that a real
analytic section can be considered as a germ of a holomorphic
section on a suitable domain.

Cω-topology

The Cω-topology on Γω(E ) is defined as the following inductive limit
topology (i.e., the finest locally convex topology) such that, for every
complex vector bundle U containing E , the restriction map

rU : Γhol,R(U)→ Γω(E )

is continuous.
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Equivalent characterization of Cω-topology

Each of the following define the Cω-topology on Γω(E ).
1 The inductive limit topology defined as the finest locally convex

topology on Γω(E ) such that, for every complex vector bundle U
containing E , the restriction map

rU : Γhol,R(U)→ Γω(E )

is continuous.
2 The projective limit topology defined as the coarsest locally

convex topology on Γω(E ) such that, for every compact set K ⊆ E ,
the inclusion map

iM : Γω(E )→ G hol,R
K

is continuous.
3 The topology generated by the family of seminorms {pωK ,a}, where

K ⊆ M is a compact set and a ∈ c↓0(Z≥0;R>0).

pωK ,a(X ) = sup
{a0a1 . . . , a|r |

r !
‖D(r)X (x)‖

∣∣∣ x ∈ K , |r | ∈ Z≥0

}
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Linear mappings

Space of linear continuous mappings

The space of linear continuous mappings from Cν(M) to Cν(M) is
denoted by L(Cν(M);Cν(M)).

The space L(Cν(M);Cν(M)) contains both Cν-vector fields on M
and Cν-maps from M to M.

The topology of pointwise convergence on L(Cν(M);Cν(M)) is
denoted by Cν-topology.
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Time-varying vector fields

A complete time-varying vector fields and their flows are curves on
L(Cν(M);Cν(M)).

Time-varying vector field

For every time-varying vector field X : T×M → TM, we define a curve
X̂ : T→ L(Cν(M);Cν(M)) as

X̂ (t)(f ) = Xt f .

There is a one-to-one correspondence between time-varying
Cν-vector fields on M and curves on L(Cν(M);Cν(M)) with the
property that

X̂ (t)(fg) = X̂ (t)(f )g + f X̂ (t)(g)
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Flows of time-varying vector fields

Time-varying Cν-maps

For every time-varying mapping φ : T× U → M, we define a curve
φ̂ : T→ L(Cν(M);Cν(U)) as

φ̂(t)(f ) = f ◦φt .

There is a one-to-one correspondence between time-varying Cν-maps
on M and curves on L(Cν(M);Cν(M)) with the property that

φ̂(t)(fg) = φ̂(t)(f )φ̂(t)(g)
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Bochner integrability

L(Cν(M);Cν(M)) is a locally convex space. In order to study
curves on this space, we need to define different notions on locally
convex spaces

Characterization of Bochner integrable curves

Let V be a complete and separable locally convex space and {pα}α∈Λ be
a family of generating seminorms on V .
A curve γ : T→ V is Bochner integrable if and if, for every α ∈ Λ, the
curve

t 7→
∫
T
pα(γ(τ))dτ,

is integrable.

The space of Bochner integrable curves from the interval T to the
locally convex space V is denoted by L1(T;V ).
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Absolute continuity

Absolute continuity

Let V be a locally convex space and {pα}α∈Λ be a family of generating
seminorms on V . Then a curve γ : T→ V is absolutely continuous if
there exists a Bochner integrable curve η : T→ V such that

γ(t) = γ(t0) +

∫ t

t0

η(τ)dτ.

The space of absoluelty continuous curves from the interval T to the
locally convex space V is denoted by AC(T;V ).
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Holomorphic extension of real analytic time-varying vector
fields

It is well-known that every real analytic time-invariant vector field
can be homomorphically extended to a holomorphic vector field on a
suitable domain.

Does the same result hold for time-varying vector fields? Not
generally.

