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Abstract. We consider a territorial model based on Voronoi tessellations, which form a partition of a planar
region by enclosing each agent in a polygon such that every point within the polygon is closest
to that agent instead of any other. Equilibria for this model correspond to centroidal Voronoi
tessellations. For rectangular domains and for small population sizes, we show that there can be
distinct coexisting stable equilibrium configurations, including the possibility of stable equilibria
that are not related by symmetry. By considering randomly distributed initial positions, we give
a statistical characterization of the basins of attraction for these equilibria in the case of a square
domain. Furthermore, we show that the final territory that an agent occupies can have a wide range
of sizes, which suggests that an individual can obtain a competitive advantage or disadvantage due
entirely to its initial position. By treating the ratio of the length of the shorter side to the length of
the longer side of the rectangle as a bifurcation parameter, we also numerically explore how stable
and unstable equilibrium configurations are related to each other. Results for three agents are
verified through experiments using robots which move according to a related territorial algorithm.
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1. Introduction. One of the most fundamental problems in all of biology is to understand
how organisms divide space into discrete territories that define their abilities to capture vital
resources and access mates. A territory is a geographical area that an individual animal
consistently defends against other individuals from its own species, typically in an attempt
to maximize its reproductive opportunities and/or to secure food resources for itself and its
young [37]. Territoriality is common across nearly all major groups of organisms on the planet.
While higher animals like vertebrates exhibit the most obvious territorial boundaries, lower
animals like invertebrates, plants, fungi, and possibly even bacteria are known to aggressively
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EQUILIBRIUM CONFIGURATIONS FOR A TERRITORIAL MODEL 1235

defend space through behaviors and chemicals.
We highlight the experiment in [2], which involved placing a number of mouthbreeder fish

Tilapia mossambica in a rectangular pool with a sandy floor. The males vying for suitable
breeding territory dug pits, spitting sand away from their pit centers. The resulting rims of
the pits were visualized in a top-view photograph taken with a polarizing filter, which showed
that the final arrangement of pits resembled a honeycomb-like pattern consisting mainly of
pentagonal and hexagonal regions. It has been shown [24, 36] that these territories can be
approximated by Voronoi tessellations [15], a partition of the (top-view projection of the) pool
formed by enclosing each fish in a polygon such that every point within the polygon is closest
to that particular fish instead of any other. Other observational determinations of territorial
boundaries include [19, 3, 4, 5, 14].

Various mathematical models have been developed to understand sizes and/or shapes that
territories will take for different species of animals. Some models determine the optimal size
for an agent’s territory based on a balance between the benefits of having a larger territory
with the costs of defending such a territory; see [1] and references therein. However, such
models often assume that the agents can adjust the boundaries of their territories without
consideration of the boundaries of their neighbors’ boundaries [1, 33]. Attempts to explicitly
account for interactions between neighboring agents have included partial differential equation
models describing the response of agents to boundary scent marks [28, 32], models in which
agents associate an attractiveness to different spatial regions based on their prior interactions
between other agents in each region [35], and game theoretic approaches [30, 34, 33].

In this paper, we consider an alternative model for territorial behavior based on Voronoi
tessellations which captures interactions between agents in a simple way [36]; also see [22,
23, 15]. Here, at a given time and for each agent, we calculate the set of points in the
domain of interest which is closer to that agent than to any other. Such a partition of the
domain is called a Voronoi tessellation, and the set of such points for each agent is called
the agent’s Voronoi cell. The agents then move toward the centroid of their current Voronoi
cell, continuing such adjustment until an equilibrium state is reached. An agent’s Voronoi
cell at such an equilibrium is considered to be its territory. We note that these equilibria are
centroidal Voronoi tessellations, that is, Voronoi tessellations for which the generators of the
Voronoi cells are the centroids of the cells defined using a constant density function [15]. This
model captures the tendency of each agent to occupy territory so that it is as far from others
as possible, and the notion that aggression of an agent decreases monotonically with distance
from the center of its territory. It ignores environmental influences and heterogeneity in the
individuals’ characteristics or behavior and assumes that the settlement is synchronous, i.e.,
that all agents begin competing for territory at the same time. The simulations in [36] of this
model focused on the behavior of large numbers of agents (N = 500) for periodic boundary
conditions and showed good agreement between the statistics of the territorial shapes from
the model and those found for the experiment in [2]. We remark that related models based on
Voronoi tessellations have become popular in the robotics literature, e.g., [9, 26, 20]. Here the
motivation might be the performance of spatially distributed sensing tasks such as surveillance
or search and rescue.

In section 2 we describe the model from [36] in more detail. In section 3 we discuss
stability properties for equilibrium configurations. In section 4 we consider the model for
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1236 R. VOTEL ET AL.

a small population (N = 2 up to N = 9) in a square domain for which the boundaries of
the domain form boundaries of the Voronoi cells as appropriate. We find that for certain
population sizes there are distinct coexisting stable equilibrium configurations, sometimes
related by symmetry and sometimes not. An agent can end up with a much larger or smaller
territory (and corresponding competitive advantage or disadvantage) due entirely to the initial
positions of the agents, and we give a statistical characterization of the likelihood of the system
reaching different equilibria. In section 5, we consider the model for a small population in
a rectangular domain, again with the boundaries of the domain forming boundaries of the
Voronoi cells as appropriate. By treating L, the ratio of the length of the shorter side to the
length of the longer side of the rectangle, as a bifurcation parameter, we numerically explore
how stable and unstable equilibrium configurations are related to each other and identify
rectangles which have coexisting stable equilibrium configurations. Results for three agents
are verified through experiments using robots which move according to a related territorial
algorithm, as described in section 6. Concluding remarks are given in section 7. We remark
that we focus on small numbers of agents and square and rectangular domain shapes because
these are natural for controlled laboratory experimentation.

