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Abstract The theory of consensus dynamics is widely employed to study various
linear behaviors in networked control systems. Moreover, nonlinear phenomena have
been observed in animal groups, power networks and in other networked systems.
These observations inspire the development in this paper of three novel approaches to
define distributed nonlinear dynamical interactions. The resulting dynamical systems
are akin to higher-order nonlinear consensus systems. Over connected undirected
graphs, the resulting dynamical systems exhibit various interesting behaviors that we
rigorously characterize.
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1 Introduction

Collective behavior in animal groups, such as schools of fish, flocks of birds, and
herds of wildebeests, is a widely studied phenomenon. It has been proposed that
the decision making in such groups is distributed rather than central: each individ-
ual in such a group decides how to behave based on local information. In particular,
some adjacency-based averaging models have been proposed to model the observed
behavior in such systems. These adjacency-based averaging algorithms are called
consensus algorithms, and they have been widely studied in various engineering ap-
plications.

Of particular interest are recent results in ecology (Couzin et al. 2005) which show
that, for a small difference in the preferences of the individuals, the decision making
in animal groups is well modeled using consensus dynamics. For significant differ-
ences in the preferences of individuals, the decision dynamics bifurcate away from
consensus. This observation provides motivation for the development of dynamical
systems which mimic such nonlinear behaviors in engineered multi-agent systems.

Recently, dynamical systems theory and control theory have been extensively ap-
plied to networked systems. In particular, the consensus problem has been studied
in various fields, e.g., network synchronization (Papachristodoulou and Jadbabaie
2006), flocking (Tanner et al. 2007), rendezvous (Lin et al. 2007), sensor fusion
(Spanos et al. 2005), formation control (Fax and Murray 2004), etc.; a detailed de-
scription is presented in Olfati-Saber et al. (2007), Jadbabaie et al. (2003). Some
nonlinear phenomena have been studied in certain network classes. Certain nonlinear
protocols to achieve consensus have been studied (Arcak 2007). The bifurcation prob-
lem has been studied in neural networks; a Hopf-like bifurcation has been observed
in a two cell autonomous system (Zou and Nossek 1993), and pitchfork and Hopf
bifurcations have been studied in artificial neural networks (Olien and Bélair 1997;
Wei and Ruan 1999). Some static bifurcations have been studied in load flow dy-
namics of power networks (Kwatny et al. 1986). Hopf bifurcations in a network of
interconnected systems have been studied (Dionne et al. 1996). Certain Kuramoto
oscillator-based models have been proposed to model decision dynamics in animal
groups, and the underlying bifurcations have been studied (Nabet et al. 2009). A ver-
sion of bifurcations in consensus networks has been studied in the opinion dynamics
literature (Lorenz 2007). The models in opinion dynamics problems can be inter-
preted as consensus dynamics on a time-varying graph with no globally reachable
node. These models are complicated and difficult to implement on an engineered
multi-agent network.

The human decision making models proposed in Bogacz et al. (2006) have been
recently utilized in Poulakakis et al. (2010) to develop a Laplacian flow-based model
of collective decision making in human groups. Related nonlinear models for human
decision making have been developed in Roxin and Ledberg (2008). The dynamics in
these models resemble those associated with a pitchfork bifurcation. In view of these
examples of dynamics, we envision the need for frameworks to model the nonlinear
interactions of multiple-agents.

Moreover, in formation control of a multi-agent system, the control laws are de-
fined based on particular interactions among the agents (Dörfler and Francis 2010).
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The interactions among the agents are based on the gradients of the potential func-
tions. A generalized framework to study such interactions and design the potential
functions that accomplish the desired final configuration still needs to be developed.

In this paper, we propose distributed algorithms to achieve nonlinear behaviors in a
networked system. We define three frameworks, namely, the absolute nonlinear flow,
the relative nonlinear flow, and the disagreement nonlinear flow, to define nonlinear
dynamics on a multi-agent network. We apply these frameworks to the characteri-
zation of a pitchfork bifurcation in a multi-agent network. For a graph with a single
node, the proposed dynamics reduce to scalar nonlinear dynamics. In essence, the
proposed dynamics entail extensions of the scalar nonlinear dynamics to engineered
multi-agent systems. The major contributions of our work are:

(1) We propose generalized frameworks to describe distributed nonlinear dynamics
in a multi-agent network.

(2) For each framework, we generically define the set of final possible equilibrium
configurations.

(3) We define the distributed pitchfork bifurcation dynamics for networked systems
using these frameworks.

(4) We present some general tools to study the stability of these equilibria, and we
utilize them to study the associated dynamics.

(5) We present a comprehensive treatment of these dynamics for low order networks.

