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Abstract. The proper orthogonal decomposition identifies basis functions or modes which optimally capture the average energy
content from numerical or experimental data. By projecting the Navier–Stokes equations onto these modes and truncating, one can
obtain low-dimensional ordinary differential equation models for fluid flows. In this paper we present a tutorial on the construction
of such models. In addition to providing a general overview of the procedure, we describe two different ways to numerically
calculate the modes, show how symmetry considerations can be exploited to simplify and understand them, comment on how
parameter variations are captured naturally in such models, and describe a generalization of the procedure involving projection
onto uncoupled modes that allow streamwise and cross-stream components to evolve independently. We illustrate for the example
of plane Couette flow in a minimal flow unit – a domain whose spanwise and streamwise extent is just sufficient to maintain
turbulence.
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1. Introduction

Discussion of low-dimensional modelling of fluid mechanical systems frequently begins with obser-
vations regarding the contrast between the complexity of fluid motions and the apparent simplicity of
the governing Navier–Stokes equations (hereafter NSE). Indeed, these equations, which for an incom-
pressible, Newtonian fluid may be written in terms of rescaled velocity (u), pressure (p), density (ρ)
and Reynolds number (Re, based on a suitable macroscopic length scale) as

∂u
∂t

+ u · ∇u = − 1

ρ
∇ p + 1

Re
∇2u; ∇ · u = 0, (1)

are nothing more than a statement of Newton’s second law in the form, a = F/m. The F and m terms
which appear on the right-hand side of (1) provide few complications; it is the nonlinear term in the
acceleration, appearing on the left-hand side, which causes the majority of the difficulties. Additionally,
the continuity equation ∇ · u = 0 leads to the complication of non-locality.

Viewed abstractly as partial differential equations, the NSE have infinitely many degrees of freedom.
Furthermore, a Fourier transform of the nonlinear terms in (1) indicates that strong dynamic coupling
exists among these ‘modes’. While this is rather discouraging, various results indicate that the situation
might not be quite so dire. In particular, classical turbulence theory [47], via dimensional analysis,
provides the estimate that the number N of degrees of freedom of a turbulent three-dimensional flow
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scales as

N ∼ Re9/4. (2)

While not completely rigorous, this suggests that the number of degrees of freedom in a turbulent flow
(e.g. with Re of the order of 104) is a very large, but finite, number.

The relation (2) estimates the number of modes sufficient to reliably approximate a turbulent sys-
tem, but not how many are necessary. Clearly the answer to the latter question depends on the flow
under consideration. In isotropic, homogeneous turbulence, flow structures display an enormous range
of length scales, for example, and thus one might assume that the number of modes indicated by (2)
is necessary. In contrast, many flows at lower Reynolds number or in constrained geometries seem to
have just a few basic structures which persistently appear, disappear and then appear again. Perhaps the
first clear experimental demonstration of these coherent structures was in the mixing-layer experiments
of [11]. Some years earlier, an unbiased technique for determining which modes, when suitably com-
bined, can form such structures was proposed in [33]. This technique, known as the proper orthogonal
decomposition (hereafter POD), may be applied to either experimental or numerical data to obtain a
basis that captures more of the kinetic energy of the system on average than any other; as we shall see,
the technique allows us to order the modes in terms of decreasing average energy content. We refer to
these basis functions as empirical or POD modes.

The first reported instance in which POD modes were used to construct a low-dimensional model
of a specific turbulent flow appeared in [3], which addressed the practically interesting problem of
boundary layer turbulence. The POD was applied in the vertical, inhomogeneous direction to find
optimal modes for an experimental dataset provided by Herzog [23]. The NSE, with a suitable model
for the turbulent mean flow, was then projected onto the five most energetic streamwise-invariant modes.
The equations were further modified to account for the energy transfer from the five retained modes
to the higher order modes neglected in the truncation, thus providing a natural bifurcation parameter.
The resulting equations were studied via numerical integration and analysed using dynamical systems
theory. Several interesting solution regimes were identified as the bifurcation parameter was varied,
including periodic, quasi-periodic, intermittent and chaotic behaviour. The most interesting of these was
intermittent behaviour which, in dynamical systems terms, corresponded to a pair of heteroclinic orbits
connecting two unstable fixed points. Reconstruction of the velocity field showed that the fixed points
corresponded to counter-rotating rolls and the heteroclinic orbits to unstable growth, bursting, spanwise
shift, and reformation of the rolls. This was interpreted as a manifestation, in the low-dimensional
model, of the “burst–sweep cycle” observed in the turbulent boundary layer since [27].

The present paper is a tutorial on using the proper orthogonal decomposition to construct low-
dimensional models for turbulent fluid flows. Rather than summarising the contents of the monograph
[25] or review articles [9, 26], we take this opportunity to more explicitly describe key steps of the
analysis, and to extend the approach. We explain two different ways to numerically calculate the POD
modes (see Section 2.1) and then show how one can exploit symmetry considerations to simplify and
understand such modes (see Section 2.2). By taking Fourier modes in translation-symmetric directions,
one can transform a three-dimensional eigenvalue problem for the POD modes into a two-parameter
family of one-dimensional problems. We show how discrete symmetries should be incorporated into
the POD, and describe a specific example in considerable detail (see Section 4.1). We also comment
on how parameter variations are captured naturally in ordinary differential equation (ODE) models
(see Section 2.4). Finally, we describe of a generalization of the procedure for deriving ODE models, by
projection onto uncoupled POD modes that allow streamwise and cross-stream components to evolve
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independently, thus removing non-physical constraints imposed by very low-dimensional truncations
(see Section 4.3).

The organisation of the paper is as follows. Section 2 contains a general discussion of the POD,
including the rôle of symmetry, and how ODE models are obtained by Galerkin projection. In Section
3, we introduce plane Couette flow (PCF), which provides an instructive example for the application of
these techniques. We focus on a minimal flow unit (MFU), where minimality refers to the spanwise and
streamwise extent of the spatial domain, which are reduced (in numerical simulations) until turbulence
with reasonable statistics is just sustainable. By constraining the flow to a domain that supports only
one or two coherent structures, one hopes that the dynamical interactions that sustain turbulence will
be sufficiently simplified that better understanding of physical mechanisms will result. In Section 4,
we apply the techniques described in Section 2 to PCF. This includes detailed discussions of how the
discrete symmetries of PCF can be used to simplify and understand the POD modes, and how one can
uncouple the POD modes to allow streamwise and cross-stream components to evolve independently.
We then summarize the behaviour of two different low-dimensional models for MFU PCF turbulence in
Section 5, with one model involving coupled modes and the other uncoupled modes; this section draws
heavily upon [46]. Finally, we present concluding thoughts in Section 6.

2. Finding, Understanding and Using the POD Modes

The POD procedure1 delivers sets of empirical eigenfunctions {ϕ(n)} which approximate typical mem-
bers of a data ensemble U = {u(k)} better than representations of the same dimension in terms of any
other bases [25]. The data ensemble, which may contain scalar- or vector-valued functions u(k), can be
obtained experimentally, as in [3], or via numerical simulations, as in the example considered later in
this paper. Specifically, we seek ϕ such that the quantity

〈|(u, ϕ)|2〉
‖ϕ‖2

(3)

is maximised. Here (·, ·) and ‖ · ‖ denote an appropriate inner product and norm for the space L2(�x )
of square-integrable functions, e.g.,

( f, g) =
∫

�x

f · g∗ dx and ‖ϕ‖2 = (ϕ, ϕ) =
∫

�x

|ϕ|2 dx, (4)

where �x is the domain of interest over which u(k)(x) and ϕ(x) are defined, the dot denotes a standard
vector dot product, and ∗ denotes complex conjugation. In (3), 〈·〉 denotes the ensemble average, but in
the following we shall appeal to ergodicity to equate the ensemble average with a time average over a
single solution of the NSE.

One may apply the variational calculus to recast this problem as the solution of the following Euler–
Lagrange integral equation [25]:

∫
�x

〈u(x) ⊗ u∗(x ′)〉 ϕ(x ′) dx ′ = λ ϕ(x), (5)

1 As noted in [25] the POD goes by several different names in other disciplines, including Karhunen-Loève decomposition,
principal components analysis, singular systems analysis and singular value decomposition.
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where ⊗ is the tensor product. This is a Fredholm equation of the second kind, the kernel of which is
the autocorrelation tensor averaged over the data ensemble:

R(x, x ′) def= 〈u(x) ⊗ u∗(x ′)〉. (6)

With the norm defined as in (4) and u representing the fluid velocity, the POD modes are optimal in
the sense of capturing, on average, the greatest possible fraction of total kinetic energy for a projection
onto a given number of modes. Moreover the POD modes are orthogonal with respect to the inner
product and can easily be made orthonormal, and each POD mode inherits linear properties from the
ensemble, such as incompressibility and boundary conditions. Finally, we note that the POD procedure
can be formulated for other inner products (e.g., ref. [38]), allowing the computation of POD modes
which optimally represent quantities other than the kinetic energy.

2.1. DISCRETISATION OF THE EIGENVALUE PROBLEM

In practice, one solves (5) by transforming it into a matrix eigenvalue problem through suitable dis-
cretisation, then solving that problem using software such as the LAPACK numerical linear algebra
package [1]. For simplicity, we consider scalar functions u(k) for which the tensor product in (5) is a
simple product. We show here how to calculate the POD modes in two different ways: which of these
requires less computational effort depends on the relative numbers of grid points, ng , and observations
or time-snapshots, NT , in the data ensemble.