2. The model. We consider N agents in a two-dimensional rectangular domain D with
sides of length 1 and L. Without loss of generality, we take L ≤ 1, where equality corresponds
to the special case of a square domain. The location of the ith agent at time step n is x(n)

i .
The Voronoi cell [15] for the ith agent at time step n is defined as

(2.1) V
(n)
i = {x ∈ D | |x− xi| < |x − xj| for j = 1, . . . , N, j �= i},

with centroid

(2.2) c(n)
i =

1

|V (n)
i |

∫
V

(n)
i

xdx,

where |V (n)
i | is the area of Voronoi cell V

(n)
i . Each agent’s location at time step n + 1 is

determined as [36]

(2.3) x(n+1)
i = x(n)

i +
(
c(n)

i − x(n)
i

)
/M, i = 1, . . . , N,

where M is a constant greater than or equal to 1; that is, each agent moves a fraction of
the distance toward the centroid of its Voronoi cell. Biologically, M measures the extent to
which an agent moves toward the centroid of its Voronoi cell before reevaluating how to move.
We remark that the centroids ci are nonlinear functions of the locations of the agents; such
nonlinearity leads to the richness of the results reported below.

We simulate this model using MATLAB, taking advantage of its built-in voronoi and
voronoin commands, and using John Burkhardt’s publicly available MATLAB geometry
command package to perform certain calculations such as finding centroids of the Voronoi
cells from their vertices [7]. To force the boundaries of Voronoi cells to be the boundaries of
D, as appropriate, we place four images of each agent outside D (one reflected about each
side of D) for each agent.
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Numerical simulation reveals that for all cases considered (N = 2, . . . , 9, various values of
M , and many random and nonrandom initial conditions) the dynamical system (2.3) equili-
brates as n → ∞ to a stable equilibrium configuration satisfying

(2.4) x(n+1)
i = x(n)

i , i = 1, . . . , N.

We find that for certain values of N and L, there are distinct coexisting stable equilibrium
configurations, sometimes related by symmetry and sometimes not. For this model, we do
not find more complicated attractors such as periodic orbits.

3. Stability properties of equilibrium configurations. The stability properties of the equi-
librium configurations may be determined numerically by calculating the eigenvalues (using
finite differences) of the linearization of the system about the equilibrium configuration. The
following results show that the existence and stability properties of equilibrium configurations
are independent of the parameter M .

Proposition 3.1. The same equilibrium configurations exist for any value of M .
Proof. The locations of the centroids of Voronoi cells are independent of M , so if the

system is at an equilibrium configuration for a particular value of M , meaning that all agents
are at the centroids of their Voronoi cells, then it will also be an equilibrium configuration for
any other value of M .

We now give several results which show that the stability properties of the equilibrium
configurations for any M can be determined by the stability properties for M = 1.

Proposition 3.2. If an equilibrium configuration is asymptotically stable for M = 1, then it
is asymptotically stable for all M > 1.

Proof. Since the centroids ci are independent of M , the Jacobian of the update map (2.3)
evaluated at the equilibrium must take the form

(3.1) J = I +
K

M
,

where I is the 2N × 2N identity matrix, and K is a 2N × 2N matrix which is independent of
M . Letting

λ = 1 +
μ

M

be an eigenvalue of J , we see that

det
[
I +

K

M
−
(
1 +

μ

M

)
I

]
= 0.

Simplifying,

det
[

K

M
− μ

M
I

]
= 0 ⇒ det[K − μI] = 0.

Thus, μ is an eigenvalue of K, so that μ is independent of M .
Now, if the equilibrium is stable for M = 1, then for all eigenvalues

(1 + μr)2 + μ2
i < 1 ⇒ μ2

i < 1 − (1 + μr)2,
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where μ = μr + iμi. Thus,

|λ|2 =
∣∣∣1 +

μ

M

∣∣∣2 =
(
1 +

μr

M

)2
+
( μi

M

)2

<
(
1 +

μr

M

)2
+

1
M2

[
1 − (1 + μr)2

]
= 1 +

2μr

M

(
1 − 1

M

)
.(3.2)

Now, since the equilibrium is stable for M = 1, we must have

−1 < 1 + μr < 1 ⇒ −2 < μr < 0.

Furthermore, for M > 1, we have 1 − 1
M > 0. Thus,

2μr

M

(
1 − 1

M

)
< 0,

so from (3.2)
|λ|2 < 1.

That is, for M > 1 all eigenvalues of the Jacobian evaluated at the equilibrium lie within the
unit circle so that the equilibrium is asymptotically stable.

We remark that, following [15], one can define the “energy” of a configuration as

(3.3) G =
N∑

i=1

∫
x∈Vi

|x− xi|2dx ≡
N∑

i=1

Gi.

Notice that G does not depend on M . Applying Proposition 6.2 of [15] in componentwise
form, we have

(3.4) x(n+1)
i = x(n)

i − 1

2M |V (n)
i |

∂G

∂xi
.

We note that x(n+1)
i = x(n)

i for all i (that is, the system is at an equilibrium) if and only if
∂G
∂xi

= 0 for all i. Now, defining

G(n) = G
(
x(n)

1 ,x(n)
2 , . . . ,x(n)

N

)
,

we have

G(n+1) = G
(
x(n+1)

1 ,x(n+1)
2 , . . . ,x(n+1)

N

)

= G

(
x(n)

1 − 1

2M |V (n)
1 |

∂G

∂x1
,x(n)

2 − 1

2M |V (n)
2 |

∂G

∂x2
, . . . ,x(n)

N − 1

2M |V (n)
N |

∂G

∂xN

)
.