The remainder of the paper is organized as follows. In Sect. 2, we elucidate some
basics of dynamical systems and graph theory, which is followed by the develop-
ment of frameworks to define nonlinear dynamics on graphs in Sect. 3. We use these
frameworks to study pitchfork bifurcation dynamics on graphs in Sect. 4. Finally, our
conclusions are presented in Sect. 5.

2 Preliminaries

2.1 Pitchfork Bifurcation

The equation

ẋ = γ x − x3, γ, x ∈ R, (1)

is defined as the normal form for the supercritical pitchfork bifurcation (Strogatz
2000). The dynamics of (1) are as follows:

(1) For γ < 0, there exists a stable equilibrium point at x = 0, and there is no other
equilibrium point.

(2) For γ = 0, there exists a critically stable equilibrium point at x = 0.
(3) For γ > 0, there exist two stable equilibrium points at x = ±√

γ , and there is an
unstable equilibrium point at x = 0.

The point γ = 0 is called the bifurcation point.
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2.2 Laplacian Matrix of a Graph

Given a digraph G = (V , E ), where V = {v1, . . . , vn} is the set of nodes and E is the
set of edges, the Laplacian matrix L(G) ∈ R

n×n has entries

li,j =

⎧
⎪⎨

⎪⎩

−1, if (i, j) ∈ E ,

di, if i = j,

0, otherwise,

where di is the out-degree of node i, i.e., number of edges emanating from node i

(Bullo et al. 2009). The set of nodes j ∈ V , such that (i, j) ∈ E , is referred to as the
adjacency of the node i, and is denoted adj(i).

Properties of the Laplacian Matrix:

(1) The Laplacian matrix is symmetric if and only if G is undirected.
(2) A symmetric Laplacian matrix is positive semidefinite.
(3) For a graph G with n nodes and at least one globally reachable node, the rank of

the Laplacian matrix is n − 1.
(4) The kernel of the Laplacian matrix for a graph G of order n with at least one

globally reachable node is diag(Rn), i.e. {(x1, . . . , xn) ∈ R
n | x1 = · · · = xn}.

2.3 Center-Manifold Theorem

For (z1, z2) ∈ R
n1 × R

n2 , consider the following system:

ż1 = A1z1 + g1(z1, z2),

ż2 = A2z2 + g2(z1, z2),
(2)

where all eigenvalues of A1 ∈ R
n1×n1 and A2 ∈ R

n2×n2 have zero and negative real
parts, respectively. The functions g1 : R

n1 × R
n2 → R

n1 , and g2 : R
n1 × R

n2 → R
n2

satisfy the conditions

gi(0,0) = 0,
∂gi

∂z
(0,0) = 0, ∀i ∈ {1,2}. (3)

For the system in (2), for small z1, there exists (Khalil 2002) an invariant center
manifold h : R

n1 → R
n2 satisfying the conditions

h(0) = 0,
∂h

∂z1
(0) = 0, and

A2h(z1) + g2
(
z1, h(z1)

)= ∂h

∂z1
(z1)

[
A1z1 + g1

(
z1, h(z1)

)]
.

The center-manifold theorem (Khalil 2002) states that the dynamics on the center
manifold determine the overall asymptotic dynamics of (2) near (z1, z2) = (0,0),
i.e., the overall dynamics are determined by

ż1 = A1z1 + g1
(
z1, h(z1)

)
. (4)
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2.4 Laplacian Flow

Let G be a undirected connected graph of order n. The Laplacian flow on R
n is

defined by

ẋ = −L(G)x.

In components, the Laplacian flow is given by

ẋi =
∑

j∈adj(i)

(xj − xi), i ∈ {1, . . . , n}.

The vector L(G)x is called the disagreement vector. It has been shown in Olfati-Saber
and Murray (2004) that the solutions to the Laplacian flow converge to diag(Rn), that
is, to consensus, for fixed as well as switching topologies.

3 Distributed Nonlinear Dynamics in Networks

Before we define distributed nonlinear dynamics in networks, we introduce the fol-
lowing notation. We denote the set of connected undirected graphs with n nodes by

Γn = {
G | L(G) = L(G)T , and rank

(
L(G)

)= n − 1
}
.

3.1 Absolute Nonlinear Flow

We call a flow absolute nonlinear flow if each node transmits a value which is a
function of only its own label. For a G ∈ Γn, on R

n, such a flow is given by

ẋ = L(G)f (x),

where f : R
n → R

n is a smooth function. In components, the absolute nonlinear flow
is given by

ẋi =
∑

j∈adj(i)

(
fi(xi) − fj (xj )

)
, ∀i ∈ {1, . . . , n}.

The set of equilibrium points of the absolute nonlinear flow is

{
x∗ | f (x∗) ∈ diag

(
R

n
)}

.