2.1.1. The Direct Method
Writing the ensemble average as a time average of the NT snapshots and interchanging the sum and
integral, we may rewrite (5) as

1

NT

NT∑
k=1

u(k)(x)
∫

�x

u∗
(k)(x

′) ϕ(x ′) dx ′ = λ ϕ(x). (7)

We may now approximate the integral over x ′ using either the trapezoidal rule or Simpson’s rule. In
both cases, we can express the integral as

∫
�x

u∗
(k)(x) ϕ(x) dx ′ =

nx∑
i=0

ωi u
∗
(k)(xi )ϕ(xi ) = û∗

(k)ϕ̂, (8)

where

û∗
(k) =




√
ω1u∗

(k)(x1)
√

ω2u∗
(k)(x2)
...

√
ωnx −1u∗

(k)(xnx −1)
√

ωnx u∗
(k)(xnx )




, ϕ̂ =




√
ω1ϕ(x1)

√
ω2ϕ(x2)

...
√

ωnx −1ϕ(xnx −1)
√

ωnx ϕ(xnx )




, (9)
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and ωi are the weight functions for the particular quadrature method used. With these definitions we
may write (7) as

1

NT

NT∑
k=1

u(k)(x) û∗
(k)ϕ̂ = λ ϕ(x). (10)

In particular, this equation is satisfied at each of the nx grid points, x j :

1

NT

NT∑
k=1

u(k)(x j ) û∗
(k)ϕ̂ = λ ϕ(x j ) for j = 1, . . . , nx . (11)

Multiplying (11) by
√

ω j for each j = 1, . . . , nx , we may write the resulting set of equations as a
single matrix-vector equation:

1

NT

NT∑
k=1

û(k)û
∗
(k) ϕ̂

def= Ãϕ̂ = λ ϕ̂. (12)

Thus, the integral equation (5) becomes a symmetric (in general, Hermitian) eigenvalue problem for the
nx ×nx matrix Ã. It is necessary to multiply the components of the resulting eigenvector by 1/

√
ω j to get

the POD modes {ϕ(n)}, but this requires very little computational effort. The modes may be normalised
to ensure that they are orthonormal. Depending on whether the trapezoidal or Simpson’s rule is used,
the POD modes found in this way have either O(�x2) or O(�x4) error, respectively. A variant of this
direct method for finding the POD modes is used, e.g., in [34, 36, 46].

2.1.2. The Method of Snapshots
It may be the case, for example for CFD databases over three-dimensional domains, that ng , the number
of grid points for each snapshot, is much larger than NT , the total number of snapshots in our ensemble.
In such situations, since we typically never require more than O(1000) modes, it is computationally
advantageous to reformulate the computation of POD modes as an nT × nT eigenvalue problem, as
follows. For simplicity, we again describe this only for scalar functions u(k), for which ng = nx .

Letting

ci =
∫

�x

u∗
( j)(x

′)ϕ(x ′) dx ′,

Equation (7) may be rewritten as

1

NT

NT∑
j=1

c j u( j)(x) = λ ϕ(x) : (13)

i.e. we express the eigenfunctions as linear combinations of the observations or snapshots. Multiplying
both sides by u∗

(i) and integrating yields

1

NT

NT∑
t=1

c j

∫
�x

u∗
(i)(x) u( j)(x) dx = λ

∫
�y

u∗
(i) ϕ(x) dx . (14)
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Defining

ai j =
∫

�x

u∗
(i)(x) u( j)(x) dx, (15)

(14) may then be written in matrix form as




a11 · · · a1NT

...
...

aNT 1 · · · aNT NT







c1

...

cNT


 = λ




c1

...

cNT


 . (16)

We shall denote the eigenvectors of this NT × NT matrix eigenvalue problem by cn = [cn
1 . . . cn

NT
]T

and the eigenvalues by λ(n). From (13) we see that the nth eigenfunction of the original problem can be
reconstructed from the coefficients cn

j via

ϕ(n)(x) = 1

λ(n) NT

NT∑
j=1

cn
j u( j)(x), (17)

or, equivalently

ϕ(n)(x) = 1

λ(n) NT

[
cn

1 · · · cn
NT

]



u(1)(x)
...

u(NT )(x)


 . (18)

Since each ensemble member u(i)(x) = [
u1

(i) . . . unx
(i)

]
is specified at nx grid points, the discretised

problem (18) becomes




ϕ
(1)
1 · · · ϕ(1)

nx

...
...

ϕ
(NT )
1 · · · ϕ(NT )

nx


 = 1

NT




c1
1

λ(1)
· · · c1

NT

λ(1)

...
...

cNT
1

λ(NT )
· · · cNT

NT

λ(NT )







u1
(1) · · · unx

(1)

...
...

u1
(NT ) · · · unx

(NT )


 . (19)

The scalar factors are largely inconsequential since, for convenience, we normalise the eigenfunctions.
This reformulation of the original eigenvalue problem (5) is referred to as the ‘method of snapshots’

[42], and requires solution of the NT × NT eigenvalue problem (16) in place of the nx × nx problem
(12). See [25] for further justification and details.

2.2. GENERAL SYMMETRY CONSIDERATIONS

Whether through their inherent geometries, modeling assumptions, or simplifying transformations such
as normal forms, many solid and fluid systems have nontrivial symmetry properties. This is of interest
because the presence of symmetry in a dynamical system can increase the number of critical eigen-
values at a bifurcation, imply the existence of lower dimensional invariant subspaces, and can lead
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to the appearance of multiple solution branches or associated complex dynamics. Much progress in
understanding the dynamics of symmetric dynamical systems has resulted from the application of the
techniques of equivariant bifurcation theory [12, 14, 20, 21]. Here it is not necessary to go into the full
machinery of this topic, but we do emphasise that it is important to derive ODE models which respect
the appropriate symmetries of the system one wishes to study. With round-off and other discretization
errors, the numerical manipulations performed in formulating and solving the eigenvalue problems
above do not usually automatically preserve such symmetries.

Abstractly, suppose that

ȧ = f (a; µ), (20)

where a ∈ R
n and µ ∈ R

m represent dependent variables and system parameters, respectively. Let G
describe a linear group acting on the dependent variables. We say that if

f (γ a; µ) = γ f (a; µ) (21)

for all γ ∈ G, then (20) is equivariant with respect to the group G. This is equivalent to the statement
that if a(t) is a solution to (20) then so is γ a(t) for all γ ∈ G. Indeed, acting on equation (20) with γ

gives γ ȧ = γ f (a; µ). But γ ȧ = d(γ a)/dt ; also equivariance of f gives γ f (a; µ) = f (γ a; µ). Thus,
d(γ a)/dt = f (γ a; µ), so γ a is also a solution.

There are two main types of symmetries: continuous and discrete. The most common type of contin-
uous symmetry for fluid systems is translation symmetry, arising in uniform domains such as channels
and pipes when periodic boundary conditions are imposed. For example, suppose that we can deduce
for a physical field ψ that if ψ(x, t) is a solution, then so is ψ(x + �x, t). Furthermore, suppose that it
is reasonable to expand ψ as

ψ(x, t) = R{a1(t)eikx + a2(t)e2ikx + · · ·}, a1, a2 ∈ C;

here we think of the periodic boundary conditions as being imposed on a domain of length 2π/k. From
this ansatz, we see that the action x → x + �x is equivalent to the action

(a1, a2) �→ (eik�x a1, e2ik�x a2) (22)

on the modal coefficients. In group theory, this is referred to as an S1 symmetry. It is a basic result of the
POD that the optimal modes in translation-invariant directions are Fourier modes [25]. Indeed, in such
cases the averaged autocorrelation tensor depends only on the difference x − x ′ and may be expanded
in a Fourier series as

R(x − x ′) =
∑

k

ckeik(x−x ′) =
∑

k

ckeikx e−ikx , (23)

and substituting (23) into (5), we see that ϕ(k) = eikx are eigenfunctions with eigenvalues ck . Such
continuous symmetries can therefore be understood in terms of an analogue of (22). This has the added
bonus of reducing the dimensionality of the eigenvalue problem to be solved to find the POD modes,
as described in Section 4.

The treatment of discrete symmetries in the context of the POD began with the observation in [42]
that such symmetries can be used to enlarge the ensemble size without having to solve the governing
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equations for new initial conditions. It was subsequently noted that, to obtain bases which appropri-
ately retain all symmetries of the governing equations (not merely those of the data ensemble), and
consequently to obtain projected ODEs with the appropriate equivariance properties, it is necessary to
average the ensemble over the discrete symmetries [4, 10, 17, 43].

Some simple consequences follow upon calculating POD modes from ensembles which have been
averaged over a discrete symmetry group G. First, if φ is a POD mode with eigenvalue λ, then so is γ ·φ
for γ ∈ G. This is proved as follows. Suppose that the set of POD modes {φ( j)} is obtained from the
ensemble of snapshots {u(k)}. The set of POD modes obtained from the ensemble of snapshots {γ · u(k)}
is then {γ · φ( j)} [17, 43]. This is true whether or not the snapshots have been averaged over the group G.
However, when they are averaged over G, the ensembles of snapshots {u(k)} and {γ · u(k)} are identical.
Since they are determined by the same ensemble of snapshots, γ · φ and φ are POD modes with the
same eigenvalue. In fact, by linearity of the POD procedure, we have γ · φ = cγ φ for some constant
cγ , which in general may be complex. This brief paragraph leads, in the example considered below, to
the multiple pages of Section 4.1.