Sufficiently close to an equilibrium, we can approximate this as

(3.5) G(n+1) ≈ G(n) − 1
2M

N∑
i=1

1

|V (n)
i |

∣∣∣∣ ∂G

∂xi

∣∣∣∣
2

,
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where the derivatives are evaluated at (x(n)
1 ,x(n)

2 , . . . ,x(n)
N ). Thus in a neighborhood of an

equilibrium,

(3.6) G(n+1) ≤ G(n),

with equality only at the equilibrium. We remark that stable equilibria correspond to local
minima of G; however, they need not be global minima, as evidenced by the coexisting stable
equilibria described below which generically have different values of G. Furthermore, for
M = 1, Lemma 2.2 of [16] gives an alternative argument which shows that (3.6) always holds,
with equality only when the system is at an equilibrium.

Proposition 3.3. If an equilibrium configuration is unstable for M = 1, then it is unstable
for all M > 1.

Proof. Suppose that the equilibrium X is unstable for M = 1. Writing the update map
(2.3) as x(n+1) = f(x(n)), the unstable manifold of X is the set

W u(X) = {x | fk(x) → X, k → −∞},
that is, the set of points whose infinite iterated sequence of preimages approaches the equi-
librium X. Consider a point Xu �= X on W u(X), sufficiently close to the equilibrium so that
(3.5) holds. From (3.6), G(Xu) < G(f−1(Xu)) < G(f−2(Xu)) < . . .. Thus, G(Xu) < G(X);
we remark that this relationship holds for all M > 1 since G is independent of M .

Since Xu is not an equilibrium, G(f(Xu)) < G(Xu) < G(X), so (3.5) with M = 1 implies
that

N∑
i=1

1

|V (n)
i |

∣∣∣∣ ∂G

∂xi

∣∣∣∣
2

> 0,

where the derivatives are evaluated at Xu. But then, for the initial state Xu, (3.5) implies
for any M > 1 that G will decrease upon iteration of the update map, giving a value of G
smaller than that at the equilibrium. Upon further iteration G will continue to decrease, so
that the trajectory cannot approach the equilibrium.

We remark that it is not possible that a single iteration could take a point outside of the
region of validity of (3.5) directly to the equilibrium: at the equilibrium the agents are at the
centroids of their Voronoi cells, and for M > 1 an iteration moves each agent only a fraction
of the distance toward the centroid of its Voronoi cell.

Thus, the equilibrium must also be unstable for M > 1.
We note that if the eigenvalues of the Jacobian are always real and positive for M = 1,

then an unstable equilibrium must have at least one eigenvalue λ = 1 + μr > 1. For this
eigenvalue μr > 0, so 1 + μr

M > 1 for M > 1; that is, the equilibrium is also unstable for
M > 1. For all equilibrium configurations described below, we find numerically that the
eigenvalues are real and positive for M = 1, so this simpler proof of Proposition 3.3 holds.
We are unaware of a rigorous argument that the eigenvalues must always be real and positive,
although (3.4) implies that the Jacobian will be symmetric, and hence that the eigenvalues
will be real, when the equilibrium configuration has the same value of |Vi| for i = 1, . . . , N .

Putting together Propositions 3.1, 3.2, and 3.3, we conclude that if we want to determine
the existence and stability properties of equilibrium configurations for our model, we can just
consider the case M = 1.
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4. Results for square container.

4.1. Symmetry considerations. Before giving details of the stable equilibrium configura-
tions, it is helpful to clarify the symmetry aspects of this system by using a treatment based
on [17, 8, 18, 25, 31]. (Also see [29] for a nice introduction to group theory.) When D is a
square, the evolution equations (2.3) are equivariant with respect to the eight element group
D4, which is generated by a 90◦ rotation R (which we take to be counterclockwise) and a
diagonal reflection d (which we take to be about the line from the lower left to the upper
right corner of D). This implies that if X is an equilibrium configuration, then so is every
configuration on its group orbit, that is, the set of configurations γ · X for all γ ∈ D4, which
we denote by D4 ·X. The symmetry of an equilibrium configuration X is characterized by its
isotropy subgroup

(4.1) ΣX = {γ ∈ D4 : γ · X = X},
that is, the set of all elements of D4 which leave X unchanged. In determining the isotropy
subgroup and the group orbit, we consider only the shape of the boundaries of the Voronoi
cells and in particular do not consider the “labels” for the agents. (This is equivalent to
associating all configurations related by the permutation symmetry which relabels agents.)
From Proposition 1.2 of [17], we expect that

(4.2) 8 = |D4| = |ΣX | |D4 · X|,
that is, the number of elements of the group D4 (namely, 8) equals the product of the size of
the isotropy subgoup of X times the number of (distinct) elements in the group orbit of X.
Finally, we note that the isotropy subgroups of X and γ ·X are related by the conjugacy [17]

(4.3) Σγ·X = γΣXγ−1.

We will use the convention that the order of group element operation is from right to left. For
example, in determining the effect of dR on a configuration X (i.e., dR · X), we first rotate
(R) and then reflect (d). Furthermore, we denote the identity group operation, which leaves
the configuration unchanged, by I.