Example

The time-varying vector field X : R× R→ TR defined by

X (t, x) =

{
t2

t2+x2
∂
∂x x 6= 0 or t 6= 0,

0 x , t = 0.

is locally integrable in t when x is fixed and real analytic in x when t is
fixed. However, there does not exist any interval of time T ⊆ R
containing t = 0 and any neighbourhood U ⊆ C of x = 0 such that X
can be extended to a holomorphic vector field on T × U
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Holomorphic extension of real analytic time-varying vector
fields

We need some extra conditions to ensure existence of holomorphic
extension. Bochner integrability do this for us.

Global extension of real analytic vector fields

Let X : T×M → TM be a locally Bochner integrable time-varying real
analytic vector field. Then there exists a complex manifold U containing
M and a locally Bochner integrable time-varying holomorphic vector field
X : T× U → TU such that

X (t, x) = X (t, x), ∀t ∈ T, ∀x ∈ M.

Idea of proof: Using the inductive limit characterization of Γω(TM).
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Holomorphic extension of real analytic time-varying vector
fields

What happen if we have a “couple” of time-varying real-analytic
vector fields and we want to ensure that there exists a “single”
domain on which all these real analytic vector fields can extend to
holomorphic vector fields?

Local extension of real analytic vector fields

Let B be a bounded set in L1(T; Γω(TM)). Then, for every compact set
K ⊆ U, there exits a complex manifold UK containing K such that, for
every X ∈ B, there exists X : T× UK → TUK such that

X (t, x) = X (t, x), ∀t ∈ T, ∀x ∈ K .

Idea of the proof: Using the projective limit characterization of
Γω(TM).
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Flows of time-varying vector fields

One of the main reasons for developing this operator framework is to
study “flows” of time-varying vector fields.

From nonlinear differential equations to linear differential equations.

Nonlinear vs Linear

Nonlinear DE

dx
dt = X (t, x),

x (t0) = x0.

Linear DE

d
dt φ(t) = φ(t) ◦X (t),

φ (t0) = id.

While this approach translate our nonlinear differential equation into
a linear differential equation, we pay a cost: The resulting linear
differential is on an infinite dimensional vector space
L(Cν(M);Cν(M)).
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Flows of time-varying vector fields

Theory of linear differential equations on locally convex spaces is
completely different from the theory of linear differential equations
on Banach spaces.

Picard iterations for linear differential equations.

Iterative Solution

We define φ0(t) ∈ L1(Cω(M);Cω(U)) as

φ0(t)(f ) = f |U , ∀t ∈ [0,T ].

and we define φN(t) inductively as

φN(t) = φ0(t) +

∫ t

t0

φN−1(τ) ◦X (τ)dτ.
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Flows of time-varying vector fields

One can show that for “locally Bochner integrable” time-varying real
analytic vector fields, the sequence of Picard iterations converges
uniformly on small-enough interval [0,T ] in Cω-topology to the flow
of X .

Theorem

Let X̂ : T→ Γν(TM) be a locally Bochner integrable time-varying
Cν-vector field on M. Then, for every x0 ∈ M there exist a
neighbourhood U of x0 and a locally absolutely continuous curve
φ̂ : T→ L(Cν(M);Cν(U)) such that

d φ̂(t)

dt
= φ̂(t) ◦ X̂ (t), a.e. t ∈ T,

φ̂(t0) = id.

Moreover, for almost every t ∈ T, we have

φ̂(t)(fg) = φ̂(t)(f )φ̂(t)(g).
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Exponential map

There does not exist a “single” neighbourhood U such that, for
every X ∈ L1(T; Γν(TM)), the flow of X (i.e., φX ) is defined on U.

Therefore, in order to define a relation between time-varying vector
fields and their flows, it should be defined on germs of vector fields
and germs of flows.

Exponential map

The exponential map defined in this manner is sequentially continuous.

In smooth case, this result is classical. For the real analytic case it is
proved using the approximations for sequence of Picard iterations.
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Summary

A coherent framework where all the regularity classes (in particular
the important class of real analytic vector fields) can be treated
essentially the same.

Global and local extension of “locally Bochner integrable”
time-varying real analytic vector fields.