2.3. COMMENTS ON COMPLETENESS OF POD BASIS

The POD modes, including the (generalised) eigenfunctions with eigenvalue zero, form a complete
basis for the space L2(�x ). Thus, any function on �x , including members of the original ensemble
used to obtain them, can be represented in the L2 sense by linear combinations of these modes. In
applications, however, one is typically interested only in POD modes with strictly positive eigenvalues.
(In turbulence, many things happen, but not everything, and we wish only to represent physically relevant
events.) These no longer form a complete basis, but almost every member of the original ensemble can
be reproduced by linear combinations of such POD modes [25]. With these considerations in mind, it
is not surprising that relatively high (O(1000)-) dimensional projections onto POD modes can capture
observed modal energy budgets and provide acceptable short-term tracking of individual solutions for
turbulent flows [19, 34]. In applications, however, one often wants to consider much lower (O(10)-)
dimensional projections, and as we shall see in the example considered in this paper, with suitable
modelling of the neglected modes, very low-dimensional models are able to capture many aspects of
turbulent flows. But it is important to recognise that in such low-dimensional subspaces, vector-valued
eigenfunctions effectively constrain the relative magnitudes of the components of fluid velocity fields,
and that this may lead to nonphysical behavior. We return to this issue in Section 4.3, where we introduce
a decoupling technique to address it.

2.4. GALERKIN PROJECTION AND PARAMETER VARIATION

We obtain ODE models through Galerkin projection of the governing partial differential equations
(PDEs) onto the POD modes. Abstractly, we write the evolution PDE as

∂u
∂t

= F(u; µ), (24)

where µ represents system parameters such as the Reynolds number. Expanding the function u as

u(x, t) =
∑

n

an(t)Φn(x),
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and substituting this ansatz into (24), we obtain

∑
n

ȧn(t)Φn(x) = F

(∑
n

an(t)Φn(x); µ

)
.

Now, taking the inner product with Φm(x) and using orthonormality of the POD modes

ȧm(t) =
(

F

( ∑
n

an(t)Φn(x); µ

)
,Φm(x)

)
(25)

In the example considered below, our ensemble consists of snapshots of the flow at the same value of
the Reynolds number, say Reens. However, from (25), we see that upon Galerkin projection we obtain
ODEs which will explicitly contain the parameter Re. Thus, we obtain a model for the fluid flow for
all values of Re. Of course, the POD modes are only optimal at Reens, so the model is expected to have
the most accurate behavior for a range of Re around Reens. Although not considered for this example,
it has been proposed that one can improve the range of applicability of such models by “stacking” the
ensemble with snapshots over a range of parameter values; see, e.g., [44], in which this approach is
applied to the Kuramoto–Sivashinsky equation.

3. Plane Couette Flow

We now describe a fluid system which serves as an instructive example for the techniques described
in Section 2. In plane Couette flow (PCF), fluid is sheared between two infinite parallel plates moving
at speed U0, in opposite directions ±ex ; see Figure 1. The streamwise, wall-normal, and spanwise
directions are respectively x , y, and z. We non-dimensionalize lengths in units of d/2 where d is the
gap between the plates, velocities in units of U0, time in units of (d/2)/U0, and pressure in units of U 2

0 ρ

where ρ is the fluid density. Laminar flow is then given by U0 = yex , −1 ≤ y ≤ 1 and the Reynolds
number is Re = U0d

2ν
, where ν is the kinematic viscosity. Writing u = (u1, u2, u3), x = (x, y, z), the

evolution equation for the perturbation (u(x, t), p(x, t)) to laminar flow becomes

∂

∂t
u = −(u · ∇)u − y

∂

∂x
u − u2ex − ∇ p + 1

Re
∇2u. (26)

The fluid is assumed to be incompressible, i.e.,

∇ · u = 0, (27)

Figure 1. Geometry of plane Couette flow (PCF).
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with no-slip boundary conditions at the plates, i.e.,

u|y=±1 = 0, (28)

and periodicity in the streamwise and spanwise directions, with lengths Lx = 1.75π and Lz = 1.2π ,
respectively. This corresponds to the MFU, the smallest domain which is able to sustain turbulence for
this geometry [22]. Our POD bases or empirical eigenfunctions will be derived from a direct numerical
simulation (DNS) database computed at Re = 400. In [34] we took the moderate aspect ratio domain
Lx = 4π , Lz = 2π , also at Re = 400.

Equations (26)–(28) are equivariant with respect to the following symmetries [41]:

P · [(u1, u2, u3, p)(x, y, z, t)] = (−u1, −u2, −u3, p)(−x, −y, −z, t) (29)

R · [(u1, u2, u3, p)(x, y, z, t)] = (u1, u2, −u3, p)(x, y, −z, t) (30)

RP · [(u1, u2, u3, p)(x, y, z, t)] = (−u1, −u2, u3, p)(−x, −y, z, t) (31)

T�x,�z · [(u1, u2, u3, p)(x, y, z, t)] = (u1, u2, u3, p)(x + �x, y, z + �z, t). (32)

Thus, if u(x, t) solves (26), the solution obtained by acting on u(x, t) with any product of the actions
given in Equations (29)–(32) also solves it: e.g., if

(u1(x, y, z, t), u2(x, y, z, t), u3(x, y, z, t), p(x, y, z, t))

solves (26), then so does

(u1(x, −y, z, t), −u2(x, −y, z, t), u3(x, −y, z, t), p(x, −y, z, t)).

Physically, P is a point reflection about (x, y, z) = (0, 0, 0), R is a reflection about the plane z = 0,
RP is a rotation by π about the z-axis, and T�x,�z is a translation by �x in the streamwise direction and
by �z in the spanwise direction. As described in [34],P andR generate a four element group isomorphic
to the abstract group D2 (see, e.g., ref. [32]), and altogether, with the continuous translations (32), the
governing equations are equivariant with respect to the direct product O(2) × O(2). In the empirical-
Fourier decomposition developed below, this corresponds to independent rotations and reflections with
respect to streamwise and spanwise Fourier wavenumbers. The boundary layer model of [3] shares only
some of these symmetries, having only O(2) × S1 symmetry (the upper wall is absent in [3], thus there
is no analog of P (29)). We will use (29)–(31) in our application of the POD procedure to create a basis
endowed with the appropriate symmetries, and to check subsequently that the projected ODEs preserve
them.

We note that PCF exhibits numerous interesting properties that a model should reproduce. Specifically,
the laminar state U0 is linearly stable for all Reynolds numbers [18], but both experiments and simulations
exhibit sustained turbulence for sufficiently high Re (≥380–400) and perturbation amplitudes [15, 16].
Moreover, Equation (26) possesses numerous branches of (unstable) steady states consisting of wavy
streamwise vortices and streaks that arise in saddle-node bifurcations above Re ≈ 125 [13, 37, 41], and
in [41] it was suggested that turbulence might be a “chaotic repellor” formed from heteroclinic connec-
tions among such finite amplitude solutions, as in the boundary layer models of [3]. The studies in [34]
support this conjecture for a moderate aspect ratio domain. For additional information, experimental
work, and references on PCF, see [7, 28].
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We now describe the phenomenology of MFU PCF turbulence, briefly surveying the results of [22]
and presenting analogous results from our DNS; see [46] for more details. In [22] the RMS modal
velocities are defined as

M(nx , nz)
def=

( ∫ 1

−1

[
ũ2

1(nx , y, nz) + ũ2
2(nx , y, nz) + ũ2

3(nx , y, nz)
]

dy

)1/2

, (33)

where the tildes represent Fourier mode amplitudes, and the temporal behaviour of this quantity for
various wavenumber pairs (nx , nz) is studied. Approximately periodic dynamics are found for cer-
tain (dominant) modal velocities; in particular, M(0, 1) and M(1, 0) remain in near antiphase: peaks
(throughs) in the former often being accompanied troughs (peaks) in the latter: Figure 2 (cf. [22,
Figure 3a]). This figure also shows that the temporal dynamics of M(1, 1) is much the same as that of
M(1, 0), with a recurrence period is 80–100 non-dimensional time units, while M(0, 2) is less regular.

Figure 3 (cf. Figure 2 in [22]) shows mid-plane contours of the streamwise velocity at the times
1–8 noted on the M(0, 1) curve in Figure 2. At 1, the flow shows prominent streaks, that is,
streamwise-coherent structures with variation of the streamwise velocity with respect to spanwise

Figure 2. The behaviour of the RMS modal velocities, as defined by (33), for several wavenumber pairs: over 1500 time units of
the DNS (left), and a close-up of one representative cycle (right). Here, and for similar plots throughout this paper, the legend in
the right panel also applies to the left panel.

Figure 3. The streak breakdown process in DNS simulations of PCF in the MFU at eight instants in the regeneration cycle of
Figure 2, as indicated by contours of u (solid positive, dashed negative) in the (x, z) plane lying between the two plates. Here,
and for similar plots in this paper, we label the axes in the subplot in the upper left-hand corner only. Since the laminar solution
is identically zero in this mid-plane it makes no contribution to the contours in these plots.
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position. The flow pattern then develops greater variation with respect to streamwise position, until at
5 the streaks break down. They then regenerate and at 8 the process begins anew.

4. Applying POD to PCF

In fluid problems such as PCF, the snapshots u(k) are three-dimensional, so (5) takes the form

3∑
j=1

∫ ∫ ∫
�x

〈ui (x, t)u∗
j (x

′, t)〉(n)
jnx nz

(x′) d3x′ = λ(n)
nx nz


(n)
inx nz

(x), (34)

for i = 1, 2, 3, where the “quantum numbers” n ∈ Z
+, and wavenumbers nx , nz ∈ Z distinguish

different POD modes

Φ(n)
nx ,nz

= (


(n)
1nx nz

, 
(n)
2nx nz

, 
(n)
3nx nz

)
.