The salient feature of the absolute nonlinear flow formulation is that the set of equilib-
rium points is an invariant over the set Γn. Moreover, the sum of the states is an invari-
ant over any trajectory of the system, which follows from the fact that

∑n
i=1 ẋi = 0.
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3.2 Relative Nonlinear Flow

We call a flow relative nonlinear flow if each node transmits a value which is deter-
mined only by the difference between the state of the node and the neighboring node.
For a G ∈ Γn, on R

n, such a flow is given by

ẋi =
∑

j∈adj(i)

fi(xi − xj ), ∀i ∈ {1, . . . , n},

where fi : R → R, i ∈ {1, . . . , n} are smooth functions.

3.3 Disagreement Nonlinear Flow

We call a flow a disagreement nonlinear flow if each node transmits a value which is
determined only by the corresponding entry in the disagreement vector. For a G ∈ Γn,
on R

n, such a flow is given by

ẋ = f
(

L(G)x
)
,

where f : R
n → R

n is some smooth function. In components, the disagreement non-
linear flow is given by

ẋi = fi

( ∑

j∈adj(i)

(xi − xj )

)

, ∀i ∈ {1, . . . , n}.

A particular case of the disagreement nonlinear flow is when each fi is a polyno-
mial. In this scenario, the disagreement nonlinear flow is given by

ẋ = (
a0 + a1 D(x) + · · · + am

(
D(x)

)m)1n,

where D(x) = diag (L(G)x). In components, this becomes

ẋi = a0 + a1 I(xi) + · · · + am

(
I(xi)

)m
, ∀i ∈ {1, . . . , n},

where I(xi) =∑
j∈adj(i)(xi − xj ). Let the r ≤ m real roots of the equation

a0 + a1z + · · · + amzm = 0

be zi , i ∈ {1, . . . , r}. The set of equilibrium points of the disagreement nonlinear flow
with polynomial nonlinearity is

{
x∗ ∈ R

n | (L(G)x∗)
i
∈ {z1, . . . , zr},∀i ∈ {1, . . . , n}},

where (L(G)x∗)i represents the ith entry of the vector L(G)x∗. Here, the equilibrium
points depend on the graph topology.
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4 Distributed Bifurcation Dynamics in Networks

We study a particular class of distributed nonlinear dynamics where fi : R → R, for
each i ∈ {1, . . . , n}, is fi(x) = γ x − x3, where γ ∈ R is some constant. We refer to
such a nonlinearity as a pitchfork nonlinearity.

4.1 Absolute Nonlinear Flow with Pitchfork Nonlinearity

Given a connected undirected graph G ∈ Γn, and γ ∈ R, the absolute nonlinear flow
with pitchfork nonlinearity is

ẋ = γ L(G)x − L(G)diag(x)31n. (5)

In components, this becomes

ẋi = γ
∑

j∈adj(i)

(xi − xj ) −
∑

j∈adj(i)

(
x3
i − x3

j

)
, ∀i ∈ {1, . . . , n}. (6)

For a given graph G ∈ Γn and a full rank diagonal matrix Υ ∈ R
n×n, let us define

the generalized Laplacian flow by

ẋ = −L(G)Υ x. (7)

Lemma 1 (Generalized Laplacian Flow) For the generalized Laplacian flow, the fol-
lowing statements hold:

(1) The equilibrium points are given by

E = {
αΥ −11n | α ∈ R

}
.

(2) The solutions converge to the set E if and only if Υ > 0.

Proof We start by establishing the first statement. The equilibrium points are given
by

Υ x ∈ ker
(

L(G)
)
. (8)

Since Υ is full rank, the set in (8) is equivalent to the set E .
To prove the second statement, we start by establishing the sufficiency. We

consider a Lyapunov function V (x) = xT Υ L(G)Υ x. We note that V (x) ≥ 0 and
V (z) = 0 only if z ∈ E . The Lie derivative of this Lyapunov function along the gen-
eralized Laplacian flow is given by

V̇ = −2xT Υ L(G)Υ L(G)Υ x = −2
∥
∥Υ

1
2 L(G)Υ x

∥
∥2 ≤ 0.

Hence, the Lyapunov function is monotonically non-increasing along the generalized
Laplacian flow. The proof for convergence to the set E is similar to Exercise 1.25 in
Bullo et al. (2009).
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To establish necessity, assume that some entry of Υ is negative. Without loss of
generality we assume that the ith diagonal entry is υi < 0. We observe that

eT
i L(G)Υ ei = υie

T
i L(G)ei < 0,

where ei is the ith element of the canonical basis of R
n. Hence, the matrix −L(G)Υ

has at least one positive eigenvalue, which implies that the generalized Laplacian flow
is unstable. We further observe that Υ cannot have a zero entry, since it is a full rank
matrix, which concludes the proof. �

Before we analyze the absolute nonlinear flow with pitchfork nonlinearity, we in-
troduce some useful notation. Given γ ∈ R>0, define f0, f± : [−√

4γ /3,
√

4γ /3] →
R by

f0(β) = β, and f±(β) = −β

2
±
√

γ − 3

4
β2.