We now illustrate these symmetry ideas for the stable equilibrium configurations found for
N = 3. Figure 1 shows a configuration X and its group orbit under D4. Remembering that
we consider only the shape of the boundaries of the Voronoi cells in determining the isotropy
subgroup, we see that

(4.4) ΣX = {I, dR}
and that the group orbit of X can be taken to be the set of configurations

(4.5) {X,R · X,R2 · X,R3 · X}.
This is consistent with (4.2). Figure 2 shows the group orbit of the configuration Y = R · X.
We see that its isotropy subgroup is

(4.6) ΣY = {I, dR3}.
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Figure 1. Sketches of possible stable equilibrium configurations for N = 3 agents for a square domain,
obtained through the actions of the elements of D4 on the configuration X. R gives a counterclockwise rotation
through 90◦, and d gives a reflection about the diagonal from the lower left to the upper right corners of the
square. The color of the agents enables them to be uniquely identified after each group operation. However,
in determining the isotropy subgroup of such configurations, we consider only the shapes of boundaries of the
Voronoi cells, indicated by lines, and not permutations of the individual agents. We see that this example
configuration X has an isotropy subgroup ΣX = {I, dR}. Furthermore, the group orbit (indicating only distinct
configurations based on the boundaries of the Voronoi cells) can be taken to be the set of configurations {X, R ·
X, R2 · X, R3 · X}.

Figure 2. Sketches of possible stable equilibrium configurations for N = 3 agents for a square domain
obtained through the actions of the elements of D4 on the configuration Y = R · X. Configuration Y thus has
isotropy subgroup ΣY = {I, dR3}. Furthermore, the group orbit can be taken to be the set of configurations
{Y, R · Y, R2 · Y, R3 · Y }.

Now,

(4.7) R · ΣX · R−1 = R · {I, dR} · R−1 = {I, dR3} = ΣR·X = ΣY ,

as expected from (4.3).
Configurations related by symmetry do not necessarily have different isotropy subgroups.

For example, the configurations X and Y = R · X in Figure 3 both have isotropy subgroup

ΣX = ΣY = {I,R2, dR, dR3}.
Note that it is readily shown that R · ΣX · R−1 = ΣX .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1242 R. VOTEL ET AL.

Figure 3. Stable equilibrium configurations for N = 2 agents for a square domain. These configurations
are related by symmetry and have the same isotropy subgroup. Recall that we associate configurations related
by the permutation symmetry which relabels agents.
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Figure 4. Equilibrium configurations reached upon iteration of (2.3) for the initial conditions x1 =
(0.11, 0.1), xj = (0.1, 0.1j), j = 2, . . . , 5 with M values as labeled, where D = [0, 1] × [0, 1]. See the associ-
ated movie files (71012 01.mpg [1.5MB], 71012 02.mpg [1.6MB], and 71012 03.mpg [2.0MB]).

4.2. Equilibrium configurations. Figure 5 shows one representative from each distinct
set of symmetry-related stable equilibria for N = 2, . . . , 9. We find that for N = 5, 6, 7,
and 9, coexisting stable equilibria which are not related by symmetry occur. (Note that for
rectangular domains, coexisting stable equilibria not related by symmetry can also exist for
N = 3 and N = 4, as described in section 5.)

The equilibrium configuration that the system settles to for a given set of initial positions
depends on M , as illustrated in Figure 4. This motivates the following statistical charac-
terization of the relative sizes of the basins of attraction for the various stable equilibrium
configurations. Specifically, Table 1 shows the computed probability of reaching a stable equi-
librium configuration of each type with random initial positions distributed uniformly on D for
N = 2, . . . , 9 and several values of M . For example, for N = 5 and M = 1, there is an 86.4%
chance of asymptotically approaching one of the elements of the group orbit of the equilibrium
configuration Va shown in Figure 5. (Our numerics confirm, within numerical accuracy, the
expected result that there is an equal probability of reaching each of the equilibria on a group
orbit.) We see that the probability of reaching a particular equilibrium depends at most only
weakly on M .

Table 2 gives the areas of the different cells for the configurations shown in Figure 5. We
notice that these areas can differ widely for certain N values. For example, when N = 5 an
agent in cell V1 (or V5) for configuration Va occupies 23.8% of the available territory, while an
agent in cell V5 for configuration Vb occupies only 15.6%. More substantially, when N = 6 an
agent in cell V1 for configuration VIc occupies 23.3% of the available territory, while an agent
in cell V4 for the same configuration, or an agent in cell V2 for configuration VIa, occupies only
approximately 13%. This suggests that an individual can have a major competitive advantage

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/71012_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/71012_02.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/71012_03.mpg
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Table 1
For the equilibrium configurations for a square domain as labeled in Figure 5, we give the isotropy subgroup

and probability of reaching one of the equilibria on its group orbit for random initial positions distributed
uniformly on D and different values of M . The probabilities were calculated from 1000 random initial positions
for each value of N .

Equil Isotropy M = 1 M = 4 M = 8 M = 12 M = 16 M = 20

II {I, R2, dR, dR3} 100 100 100 100 100 100

III {I, dR} 100 100 100 100 100 100

IV D4 100 100 100 100 100 100

Va {I, dR} 86.4 87.1 88 85.1 85.3 87.5
Vb D4 13.6 12.9 12 14.9 14.7 12.5

VIa {I, dR3} 42.4 46.6 46.5 46.6 47.1 46.2
VIb {I, dR3} 20.7 19.6 21.7 20.1 17.1 17.1
VIc {I, d} 36.9 33.8 31.8 33.3 35.8 36.7

VIIa {I, dR2} 43.9 44.9 44.6 47.1 47.8 45.4
VIIb {I, dR3} 29.2 30.5 32.2 28.3 27.1 28
VIIc {I, R2, dR, dR3} 26.9 24.6 23.2 24.6 25.1 26.6

VIII D4 100 100 100 100 100 100

IXa {I, dR3} 11.2 12.3 11.3 12.8 12.7 12.4
IXb D4 88.8 87.7 88.7 87.2 87.3 87.6

or disadvantage based on territorial size due entirely to the initial positions of the agents, as
this determines the configuration which the population equilibrates to and the cell in which
each agent ends up.

