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Abstract

The notion of a pseudogroup provides an apt generalisation of the set of flows asso-
ciated with a control system. The notion of a groupoid provides an apt generalisation
of a pseudogroup. With this as motivation, control systems in Lie groupoids are con-
sidered, and a list of conditions is provided that are equivalent to local reachability for
such control systems.
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1. Introduction

In this paper we shall study a generalisation of the problem of local controllability
(which we call “reachability” in this paper) that is important in control theory. The gener-
alisation is developed in two directions. First, rather than considering flows of vector fields
as is typically the situation in control theory, we consider subsets of the pseudogroup of
local diffeomorphisms. This generalisation is not an uncommon one, as it appears in the
fundamental work of Sussmann [1973] on the Orbit Theorem and, for example, in the study
of reachability of Kupka and Sallet [1983]. The other generalisation we make is from pseu-
dogroups to Lie groupoids. This generalisation is considered in the work of Stefan [1974a,
1974b] on the Orbit Theorem, but has not really been developed by the control community.
In this paper we consider local reachability in the setting of Lie groupoids.

Of course, much work has been done on the problem of reachability in the geometric
control literature. Our approach is quite different from existing approaches. One way to
characterise the existing literature is that it consists of various sufficient conditions and nec-
essary conditions, typically Lie algebraic in nature, with attempts to close the gaps between
these. As is discussed by Lewis [2014, Chapter 1], the framework normally used to study
control systems is not feedback-invariant, and as a result the theorems obtained are not
feedback-invariant. That is, it can be the case that a theorem is conclusive or inconclusive
about the same system, depending on how controls are parameterised. That is to say, many
results on reachability are results on a control system with a fixed control paramaterisation.
This is most easily understood by considering the method of nilpotent approximation de-
veloped initially by Sussmann [1983, 1987], and used by many others subsequently [e.g.,
Bianchini and Kawski 2003, Bianchini and Stefani 1993, Hermes 1991, Kawski 1998]. In
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developing reachability conditions based on such a methodology, the conclusions will de-
pend in unpredictable ways on how one represents a system [Lewis 2014, Examples 1.1
and 1.2]. By contrast, here we develop inherently feedback-invariant necessary and suffi-
cient conditions for reachability by looking at germs and jets of local diffeomorphisms of
the system as mappings between germs and jets of functions. The conditions we obtain
come in two flavours. First we obtain algebraic conditions that can be interpreted as point
separating conditions for families of linear maps defined by our system’s local diffeomor-
phisms. Second, we obtain a separating hyperplane condition that is reminiscent to the
method frequently used to show that a system is not locally reachable, e.g., [Sussmann
1983, Proposition 6.3], [Kawski 1990, Example 5.2].

In all cases, the conditions have a rather different character than the Lie bracket con-
ditions normally encountered in the reachability literature. The intent is to develop a
diffeomorphism framework that can be subsequently used to develop conditions on vector
fields defining the flows for the system. In the last section of the paper we make explicit
the connection between our notions of reachability and the notions most commonly used in
control theory. However, the approach itself is interesting, independent of its connection to
more standard approaches, so we feel that it is worth independent explication.

1.1. An outline of the paper. As the paper has to do with reachability of systems defined
on Lie groupoids, and since this is not the usual setup for control theory, in Section 2 we
illustrate exactly how our formalism generalises the usual formalism. We do this by first
illustrating the well-known idea that pseudogroups arise naturally from flows of vector fields,
even vector fields with measurable time-dependence, thanks to the results of Jafarpour and
Lewis [2014]. Then we illustrate that pseudogroups admit the generalisation to étalé Lie
groupoids. The Lie groupoid formalism is useful because it allows for our particularly simple
notion of control system in Definition 3.1. In Section 3.2 we see that this notion of system
allows for many of the standard notions for reachability to make sense, e.g., accessibility
and reachability. In Section 3.3 we provide four conditions that are equivalent to local
reachability for certain large classes of systems. In Section 3.4 we illustrate explicitly how
our reachability definitions subsume any of the standard notions of reachability one can
find in the control theory literature.

1.2. Notation and background.

1.2.1. The basics. We use standard set theoretic conventions, with the exception that
when we write A ⊂ B we mean strict inclusion of sets. When we wish to allow for the
possibility that A = B we write A ⊆ B.

By Z we denote the set of integers, with Z>0 and Z≥0 denoting the sets of positive and
nonnegative integers, respectively. By R we denote the set of real numbers, with R>0 and
R≥0 denoting the positive real numbers and nonnegative real numbers, respectively.

1.2.2. Geometric notation. We mostly use the geometric notation and conventions
of [Abraham, Marsden, and Ratiu 1988]. Manifolds will be smooth (i.e., of class C∞)
or real analytic (i.e., of class Cω), and will be assumed to be Hausdorff and second count-
able, unless stated otherwise. (We will drop these conditions for the total space of a Lie
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groupoid.) The tangent bundle of a manifold M is denoted by πTM : TM → M and the
cotangent bundle by πT∗M : T∗M → M. For ν ∈ {∞, ω}, by Γν(TM) we denote the set
of Cν-vector fields on M which we regard as a vector space over R. By Cν(M) we denote
the set of R-valued functions on M of class Cν . By Cν(M;N) we denote the set of map-
pings of class Cν between manifolds M and N. If Φ ∈ Cν(M;N) and if g ∈ Cν(N), then
Φ∗f = f ◦Φ ∈ Cν(M) is the pull-back of f by Φ.

For a vector bundle E, Tk(E) denotes the k-fold tensor product of E and Sk(E) denotes
the degree k symmetric tensor algebra.