However, this can be recast as a family of one-dimensional eigenvalue problems to which the discretisa-
tions of Section 2.1 may be applied. As noted in Section 2.2, it is a basic result of the POD that the optimal
modes in translation-invariant directions are Fourier modes [25], and we shall assume this a priori:

Φ(n)
nx ,nz

(x) = 1√
Lx Lz

exp

(
2π i

(
nx x

Lx
+ nzz

Lz

))
φ(n)

nx ,nz
(y). (35)

Complex conjugating (34) and using (35) implies that the complex, vector-valued “wall normal”
functions φ(n)

nx ,nz
= (φ(n)

1nx nz
, φ

(n)
2nx nz

, φ
(n)
3nx nz

) satisfy

φ(n)
nx ,nz

(y) = φ(n)∗
−nx ,−nz

(y). (36)

The associated expansion of the velocity field u in terms of these modes is given as

u(x, t) =
∑

n

∑
nx

∑
nz

a(n)
nx ,nz

(t)√
Lx Lz

exp

(
2π i

(
nx x

Lx
+ nzz

Lz

))
φ(n)

nx ,nz
(y). (37)

and we shall refer to φ(n)
nx ,nz

(y) as the (n, nx , nz) POD mode. The modal coefficients a(n)
nx ,nz

are complex
unless nx = nz = 0. However, reality of u implies that

a(n)
nx ,nz

(t) = a(n)∗
−nx ,−nz

(t); (38)

hence, when we come to integrate the projected ODEs, we need compute only just over half the complex
amplitudes retained in the truncation.

With this in mind, it is convenient to consider fluid flow data in the form

u(x, t) =
∑

nx

∑
nz

exp

(
2π i

(
nx x

Lx
+ nzz

Lz

))
F(nx , nz ; y, t), (39)

where reality of u implies that

F(−nx , −nz ; y, t) = F∗(nx , nz ; y, t). (40)
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Data in this form naturally results from CFD schemes in which periodic boundary conditions are imposed
and Fourier representations used in translation-invariant directions.

Substituting Equations (39) and (35) into (34), performing the integration over x ′ and z′, and Fourier
transforming in x and z, we obtain the following family of wall-normal eigenproblems:

Lx Lz

3∑
j=1

∫ 1

−1
〈Fi (nx , nz ; y, t)F∗

j (nx , nz ; y′, t)〉φ(n)
j,nx ,nz

(y′) dy′ = λ(n)
nx ,nz

φ
(n)
i,nx ,nz

(y). (41)

4.1. SYMMETRY CONSIDERATIONS: AVERAGING OVER DISCRETE SYMMETRIES

For the present system, translation symmetries in the streamwise and spanwise direction are accounted
for by the Fourier decomposition (35). As discussed in Section 2.2, it is also important to average
over the discrete symmetries of the system when forming the ensemble of snapshots. Suppose our
original ensemble, before averaging over the symmetries, consists of T ′ snapshots, with F(k) being the
F corresponding to the kth snapshot of u, The kernel obtained by averaging over the discrete symmetry
group D2 = {Id,P,R,RP} is given by

Ri j (nx , nz ; y, y′) = 〈Fi (nx , nz ; y, t)F∗
j (nx , nz ; y′, t)〉

= 1

T ′

T ′∑
l=1

[ ∑
γ∈D2

γ · F (l)
i (nx , nz ; y) γ · F (l)∗

j (nx , nz ; y′)

]

def= 1

T

T∑
k=1

F (k)
i (nx , nz ; y)F (k)∗

j (nx , nz ; y′), (42)

where the set of snapshots is extended in the obvious way to give a total of T = 4T ′ velocity fields.
Equation (41) thus becomes

Lx Lz

T

3∑
j=1

∫ 1

−1

T∑
k=1

F (k)
i (nx , nz ; y)F (k)∗

j (nx , nz ; y′)φ(n)
j,nx ,nz

(y′) dy′ = λ(n)
nx nz

φ
(n)
i,nx ,nz

(y). (43)

Here, it may be verified from (29)–(31) and (39) that the nontrivial group elements of D2 act on the
F(k)’s as follows:

P ·




F (k)
1 (nx , nz ; y)

F (k)
2 (nx , nz ; y)

F (k)
3 (nx , nz ; y)


 =




−F (k)
1 (−nx , −nz ; −y)

−F (k)
2 (−nx , −nz ; −y)

−F (k)
3 (−nx , −nz ; −y)


 , (44)

R ·




F (k)
1 (nx , nz ; y)

F (k)
2 (nx , nz ; y)

F (k)
3 (nx , nz ; y)


 =




F (k)
1 (nx , −nz ; y)

F (k)
2 (nx , −nz ; y)

−F (k)
3 (nx , −nz ; y)


 , (45)

RP ·




F (k)
1 (nx , nz ; y)

F (k)
2 (nx , nz ; y)

F (k)
3 (nx , nz ; y)


 =




−F (k)
1 (−nx , nz ; −y)

−F (k)
2 (−nx , nz ; −y)

F (k)
3 (−nx , nz ; −y)


 . (46)
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Although one can now discretise Equation (43) via the direct method or the method of snapshots
to numerically find the POD modes, we describe a further transformation which delivers POD modes
with even nicer symmetry properties. First, following the discussion in Section 2.2, we conclude that
γ · φ = cγφ for some constant cγ , which in general may be complex. Since R2 = P2 = RP2 = Id,
we have

|cR|2 = |cP |2 = |cRP |2 = 1. (47)

Since RP = R · P , we can also conclude that cRP = cRcP . More explicitly, as shown in [34, 45],
following the action of the discrete symmetries (29)–(31) through Fourier transformation and the POD,
we deduce that the modal components behave as follows under the group elements:

P ·




φ
(n)
1,nx ,nz

(y)

φ
(n)
2,nx ,nz

(y)

φ
(n)
3,nx ,nz

(y)


 =




−φ
(n)
1,−nx ,−nz

(−y)

−φ
(n)
2,−nx ,−nz

(−y)

−φ
(n)
3,−nx ,−nz

(−y)


 , (48)

R ·




φ
(n)
1,nx ,nz

(y)

φ
(n)
2,nx ,nz

(y)

φ
(n)
3,nx ,nz

(y)


 =




φ
(n)
1,nx ,−nz

(y)

φ
(n)
2,nx ,−nz

(y)

−φ
(n)
3,nx ,−nz

(y)


 , (49)

RP ·




φ
(n)
1,nx ,nz

(y)

φ
(n)
2,nx ,nz

(y)

φ
(n)
3,nx ,nz

(y)


 =




−φ
(n)
1,−nx ,nz

(−y)

−φ
(n)
2,−nx ,nz

(−y)

φ
(n)
3,−nx ,nz

(−y)


 . (50)

Consider, for example, the action of P on the POD modes:

P · φ(n)
nx ,nz

(y) = −φ(n)
−nx ,−nz

(−y)

= cPφ
(n)
nx ,nz

(y).

Thus,

P2 · φ(n)
nx ,nz

(y) = P · [−φ(n)
−nx ,−nz

(−y)
]

= P · [−φ(n)∗
nx ,nz

(−y)
]

= −c∗
Pφ

(n)∗
nx ,nz

(−y)

= −c∗
Pφ

(n)
−nx ,−nz

(−y)

= |cP |2φ(n)
nx ,nz

(y).

Since P2 = 1, we conclude that |cP |2 = 1.
Now we employ the transformation

(
φ(n)

nx ,nz
+ P · φ(n)

nx ,nz

)/∥∥φ(n)
nx ,nz

+ P · φ(n)
nx ,nz

∥∥ �→ φ(n)
nx ,nz

, (51)

which ensures that

P · φ(n)
nx ,nz

= φ(n)
nx ,nz

. (52)
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and, hence, cP = 1, except in one special case to be described below. We note that POD modes satisfying
(52) must necessarily have components of the form

φ
(k)
j,nx ,nz

(y) = o(y) + ie(y) (53)

where o and e are, respectively, odd and even functions of y. Thus POD modes lacking obvious
symmetry properties will, under the transformation (51), acquire components of the form (53) and
those which originally had components of the form (53) will remain unchanged. However, POD modes
with components of the form

φ
(k)
j,nx ,nz

(y) = e(y) + io(y). (54)

will simply vanish altogether under the transformation (51). Each of these modes may be transformed
into the form (53) by multiplying by the constant i = √−1, with the exception of the real POD modes
φ

(n)
j00 which, for empirical reasons, may turn out to be even in y; for these POD modes we note that

cP = −1.
To investigate the action of R on the POD modes, we note by explicit computation that the term

which appears in the square brackets in the expression for Ri j (nx , nz ; y, y′) in (42) is equal to

ε(i)ε( j)
[
R · F (l)

i (nx , −nz ; y)R · F (l)∗
j (nx , −nz ; y′)

+RP · F (l)
i (nx , −nz ; y)RP · F (l)∗

j (nx , −nz ; y′)

+ F (l)
i (nx , −nz ; y)F (l)∗

j (nx , −nz ; y′)

+P · F (l)
i (nx , −nz ; y) P · F (l)∗

j (nx , −nz ; y′)
]

(55)

where

ε(i)
def=

{
−1 if i = 3

1 otherwise
.