Similarly, Table 3 gives the energies Gi associated with each Voronoi cell for each stable
equilibria, plus the total energy G for the equilibria. This leads to several interesting obser-
vations. First, one does not typically find equipartition of energy amongst the Voronoi cells,
except for the symmetric configurations II, IV, and IXb; this is seen most extremely for VIc,
in which G1 = 0.0089 and G4 = 0.0029. This is presumably because we are considering rel-
atively small N ; [15] suggests that equipartitioning of energy will occur for sufficiently large
N . Second, the energies of coexisting stable equilibria can be quite similar, in particular for
N = 5, 6, 7. Recalling results from Table 1 on the differences in the probability of reaching
each equilibrium for random initial positions, this suggests that energy alone is not a strong
indicator of the relative likelihoods of ending up in different equilibrium states.

While our paper focuses on relatively small numbers of agents, we do find that the number
of distinct stable equilibrium configurations grows rapidly with N ; see Figure 6, which does
not multiply count configurations related by symmetry. We note that many of the stable
equilibrium configurations for large N look very similar. While we do not consider the sta-
tistical properties of these configurations (e.g., statistics of the areas of the cells, statistics of
the number of cells with a given number of edges, etc.) as [36] did for a domain with periodic
boundary conditions, we expect that that such statistics would approach those in [36] as N
becomes large and the relative number of agents whose cells include part of the boundary of
D becomes smaller.

There are also various unstable configurations for a square domain that cannot be found
by numerical simulation alone, as will be shown in the next section.
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Figure 5. Stable equilibrium configurations found numerically for N = 2, . . . , 9 for a square domain.
Symmetry-related equilibria (i.e., other elements on the group orbit of an equilibrium) are not shown. The
equilibria are labeled with a roman numeral indicating the value of N and a lower-case letter to distinguish
different equilibria for a given N , if necessary. The index i in the cell label Vi is only for reporting the areas in
Table 2; recall that we associate all configurations related by the permutation symmetry which relabels agents.
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Table 2
For the equilibrium configurations for a square domain as labeled in Figure 5, we give the area |Vi| for each

Voronoi cell Vi.

Equil Areas

II |V1| = |V2| = 0.5

III |V1| = 0.376 |V2| = 0.312 |V3| = 0.312

IV |V1| = |V2| = |V3| = |V4| = 0.25

Va |V1| = |V5| = 0.238 |V2| = |V4| = 0.172 |V3| = 0.181
Vb |V1| = |V2| = |V3| = |V4| = 0.211 |V5| = 0.156

VIa |V1| = |V3| = 0.168 |V2| = 0.130
|V4| = |V5| = 0.192 |V6| = 0.150

VIb |V1| = |V3| = 0.163 |V2| = 0.174
|V4| = |V6| = 0.171 |V5| = 0.158

VIc |V1| = 0.233 |V2| = |V6| = 0.159
|V3| = |V5| = 0.158 |V4| = 0.131

VIIa |V1| = |V3| = 0.154 |V2| = 0.172 |V4| = |V6| = 0.129
|V5| = 0.122 |V7| = 0.139

VIIb |V1| = |V3| = 0.121 |V2| = 0.135
|V4| = |V7| = 0.154 |V5| = |V6| = 0.156

VIIc |V1| = |V3| = |V4| = |V6| = 0.156
|V2| = |V5| = 0.118 |V7| = 0.139

VIII |V1| = |V3| = |V5| = |V7| = 0.113 |V2| = |V4| = |V6| = |V8| = 0.136

IXa |V1| = |V4| = 0.089 |V2| = |V3| = 0.099 |V5| = |V8| = 0.114
|V6| = |V7| = 0.134 |V9| = 0.125

IXb |V1| = |V2| = |V3| = |V4| = |V5| = |V6| = |V7| = |V8| = |V9| = 0.111

5. Results for rectangular container.

5.1. Symmetry considerations. When D is a (nonsquare) rectangle, the evolution equa-
tions (2.3) are equivariant with respect to the four element group

D2 = {I,R2, dR, dR3},

which is a subgroup of the group D4 discussed in section 4. The elements R2, dR, and dR3

correspond to a rotation by 180◦, reflection about the horizontal midplane, and reflection
about the vertical midplane, respectively. The possible isotropy subgroups of equilibrium
configurations for a rectangular container are D2, {I,R2} ∼= Z2, {I, dR} ∼= Z2, {I, dR3} ∼= Z2,
and {I}. As in section 4, in determining the isotropy subgroup of a configuration we consider
only the shape of the boundaries of the Voronoi cells.

5.2. Bifurcation analysis. In order to understand and summarize the existence and sta-
bility properties of equilibrium states for the more general rectangular domain and to identify
how the different equilibria are related or “connected” to each other, we perform a bifurcation
analysis of the territorial model. Specifically, we treat L, the ratio of the length of the shorter
side to the length of the longer side of the rectangle, as a bifurcation parameter. Without loss
of generality, we take L ≤ 1, where equality corresponds to the special, degenerate case of a
square domain. Note that the bifurcation results are independent of M , which determines the
fraction of the distance an agent moves toward the centroid of its Voronoi cell.
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Table 3
For the equilibrium configurations for a square domain as labeled in Figure 5, we give the energies Gi

associated with each Voronoi cell, and the total energy G. We remark that the sum of the numbers in the
second column might not equal the number in the third column due to round-off.