We let C∞M denote the sheaf of smooth functions on a smooth manifold M. The stalk at
x ∈ M we denote by C∞x,M, and a typical element of the stalk we denote by [f ]x. We have
the map

evx : C∞x,M → R
[f ]x 7→ f(x).

We shall also use the symbol evx to denote the mapping

evx : C∞(M)→ R
f 7→ f(x),

the exact meaning being clear from context. We will at various times use the fact that a
smooth manifold M is embedded in C∞(M)′, the dual of C∞(M) with the weak-∗ topol-
ogy [e.g., Agrachev and Sachkov 2004, Proposition 2.1]. Explicitly, this embedding is defined
by the mapping x 7→ evx, where evx ∈ C∞(M)′ is defined by evx(f) = f(x).

1.2.3. Jet bundles. We will work with jet bundles. For manifolds M and N, and k ∈ Z≥0,
by Jk(M;N) we denote the space of k-jets of mappings from M to N. By ρkl : Jk(M;N) →
Jl(M;N), k ≥ l, we denote the projection. For (x, y) ∈ M×N, Jk(x,y)(M;N) denotes the set of

k-jets of mappings that map x to y. We denote by Jkx(M;R) the k-jets of functions which map
x ∈ M to any value in R. For a mapping Φ ∈ C∞(M;N), we denote by jkΦ: M→ Jk(M;N)
the k-jet of Φ.

Infinite jets are defined as inverse limits. Thus

J∞(x,y)(M;N) = {φ : Z≥0 → ∪k∈Z≥0
Jk(x,y)(M;N) | ρk+1

k (φ(k + 1)) = φ(k), k ∈ Z≥0}.

We take

J∞(M;N) =

◦⋃
(x,y)∈M×N

J∞(x,y)(M;N),

and define ρ∞k : J∞(M;N) → Jk(M;N) by ρ∞k (φ) = φ(k). We then regard J∞(M;N) as a
topological space with the inverse limit topology, i.e., the weakest topology for which the
mappings ρ∞k , k ∈ Z≥0, are continuous.

1.2.4. Topologies for spaces of vector fields. While this is not a paper about local
reachability of control systems defined by vector fields, we will make connections to these
sorts of systems in order to anchor our results to familiar things. In doing so, we will make
use of recent work by Jafarpour and Lewis [2014] on locally convex topologies for spaces
of smooth and real analytic vector fields. (Jafarpour and Lewis also describe topologies
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for spaces of finitely differentiable, locally Lipschitz, and holomorphic vector fields, but we
will not make use of these here.) To describe these topologies, we will merely provide the
seminorms that characterise them.

To define these seminorms we introduce appropriate fibre norms for jet bundles of the
tangent bundle. Let ν ∈ {∞, ω}. We suppose that the Cν-manifold M has a Cν-Riemannian
metric G and a Cν-affine connection ∇. The existence of these for r = ∞ is classical and
for r = ω is proved in [Jafarpour and Lewis 2014, Lemma 2.3] using the embedding theorem
of Grauert [1958] for real analytic manifolds. Let Tk(T∗M) denote the k-fold tensor product
of T∗M and let Sk(T∗M) denote the symmetric tensor bundle. First note that ∇ defines
a connection in T∗M by duality. Then ∇ defines a connection ∇k on Tk(T∗M) ⊗ TM by
asking that the Leibniz Rule be satisfied for the tensor product. Then, for a smooth vector
field X, we denote

∇(k)X = ∇k · · · ∇1∇X,

which is a smooth section of Tk+1(T∗M) ⊗ TM. By convention we take ∇0X = ∇X and
∇(−1)X = X. (The funny numbering makes this agree with the constructions in [Jafarpour
and Lewis 2014, §2.1].)

We then have a map

Sk∇ : JkTM→ ⊕kj=0Sk(T∗M)⊗ TM

jkX(x) 7→ (X(x), Sym1 ⊗ idTM(∇X)(x), . . . ,Symk ⊗ idTM(∇(k−1)X)(x)),
(1.1)

which can be verified to be an isomorphism of vector bundles [Jafarpour and Lewis 2014,
Lemma 2.1]. Here Symk : Tk(V)→ Sk(V) is defined by

Symk(v1 ⊗ · · · ⊗ vk) =
1

k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k).

Now we note that inner products on the components of a tensor product induce in a natural
way an inner product on the tensor product [Jafarpour and Lewis 2014, Lemma 2.3]. Thus,
if we suppose that we have a Riemannian metric G on M, there is induced a natural fibre
metric Gk on Tk(T∗M)⊗TM for each k ∈ Z≥0. We then define a fibre metric Gk on JkTM
by

Gk(jkX(x), jkY (x))

=

k∑
j=0

Gj

( 1

j!
Symj ⊗ idTM(∇(j−1)X)(x),

1

j!
Symj ⊗ idTM(∇(j−1)Y )(x)

)
.

(The factorials are required to make things work out with the real analytic topology.) The
corresponding fibre norm we denote by ‖·‖Gk .

Now we are in a position to define the seminorms that characterise the topologies on
Γ∞(TM) and Γω(TM). For the smooth case, for a compact set K ⊆ M and k ∈ Z≥0, we
denote

p∞K,k(X) = sup{‖X(x)‖Gk | x ∈ K}, X ∈ Γ∞(TM).