Convergence of the sequence of Picard iteration in Cω-topology.

Defining exponential map using the germ of vector fields and their
flows and showing that it is sequentially continuous.
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Introduction to tautological control systems

In geometric control theory, we define a control system using a
family of parametrized Cν-vector fields {Fu}u∈U , where the
parameter is called control.

Most fundamental properties of control systems (for example
controllability, accessibility, ...) depends on the trajectories of the
system.

Most methodologies in control literature for studying fundamental
properties of control systems are not parameter-invariant.
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Tautological control systems

Example

Consider these two control systems

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x2
1 − x2

2 .

ẋ1 = u1+u2

2 ,

ẋ2 = u1−u2

2 ,

ẋ3 = x2
1 − x2

2 .
By considering the control set U = R2, these two systems have the same
trajectories.
Sussmann’s sufficient condition can show that the left system is
small-time locally controllable but it is indecisive about the right system.

Instead of working with parametrized family of vector fields, we
define a control system as a presheaf of vector fields
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Tautological control systems and control

Cν-tautological control system

A Cν-tautological control system is a pair (M,F ), where

1 M is a Cν-manifold called state manifold, and

2 F is a presheaf of Cν-vector fields.

The vector fields in F may be locally defined. Thus tautological
control systems are “generalization” of classical control systems.

A Cν-tautological control system is globally generated, if every
vector field in F is globally defined.

What is the relationship between notions of tautological control
systems and Cν-control systems?
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Tautological control systems and C ν-control systems

Given a Cν-control system Σ = (M,F ,U), we define the presheaf
FΣ as

FΣ(U) = {F u |U | u ∈ U} .

Theorem

Let Σ = (M,F ,U) be a Cν-control system, then the pair Θ = (M,FΣ)
is a Cν-tautological control system associated to Σ

The above result shows that, one can associate a Cν-tautological
control system (M,FΣ).
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Tautological control systems and C ν-control systems

Is this correspondence one-to-one? The answer is no generally!

However, if the tautological control system is globally generated, the
answer is “Yes”.

Let Θ = (M,F ) be a globally generated Cν-tautological control
system. Then we define the family of parametrized vector field
FΘ : F ×M → TM as

FΘ(X , x) = X (x), ∀X ∈ F .

Theorem

Let Θ = (M,F ) be a globally generated Cν-tautological control system.
Then Σ = (M.FΘ,F ) is a Cν-control system.
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Trajectories of tautological control systems

For classical control systems, a trajectory of the system is defined as
the trajectory of a time-varying vector field obtained by “plugging
in” an admissible control.

For tautological control systems, we define “open-loop system” and
then trajectories of the systems are defined as the trajectories of the
open-loop system.

A “naive” way of defining open-loop families is to define it as the
family of all locally Bochner integrable time-varying Cν-vector field
X : T× U → TU such that

X̂ (t) ∈ F (U), ∀t ∈ T.
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Trajectories of tautological control systems

Example

Consider the Cω-tautological control system Σ = (R2,F ) as

F (U) =

{
{ ∂∂x ,

∂
∂y } (0, 0) 6∈ U,

{ ∂∂x } (0, 0) ∈ U.

The curve γ : [0, 1]→ R2 defined as

γ(t) =

{
(0, t) 0 ≤ t ≤ 1

2 ,

(t − 1
2 ,

1
2 ) 1

2 ≤ t ≤ 1.

is concatenation of trajectories of Σ, but it is not a trajectory of Σ.

This problem can be resolved using the “germs” of vector fields.
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Trajectories of tautological control systems

We define the sheaf LIF ν as

LIF ν(T× U) = L1(T; F (U))

Note that

L1(T; F (U)) = {X ∈ L1(T; Γν(U)) | X (t) ∈ F (U), a.e. t ∈ T}.