Equil Gi G =
∑N

i=1 Gi

II G1 = G2 = 0.0521 0.1042

III G1 = 0.0311 G2 = G3 = 0.0175 0.0662

IV G1 = G2 = G3 = G4 = 0.0104 0.0417

Va G1 = G5 = 0.0093 G2 = G4 = 0.0054 G3 = 0.0061 0.0355
Vb G1 = G2 = G3 = G4 = 0.0078 G5 = 0.0040 0.0353

VIa G1 = G3 = 0.0052 G2 = 0.0029 0.0300
G4 = G5 = 0.0065 G6 = 0.0037

VIb G1 = G3 = 0.0048 G2 = 0.0055 0.0301
G4 = G6 = 0.0053 G5 = 0.0044

VIc G1 = 0.0089 G2 = G6 = 0.0048 0.0305
G3 = G5 = 0.0045 G4 = 0.0029

VIIa G1 = G3 = 0.0045 G2 = 0.0053 G4 = G6 = 0.0028 0.0256
G5 = 0.0025 G7 = 0.0032

VIIb G1 = G3 = 0.0025 G2 = 0.0031 0.0256
G4 = G7 = 0.0042 G5 = G6 = 0.0045

VIIc G1 = G3 = G4 = G6 = 0.0043 G2 = G5 = 0.0024 G7 = 0.0032 0.0253

VIII G1 = G3 = G5 = G7 = 0.0022 G2 = G4 = G6 = G8 = 0.0032 0.0214

IXa G1 = G4 = 0.0014 G2 = G3 = 0.0018 0.0201
G5 = G8 = 0.0022 G6 = G7 = 0.0034 G9 = 0.0026

IXb G1 = G2 = G3 = G4 = G5 = G6 = G7 = G8 = G9 = 0.0021 0.0185

To determine how the equilibrium configurations change as L is varied, we use the method
of numerical continuation. Various software packages exist for numerical continuation of
differential equations and maps, such as AUTO [13] and MatCont [10]. These packages use
the method of pseudoarclength continuation in a predictor-corrector manner which enables
both stable and unstable solutions to be found [11, 12]. A predicted solution is extrapolated
from one or more known solutions and then corrected, using a nonlinear solver, to be a solution
of the dynamical system with constraints provided by the pseudoarclength conditions. The
sequence of corrected solutions that is produced can be viewed as a discretized solution branch
in the appropriate system parameters. Bifurcations, detected using suitable test functions,
and the corresponding bifurcating solution branches can also be continued.

We continue equilibrium configurations of the evolution equations (2.3) using the au-
thors’ own software package written entirely in MATLAB to enable the built-in voronoi and
voronoin commands to be used. This package, built around MATLAB’s nonlinear solver
(fsolve), uses the same numerical algorithms as described above for AUTO and MatCont.
Bifurcation detection is performed by monitoring the eigenvalues of the linearized evolution
equations directly. The linearized equations are generated from (2.3) using numerical central
differences.

As a measure of an equilibrium configuration in our bifurcation diagrams, we use

(5.1) S =
N∑

i=1

[
(xi − x̄)2 + (yi − ȳ)2

]
,
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Figure 6. Number of stable configurations as a function of the number of agents N for a square domain.
Only one configuration from each group orbit of possible configurations is counted.

Figure 7. Bifurcation diagram showing equilibrium configurations for N = 2 agents. In this and other
bifurcation diagrams, thick blue (resp., thin red) lines/plots represent stable (resp., unstable) equilibrium con-
figurations. Sample configurations are shown along with their isotropy subgroups.

where (x̄, ȳ) is the center of the domain D. Equilibrium configurations on the same group
orbit have identical values of S, while solutions which are not related by symmetry typically
have different values of S.

The possible bifurcations that occur are saddle-node bifurcations, in which two equilibrium
configurations “collide” and disappear, and pitchfork bifurcations, which give birth to a new
branch of symmetry-related equilibria with one of the Z2 symmetries broken, for example,
D4 → Z2 or Z2 → {I}.
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The bifurcation diagram showing equilibrium configurations for N = 2 agents is shown
in Figure 7. For small values of L, the configuration with a vertical shared boundary for
the Voronoi cells (we call this IIv) is stable, while the configuration with a horizontal shared
boundary (we call this IIh) is unstable. Both IIv and IIh have D2 symmetry. At L = 0.817,
IIh undergoes a pitchfork bifurcation, becoming stable for larger values of L and giving birth
to a new branch of unstable solutions with isotropy subgroup {I,R2} ∼= Z2. Consequently,
the solutions IIv and IIh are both stable for 0.817 ≤ L ≤ 1. At L = 1, IIv and IIh are stable,
symmetry-related solutions for the square domain (see Figure 3). At L = 1, the unstable
configuration acquires the additional reflection symmetries d and dR2. These arise because
L = 1 is a degenerate case for a rectangular domain; in particular, this additional symmetry
is not associated with a bifurcation. We remark that the results for L = 1 are consistent
with [15].

An analytical treatment of the stability properties of the IIh and IIv solutions is given in
the appendix.

The bifurcation diagram showing equilibrium configurations for N = 3 agents is shown
in Figure 8. There are four different pitchfork bifurcations, described in the following for
increasing L.

• L = 0.469: A configuration with isotropy subgroup {I, dR} ∼= Z2 gains stability, and
a branch of unstable configurations with trivial isotropy subgroup {I} is born.

• L = 0.627: A configuration with isotropy subgroup {I, dR3} ∼= Z2 loses stability,
and the branch of unstable configurations with trivial isotropy subgroup {I} ceases to
exist.

• L = 0.666: A configuration with isotropy subgroup D2 loses stability, and a branch of
unstable configurations with isotropy subgroup {I, dR3} ∼= Z2 ceases to exist.

• L = 0.931: A configuration with isotropy subgroup {I, dR3} gains stability, and a
branch of unstable configurations with trivial isotropy subgroup {I} is born.

There is also a saddle-node bifurcation at L = 0.607 involving solutions with isotropy subgroup
{I, dR3} ∼= Z2. Details of these bifurcations can be seen in Figures 9 and 10. Note that
the unstable solutions with trivial isotropy subgroup {I} which are born in the pitchfork
bifurcation at L = 0.931 acquire the additional reflection symmetry d at L = 1; this arises
from the degeneracy of the domain shape at L = 1. We see that several ranges of L values
exist for which there are stable equilibria which are not related by symmetry.