The set of seminorms p∞K,k, K ⊆ M compact, k ∈ Z≥0, defines a locally convex topology
for Γ∞(TM). To define the seminorms for Γω(TM), we denote by c0(Z≥0;R>0) the set
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of sequences (aj)j∈Z≥0
in R>0 converging to 0. Then, for a compact set K ⊆ M and for

a ∈ c0(Z≥0;R>0), we denote

pωK,a(X) = sup{a0a1 · · · ak‖X(x)‖Gk | x ∈ K, k ∈ Z≥0}, X ∈ Γω(TM).

The seminorms pωK,a, K ⊆ M compact, a ∈ c0(Z≥0;R>0), define a locally convex topology
for Γω(TM). In order to allow simultaneous treatment of the smooth and real analytic cases,
for a compact subset K ⊆ M, we will denote by pK one of the seminorms p∞K,k, k ∈ Z≥0, or
pωK,a, a ∈ c0(Z≥0;R>0), accepting a slight loss of precision.

1.2.5. Time-varying vector fields. The preceding locally convex topologies have many
valuable attributes, and we refer to [Jafarpour and Lewis 2014] for a detailed discussion of
these. For our purposes, these topologies permit a characterisation of useful classes of time-
varying vector fields. This allows one to consider control systems with locally essentially
bounded or locally integrable controls, rather than merely piecewise constant controls.

The definitions rely on notions of measurability and integrability for mappings into
Γν(TM), ν ∈ {∞, ω}. We shall give very terse definitions for these, referring to [Jafarpour
and Lewis 2014] for details. Let T ⊆ R be an interval. A mapping X : T → Γν(TM)
is measurable if X−1(O) is Lebesgue measurable for every open set O ⊆ Γν(TM). A
measurable mapping X : T → Γν(TM) is locally Bochner integrable if pK ◦X is locally
Lebesgue integrable for every seminorm pK , K ⊆ M compact. By LIΓν(T;TM) we denote
the set of locally Bochner integrable mappings from T to Γν(TM).

Note that, if X ∈ LIΓν(T;TM), then we have the time-varying differential equation
ξ′(t) = X(t)(ξ(t)). Jafarpour and Lewis [2014, Theorems 6.6 and 6.26] show that the
usual existence and uniqueness results hold for these differential equations. But, far more
significantly, they show that the dependence of flows on initial condition is Cν . By t 7→
ΦX
t,t0(x0) we denote the integral curve for X passing through x0 at time t0. We denote

DX = {(t, t0, x0) ∈ R× R×M | ΦX
t,t0(x0) exists}.

The fact that flows for vector fields from LIΓν(T;TM) depend on initial condition in a Cν

manner will allow us to connect our groupoid theory to standard control theory at a level of
generality that has hitherto not been possible. Normally, when applying pseudogroup theory
(and so the natural extension of this to Lie groupoids), one has to restrict to what amounts
to piecewise constant controls, since in this case one is ensured that one is composing
Cν-local diffeomorphisms [cf. Kupka and Sallet 1983, Stefan 1974b, Sussmann 1973]. We,
however, can now do this for locally integrable time-dependence, considerably extending
the scope of the theory expounded in the paper.

2. From flows to pseudogroups and from pseudogroups to Lie groupoids

In order to fully understand the relationship between our constructions and results for
Lie groupoids with more common constructions and results in control theory, in this section
we present the path from the latter to the former.
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2.1. From flows to pseudogroups. Given a (possibly time-varying) vector field X on a
manifold M, the flow of X defines, for each time t0 ∈ R (the initial time), a family of local
diffeomorphisms indexed by the final time t. In [Jafarpour and Lewis 2014] a comprehensive
theory of time-varying vector fields is developed, providing the proper hypotheses for time-
varying flows to depend on initial condition in a manner whose regularity agrees with the
regularity of the vector field. Thus, the flow of a smooth vector field will define a family
of smooth local diffeomorphisms and the flow of a real analytic vector field will define a
family of real analytic diffeomorphisms. These families of local diffeomorphisms define a
pseudogroup generated by these flows, as considered by Sussmann [1973]. By restricting to
positive times we instead get a pseudosemigroup as considered by Kupka and Sallet [1983].

Let us make the preceding terminology and discussion precise. We note that the exact
definition of pseudogroup tends to vary a little from author to author. Our definition is
that which makes the connection with Lie groupoids most natural.

2.1 Definition: (Local diffeomorphisms, their inverses, and their compositions)
Let ν ∈ {∞, ω} and let M be a Cν-manifold.

(i) A Cν-local diffeomorphism of M is a mapping Φ: U → M, where U ⊆ M is open
and Φ is a Cν-diffeomorphism onto its image.

(ii) The open set U is the domain of Φ and will sometimes be denoted by dom(Φ). The
open set Φ(U) is the range of Φ and will sometimes be denoted by range(Φ).

(iii) The inverse of a local diffeomorphism Φ is Φ−1 : range(Φ)→ M.

(iv) If Φ1 and Φ2 are local diffeomorphisms, they are composable if range(Φ1) ∩
dom(Φ2) 6= ∅, and their composition is the local diffeomorphism Φ2 ◦Φ1 with domain
Φ−1

1 (dom(Φ2)) and range Φ2(range(Φ1)).

The set of all Cν-local diffeomorphisms of M is denoted by Diffνloc(M). •
We may now define the notion of a pseudogroup.

2.2 Definition: (Multiplicative family of local diffeomorphisms, pseudogroup) Let
ν ∈ {∞, ω} and let M be a Cν-manifold. A Cν-multiplicative family on M is a family
M of Cν-local diffeomorphisms satisfying the following conditions:

(i) if Φ ∈M then Φ−1 ∈M ;

(ii) if Φ1,Φ2 ∈M are composable, then Φ2 ◦Φ1 ∈M .