Theorem 1 (Absolute nonlinear flow with pitchfork nonlinearity) For the absolute
nonlinear flow with pitchfork nonlinearity, the following statements hold:

(1) Equilibrium points:
For γ ≤ 0, the set of equilibrium points is

Ec = diag
(
R

n
)
. (9)

For γ > 0, the set of equilibrium points is

Eb = {
y ∈ R

n| y1, . . . , yn ∈ {f−(β), f0(β), f+(β)
}

and

β ∈ [−√4γ /3,
√

4γ /3
]}

.

(2) Consensus:
For γ ≤ 0, each trajectory converges to some point in the set Ec.

(3) Bifurcation:
For γ > 0, each equilibrium point x∗ ∈ Eb is locally stable if and only if 3x∗

i
2 >

γ for each i ∈ {1, . . . , n}.

Alternative Characterization of Equilibrium Points Let Ξ be the set of n-dimen-
sional vectors with entries in {−,0,+}, whose cardinality is 3n. Therefore, ξ ∈ Ξ

is an n-dimensional multi-index with indices in alphabet {−,0,+}. For any ξ ∈ Ξ ,
define fξ : [−√

4γ /3,
√

4γ /3] → R
n by

fξ (β) = (
fξ1(β), . . . , fξn(β)

) ∈ R
n.

The set Eb can be interpreted as the union of three curves in the following way:

Eb =
⋃

ξ∈Ξ

fξ

([−√4γ /3,
√

4γ /3
])

.
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(Here we let g(A) denote the image of a function g : A → R.)

Proof We start by determining the equilibrium points for (5), which are given by

γ x − diag(x)31n ∈ ker
(

L(G)
)
,

=⇒ γ xi − x3
i = α, ∀i ∈ {1, . . . , n}, and α ∈ R. (10)

We observe that (10) is a cubic equation and, hence, has at least one real root β (say).
The other roots of (10) can be determined in terms of β , and they are given by

xi = −β

2
±
√

γ − 3

4
β2, ∀i ∈ {1, . . . , n}. (11)

We observe that the roots given in (11) are complex if γ ≤ 0. Hence, for γ ≤ 0, the
equilibrium points are given by the set Ec. It follows from (11) that for γ > 0, Eb is
the set of equilibrium points.

To establish the second statement, we consider a Lyapunov function V (x) =
xT L(G)x. We observe that, for γ ≤ 0, the Lie derivative of this Lyapunov function
along the absolute nonlinear flow with pitchfork nonlinearity is given by

V̇ (x) = 2γ xT L(G)x − 2xT L(G)diag(x)31n ≤ 2γ xT L(G)x ≤ 0,

which establishes the stability of each point in the set Ec . The proof of convergence
is similar to Exercise 1.25 in Bullo et al. (2009).

To establish the third statement, we linearize the absolute nonlinear flow with
pitchfork nonlinearity about an equilibrium point x∗ to get

ẋ = L(G)
(
γ I − 3 diag(x∗)2)x =: L(G)Υ x,

where Υ is a diagonal matrix. From Lemma 1, it follows that each equilibrium point
x∗ ∈ Eb is locally stable if and only if Υ is negative definite, which concludes the
proof. �

Remark 1 The results in Theorem 1 hold for any directed graph with at least one
globally reachable node.

Conjecture 1 (Completeness) Given a γ ∈ R, the union of the basins of attraction
of all the stable equilibrium points of the absolute nonlinear flow with pitchfork non-
linearity is R

n \ Z , where Z is a measure zero set.

Conjecture 2 (Switching topology) The results in Theorem 1 hold for a network with
switching topology Gk ∈ Γn, k ∈ N.

Discussion (Absolute nonlinear system with pitchfork nonlinearity) We determined
the equilibrium points of the absolute nonlinear flow with pitchfork nonlinearity and
established their stability in Theorem 1. Now we study this system on some low
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Fig. 1 (Color online) Absolute nonlinear flow with pitchfork nonlinearity on a graph with two nodes and
γ = 1. (a) The unstable equilibrium points are shown as a magenta colored dashed line, while the stable
ones are shown in blue colored solid lines. (b) The bifurcation diagram for the reduced system. Notice the
pitchfork bifurcation at c = 2/

√
3

order graphs to better understand the underlying dynamics. We start with a graph
with two nodes. For γ ≤ 0, the set of equilibrium points of this system is the set
C2 = {(x1, x2) ∈ R

2 | x1 = x2}, which are all stable, while for γ > 0, the set of equi-
librium points is C2 ∪ E2, where E2 = {(x1, x2) ∈ R

2 | x2
1 + x2

2 + x1x2 = γ }. The set
of equilibrium points for γ = 1 is shown in Fig. 1(a). The subset of the consensus
set C2 belonging to the convex hull of the set E2 is unstable. As γ is decreased, the
ellipse of equilibrium points shrinks in size, disappearing at γ = 0.