The bifurcation diagrams showing equilibrium configurations for N = 4 and N = 5 agents
are shown in Figures 11, 12, and 13. Because of the complexity of these diagrams, we do not
describe them in detail, nor do we specify the isotropy subgroups of the various equilibrium
configurations. But we do note that there are ranges of L for which there are stable equilibria
which are not related by symmetry.

6. Experiments with robots. As a verification of the relevance of the theoretical and nu-
merical results described above for a real system, we have conducted territorial experiments
using three-wheeled inverted pendulum robots. In these experiments, an MTV-7310 camera
mounted above the robots with a resolution of 470× 570 is used to detect robot positions and
orientations. The video signals are available in real time via a frame grabber board PicPort-
Stereo-HrD and image processing software HALCON. The sampling period of the controller
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Figure 8. Bifurcation diagram showing equilibrium configurations for N = 3 agents. For the specified values
of L, the plots of the configurations are shown for decreasing S value, in the following order: First row first
column, first row second column, second row first column, etc. The isotropy subgroups of these configurations
are indicated. More detail is shown in Figures 9 and 10.

and the frame rate provided by the camera are 0.33 ms and 30 fps, respectively. The posi-
tion and orientation of the robots are calculated by using image processing. Based on this
information, the PC computes the velocity control input and sends it to each robot via the
embedded wireless communication device Wiport (LANTRONIX). The Wiport attached to
each robot receives the signal and sends it to the microcomputer via serial communications.
Figure 14 illustrates the information flow chart including the robots, camera, and PC, respec-
tively. Note that we employ the coverage control scheme for unicycle models presented in [9]
since these robots have mobile wheeled dynamics. (We remark that that this algorithm is not
exactly implemented due to delays in sensing, processing, and actuation.) The equilibrium
configurations will be the same for this model as those described above for the model from [36].
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Figure 9. Details of the bifurcation diagram shown in Figure 8.

The experiment shown in Figure 15(a) sweeps the L value for the domain very slowly
from L = 0.74 to L = 0.30. (In practice, this is accomplished by dynamically adjusting the
anisotropy of the Voronoi calculation for all agents [20, 21].) We see that at approximately L =
0.30 the system switches from a configuration with one type of symmetry to a configuration
with a different one. Similarly, Figure 15(b) shows results from an experiment in which L is
swept from L = 0.30 to L = 0.74, where again the system switches from a configuration with
one type of symmetry to a configuration with a different one. These results are consistent
with the bifurcation diagram shown in Figure 8, although the transitions occur at values of
L beyond those for which one state loses stability; this is due to the fact that the sweeps in
L occur at finite, rather than infinitesimal, speed. Transitions between different equilibrium
configurations closer to the relevant bifurcations are shown in Figure 16.

7. Conclusion. We have analyzed the territorial model from [36], which is based on
Voronoi tessellations to account for interactions between individuals in determining territo-
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Figure 10. Details of the bifurcation diagram shown in Figure 8.

ries. For rectangular domains and for small population sizes, we found that there are distinct
coexisting stable equilibrium configurations, including the possibility of stable equilibria that
are not related by symmetry to each other and which represent truly distinct configurations
that the population can end up in. The configuration that the population equilibrates to, and
the cell in which each agent ends up, is determined by the initial positions of the agents. By
considering initial positions distributed randomly on the square, we gave a statistical char-
acterization of the likelihood of the system reaching these equilibria; this can be interpreted
as a statistical characterization of the relative sizes of different basins of attraction for the
equilibria. Furthermore, we found that the final territory that an agent obtains can have a
wide range of areas, which suggests that an individual can obtain a competitive advantage
or disadvantage due entirely to the initial positions of the agents. By treating the ratio of
the length of the shorter side to the length of the longer side of the rectangle as a bifurca-
tion parameter, we numerically explored how stable and unstable equilibrium configurations
are related to each other. Finally, we verified our numerical results for three agents through
experiments using robots which move according to a related territorial algorithm.

Although the geometry considered here is too special to be of direct relevance to field obser-
vations, our results suggest how controlled laboratory experimentation could be
used to verify or discount this particular model of territorial behavior for different species. One
simply randomly positions a small number of individuals in a square or rectangular domain
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Figure 11. Bifurcation diagram showing equilibrium configurations for N = 4 agents. For the specified
values of L, the plots of the configurations are shown for decreasing values of S, in the order explained in the
caption of Figure 8.
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Figure 12. Bifurcation diagram showing equilibrium configurations for N = 5 agents. Corresponding
equilibrium configurations are shown in Figure 13.

and observes over multiple trials what configuration they settle down in. If the agents are
effectively using the model from [36] to determine their territories, then, depending on the
number of agents and the shape of the container, on some trials one would expect settling
to a particular equilibrium of one type, and in others settling to an equilibrium of another
nonsymmetry-related type.

Coexisting stable equilibrium configurations can be present for more general domains,
as illustrated in Figure 17. Visually, these equilibria resemble particular equilibria found
for “nearby” rectangular domains. A more detailed study of equilibria for nonrectangular
domains is outside the scope of the present study.

The presence of coexisting stable equilibria also suggests that noise-induced transitions
between different states might occur. Such transitions have recently been identified for bio-
logical systems for the switching between symmetry-related clockwise and counterclockwise
motions for marching locusts constrained to a ring [6], and switching between qualitatively
different collective motion states [27].