A Cν-multiplicative family M is

(iii) restricting if Φ ∈M and if V ⊆ dom(Φ), then Φ|V ∈M , and is

(iv) localising if, given a local diffeomorphism Φ of M and an open cover (Ua)a∈A of
dom(Φ) such that Φ|Ua ∈M for each a ∈ A, we have Φ ∈M .

(v) A Cν-prepseudogroup is a restricting Cν-multiplicative family.

(vi) A Cν-pseudogroup is a restricting, localising Cν-multiplicative family. •
In most applications of pseudogroups (or multiplicative families of local diffeomor-

phisms), one does not explicitly define the pseudogroup, but rather a set of generators,
in the sense of the following result.
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2.3 Proposition: (Multiplicative families and pseudogroups generated by a family
of local diffeomorphisms) Let ν ∈ {∞, ω}, let M be a Cν-manifold, and let Φ = (Φa)a∈A
be a family of Cν-local diffeomorphisms of M such that M = ∪a∈A dom(Φa). Then

(i) there exists a smallest Cν-multiplicative family M (Φ) such that Φ ⊆M (Φ);

(ii) there exists a smallest Cν-prepseudogroup Mrstr(Φ) such that Φ ⊆Mrstr(Φ);

(iii) there exists a smallest Cν-pseudogroup P(Φ) such that Φ ⊆P(Φ).

Proof: In each part of the proof, we merely define the relevant object, leaving to the reader
the relatively straightforward task of verifying that it has the desired properties.

(i) Let M (Φ) be the set of Cν-local diffeomorphisms of the form Φε1
1
◦ . . . ◦Φεk

k , where
Φj ∈ Φ and εj ∈ {−1, 1}, j ∈ {1, . . . , k}, are such that Φε1

1
◦ . . . ◦Φ

εj
j and Φ

εj+1

j+1 are compos-
able for j ∈ {1, . . . , k − 1}.

(ii) We let
Mrstr(Φ) = {Ψ|U | Ψ ∈M (Φ), U ⊆ dom(Ψ)}.

(iii) Let us define P(Φ) to be the set of Cν-local diffeomorphisms described as fol-
lows: Φ ∈P(Φ) if, for every x ∈ dom(Φ), there exists a1, . . . , ak ∈ A, ε1, . . . , εk ∈ {−1, 1},
and a neighbourhood V ⊆ dom(Φ) of x such that Φa1 ◦ . . . ◦Φaj and Φaj+1 are composable
for j ∈ {1, . . . , k − 1} and

Φ|V = Φε1
a1
◦ . . . ◦Φεk

ak
|V. �

2.4 Definition: (Multiplicative families generated by a family of local diffeomor-
phisms) Let ν ∈ {∞, ω} and let M be a Cν-manifold.

(i) The Cν-multiplicative family M (Φ) constructed in the proof of Proposition 2.3(i) is
the Cν-multiplicative family generated by Φ.

(ii) The Cν-prepseudogroup Mrstr(Φ) constructed in the proof of Proposition 2.3(ii) is
the Cν-prepseudogroup generated by Φ.

(iii) The Cν-pseudogroup P(Φ) constructed in the proof of Proposition 2.3(iii) is the Cν-
pseudogroup generated by Φ. •

A special case that often arises is when one generates a pseudogroup from a restricting
multiplicative family.

2.5 Definition: (Pseudogroup generated by a prepseudogroup) Let ν ∈ {∞, ω}, let
M be a Cν-manifold, and let P be a Cν-prepseudogroup. The Cν-pseudogroup associ-
ated to P is the Cν-pseudogroup generated by P, and is denoted by P+. •

Let us see how flows of vector fields give rise to pseudogroups.

2.6 Definition: (Pseudogroup associated to a vector field) Let ν ∈ {∞, ω}, let M be
a Cν-manifold, let T ⊆ R be an interval, and let X ∈ LIΓν(T;TM).

(i) For t0, t ∈ T, let ΦX
t,t0 be the Cν-local diffeomorphism with domain

dom(ΦX
t,t0) = {x ∈ M | (t, t0, x) ∈ DX}.

(ii) For t0 ∈ T, the (X, t0)-pseudogroup is the Cν-pseudogroup P(X, t0) generated by
the family ΦX

t,t0 , t ∈ T, of local diffeomorphisms. •
We observe that M = ∪t∈T dom(ΦX

t,t0), so the (X, t0)-pseudogroup is well-defined.



8 S. Jafarpour and A. D. Lewis

2.2. From pseudogroups to Lie groupoids. Now we generalise from pseudogroups in the
preceding section to Lie groupoids. This generalisation will come in handy, even when
just dealing with Lie groupoids arising from pseudogroups, for defining what is meant by a
“control system.”

Let us first define what we mean by a groupoid and then a Lie groupoid; we refer to [e.g.,
Mackenzie 1987] for more details.

2.7 Definition: (Groupoid) Let B be a set. A groupoid over B is a set G such that, for
every x, y ∈ B, there exists a (possibly empty) subset G(x, y) ⊆ G of arrows from x to y
with the property that

G = ∪{G(x, y) | x, y ∈ B},

along with the following mappings:

(i) for each x ∈ B, an element idx ∈ G(x, x);

(ii) for each x, y, z ∈ B, a mapping compx,y,z : G(x, y)× G(y, z)→ G(x, z), and we denote
compx,y,z(g, h) = h ∗ g:

(iii) for each x, y ∈ B, a mapping invx,y : G(x, y)→ G(y, x) and we denote invx,y(g) = g−1,

and these mappings must obey the following rules:

(iv) idx ∗g = g and h ∗ idx = h for all g ∈ G(y, x) and h ∈ G(x, y), x, y ∈ B;

(v) h ∗ (g ∗ f) = (h ∗ g) ∗ f for all f ∈ G(x, y), g ∈ G(y, z), h ∈ G(z, w), x, y, z, w ∈ B;

(vi) g ∗ g−1 = idy and g−1 ∗ g = idx for all g ∈ G(x, y), x, y ∈ B.