It is thus clear that Ri j (nx , nz ; y, y′) = ε(i)ε( j)Ri j (nx , −nz ; y, y′) or, equivalently, using ε2 = 1,
Ri j (nx , −nz ; y, y′) = ε(i)ε( j)Ri j (nx , nz ; y, y′). We can now see that the eigenvalue problems (43) for
φ(n)

nx ,nz
and φ(n)

nx ,−nz
take the forms

3∑
j=1

∫ 1

−1
Ri j (nx , nz ; y, y′)φ(n)

j,nx ,nz
(y′) dy′ = λ(n)

nx ,nz
φ

(n)
i,nx ,nz

(y) (56)

3∑
j=1

∫ 1

−1
ε(i)ε( j)Ri j (nx , nz ; y, y′)φ(n)

j,nx ,−nz
(y′) dy′ = λ

(n)
nx ,−nz

φ
(n)
i,nx ,−nz

(y). (57)

Assuming solutions φ(n)
nx ,nz

(y) for (56), (57) is solved by taking

φ
(n)
j,nx ,−nz

(y) = ε( j)φ(n)
j,nx ,nz

(y), (58)

with λ
(n)
nx −nz

= λ(n)
nx ,nz

. But from (49), (58) is equivalent to saying that R acts as +1 on the POD modes.
However, note that if nz = 0, (58) implies that φ3nx 0(y) = 0. That is, if nz = 0, our argument that R
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acts as +1 is only valid for modes with vanishing z-component; if the z-component does not vanish (but
the other components do), we will see in the following that R acts as −1. Since RP = R · P , where
R acts as ±1, we can also conclude that cRP = cRcP = ±1.

We now consider the POD modes for special cases with nx = 0 and/or nz = 0. For simplicity of
notation, we let

Fa R(y) + i FaI (y)
def= F (l)

a (nx , nz ; y),

GbR(y′) + iGbI (y′) def= F (l)
b (nx , nz ; y′)

for a, b = 1, 2, 3, where Fa R, FaI , GbR , and GbI are real functions.

4.1.1. POD Modes with nx = nz = 0
We begin by considering the special case nx = nz = 0; the sum of these modes represents the spatially
averaged flow for the system. We note that for the turbulent boundary layer system considered in [3], the
mean flow was modeled as a balance between the effects of pressure and those of coherent structures;
for the models considered in this paper (and in [34] and [46]), we instead calculate the mean flow with
the POD procedure.

From the reality condition (40), FaI (y) = GbI (y′) = 0 for a, b = 1, 2, 3. Then, the term in the square
brackets of (42) becomes

F (l)
a (0, 0; y)F (l)∗

b (0, 0; y′) + P · F (l)
a (0, 0; y)P · F (l)∗

b (0, 0; y′) + R · F (l)
a (0, 0; y)R · F (l)∗

b (0, 0; y′)

+RP · F (l)
a (0, 0; y)RP · F (l)∗

b (0, 0; y′)

= (Fa R(y)GbR(y′) + Fa R(−y)GbR(−y′))(1 + ε(a)ε(b)). (59)

The correlation 〈Fa F∗
b 〉 in (42) thus vanishes for (a, b) = (1, 3),(3, 1), (2, 3), and (3, 2). Also, since

there can be no mean flow in the wall normal direction, F2R = G2R = 0, so 〈Fa F∗
b 〉 also vanishes for

(a, b) = (1, 2), (2, 1), (2, 2). The eigenvalue problem (43) therefore takes the form

∫ 1

−1
R11(y, y′)φ1(y′)dy′ = λφ1(y) (60)

0 = λφ2(y). (61)∫ 1

−1
R33(y, y′)φ3(z′)dy′ = λφ3(y) (62)

where R11 and R33 are real functions. Generically, this is solved by POD modes of the form

φ(n)
00 (y) = (

φ
(n)
100(y), 0, 0

)
(63)

or

φ(n)
00 (y) = (

0, 0, φ
(n)
300(y)

)
. (64)

By taking the real parts of Equations (60) and (62), we see that without loss of generality φ
(n)
100 in (63)

and φ
(n)
300 in (64) can be taken to be real.

From (49), R acts as +1 on POD modes of the form (63), and as −1 on POD modes of the form (64).
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4.1.2. POD Modes with nx = 0, nz �= 0
We next consider the special case of streamwise-invariant modes nx = 0, nz �= 0. Using (40), we see
that there terms in the square brackets of (42) are equal to

F (l)
a (0, nz ; y)F (l)∗

b (0, nz ; y′) + P · F (l)
a (0, nz ; y)P · F (l)∗

b (0, nz ; y′)

+R · F (l)
a (0, nz ; y)R · F (l)∗

b (0, nz ; y′) + RP · F (l)
a (0, nz ; y)RP · F (l)∗

b (0, nz ; y′)

= (Fa R(y)GbR(y′) + FaI (y)GbI (y′) + Fa R(−y)GbR(−y′)

+ FaI (−y)GbI (−y′)) × (1 + ε(a)ε(b))

+ i(FaI (y)GbR(y′) − Fa R(y)GbI (y′) + Fa R(−y)GbI (−y′)

− FaI (−y)GbR(−y′)) × (1 − ε(a)ε(b)). (65)

From this we can see that Rab(0, nz ; y, y′) will be purely real if (a, b) = (1, 1), (1, 2), (2, 1), (2, 2), or
(3, 3), and purely imaginary if (a, b) = (1, 3), (2, 3), (3, 1), or (3, 2). Letting φ̂

(n)
30nz

(y) = iφ(n)
30nz

(y), the
eigenvalue problem (43) takes the form

∫ 1

−1
(R11(y, y′)φ1(y′) + R12(y, y′)φ2(y′) + R13(y, y′)φ̂3(y′)) dy′ = λφ1(y) (66)

∫ 1

−1
(R12(y′, y)φ1(y′) + R22(y, y′)φ2(y′) + R23(y, y′)φ̂3(y′)) dy′ = λφ2(y) (67)

∫ 1

−1
(R13(y′, y)φ1(y′) + R23(y′, y)φ2(y′) + R33(y, y′)φ̂3(y′)) dy′ = λφ̂3(y), (68)

where R11, R12, R13, R22, R23, and R33 are real functions. Taking the real part of Equations (66)–(68),
we conclude, without loss of generality, that φ1, φ2, and φ̂3 can be taken to be real or purely imaginary.
That is, φ1 and φ2 can be taken to be real with φ3 purely imaginary, or φ1 and φ2 can be taken to be
purely imaginary with φ3 real (cf. [2]). We shall make the appropriate choice to ensure that the φ(n)

0nz

modes have components of the form (53).
Since nz �= 0, from the discussion below (58), R acts as +1 on these POD modes. (This also follows

from (49) and (36) using the properties of the modes.)

4.1.3. POD Modes with nx �= 0, nz = 0
Next, consider the special case nx �= 0, nz = 0; such modes have no spanwise structure. Here

F (l)
a (nx , 0; y)F (l)∗

b (nx , 0; y′) + P · F (l)
a (nx , 0; y)P · F (l)∗

b (nx , 0; y′)

+R · F (l)
a (nx , 0; y)R · F (l)∗

b (nx , 0; y′) + RP · F (l)
a (nx , 0; y)RP · F (l)∗

b (nx , 0; y′)

= [(Fa R(y)GbR(y′) + FaI (y)GbI (y′) + Fa R(−y)GbR(−y′) + FaI (−y)GbI (−y′))

+ i(FaI (y)GbR(y′) − Fa R(y)GbI (y′) + Fa R(−y)GbI (−y′)

− FaI (−y)GbR(−y′))] × (1 + ε(a)ε(b)). (69)

From this we can see that Rab(0, nz ; y, y′) will be nonvanishing if (a, b) = (1, 1), (1, 2), (2, 1), (2, 2),
or (3, 3). The eigenvalue problem (43) takes the form

∫ 1

−1
(R11(y, y′)φ1(y′) + R12(y, y′)φ2(y′)) dy′ = λφ1(y) (70)
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∫ 1

−1
(R∗

12(y, y′)φ1(y′) + R22(y, y′)φ2(y′)) dy′ = λφ2(y), (71)

∫ 1

−1
R33(y, y′)φ3(y′) = λφ3(y) (72)

where R11, R12, R22, and R33 are complex functions. Generically, we expect POD modes of the form

φ(n)
nx 0 = (

φ
(n)
1nx 0, φ

(n)
2nx 0, 0

)
(73)

or

φ(n)
nx 0 = (

0, 0, φ
(n)
3nx 0

)
; (74)

these POD modes are complex. We employ the transformation (51) to ensure that these modes are of
the form (53).

From (49), R acts as +1 on POD modes of the form (73), and as −1 on POD modes of the form (74).

4.1.4. POD Modes with nx �= 0, nz �= 0
The eigenvalue problem (43) for nx �= 0, nz �= 0 lacks the special properties of the cases considered
above, and we can only conclude that R acts as +1. Again we employ the transformation (51) to ensure
that the modes are of the form (53).