Observe that x1 + x2 is an invariant along any trajectory of the system, and it can
be utilized to reduce the dimension of the system. For the reduced system x1 +x2 ≡ c

is a parameter, and it turns out that a pitchfork bifurcation is observed at c = √
4γ /3.

The corresponding bifurcation diagram for γ = 1 is shown in Fig. 1(b). For c ≥√
4γ /3, the only equilibrium point of the system is at x = c/2. For c <

√
4γ /3, this

equilibrium point loses its stability and two new stable equilibrium points appear in
the system. This is a pitchfork bifurcation.

We now consider a line graph with three nodes. For γ ≤ 0, the set of equilibrium
points is C3 = {(x1, x2, x3) ∈ R

3 | x1 = x2 = x3}, which are all stable for γ < 0. For
γ > 0, the set of equilibrium points is C3 ∪ E3, where E3 = {(x1, x2, x3) ∈ R

3 | x2
1 +

x2
2 +x1x2 = γ, or x2

1 +x2
3 +x1x3 = γ, or x2

2 +x2
3 +x3x3 = γ }; the points (x, x, x) ∈

E3 are unstable for |x| <
√

γ /3 and stable for |x| >
√

γ /3. The set of equilibrium
points for γ = 1 is shown in Fig. 2(a). Similar to the two node case, x1 + x2 + x3 is
an invariant along any trajectory of the system, and this can be utilized to reduce the
dimension of the system. For the reduced system x1 + x2 + x3 ≡ c is a parameter,
and very interesting behaviors are observed as this parameter is varied. We note that
the equilibrium at (c/3, c/3) corresponds to the consensus state. For c = 0 the set of
equilibrium points is (0,0)∪ E2, where E2 = {(x1, x2) ∈ R

2 | x2
1 + x2

2 + x1x2 = γ }.
Furthermore, each point in the set E2 is stable, while the equilibrium point (0,0) is a
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Fig. 2 Absolute nonlinear flow with pitchfork nonlinearity on a line graph with three nodes and γ = 1.
(a) The equilibrium points are comprised of three ellipses and a line. (b) The bifurcation diagram for
the reduced system. Notice the S3-symmetric transcritical bifurcation at c = √

3, and the saddle-node
bifurcations at c = 2

source (see Fig. 3(a)). As the value of c is increased from zero, the reduced system has
seven equilibrium points, three of which are sinks, three are saddle points, and one is
a source (see Fig. 3(b)). As the value of c is further increased, the three saddle points
move toward the source, reaching it at c = √

3γ at an S3-symmetric transcritical
bifurcation (Ashwin et al. 2008; Kimura and Moehlis 2008). As the saddle points
cross the source, i.e., for c >

√
3γ , the source becomes a sink (see Fig. 3(c)), and the

three saddle points move toward the other three sinks. At c = 2
√

γ , the three saddles
meet the three sinks and annihilate each other in saddle-node bifurcations. For c > 2,
there is only one equilibrium point in the system, which is a sink (see Fig. 3(d)).
A bifurcation diagram for γ = 1 is shown in Fig. 2(b). It can be seen that at c = √

3,
the three saddle points (shown as red color lines with medium thickness) reach the
source (shown as magenta color thin line), and thus convert it into a sink (shown
as blue color thick lines). The annihilation of the saddle points and sinks through
saddle-node bifurcations can also be seen at c = 2.

Finally, we consider a ring graph with three nodes. We proved in Theorem 1 that
the set of equilibrium points and their stability properties are invariant over the set Γn,
but the trajectories and the basins of attraction of these equilibrium points do change
with the graph topology. In Fig. 4, we show the phase plot for the reduced absolute
nonlinear flow with pitchfork nonlinearity on a ring graph with three nodes reduced
on the hyperplane x1 + x2 + x3 = 0.5. Observe that the trajectories and the basins
of attraction of the equilibrium points are different from those for the line graph in
Fig. 3(b).
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Fig. 3 (Color online) Phase plots for the reduced absolute nonlinear flow on a line graph with three nodes
and γ = 1. The stable equilibrium points are shown in blue. The isolated sinks are shown as blue triangles,
the sources are shown as magenta squares, and the saddles are shown as red plus signs. (a) An ellipse is
the set of the stable equilibrium points, and the consensus point is the source. (b) Three sinks and three
saddles are present. The consensus point remains a source. (c) The saddles have crossed the consensus
point and turned it into a sink, and have moved further toward the other three sinks. (d) The three saddles
have annihilated the three sinks, and the consensus point is a global sink

4.2 Relative Nonlinear Flow with Pitchfork Nonlinearity

Given a connected undirected graph G ∈ Γn, and γ ∈ R, the relative nonlinear flow
with pitchfork nonlinearity, ∀i ∈ {1, . . . , n}, is