A groupoid will often be denoted by G ⇒ B. We have source and target mappings
src : G→ B and tgt : G→ B defined by asking that src(g) = x and tgt(g) = y for g ∈ G(x, y).
We denote

G2 = {(g, h) ∈ G× G | g ∈ G(x, y), h ∈ G(y, z) for some x, y, z ∈ B}

and define comp: G2 → G by comp(g, h) = compx,y,z(g, h) if g ∈ G(x, y) and h ∈ G(y, z).
We also define inv: G→ G by inv(g) = invx,y(g) if g ∈ G(x, y).

We also have the following constructions.

(vii) For x ∈ B, the source fibre of x is Gx = src−1(x) and the target fibre of x is
Gx = tgt−1(x). We also denote Gyx = Gx ∩ Gy = G(x, y). •

We shall not deal too much with any sort of general groupoid, but mainly consider Lie
groupoids whose definition we give shortly. We will, however, use the inverse groupoid
of a groupoid G ⇒ B which is the groupoid G′ ⇒ B defined by G′ = G, G′(x, y) = G(y, x),
and with groupoid mappings id′x = idx, comp′x,y,z(g, h) = compz,y,x(h−1, g−1), and inv′x,y =
inv−1

x,y. Note that src′(g) = tgt(g) and tgt′(g) = src(g).
Let us now turn to Lie groupoids.

2.8 Definition: (Lie groupoid) Let ν ∈ {∞, ω}. A groupoid G ⇒ M is a Cν-Lie
groupoid if

(i) both G and M are Cν-manifolds, with M Hausdorff and second countable, but G not
necessarily so,

(ii) the groupoid mappings x 7→ idx, comp, and (x, y) 7→ invx,y are smooth, and

(iii) src and tgt are smooth submersions. •
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Note that, by the Inverse and Implicit Function Theorems, the inverse groupoid of a
Lie groupoid is a Lie groupoid.

Let us see how pseudogroups give rise to groupoids. We let ν ∈ {∞, ω}, let M be a
Cν-manifold, and let P be a Cν-prepseudogroup on M. Let x ∈ M and let Nx be the set
of neighbourhoods of x. Let Φ,Ψ ∈ P be such that dom(Φ),dom(Ψ) ∈ Nx. We say that
Φ and Ψ are equivalent if there exists a neighbourhood W ⊆ dom(Φ) ∩ dom(Ψ) of x such
that Φ|W = Ψ|W. The set of such equivalence classes we denote by Gx,P . The equivalence

class of a local diffeomorphism we denote by [Φ]x. We also denote GP =
◦
∪x∈M Gx,P , which

is the groupoid of germs of P. We make this a groupoid by defining src, tgt : GP → M
by

src([Φ]x) = x, tgt([Φ]x) = Φ(x),

and by defining groupoid composition, inversion, and identity by

[Ψ]Φ(x) ∗ [Φ]x = [Ψ ◦Φ]x, [Φ]−1
x = [Φ−1]Φ(x), idx = [id]x.

We can make this a Lie groupoid by defining the étalé topology for GP to be that with
the basis

B(Φ) = {[Φ]x | x ∈ dom(Φ)}, Φ ∈P.

It is clear that src is a local homeomorphism when GP has the étalé topology, and this
establishes a differentiable structure for GP . This differentiable structure is not generally
second countable, and is generally Hausdorff only when ν = ω. In any case, GP is a Lie
groupoid. In particular, we have the groupoid GDiffνloc(M) associated to the pseudogroup of

all local Cν-diffeomorphisms.
It is also possible to extract a pseudogroup from a certain sort of Lie groupoid, and

we refer to [Moerdijk and Mrcun 2003, Page 138] for this construction. One condition on
a Lie groupoid G ⇒ M for there to be a nice correspondence between it and a groupoid
associated with a pseudogroup as above is that the groupoid be what is known as an étalé
Lie groupoid , meaning that src and tgt are local diffeomorphisms. This will happen, for
example, if both G and B have a well-defined dimension and these dimensions are the same.

3. Control systems in étalé Lie groupoids

In this section we introduce the notion of a control system in an étalé Lie groupoid, and
the associated notions of reachability for such systems. In Section 3.3 we give conditions
equivalent to reachability for systems whose reachable sets satisfy what we call the “gen-
eralised LARC,” since this condition generalises the property of reachable sets for smooth
control systems satisfying the usual LARC. We close the section, and the paper, by con-
necting in Section 3.4 our Lie groupoid notions of reachability to the more common notions
in control theory.

3.1. Definition. We begin with the definition.
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3.1 Definition: (Control system in an étalé Lie groupoid) Let ν ∈ {∞, ω} and let
G ⇒ M be an étalé Cν-Lie groupoid. A control system in G is an open submanifold Σ.
For x ∈ M, we denote Σx = Σ ∩ src−1(x). •

Given a control system Σ in an étalé Lie groupoid G ⇒ M, we define a control system
in the inverse groupoid G′ ⇒ M by

Σ−1 = {g ∈ G | g−1 ∈ Σ}.

In Section 3.4 we shall see how ordinary control systems give rise to various control
systems in groupoids, according to the preceding definition.

3.2. Reachability definitions. With the above notion of control system in an étalé Lie
groupoid, it is easy to define the associated notions of reachability.