4.1.5. Summary of Group Actions on the POD Modes
We summarise the actions of P , R and RP on the POD modes as follows:

P · φ(n)
nx ,nz

= cPφ(n)
nx ,nz

, (75)

R · φ(n)
nx ,nz

= cRφ
(n)
nx ,−nz

, (76)

RP · φ(n)
nx ,nz

= cPφRa(n)
−nx ,nz

, (77)

where

cP =
{

−1 if nx = nz = 0 and φ
(n)
0,0 has components even in y

+1 otherwise
, (78)

cR =




−1 if nx = nz = 0 and φ
(n)
3,0,0 = 0

−1 if nz = 0 and φ
(n)
1,nx ,0

= φ
(n)
2,nx ,0

= 0

+1 otherwise

. (79)

4.2. RESULTS FROM THE POD

After allowing transients to decay and a statistically stationary (turbulent) state to become established
at Re = 400, we ran our DNS for 20,000 non-dimensional time units, assembling a database of 4000
velocity field snapshots {u(x, t j )} by recording every 500th timestep (�t = 0.01). This ensemble was
then expanded four-fold by averaging over the discrete symmetries as described above.
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Table 1. Eigenvalues for the POD modes for PCF
in the MFU.

(n, nx , nz) λ
(n)
nx ,nz %E (n)

nx ,nz

(1, 0, 0) 4.4550 68.02

(1, 0, ±1) 0.7821 23.88

(1, 0, ±2) 0.0543 1.66

(1, ±1, 0) 0.0386 1.18

(1, 0, ±3) 0.0195 0.59

(2, 0, 0) 0.0174 0.27

(2, 0, ±1) 0.0123 0.38

(1, ±1, ±2) 0.0109 0.33

(1, ±1, ±1) 0.0090 0.27

(3, 0, 0) 0.0068 0.10

(4, 0, 0) 0.0054 0.08

(3, 0, ±1) 0.0039 0.12

· · ·

Table 1 lists the eigenvalues associated with the first twelve (sets of) POD modes in order of decreasing
eigenvalue magnitude. Here

%E (n)
nx ,nz

def=
(

λ(n)
nx ,nz

/ ∑
m,mx ,mz

λ(m)
mx ,mz

)
× 100

is the percentage of average total energy contained in the (n, nx , nz) POD mode. The symmetries
guarantee that λ(n)

nx ,nz
= λ

(n)
nx ,−nz

, and we lump these modes together accordingly.
The three most energetic modes have Fourier wavenumbers (0, 0), (0, 1), (0, 2); a similar triad ap-

peared in the Moderate Aspect Ratio PCF study of [34]. Interestingly, the fourth most energetic mode
is the spanwise-invariant (1, 1, 0) mode, which has neither a streamwise nor a wall-normal component
and is thus unable to directly interact with the (1, 0, 0) mode representing the mean flow. In Figure 4 we
show the (1, 0, 0) mode and indicate its close approximation to the full (DNS) mean velocity profile.
The next four “two-dimensional modes” that follow the (1, 0, 0) mode in Table 1 are plotted in Figure 5.
Over 90% of the turbulent kinetic energy is captured by the first two modes, while 99% is captured by
the leading 43 modes. Table 1 agrees well with independent results of [19].

See Figures 6–9 for a verification of some of the symmetry properties of the POD modes discussed
in Section 4.1.

4.3. UNCOUPLED POD MODES

Commenting on the wall layer model of [3] which uses only streamwise-invariant modes (nx = 0 in
the present notation) presented in [24], Moffatt [35] pointed out that, based on fundamental consider-
ations, all disturbances should eventually decay unless streamwise variations are included. Indeed, for
streamwise-invariant flow, for which the convective derivative reduces to

D/Dt = ∂/∂t + u2∂/∂y + u3∂/∂z, (80)
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Figure 4. The x-component of the POD mode Φ(1)
0,0 (top). The y and z-components are equal to zero. The velocity profile obtained

by adding this POD mode with r.m.s. amplitude
√

λ
(1)
0,0=

√
〈|a(1)

0,0(t)|2〉 to the laminar state U0 = zex (bottom). The mean flow obtained
from the full DNS ensemble average is also indicated (dotted curve, barely discernable).

Figure 5. Flow fields u associated with the (n, nx , nz) = (1, 0, 1), (1, 0, 2), (1, 0, 3) and (1, 1, 0) POD modes. For the (1, 0, 1),
(1, 0, 2) and (1, 0, 3) POD modes the vectors show the spanwise and wall-normal velocities, while the dark (light) shading denotes
positive (negative) streamwise velocity. For the (1, 1, 0) mode the u and v components are identically zero, and the dark (light)
shading now denotes positive (negative) spanwise velocity.

the x-component of the Navier–Stokes equation is

D

Dt
(U + u1) = 1

Re

(
∂2

∂y2
+ ∂2

∂z2

)
(U + u1), (81)

where U denotes the laminar profile, entirely in the x-direction, and u1,2,3 are the fluctuations. (Note
that u2 and u3 influence the dynamics of u1, but u1 does not influence the dynamics of u2 and u3.)
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Figure 6. The three most energetic (real) POD modes for the (nx , nz) = (0, 0) Fourier pair. All modes have zero component in
the y and z directions; the x component of the n = 1, 3 modes are odd, whilst that for the n = 2 mode is even.

Figure 7. The three most energetic POD modes for the (nx , nz) = (0, 1) Fourier pair, with real and imaginary parts indicated by
solid and dashed lines, respectively.

Furthermore, it can be shown that

d

dt

∫ ∫ (
u2

2 + u2
3

)
dy dz = −2ν

{ ∫ ∫
ω2

x dy dz

}
, (82)

where ωx is the x-component of the vorticity, showing that the energy in the cross-stream components
of the velocity must decay to zero. In the long-time limit then, in (81), D/Dt → ∂/∂t , giving a
simple diffusion equation for u1. Hence at large time u1 tends to a constant value, the only possible
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Figure 8. The three most energetic POD modes for the (nx , nz) = (1, 0) Fourier pair, with real and imaginary parts indicated by
solid and dashed lines, respectively.

Figure 9. The three most energetic POD modes for the (nx , nz) = (1, 1) Fourier pair, with real and imaginary parts indicated by
solid and dashed lines, respectively.

solution being u1 = 0, and although the streamwise velocity may experience transient growth due the
cross-stream flow, it must also eventually vanish.

As pointed out in an addendum to [24] and in more detail in [8], each vector-valued POD eigen-
function determines the relative magnitudes of streamwise and cross-stream components in that mode.
In particular, this implies that the inner product in the second term in the linear coefficients Â(n,k)

nx ,nz

of Equation (93), below, is strictly positive for nx = 0. This term provides the energy source. The
constraint imposed by projection onto streamwise-invariant modes that (correctly) represent the typical
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behaviour with streamwise variations present, imposes coupling that can maintain streamwise velocity
fluctuations. Completeness of the POD basis implies that, if sufficiently many empirical eigenfunctions
are included, linear combinations exist that effectively decouple streamwise and cross-stream com-
ponents and restore the appropriate, eventually-decaying behaviour. However, to remove the coupling
constraint in the (very) low-dimensional truncations of interest here, we must allow the streamwise and
cross-stream velocity components of streamwise invariant modes to evolve separately.

Following the suggestion of Waleffe [48], we construct a pair of “uncoupled” basis functions from
each empirical eigenfunction by decomposing it into mutually orthogonal components:

Φ(n)
nx ,nz

(x) = Φ(n)[1]
nx ,nz

(x) + Φ(n)[2]
nx ,nz

(x), (83)

where

Φ(n)[1]
nx ,nz

(x)
def= Pnx ,nzΦ

(n)
nx ,nz

(x), Φ(n)[2]
nx ,nz

(x)
def= (

I − Pnx ,nz

)
Φ(n)

nx ,nz
(x) (84)

and the projection matrix is defined by

Pnx ,nz

def= ppT /(pT p) with p
def= [−2πnz/Lz, 0, 2πnx/Lx ]T . (85)

Here Φ(n)[1]
nx ,nz

(x) and Φ(n)[2]
nx ,nz

(x) are of the form (35) with

φ(n)[1]
nx ,nz

(y) =




aφ(n)
1,nx ,nz

(y) − bφ(n)
3,nx ,nz

(y)

0

−bφ(n)
1,nx ,nz

(y) + cφ(n)
3,nx ,nz

(y)


 , (86)

and

φ(n)[2]
nx ,nz

(y) =




(1 − a)φ(n)
1,nx ,nz

(y) + bφ(n)
3,nx ,nz

(y)

φ(n)
2,nx ,nz

(y)

bφ(n)
1,nx ,nz

(y) + (1 − c)φ(n)
3,nx ,nz

(y)


 , (87)

respectively, appearing in the place of φ(n)
nx ,nz

(y), and where

a
def= n2

z/L2
z

n2
x/L2

x + n2
z/L2

z

, b
def= nx nz/(Lx Lz)

n2
x/L2

x + n2
z/L2

z

, c
def= n2

x/L2
x

n2
x/L2

x + n2
z/L2

z

.

The streamwise- and spanwise-invariant modes therefore take the forms

φ(n)[1]
0,nz

(y) =



φ(n)

1,0,nz
(y)

0

0


 , φ(n)[2]

0,nz
(y) =




0

φ(n)
2,0,nz

(y)

φ(n)
3,0,nz

(y)


 , (88)

φ(n)[1]
nx ,0

(y) =




0

0

φ(n)
3,nx ,0

(y)


 , φ(n)[2]

nx ,0
(y) =



φ(n)

1,nx ,0
(y)

φ(n)
2,nx ,0

(y)

0


 , (89)
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and for modes with neither streamwise nor spanwise variation we have φ(n)[1]
0,0 (y) = 0, φ(n)[2]

0,0 (y) =
φ(n)

0,0(y). We also note that the functions are pairwise-orthogonal and divergence-free:
(
Φ(n)[m]

nx ,nz
(x),Φ(n′)[m ′]

nx ,nz
(x)

) = e(n)[m]
nx ,nz

δnn′δmm ′ , (90)

∇ · Φ(n)[m]
nx ,nz

(x) = 0 for m = 1, 2. (91)

We do not normalise the uncoupled modes, hence the (non-unity) coefficients e(n)[m]
nx ,nz

; however, we have
e(n)[1]

nx ,nz
+ e(n)[2]

nx ,nz
= 1.