ẋi = γ
∑

j∈adj(i)

(xi − xj ) −
∑

j∈adj(i)

(xi − xj )
3. (12)
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Fig. 4 (Color online) The
reduced absolute nonlinear flow
with pitchfork nonlinearity on a
ring graph with three nodes,
γ = 1, and x1 + x2 + x3 = 0.5.
The sinks are shown as blue
triangles, the saddles are shown
as red plus signs, and the source
is shown as a magenta square

Note that for the relative nonlinear flow with pitchfork nonlinearity,
∑n

i=1 ẋi = 0, which implies that
∑n

i=1 xi is invariant along any trajectory of the
system. This system is, in general, hard to characterize. In the following discussion
we present this class of dynamics on some low order graphs.

Discussion (Relative nonlinear flow with pitchfork nonlinearity) We first study the
relative nonlinear flow with pitchfork nonlinearity on a line graph with two nodes.
For γ ≤ 0, the set of equilibrium points for this system is the consensus set, i.e.,
C2 = {(x1, x2) ∈ R

2 | x1 = x2} and each equilibrium point is stable. For γ > 0, the set
of equilibrium points is C2 ∪ A2, where A2 = {(x1, x2) | x1 − x2 = ±√

γ }. Moreover,
for γ > 0 each point in A2 is stable, while each point in C2 is unstable. A phase plot
of this system is shown in Fig. 5.

We now study this system on a line graph with three nodes. For γ ≤ 0, the set
of equilibrium points of this system is the consensus set, i.e., C3 = {(x1, x2, x3) ∈
R

3 | x1 = x2 = x3}, which is stable. For γ > 0, the set of equilibrium points is
C3 ∪ A3, where

A3 =
{(

c + 3
√

γ

3
,
c

3
,
c − 3

√
γ

3

)

,

(
c + √
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,
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,
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,
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)

, c ∈ R

}

.
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Fig. 5 (Color online) Phase
plot for relative nonlinear flow
with pitchfork nonlinearity on a
graph with two nodes and
γ = 1. The consensus set
(shown as magenta colored
dashed line) is unstable, while
two sets (shown as blue colored
solid line) are stable

Fig. 6 (Color online) The relative nonlinear flow with pitchfork nonlinearity on a line graph with three
nodes and γ = 1. (a) The set of equilibrium points consists of nine lines. (b) The phase plot of the reduced
system for c = 0. The system is comprised of nine equilibrium points. The consensus point (shown as ma-
genta square) is a source, four equilibrium points are sinks (shown as blue triangles), and four equilibrium
points are saddle points (shown as red plus signs)

These equilibrium points are shown in Fig. 6(a). We now exploit the fact that the sum
of the states is invariant over a trajectory to reduce the dimension of the system. The
phase plot of the reduced system is shown in Fig. 6(b). Notice that the reduced system
is comprised of four sinks, four saddle points, and a source (consensus point).

Finally, we study this system on a ring graph with three nodes. For γ ≤ 0, the
set of equilibrium points of this system is the consensus set, i.e., C3 = {(x1, x2, x3) ∈
R

3 | x1 = x2 = x3}, which are stable for γ < 0. For γ > 0, the set of equilibrium
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Fig. 7 (Color online) The relative nonlinear flow with pitchfork nonlinearity on a ring graph with three
nodes and γ = 1. (a) The set of equilibrium points is an elliptic cylinder (represented in the figure by rings)
and a line. (b) The phase plot of the reduced system for c = 0. Each point of the ellipse is stable, while the
consensus point (shown as a magenta square) is a source

points is C3 ∪ Ecyl, where

Ecyl =
{

x1, x2, x3 | x2
1 + x2

2 + x1x2 − cx1 − cx2 + c2 − γ

3
= 0, and

x1 + x2 + x3 = c, c ∈ R

}

.

These equilibrium points are shown in Fig. 7(a). Again, the invariance of the sum
of the states along a trajectory is exploited to reduce the dimension of the system.
The phase plot of the reduced system is shown in Fig. 7(b). Note that each point of
Ecyl projected on the reduced space is stable, while the consensus point is a source.

4.3 Disagreement Nonlinear Flow with Pitchfork Nonlinearity

Given a connected undirected graph G ∈ Γn, and γ ∈ R, the disagreement nonlinear
flow with pitchfork nonlinearity is

ẋ = γ L(G)x − (
diag

(
L(G)x

))31n. (13)

In components, the above dynamics, ∀i ∈ {1, . . . , n}, are given by

ẋi = γ
∑

j∈adj(i)

(xi − xj ) −
( ∑

j∈adj(i)

(xi − xj )

)3

. (14)

Before we analyze the disagreement nonlinear flow with pitchfork nonlinearity, we
introduce the following notation. We partition the Laplacian matrix in the following
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way:

L(G) =
[
Ln−1 L∗,n

Ln,∗ Ln,n

]

, (15)

where Ln−1 ∈ R
(n−1)×(n−1).