We first define the reachable set.

3.2 Definition: (Reachable set) Let ν ∈ {∞, ω}, let G⇒ M be an étalé Cν-Lie groupoid,
and let Σ ⊆ G be a control system in G. For x ∈ M, the reachable set from x for Σ is

RΣ(x) = {tgt(g) | g ∈ Σx}. •

Readers familiar with groupoids will notice that the reachable set for Σ from x is a
subset of the orbit of the groupoid through x.

We shall use the notation

Σint
x = {g ∈ Σx | tgt(g) ∈ int(RΣ(x))}.

It is now easy to give some standard notions of reachability for control systems in étalé
Lie groupoids.

3.3 Definition: (Accessibility and reachability) Let ν ∈ {∞, ω}, let G⇒ M be an étalé
Cν-Lie groupoid, and let Σ ⊆ G be a control system in G. The control system Σ is:

(i) accessible from x0 if int(RΣ(x0)) 6= ∅;
(ii) locally accessible from x0 if, for every neighbourhood U of x0, int(RΣ(x0)∩U) 6= ∅;
(iii) reachable from x0 if RΣ(x0) = M;

(iv) locally reachable from x0 if x0 ∈ int(RΣ(x0)). •
As is well-known in the controllability literature for “ordinary” control systems, while it

may be comparatively easy to characterise local accessibility, the characterisation of local
reachability for completely general systems is a difficult task. The following condition on
reachable sets is one that will allow us to give useful characterisations of reachability.

3.4 Definition: (Generalised LARC) Let ν ∈ {∞, ω}, let G ⇒ M be an étalé Cν-Lie
groupoid and let Σ ⊆ G be a control system in G. The system Σ satisfies the generalised
Lie algebra rank condition , or the generalised LARC , at x0 if there exists a neigh-
bourhood U of x0 such that both Σ and Σ−1 are locally accessible from x for every x ∈ U. •

We call this “the generalised LARC” because this condition is satisfied by an ordinary
control system if it satisfies the classical LARC at x0. The following property of systems
satisfying the generalised LARC will be of importance for us.
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3.5 Lemma: (Property of systems satisfying the generalised LARC) Let ν ∈
{∞, ω}, let G ⇒ M be an étalé Cν-Lie groupoid, and let Σ ⊆ G be a control system in
G. If Σ satisfies the generalised LARC from x0, then Σ is locally reachable from x0 if and
only if cl(RΣ(x0)) contains a neighbourhood of x0.

Proof: Suppose that Σ is not locally reachable from x0 and that cl(RΣ(x0)) contains a
neighbourhood of x0. Since Σ satisfies the generalised LARC, there is a neighbourhood U

of x0 such that U ⊆ cl(RΣ(x0)) and such that Σ and Σ−1 are locally reachable from each
x ∈ U. Since Σ is not locally reachable from x0, let x ∈ U be such that x 6∈ RΣ(x0). Since
Σ−1 is locally accessible from x, int(RΣ−1(x))∩U 6= ∅. Moreover, since U ⊆ cl(RΣ(x0)), we
have

int(RΣ−1(x)) ∩ U ∩ RΣ(x0) 6= ∅.

Thus we let y ∈ int(RΣ−1(x)) ∩U ∩RΣ(x0), g ∈ Σ−1
x , and h ∈ Σx0 be such that tgt′(g) = y

and tgt(h) = y. Note that g−1 ∈ Σ and that src(g−1) = tgt′(g) = y. Thus the composition
g−1 ∗ h is well-defined (in G) and

src(g−1 ∗ h) = src(h) = x0, tgt(g−1 ∗ h) = tgt(g−1) = src′(g) = x.

Thus x ∈ RΣ(x0), which contradiction gives this part of the result.
Conversely, if cl(RΣ(x0)) does not contain a neighbourhood of x0, then clearly Σ is not

locally reachable from x0. �

3.3. Conditions equivalent to local reachability. In this section we give conditions equiv-
alent to local reachability for control systems in groupoids. To state the conditions, we
make a few preliminary observations. If g ∈ G, then there is a neighbourhood U of src(g)
and a neighbourhood V of g in G such that src|V is a Cν-diffeomorphism onto U and tgt|V
is a Cν-diffeomorphism onto its image. If g ∈ Σ, we can moreover choose U so that V ⊆ Σ.
Thus we have a local Cν-diffeomorphism (Φg,U) defined by Φg = tgt ◦ (src|V)−1. This then
gives a germ of a local diffeomorphism at x that we denote by γg ∈ Gx,Diffνloc(M). For x ∈ M

and g ∈ src−1(x) we then have a mapping

γ∗g : C∞(M)→ C∞x,M

f 7→ [Φ∗gf ]x

(we note that the mapping is independent of the choice of representative Φg of the germ
γg). We similarly define

j∞γ
∗
g : C∞(M)→ J∞x (M;R)

f 7→ j∞(Φ∗gf)(x).

For x ∈ M we also define
germx : C∞(M)→ C∞x,M

f 7→ [f ]x.

All of the preceding mappings are R-linear. Moreover, although we do not make use of this
fact in this paper, all of the preceding mappings are continuous with appropriate topologies,
which we now briefly describe. The topology for C∞(M) is the classical topology of uniform
convergence of all derivatives on compact sets. One description of this topology is given by
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Jafarpour and Lewis [2014, §3.1]. The topology for C∞x,M is the direct limit topology for the
directed system C∞(U), U a neighbourhood of x. This is called the stalk topology and is
discussed in some generality by Lewis [2014, §4.4]. The topology for J∞x (M;R) is the inverse
limit topology described in Section 1.2.3.