For nx = 0 we recover the decomposition of [8], but in general neither term in the decomposition
represents a purely streamwise or cross-stream component. For nx , nz �= 0, φ[1]

nx ,nz
(y) represents a

structure that lies parallel with the walls at y = ±1, while φ[2]
nx ,nz

(y) is fully three-dimensional, cf.
(86)–(87).

5. Low-Dimensional MFU PCF Models

In this section we derive and describe the behaviour of two low-dimensional models for PCF, one
involving the coupled empirical eigenfunctions provided by the POD procedure, and the other using
the decoupled basis of Section 4.3.

5.1. LOW-DIMENSIONAL MODELS FOR THE MFU USING COUPLED MODES

5.1.1. Structure of the Equations
We first briefly describe the general derivation and some properties of the ODEs resulting from Galerkin
projection of the Navier–Stokes equations onto subspaces spanned by sets of POD modes, as sketched in
Section 2.4. Inserting (37) into (26) and performing a Galerkin projection, we obtain ODEs of the form

ȧ(n)
nx ,nz

=
∞∑

k=1

Â(n,k)
nx ,nz

a(k)
nx ,nz

+ [N (a, a)]n,nx ,nz , (92)

n = 1, 2, . . . , nx , nz = · · · , −2, −1, 0, 1, 2, . . . ,

where

[N (a, a)]n,nx ,nz

def=
∑
m,k,

mx ,mz

B̂(n,m,k)
nx ,nzmx mz

a(m)
mx ,mz

a(k)
nx −mx ,nz−mz

.

The reality condition (38) implies that we may exclude about half these equations: if nx = 0 (resp.
nz = 0) it suffices to consider only nz ≥ 0 (resp. nx ≥ 0), and if nx , nz �= 0 we may still take only
nx ≥ 0 (or nz ≥ 0).

Letting ′ denote differentiation with respect to y, the coefficients in (92) are:

Â(n,k)
nx ,nz

def= − 1

Re

((
2πnx

Lx

)2

+
(

2πnz

Lz

)2)
δnk

−
∫ 1

−1
φ

(n)
2,nx ,nz

φ
(k)∗
1,nx ,nz

dy − 2π inx

Lx

3∑
j=1

∫ 1

−1
yφ

(n)
j,nx ,nz

φ
(k)∗
j,nx ,nz

dy

− 1

Re

3∑
j=1

∫ 1

−1
φ

(n)′
j,nx ,nz

φ
(k)∗′
j,nx ,nz

dy, (93)
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B̂(n,m,k)
nx ,nzmx mz

def= − 1√
Lx Lz

3∑
j=1

∫ 1

−1

(
2π imx

Lx
φ

(k)
1,nx −mx ,nz−mz

φ
(m)
jmx mz

+ φ
(k)
2,nx −mx ,nz−mz

φ
(m)′
jmx mz

+ 2π imz

Lz
φ

(k)
3,nx −mx ,nz−mz

φ
(m)
jmx mz

)
φ

(n)∗
j,nx ,nz

dy. (94)

The projected ODEs (92) are equivariant (see Section 2.2) with respect to the continuous symmetries

T�x : a(n)
nx ,nz

(t) �→ einx φx a(n)
nx ,nz

(t), (95)

T�z : a(n)
nx ,nz

(t) �→ einzφz a(n)
nx ,nz

(t), (96)

where φx = 2π�x/Lx and φz = 2π�z/Lz . Furthermore, from the symmetries of the POD modes
described in Section 4.1, the equations must also be equivariant with respect to the following discrete
actions of P , R, and RP on the modal amplitude coefficients a(n)

nx ,nz
:

P · a(n)
nx ,nz

(t) = cPa(n)
−nx ,−nz

(t), (97)

R · a(n)
nx ,nz

(t) = cRa(n)
nx ,−nz

(t), (98)

RP · a(n)
nx ,nz

(t) = cPcRa(n)
−nx ,nz

(t), (99)

where the coefficients cP and cR are given in (78) and (79), respectively.
This implies that many terms which might ostensibly appear in (92) are, in fact, absent. Also, by

exploiting symmetry properties of the POD modes (specifically, oddness or evenness of components
φ

(n)
i,nx ,nz

under y → −y), it can be shown that others among the Â and B̂ coefficients vanish identically.
Finally, the nonlinear terms in the Navier–Stokes equations are energy-conserving. Specifically, we
have

∫ ∫ ∫
�x

u · (u · ∇u) d3x

=
∫ ∫ ∫

�x

u ·
(

∇
(

1

2
u · u

)
− u × (∇ × u)

)
d3x

=
∫ ∫ ∫

�x

∇ ·
((

1

2
u · u

)
u
)

d3x

=
∫ ∫

∂�x

(
1

2
u · u

)
u · n̂ d S = 0, (100)

where we have used vector identities, the facts that u · (u × (∇ × u)) = 0 and ∇ · u = 0, and the
divergence theorem. The surface integral vanishes due to the no-slip boundary conditions at z = ±1
and periodicity in the x and z-directions. Using (37), it can be shown that Equation (100) is equivalent
to

∞∑
n=1

∞∑
nx =−∞

∞∑
nz=−∞

a(n)∗
nx ,nz

[N (a, a)]n,nx ,nz = 0. (101)

Equation (101) and the symmetries (95)–(99) provide checks on the numerically computed nonlinear
coefficients: in all cases for MFU PCF turbulence at Re = 400 we found that (101) is satisfied to
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0.01%, and we subsequently rounded off the coefficients to ensure that these symmetries are exactly
respected.

The ODEs (92) are similar to those of the turbulent boundary layer problem in [3], with the following
important differences. In [3], in place of U0 = yex , the analog of (26) involves a spatially-averaged
(t-dependent) mean turbulent velocity, modeled as a balance between the effects of pressure and those
of the coherent structures, giving cubic terms in the ODEs. No such modeling is required here: the
nonlinear terms derive directly from (26) and the nx = nz = 0 modes represent time-varying turbulent
modifications to the mean. Second, the contribution from the pressure term at the outer edge of the wall
layer was modeled as stochastic forcing in [3]; here, it makes no contribution because of the divergence-
free expansion (37) and no-slip and periodic conditions at the boundaries of �x [25]. Finally, in [3] the
ODEs are equivariant under O(2) × S1; here, the additional reflection R and rotation RP symmetries
make the ODEs equivariant under O(2) × O(2), further constraining the modal interactions.

5.1.2. Behaviour of a Six Coupled-Mode Model
In [46], it is argued that a good model for turbulent MFU PCF is obtained by projection onto the six
modes (n, nx , nz) = (1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0) and (1, 1, ±1). Referring to Table 1, we see
that these are not simply the six most energetic modes, but rather the top four and the tenth and eleventh.
In general, it was found that obtaining low-dimensional models which capture the desired dynamics
required careful consideration of how the modes interact with each other, along with a modest amount
of trial and error. Here (1, 1, ±1) is included since it is fully three-dimensional and couples relatively
strongly with the (1, 0, 1), (1, 0, 2) and (1, 1, 0) modes. See [46] for explicit statements of the ODEs.

Throughout this section all computations are done at Re = 400, as for the DNS data used to compute
the POD basis. Integration of this 11-dimensional dynamical system (a(1)

0,0 is real, all other amplitudes
are complex), without modelling losses to neglected modes, reveals travelling waves of the form

a(n)
nx ,nz

= r (n)
nx ,nz

exp
(
i
(−ωnzt + α(n)

nx ,nz

))
, (102)

where the reality of a(1)
0,0 requires that α

(1)
0,0 is necessarily zero. The amplitudes of the (1, 0, 0), (1, 0, 1)

and (1, 0, 2) modes are plotted in Figure 10 in comparison with the “true” modal amplitudes obtained by
projecting the DNS onto these modes, denoted â0, j . Note that â(1)

0,1 and â(1)
0,2 are approximately confined

to a “thickened” torus: each oscillating relatively quickly along a radius and drifting more slowly and
chaotically around the circumference. The model fails to reproduce the radial motion, and caricatures

Figure 10. Behaviour of the six coupled-mode model compared to the DNS projected onto the (1, 0, 0), (1, 0, 1) and (1, 0, 2)
modes. Here each of a0,0, a0,1, a0,2 are shown as dashed lines, and are intended to represent approximations to the nearest (noisy)
ânx ,nz line. The superscript (1) has been dropped from the labels for clarity.
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the circumferential motion as a simple travelling wave with a relatively low period of 65.9 time units. It
is clear from Figure 10 that the average of the projected (1, 0, 0), (1, 0, 1) and (1, 0, 2) modal amplitudes
is well-approximated by the travelling wave model.

The travelling wave solution is, however, entirely unsatisfactory from a dynamical viewpoint. The
RMS modal velocities, calculated from

M(nx , nz) = 1√
Lx Lz

∑
n

∣∣a(n)
nx ,nz

∣∣2
, (103)

are constant, since the modal amplitudes are constant; hence the regeneration cycle identified in [22]
(Figures 2 and 3 above) is completely absent. Substituting (102) into the Galerkin approximation (37)
shows that the travelling waves (102) represent streak/vortex structures moving in the spanwise direction
at speed ωLz/(2π ).