We also construct a transformation matrix P ∈ R
n×n in the following way:

P =
[
Ln−1 L∗,n

1T
n−1 1

]

. (16)

The last row of the transformation matrix P is chosen to be the basis of the kernel
of the Laplacian matrix L(G), for G ∈ Γn. Hence, a coordinate transform through
matrix P separates the center manifold and the stable/unstable manifold. Now, we
state some properties of the transformation matrix P .

Lemma 2 (Properties of the transformation matrix) Given a graph G ∈ Γn, then for
the transformation matrix P defined in (16), the following statements hold:

(1) The submatrix Ln−1 is symmetric positive definite.
(2) The transformation matrix P is full rank.
(3) The inverse of the transformation matrix satisfies

1T
n P −1 = eT

n , and P −1en = 1

n
1n,

where en = [0 . . . 0 1]T .

Proof We start by establishing the first statement. We define a matrix T by

T =
[
In−1 0

1T
n−1 1

]

,

and note that

T L(G) =
[
Ln−1 L∗,n

0 0

]

.

The matrix T is full rank, hence ker(T L(G)) = ker(L(G)). Moreover, from Theo-
rem 1.37 in Bullo et al. (2009), we know that for a connected undirected graph, rank
(L(G)) = n − 1. Therefore, rank (T L(G)) = n − 1. We also note that Ln−11n−1 =
−L∗,n. Hence, Ln−1 must have full rank. Furthermore, Ln−1 is a principal minor of
the positive semidefinite matrix L(G). Hence, Ln−1 is positive definite.

To establish the second statement, we construct a matrix Γ = [L(G) 1n]T . Since
1n ∈ ker(L(G)), Γ has full row rank. We also construct a matrix T̃ as

T̃ =
⎡

⎢
⎣

In−1 0 0

1T
n−1 1 0

0 0 1

⎤

⎥
⎦ ,
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and note that

T̃ Γ =
⎡

⎢
⎣

Ln−1 L∗,n

0 0

1T
n−1 1

⎤

⎥
⎦ .

An argument similar to the one in the proof of the previous statement establishes the
second statement.

To prove the third statement, we note that the inverse of transformation matrix P

is given by

P −1 =
[

(Ln−1 − L∗,n1T
n−1)

−1 1
n

1n−1

−1T
n−1(Ln−1 − L∗,n1T

n−1)
−1 1

n

]

. (17)

It follows immediately from (17) that 1T
n P −1 = en and P −1en = 1

n
1n. This concludes

the proof of the third and the last statement. �

Theorem 2 (Disagreement nonlinear flow with pitchfork nonlinearity) For the dis-
agreement nonlinear flow with pitchfork nonlinearity, the following statements hold:

Equilibrium points:

(1) For γ ≤ 0, the set of equilibrium points is

Fc = diag
(
R

n
)
.

(2) For γ > 0, the set of equilibrium points is

Fb =
{

P −1y
∣
∣ y ∈ R

n, y1, . . . , yn−1 ∈ {0,−√
γ ,

√
γ }, yn is arbitrary and

n−1∑

i=1

yi ∈ {0,−√
γ ,

√
γ }
}

.

Consensus:

For γ ≤ 0, each trajectory converges to some point in the set Fc.

Bifurcation:

(1) For γ > 0, and n even, the set of locally stable equilibrium points is

F̄b =
{

P −1y
∣
∣ y ∈ R

n, y1, . . . , yn−1 ∈ {−√
γ ,

√
γ }, yn is arbitrary, and

n−1∑

i=1

yi ∈ {−√
γ ,

√
γ }
}

.

Moreover, each equilibrium point x∗ ∈ Fb \ F̄b is unstable.
(2) For γ > 0, and odd n > 1, each equilibrium point x∗ ∈ Fb is unstable.
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Proof We transform the coordinates to y = Px and observe that in the new coordi-
nates equation (13) transforms to

P −1ẏ =

⎡

⎢
⎢
⎢
⎢
⎣

γy1 − y3
1

...

γyn−1 − y3
n−1

−γ
∑n−1

i=1 yi + (
∑n−1

i=1 yi)
3

⎤

⎥
⎥
⎥
⎥
⎦

. (18)

We construct a matrix Q by

Q =
[
In−1 0

1T
n−1 1

]

,

and invoke Lemma 2 to observe that

QP −1 =
[
(Ln−1 − L∗,n1T

n−1)
−1 1

n
1n−1

0 1

]

.

We multiply each side of (18) with Q to get

(
Ln−1 − L∗,n1T

n−1

)−1

⎡

⎢
⎣

ẏ1
...