With this terminology, we have the following result.

3.6 Theorem: (Conditions equivalent to local reachability) Let ν ∈ {∞, ω}, let G⇒
M be an étalé Cν-Lie groupoid, and let Σ ⊆ G be a control system in G that satisfies the
generalised LARC at x0. Then the following statements are equivalent:

(i) Σ is locally reachable from x0;

(ii) ∩g∈Σx0
ker(evx0 ◦γ

∗
g ) ⊆ ker(germx0);

(iii) ∩g∈Σint
x0

ker(γ∗g ) ⊆ ker(germx0);

(iv) ∩g∈Σint
x0

ker(j∞γ
∗
g ) ⊆ ker(germx0);

(v) there exists no f ∈ C∞(M) with the following properties (thinking of f as a continuous
linear functional on C∞(M)′ in the weak-∗ topology):

(a) evx0 ∈ ker(f);

(b) for any neighbourhood U of x0, we have

{x ∈ M | f(x) ∈ R<0} ∩ U 6= ∅, {x ∈ M | f(x) ∈ R>0} ∩ U 6= ∅;

(c) the hyperplane ker(f) separates cl(RΣ(x0)) and (M \ cl(RΣ(x0))).

Proof: (i) =⇒ (ii) Suppose that Σ is locally reachable from x0. Thus there exists a neigh-
bourhood U ⊆ M of x0 such that

U ⊆ ∪g∈Σx0
tgt(g).

Suppose that f ∈ C∞(M) satisfies evx0 ◦γ
∗
g (f) = 0 for every g ∈ Σx0 . Let x ∈ U and let

gx ∈ Σx0 satisfy x = tgt(gx). Let U′ ⊆ U be a neighbourhood of x0 and V′ ⊆ G be a
neighbourhood of gx such that src|V′ is a diffeomorphism onto U′. We then have

f(x) = f ◦ tgt(gx) = f ◦ tgt ◦ (src|U′)−1(x0) = f ◦Φg(x0) = evx0 ◦γ
∗
gx(f) = 0.

Then f is identically zero on U and so f ∈ ker(germx0).
(ii) =⇒ (i) Suppose that Σ is not locally reachable. Since Σ is not locally reachable and

satisfies the generalised LARC, Lemma 3.5 implies the following:

1. every neighbourhood of x0 intersects RΣ(x0);

2. every neighbourhood of x0 intersects RΣ(x0)c , M \ cl(RΣ(x0)).

Therefore, there exists f ∈ C∞(M) with the property that f(x) ∈ R>0 for every x ∈ RΣ(x0)c

and f(x) = 0 for every x ∈ cl(RΣ(x0)) (this is a standard argument using bump functions
and partitions of unity). For g ∈ Σx0 we have

evx0 ◦γ
∗
g (f) = f ◦ tgt(g) = 0

since f vanishes on RΣ(x0). However, germx0(f) 6= 0 and this gives the desired conclusion.
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(iii) =⇒ (ii) Suppose that (ii) does not hold. Thus there exists f ∈ C∞(M) such that
germx0(f) 6= 0 but that evx0 ◦γ

∗
g (f) = 0 for all g ∈ Σx0 . Let g ∈ Σint

x0 and let U ⊆ RΣ(x0)
be a neighbourhood of tgt(g). Our hypotheses on f ensure that f(x) = 0 for all x ∈ U.
Let Φg be a representative of γg with the domain of Φg being some neighbourhood V of x0.
By shrinking V, we can ensure that Φg(V) ⊆ U. We then have f ◦Φg(x) = 0 for all x ∈ V,
giving γ∗g (f) = 0. This shows that (iii) does not hold.

(i) =⇒ (iv) Suppose that (i) holds and let

f ∈ ∩g∈Σint
x0

ker(j∞γ
∗
g ).

This implies, in particular, that f ◦Φg(x0) = 0 for g ∈ Σint
x0 . Since x0 ∈ int(RΣ(x0)), this

implies that f(x) = 0 for x in some neighbourhood of x0. In other words, germx0(f) = 0.
(iv) =⇒ (iii) Let f ∈ ∩Σint

x0
ker(γ∗g ). This implies that, for each g ∈ Σint

x0 , there is a

neighbourhood Ug of x0 such that f ◦Φg(x) = 0 for x ∈ Ug. This implies that the infinite
jet of the righthand side is zero, and so f ∈ ∩g∈Σint

x0
ker(j∞γ

∗
g ). Thus f ∈ ker(germx0), as

desired.
(i) =⇒ (v) Suppose that there exists f ∈ C∞(M) with the three given properties.

Consider the closed hyperplane Pf = ker(f) and the open half-spaces

H+
f = {α ∈ C∞(M)′ | α(f) > 0}, H−f = {α ∈ C∞(M)′ | α(f) < 0}.

We suppose, without loss of generality, that M\cl(RΣ(x0)) ⊆ H−f . Let U be a neighbourhood

of x0. Condition (v b) on f ensures that U ∩H−f 6= ∅. That is, every neighbourhood of x0

contains points not in the closure of the reachable set, and so Σ is not locally reachable
from x0.

(v) =⇒ (i) Suppose that Σ is not locally reachable from x0. Then, arguing as in the
proof of the implication (ii) =⇒ (i) above, we have f−, f+ ∈ C∞(M) such that

1. f+(x) ∈ R>0 for x ∈ int(RΣ(x0)),

2. f+(x) = 0 for x ∈ M \ int(RΣ(x0)),

3. f−(x) ∈ R<0 for x ∈ RΣ(x0)c, and

4. f−(x) = 0 for x ∈ cl(RΣ(x0)).