Appendix. We consider the stability of the IIh equilibrium configuration for N = 2. We
let xi = (xi, yi) and ci = (cix, ciy), giving

x
(n+1)
i = x

(n)
i +

(
c
(n)
ix − x

(n)
i

)
/M ≡ fix(x

(n)
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Figure 13. Equilibrium configurations for N = 5 agents. For the specified values of L, the plots of the
configurations are shown for decreasing values of S according to Figure 12, in the order explained in the caption
of Figure 8.
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Figure 14. Information flow for robots, camera, and PC. This setup allows robots to divide territory using
Voronoi-based algorithms.

where i = 1, 2. For convenience, we choose the domain to be the set

D =
{

(x, y)| − 1
2
≤ x ≤ 1

2
,−L

2
≤ y ≤ L

2

}
,

so that the IIh equilibrium configuration corresponds to

(A.3) (x1, y1) = (0, L/4), (x2, y2) = (0,−L/4).

For general positions for the agents, it is readily shown that the line

yb(x) =
x2 − x1

y1 − y2

(
x − 1

2
(x1 + x2)

)
+

1
2
(y1 + y2)

forms the boundary between the Voronoi cells. Assuming that the system is close to the IIh
equilibrium, this line will intersect the domain boundary at x = ±1/2. We can thus calculate
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(b)

(a)

Figure 15. Experiments in which L is slowly swept (a) from L = 0.74 to L = 0.30 and (b) from L = 0.30
to L = 0.74 showing (left) initial states and (right) final states. See the associated movie files (71012 04.mpg
[10.3MB] and 71012 05.mpg [12.8MB]). Note that the occasional flickering in the movies corresponds to brief
times for which the camera fails to identify one of the robots; this happens so quickly that the effect on the
dynamics of the robots is negligible.

the centroids of the Voronoi cells from the following formulas:

c1x =
1

|V1|
∫

V1

x dx dy =
1

|V1|
∫ 1/2

−1/2
x dx

∫ L/2

yb(x)
dy,

c1y =
1

|V1|
∫

V1

y dx dy =
1

|V1|
∫ 1/2

−1/2
dx

∫ L/2

yb(x)
y dy,

c2x =
1

|V2|
∫

V2

x dx dy =
1

|V2|
∫ 1/2

−1/2
x dx

∫ yb(x)

−L/2
dy,

c2y =
1

|V2|
∫

V2

y dx dy =
1

|V2|
∫ 1/2

−1/2
dx

∫ yb(x)

−L/2
y dy,

where

|V1| =
∫ 1/2

−1/2
dx

∫ L/2

yb(x)
dy, |V2| =

∫ 1/2

−1/2
dx

∫ yb(x)

−L/2
dy.

After solving these integrals to obtain the centroids as a function of x1, y1, x2, y2, the Jacobian

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/71012_04.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/71012_05.mpg
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(b)

(a)

Figure 16. Experiments for (a) L = 0.45 and (b) L = 0.70 for which the system transitions from (left) an
unstable equilibrium configuration to (right) a stable one. See the associated movie files (71012 06.mpg [8.7MB]
and 71012 07.mpg [13.2MB]). The occasional flickering in the movies does not affect the dynamics of the robots,
as described in the caption of Figure 15.

matrix of (A.1), (A.2) evaluated at the IIh equilibrium (A.3) is found to be

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1x

∂x1

∂f1x

∂y1

∂f1x

∂x2

∂f1x

∂y2

∂f1y

∂x1

∂f1y

∂y1

∂f1y

∂x2

∂f1y

∂y2

∂f2x

∂x1

∂f2x

∂y1

∂f2x

∂x2

∂f2x

∂y2

∂f2y

∂x1

∂f2y

∂y1

∂f2y

∂x2

∂f2y

∂y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

1 − 1
M + 1

3L2M
0 − 1

3L2M
0

0 1 − 3
4M 0 1

4M
− 1

3L2M
0 1 − 1

M + 1
3L2M

0
0 1

4M 0 1 − 3
4M

⎞
⎟⎟⎠ .

Since |V1| = |V2| at the equilibrium, the Jacobian is symmetric, and therefore its eigenvalues
must be real, as expected from the discussion in the main text. The eigenvalues are

(A.4) 1 − 1
M

, 1 − 1
M

, 1 − 1
2M

, 1 +
2

3L2 − 1
M

≡ E(L;M).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/71012_06.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/71012_07.mpg
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Figure 17. Coexisting stable equilibrium configurations for nonrectangular domains for (top) N = 3 and
(bottom) N = 5 agents.

We note that the eigenvalues take the form expected from the proof of Proposition 3.2. The
first three eigenvalues always lie within the unit circle for M ≥ 1. The last eigenvalue is
inside the unit circle for L >

√
2/3 and outside for L <

√
2/3. Treating L as a bifurcation

parameter, we conclude that a steady bifurcation occurs at L =
√

2/3 ≈ 0.8165, which is
confirmed by the numerical result shown in Figure 7.

A similar calculation can be done to deduce the eigenvalues of the Jacobian of the IIv
solution. However, we can more easily show that it is always stable by recognizing that the
above calculation also holds for L > 1, but then the equilibrium (A.3), upon rotation of the
domain by 90◦ and rescaling length, corresponds to the IIv equilibrium for L < 1. The first
three eigenvalues in (A.4) will clearly always lie within the unit circle for M ≥ 1. Furthermore,
recognizing that

0 < E(1;M) = 1 − 1
3M

< 1,
∂E(L;M)

∂L
= − 4

3L2M
< 0,

0 < lim
L→∞

E(L;M) = 1 − 1
M

< 1,

we conclude that the fourth eigenvalue must also always lie within the unit circle. Thus, the
IIh solution is stable for all L > 1, so that the IIv solution is stable for all L < 1.

In principle, similar analytical arguments can be used to study the stability properties of
equilibrium configurations for different numbers of agents N . This would be straightforward
but tedious in practice.
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