ẏn−1

⎤

⎥
⎦=

⎡

⎢
⎣

γy1 − y3
1

...

γyn−1 − y3
n−1

⎤

⎥
⎦− 1

n
1n−1ẏn,

ẏn = −
n−1∑

i=1

y3
i +

(
n−1∑

i=1

yi

)3

.

The above set of equations is equivalent to

⎡

⎢
⎣

ẏ1
...

ẏn−1

⎤

⎥
⎦= (

Ln−1 − L∗,n1T
n−1

)

⎡

⎢
⎣

γy1 − y3
1

...

γyn−1 − y3
n−1

⎤

⎥
⎦+ L∗,nẏn, (19)

ẏn = −
n−1∑

i=1

y3
i +

(
n−1∑

i=1

yi

)3

. (20)

The equilibrium point of the system in (19), for each i ∈ {1, . . . , n − 1}, is given
by

y∗
i ∈

{
{0}, if γ ≤ 0,

{0,±√
γ } if γ > 0.



J Nonlinear Sci (2011) 21:875–895 893

The equilibrium points thus obtained should be consistent with the equilibrium con-
dition of (20). Substitution of these equilibrium points into (20) yields

n−1∑

i=1

yi ∈ {0,±√
γ }.

The equilibrium value of yn is a free parameter and can take any value β ∈ R.
The proof of the stability of the set Fc is similar to the Lyapunov function-based

proof in Theorem 1. To prove the local stability of each equilibrium point x∗ ∈ F̄b,
for n even, we shift the origin of (19) and (20), defining new coordinates as

(ζ1, ζ2)
T = (ζ11, . . . , ζ1n−1, ζ2)

T = y − y∗,

where P −1y∗ ∈ F̄b . In these new coordinates, (19) and (20) become

[
ζ̇1

ζ̇2

]

=
[−2γLn−1(I + 1n−11T

n−1) 0
0 0

][
ζ1
ζ2

]

+
[
ḡ1(ζ1)

ḡ2(ζ2)

]

, (21)

where ḡ1 : R
n−1 → R

n−1 and ḡ2 : R
n−1 → R satisfy equation (3).

The dynamics of (21) are similar to the dynamics of (2), and ζ1 = h(ζ2) = 0 is the
center manifold. The ζ2 dynamics on this manifold are neutrally stable. Hence, each
equilibrium point x∗ ∈ F̄b is locally stable.

Similarly, for n odd, expressing (19) and (20) in the new coordinates gives

[
ζ̇1

ζ̇2

]

=
[
γLn−1(−2I + 1n−11T

n−1) 0

−3γ 1T
n−1 0

][
ζ1
ζ2

]

+
[
g1(ζ1)

g2(ζ2)

]

, (22)

where g1 : R
n−1 → R

n−1 and g2 : R
n−1 → R satisfy the conditions in equation (3).

Since the matrix −2I + 1n−11T
n−1 has an eigenvalue at n − 3, the equilibria are un-

stable for n ≥ 3.
The instability of the set Fb \ F̄b follows similarly. �

Remark 2 The absolute, relative and disagreement nonlinear flows can be studied
with other normal forms for the bifurcations in scalar systems. For example, one may
consider the transcritical nonlinearity fi : R → R defined by fi(x) = γ x − x2, for
all i ∈ {1, . . . , n}, and some γ ∈ R. It can be shown that, for γ > 0, the absolute
nonlinear flow with transcritical nonlinearity converges to consensus under very re-
strictive conditions; otherwise, it is unstable. The disagreement nonlinear flow with
transcritical nonlinearity is unstable for γ > 0.

5 Conclusions

In this paper, we considered three frameworks which define distributed nonlinear dy-
namics in multi-agent networks. We determined the set of equilibria that could be
achieved through these dynamics, and examined their stability. We also described the
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bifurcation behavior in multi-agent networks using these frameworks, and demon-
strated a variety of interesting behaviors that can be achieved. These models could
be used for the development of distributed protocols to achieve a certain configura-
tion in a robotic network. Moreover, several physical and ecological systems lie in
the category of relative nonlinear flow, e.g., power network models, and models for
collective animal behavior; the analysis presented in this paper could be helpful for
understanding these systems. Furthermore, the models presented in this paper could
be used to design distributed systems with desired properties, e.g., one could design
an artificial biological network to achieve a certain performance.

A number of extensions to the work presented here are possible. For example,
the networks considered here are static. There is a high possibility that the described
dynamics persist for networks with switching topology as well. Furthermore, the class
of functions which yield stable equilibria is not well understood yet. It remains an
open problem to characterize this. The passivity-based approach of Arcak (2007)
could be helpful in ascertaining the stability for a general class of nonlinearities.
Another future direction of research is to explore the dynamic behavior on graphs
with special structures, e.g., graphs with symmetry.
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