Then define f ∈ C∞(M) by f = f+ + f−. Therefore, since Σ is not locally reachable and
satisfies the generalised LARC, by Lemma 3.5 f takes both positive and negative values in
any neighbourhood of x0. This ensures that condition (v b) holds. Since x0 6∈ int(RΣ(x0))
and since x0 ∈ cl(RΣ(x0)), we have f(x0) = 0 and so evx0 ∈ ker(f). Finally, we have that
f(x) ≥ 0 for x ∈ cl(RΣ(x0)) and f(x) < 0 for x ∈ RΣ(x0)c. This is the desired conclusion.�

The middle three conditions of the theorem all admit an interesting interpretation in
terms of a generalisation of the usual notion of a point separating family of mappings.

3.7 Definition: (A0-point separating) Let U, V, and W be R-vector spaces, let S ⊆
HomR(U;V) be a family of linear maps, and let A0 ∈ HomR(U;W). The family S is

(i) A0-point separating if A(u) = 0 for all A ∈ S implies that A0(u) = 0;

(ii) point separating if it is idU-point separating. •
With this definition we immediately have the following equivalences for the conditions

of Theorem 3.6:
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1. Condition (ii)⇐⇒ {evx0 ◦γ
∗
g | g ∈ Σx0} is germx0-point separating;

2. Condition (iii)⇐⇒ {γ∗g | g ∈ Σint
x0 } is germx0-point separating;

3. Condition (iv)⇐⇒ {j∞γ∗g | g ∈ Σint
x0 } is germx0-point separating.

3.4. Connection to usual notions of reachability. Let us see how the above definition of
a control system in an étalé Lie groupoid relates to the usual notion of a control system.
We allow here a rather general notion of system, namely that of a “tautological control
system,” following Lewis [2014]; in particular we refer to this cited work for a comprehensive
discussion of the relationship between this quite general class of systems and more normal
types of control systems, e.g., those of the “ẋ = F (x, u)” form. We let ν ∈ {∞, ω}, let M
be a Cν-manifold, and let F be a subpresheaf of sets of Cν-vector fields on M. For U ⊆ M
open, the subpresheaf F defines a subset F (U) of Cν-vector fields on U. For an interval
T ⊆ R we denote

LIΓν(T; F (U)) = {X ∈ LIΓν(T;TU) | Xt ∈ F (U)}.

If T ∈ R>0 then, for X ∈ LIΓν([0, T ]; F (U)) we have the local diffeomorphism ΦX
T,0, possibly

with empty domain. We then define

ΣF ,T = {[Φ]x ∈ GDiffνloc(M)| x ∈ dom(Φ), Φ = ΦX
T,0

for some X ∈ LIΓν([0, T ]; F (U)) and some U ⊆ M open}.

We also define
ΣF ,≤T = ∪t∈[0,T ]ΣF ,t, ΣF = ∪t∈R≥0

ΣF ,t.

Thus we see that associated to the tautological control system (M,F ) are three sorts of
control systems, ΣF ,T , ΣF ,≤T , and ΣF , in the étalé Lie groupoid GDiffνloc(M).

One then has the following notions of reachability for tautological control systems, made
using our notions of reachability for control systems in groupoids.

3.8 Definition: (Accessibility and reachability for tautological control systems)
Let ν ∈ {∞, ω} and let G = (M,F ) be a Cν-tautological control system with the associated
groupoid control systems ΣF ,T , ΣF ,≤T , and ΣF , as above. For x0 ∈ M, the system G is:

(i) accessible from x0 if ΣF is accessible from x0;

(ii) strongly accessible from x0 if ΣF ,T is accessible from x0 for every T ∈ R>0;

(iii) locally accessible from x0 if ΣF is locally accessible from x0;

(iv) strongly locally accessible from x0 if ΣF ,T is locally accessible for every T ∈ R>0;

(v) small-time accessible from x0 if there exists T ∈ R>0 such that ΣF ,≤t is accessible
from x0 for every t ∈ (0, T ];

(vi) small-time strongly accessible if there exists T ∈ R>0 such that ΣF ,t is accessible
for every t ∈ (0, T ];

(vii) small-time locally accessible from x0 if there exists T ∈ R>0 such that ΣF ,≤t is
locally accessible from x0 for every t ∈ (0, T ];

(viii) small-time strongly locally accessible if there exists T ∈ R>0 such that ΣF ,t is
locally accessible for every t ∈ (0, T ];
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(ix) reachable from x0 if ΣF is reachable from x0;

(x) strongly reachable from x0 if ΣF ,T is reachable from x0 for every T ∈ R>0;

(xi) locally reachable from x0 if ΣF is locally reachable from x0;

(xii) strongly locally reachable from x0 if ΣF ,T is locally reachable from x0 for every
T ∈ R>0;

(xiii) small-time reachable from x0 if there exists T ∈ R>0 such that ΣF ,≤t is reachable
from x0 for every t ∈ (0, T ];

(xiv) small-time strongly reachable from x0 if there exists T ∈ R>0 such that ΣF ,t is
reachable from x0 for every t ∈ (0, T ];

(xv) small-time locally reachable from x0 if there exists T ∈ R>0 such that ΣF ,≤t is
locally reachable from x0 for every t ∈ (0, T ];

(xvi) small-time strongly locally reachable if there exists T ∈ R>0 such that ΣF ,t is
locally reachable for every t ∈ (0, T ]. •

This long list of definitions makes it clear that any of the standard notions of reachability
in control theory can be enveloped by our groupoid theory.
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