In [46], we model the losses to the neglected modes by adding terms of the form

−αν
(
n2

x + n2
z

)
a(n)

nx ,nz
,

to the equations for ȧ(n)
nx ,nz

. Through suitable averaging (see [46]), we found that ν = 0.0333. We then
adjusted the O(1) parameter α to obtain the best fit between the behaviour of the model and the DNS.
A representation analogous to Figure 10 for α = 0.8 appears as Figure 11. The traveling waves of
Figure 10 are replaced by standing waves that appear as radial segments in the projections of Figure 11.
As we shall see, these capture the regeneration cycle fairly well, with appropriate amplitudes for the
complex modes (1, 0, 1) and (1, 0, 2), although the amplitude of the (1, 0, 0) “mean flow” mode in the
model is significantly lower than in the projected DNS (Figure 11, left panel).

The RMS modal velocities for the model, calculated from (103), are presented in the right panel of
Figure 12, for comparison with analogous DNS quantities, re-plotted in the left panel (cf. Figure 2).
Here, and for similar plots in this paper, we present in the left panel the analogous quantities for the DNS
with only those modes present in the low-dimensional model included in the projection, i.e. (103) with
a(n)

nx ,nz
replaced by â(n)

nx ,nz
. In neither case do we sum over n, since only one quantum number is included

in the models considered in this paper. The cyclic behaviour is essentially reproduced: M(0, 1) and
M(1, 0) are approximately of opposite phase, while the latter is approximately in phase with M(1, 1).
The magnitudes of the RMS modal velocities also compare well with those from the DNS.

In Figure 13 we show reconstructed model velocity fields at the time instants 1′–8′ marked on the
right panel of Figure 12 (analogous to 1–8 on the left), for comparison with analogous quantities from

Figure 11. Behaviour of the modified six coupled-mode model compared to the DNS projected onto the (1, 0, 0) (left) and
(1, 0, 1), (1, 0, 2) modes (right).
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Figure 12. RMS modal velocities: from a representative cycle of the DNS (left) and for one period from the six coupled-mode
model, including modelling of losses to neglected modes with α = 0.8 (right).

Figure 13. The streak breakdown process viewed in the (x, z) plane lying between the two plates in PCF: DNS projected onto
the 6 modes present in the model (left) and computed from one period of the six coupled-mode model (right).

the DNS. The left panels of this figure repeats data from Figure 3, but projected only onto the 6 modes
present in the model (so the majority of the small scales in Figure 3 is removed, leaving only large
scale structures). Figure 13 confirms that the solution provides reasonable reconstructions of the streak-
breakdown process in the (x, z) mid-plane. Reference [46] shows further comparisons between the
model and DNS behaviour, including detailed turbulence statistics.

5.2. A NINE UNCOUPLED-MODE MODEL

Uncoupling the (1, 0, 1), (1, 0, 2), (1, 0, 3), (1, 1, ±1), and (1, 1, ±2) POD modes as outlined in Section
4.3 and projecting Equation (26) onto these modes along with the single-component (1, 0, 0) and (1, 1, 0)
POD modes, we obtain ODEs for the following set of sixteen modal amplitudes:

(
a(1)

0,0, a(1)[1,2]
0,1 , a(1)[1,2]

0,2 , a(1)[1,2]
0,3 , a(1)

1,0, a(1)[1,2]
1,1 , a(1)[1,2]

1,−1 , a(1)[1,2]
1,2 , a(1)[1,2]

1,−2

)
.

These equations are quite lengthy, but have similar structure to the coupled equations, with differences
in the linear terms which are no longer diagonal; indeed, the linear operator is now non-normal, cf. [5, 6].
We note that a(1)

0,0 is real, all other modal amplitudes are complex, and that all modes other than a(1)
0,0 and
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a(1)
1,0 appear in pairs. Counting each complex mode as two real dimensions, this nine uncoupled-mode

model is therefore 31-dimensional.
In contrast to the coupled-mode model described above, appropriate modelling of the losses to

neglected modes renders the laminar state stable for all Reynolds numbers; indeed, when such modelling
is added, solutions started sufficiently close to this laminar state approach it as t → ∞. However, at
Re = 400 almost all initial conditions of significant amplitude approach a periodic orbit. This is
consistent with the observation that the MFU turbulent state appears as the Reynolds numbers passes
between 300 and 400 (cf. [22]).

RMS modal velocities for this model, calculated via an analogue of (103), are compared with the
same quantities for DNS in Figure 14. Whilst magnitudes agree fairly well, phase relationships among
the model’s modal velocities are incorrect; in particular, M(0, 1) and M(1, 0) are now in phase and the
model streak-breakdown process is consequently phase-shifted, as shown in Figure 15. Nonetheless,
the regeneration cycle is reproduced reasonably well.

In addition to this periodic orbit, there are many other periodic and stationary states; some of the
latter are shown in Figure 16. These are generated in saddle-node bifurcations, predominantly in the
range Re = 200–375, and most are unstable. These branches are qualitatively similar to those found

Figure 14. RMS modal velocities: from a representative cycle of the DNS (left) and computed from one period of the nine
uncoupled-mode model (right).

Figure 15. The streak breakdown process as viewed in the (x, z) plane lying between the two plates in PCF: DNS projected onto
the 9 modes present in the model (left) and computed from one period of the nine uncoupled-mode model (right).
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Figure 16. Branches of fixed points in PCF with Lx = 4π and Lz = 2π , from [41] with minor modifications (left). Branches
of fixed points in the full phase space of the nine uncoupled-mode model with α = 0.22; the ordinate A denotes the L2 norm
and the stable laminar solution is represented by the solid line at A = 0 (right). Solid (resp., dashed) lines indicate stable (resp.,
unstable) solutions, and the dots indicate bifurcation points.

by Schmiegel [41] for the full Navier Stokes equations, albeit in a larger domain; also see [13, 37].
Decoupling the modes, along with modeling to represent losses to neglected modes, restores the correct
stability type to the trivial laminar flow solution over the full Re range as well as retaining much of the
quantitative behaviour of the regeneration cycle at Re = 400, and revealing branches of fixed points
and periodic orbits similar to those found by these direct computations on the steady NSE.

6. Conclusions

In this paper, we have described how the proper orthogonal decomposition (POD) can be used to
construct low-dimensional ordinary differential equation models for fluid flows. Specifically, the POD
identifies empirical eigenfunctions (“POD modes”) which optimally capture average energy content
from experimental or numerical data. By projecting the evolution partial differential equations for a
fluid flow onto these modes and then truncating, one obtains low-dimensional ordinary differential
equation models for the fluid flow. In addition to providing a general overview of this procedure,
we also described two different ways to numerically calculate the POD modes, discussed how one can
exploit symmetry considerations to simplify and understand such modes, commented on how parameter
variations are captured naturally in such models, and included a discussion of a generalization of the
typical procedure for deriving such models, namely the projection onto uncoupled modes which allow
streamwise and cross-stream components to evolve independently, restoring degrees of freedom that
are constrained in very low-dimensional truncations.

We then illustrated this procedure for the example of plane Couette flow in a Minimal Flow Unit –
a domain whose spanwise and streamwise extent is just sufficient to maintain turbulence. This is
an instructive example because the geometry is simple, but exhibits both continuous and discrete
symmetries. Drawing upon [46], we summarized the behaviour of two low-dimensional models for
this flow, with one involving coupled POD modes and the other uncoupled POD modes. We believe that
our attempts to model plane Couette flow in the Minimal Flow Unit are a partial success, and that our
detailed comparisons to DNS data (cf. [46]) demonstrate the promise of this procedure for other fluid
flows. However, we qualify this by emphasising that this procedure is not entirely straightforward; in
particular the best model is not necessarily obtained by keeping the most energetic modes. Indeed, while
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the POD necessarily yields sets of modes that contain the majority of the average turbulent kinetic energy,
it is a rather poor indicator of which modes are essential to the dynamics. Despite this, through judicious
selection of model truncations and appropriate modelling of losses to neglected modes, one may use
this technique to construct convincing low-dimensional ODEs models, the components (amplitudes and
coefficients) of which derive directly from the Navier Stokes equations.

We close by mentioning a few extensions of the proper orthogonal decomposition which may lead
to improved models for some fluid systems. The method of Rowley and Marsden [40] was proposed
for the low-dimensional modelling of systems with translational symmetry. The procedure relies on
an examination of the data in a frame which moves along with travelling structures, the application
of the POD-Galkerin technique to data in this frame, and the formation of a reconstruction equation
to describe the evolution of these structures in the inertial frame. An extension of this procedure for
systems with self-similar solutions was recently proposed in [39]. Another interesting variant of the
standard POD–Galerkin method was proposed by Kwasniok [29–31], in which the dynamical features
of the governing PDE are taken into account in the construction of a low-dimensional model. In [29],
it is proposed that a set of spatial structures could be obtained by minimising the error in the time
derivative between the PDE and the reduced order model in a mean least squares sense. In [30], an
alternative method is proposed in which the time evolution of the governing PDE and reduced system
are minimised over finite time interval. This problem may be formulated as a variational principle and
then solved using techniques from the field of optimal control. Here the standard POD basis falls out
as a limiting case, where the time interval of interest is reduced to zero. In the two papers [31, 30],
Kwasniok shows that the method can be used to construct low-dimensional models of one-dimensional
PDEs such as the KSE and Ginzberg–Landau equation, with approximately 40% fewer modes than
would be required with the standard POD.
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