Etalé open-loop systems and etalé trajectories

An etalé open-loop system for the Cν-tautological control system
Σ = (M,F ) an element in Sh(LIF ν)(W ), for some open set W ⊆ M.
An etalé trajectory of Σ is a locally absolutely curve γ : T→ M such
that there exists an open-loop system X for Σ such that

dγ(t)

dt
= ev(t,γ(t)) (X (t, γ(t))) , a.e t ∈ T.
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Summary

Develop a parameter-invariant framework for studying control
systems.

Using the notion of sheaf of vector fields. we define tautological
control systems.

Study how the new notion of control systems is connected to the
classical one.

We define the trajectories for tautological control systems in a
suitable manner.
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Orbit theorem in classical control theory

Chow-Rashevskii theorem.

One can generalize Chow-Rashevskii theorem for distributions that
has one of the following properties

1 The distribution locally has a constant rank.
2 The distribution is real analytic.
3 The Cν-module generated by the Lie brackets of vector fields of the

distribution is “locally finitely generated”.

Sussmann and Stefan independently proved a singular version of the
Chow-Rashevskii called the “orbit theorem”
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Tautological orbit theorem

Let Σ = (M,F ) be a Cν-tautological control system.

The orbit of Σ passing through x ∈ M is

OrbΣ(x) =
{
φX1
t1
◦φX2

t2
◦ . . . ◦φXm

tm (x)
∣∣ Xi ∈ F (Ui ),m ∈ Z≥0

}
We define a presheaf of modules F which assigns to every open set
U ⊆ M the following Cν(U)-module:

F (U) = spanCν(U){η∗X | ∃V an open subset of M s.t.

X ∈ F (V ), η : U → V ∈ Γ(PF )},

Tautological orbit theorem

For every x ∈ M, the orbit OrbΣ(x) has a unique structure as an
immersed submanifold of M. Moreover, for every y ∈ OrbΣ(x), we have

TyOrbΣ(x) = F (y).
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Tautological orbit theorem

The presheaf F involve the flows of the system. The computation
of elements in F is complicated.

By imposing some extra conditions, can we characterize F (x) using
something simpler to compute, for instance Lie(F )(x)?

Note that the presheaf Lie(F )(x) is defined as

If F is real analytic, then is it true that F (x) = Lie(F )(x), for
every x ∈ M?

If, for every small-enough U, the module Lie(F )(U) is locally finitely
generated, then is it true that F (x) = Lie(F )(x), for every x ∈ M?

Generally, the answer to the above questions is negative.
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Tautological orbit theorem

Example

Let F = {X1,X2}, where X1 : R2 → TR2 is defined as

X1(x , y) =
∂

∂x
,

and X2 : R>0 × R→ TR2 is defined as

X2(x , y) =
1

x

∂

∂y
.

1 the vector fields in F are not globally defined,

2 for every x , there exists a neighbourhood U ⊆ R2 of x such that
Lie(F )(U) is a locally finitely generated Cω(U)-module, and

3 Lie(F )(0, 0) 6= F (0, 0).
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Tautological orbit theorem

If we replace the condition that the “module” Lie(F ) is locally
finitely generated with the condition that the “presheaf” is locally
finitely generated, then we have

Theorem

Let F be a presheaf of Cν-vector fields such that Lie(F ) is a locally
finitely generated presheaf. Then we have

F (x) = Lie(F )(x), ∀x ∈ M.
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Real analytic case

Let {sα}α∈Λ be a family of real analytic vector fields on M. Then
the presheaf of Cω-modules generated by {sα}α∈Λ is locally finitely
generated.

Theorem

Let F be a “globally generated” presheaf of Cω-vector fields. Then we
have

F (x) = Lie(F )(x), ∀x ∈ M.
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Summary

Generalize the orbit theorem for tautological control systems.

Orbits are Cν-immersed submanifolds. Their tangent space at each
point is described by the presheaf of modules F .

The sheaf structure of Lie(F ) plays a crucial role in characterizing
the tangent space to the orbits.

If the “presheaf” Lie(F ) is locally finitely generated, then
Lie(F )(x) = F (x)
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