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PREDICTION AND VALIDATION OF CHAOTIC BEHAVIOR IN AN
ELECTROSTATICALLY ACTUATED MICROELECTROMECHANICAL OSCILLATOR

B.E. DeMartini, H.E. Butterfield, J. Moehlis, and K.L. Turner
'Department of Mechanical Engineering, University of California, Santa Barbara, United States
(Tel : (805) 893-7849; E-mail: baredog@umail.ucsb.edu)

Abstract: We investigate chaotic behavior for a microelectromechanical (MEM) oscillator, which is
modeled by a version of the Mathieu equation that contains both linear and nonlinear time varying
stiffness coefficients. By using Melnikov’s method we have developed a criterion for the existence of
chaos in such oscillators, which depends solely on system parameters. Chaotic behavior was observed
experimentally and numerically for a MEM oscillator developed using the criterion from our analysis.
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1. INTRODUCTION

Many physical systems have the ability to
exhibit chaotic behavior.  Perhaps the most
famous example is the Lorenz equations [1],
which have helped to understand the dynamics of
cellular convection. Recently, chaos has been
reported for various nonlinear MEM oscillators
[2-5]. We investigate the existence of chaos for a
class of nonlinear parametrically excited MEM
oscillators that has recently been studied [6,7] and
proposed for applications such as mass sensing [8]
and signal filtering [9].

In order for these complex nonlinear devices to
be utilized in real world applications, it is
important to understand the conditions (system
parameters) that result in chaotic behavior. The
ability to predict such behavior is not only useful
for designing robust devices with predictable
dynamics (i.e. for the applications listed above},
but also for applications such as signal encryption
[3] that exploit chaotic vibrations.

2. PREDICTIVE ANALYSIS

Characteristic to the class of oscillators studied
herein are linear and cubic nonlinear time varying
stiffness coefficients arising from the electrostatic
actuation mechanism. These coefficients lead to
abrupt changes in dynamic behavior (nearly
instantaneous jumps from a stable quiescent state

‘to a stable oscillator state), when the excitation
“frequency is near 2wo/n (where n is an integer

greater than or equal to 1), which make them
attractive for applications such as those discussed
in Section 1. A MEMS that exhibits this type of
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behavior, shown in Figure 1, consists of

noninterdigitated combdrive actuators (AC and
DC), suspending flexures (K), and a shuttle mass
(M) [7-9].

Fig.1 SEM image of the chaotic oscillator.

The two sets of noninterdigitated combdrives are
used for periodic excitation (AC) and for DC
tuning (DC) [9-11] and generate an electrostatic
force Fus(x,0)=(r1ox+ 130x°) Ve + (tiax+ 1aax) V>,
where rie and ryp are electrostatic  stiffness
coefficients corresponding to the tuning
combdrive, 14 and ra are electrostatic stiffness
coefficients corresponding to the excitation
combdrive, Vy is the voltage amplitude applied to
the DC combdrive, and V(0)=Va(l+cos(et))'? is
the signal applied to the AC combdrive {decouples
parametric and harmonic excitation [6]} with
amplitude V4. The mechanical flexures (K}
generate a force, Fi(x)=(kix+ kax%), where k; and
ki are stiffness coefficients. Including a
dissipative force due to damping in the system, the
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nondimensional equation of motion is
Z'+ad+ fz+ 82 +y{1+00sQr)z 1)
+n{l+cosQr) 2 =0
where mo=(k;/m) "%, © = mt (scaled time), Q=w/me
(scaled driving frequency), =d/dz, z = x/%p (scaled
displacement, where Xg is a characteristic lengthj,
o =c¢/(wm) (c is the damping coefficient),
B=1l4r1oVo/ky, S=xo?(ka+raoVellki, v=riaVallk,,
n= X92I3AVA2/1(§.

In this analysis we use an analytical technique,
Melnikov’s method [12], to deduce the presence
of chaos in Equation (1). In order to apply
Melnikov’s method to this system, the parameters
are rescaled. First, parameters corresponding to
time dependent and velocity terms (e,y, and 1) are
assumed to be small (much less than 1), which is a
valid assumption for MEM oscillators. In other
words, they are considered perturbations to the
Hamiltonian system, z”+pz+8z°=0. Second, the
other parameters (B and 8} are assumed to be order
one quantities. A necessary condition for this
analysis is that the unperturbed Hamiltonian
system must contain a double well potential,
which requires
B<0, &0 . (2)
Taking these assumptions into account, Melnikov
analysis [12] was applied to determine the
following criterion for the existence of chaos

E ) . 3
Bex| S|z S sinh

oo )
An oscillator, governed by Equation (1), whose
system parameters satisfy this expression will
have a chaotic invariant set, which may or may
not be an attractor.

<[nat {66y +5(4]]+ %)

3. VERIFICATION OF CHAOS

Both numerical and experimental investigations
that verify the above criterion for the existence of
chaos are presented in this section.

Using Equations (2) and (3) as criteria for the
parameters of the system, an oscillator was
designed to exhibit chaotic behavior. In order to
satisfy P<0 for a range of Vy, the tuning
combdrives must be designed such that ry<0,
since k; is always positive. Since ks is-also
always positive (mechanical flexures are naturatly
hardening), 6>0 can be satisfied either by having
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rie<0 or r30>0. Note, for the case where ry9>0, 80
will be true for all V.. To satisfy these conditions,
fixed-fixed flexures (with relatively large ki) and
misaligned noninterdigitated combdrives for DC
tuning were chosen. See [10,11] for discussions
on how alignment and geometry affect the sign of
combdrive stiffness coefficients. Using aligned
noninterdigitated combrives for AC excitation
(r1a>0 and r3a<0) Equation (3) is satisfied for a
range of Vi, Vi, @, m, and ¢ (xp =1 used
throughout analysis). Note Equation (3) can also
be satisfied for a variety of AC excitation
combdrive configurations, i.e. for a variety of i
and raa sign combinations. :

The theoretical parameters for the chaotic
oscillator, which was fabricated using standard
silicon on insulator processing [13] {(device shown
in Figure 1), are
rig= -4.78-3 [UN/(Vium)], ro= 1.8e-4 [uNAV m?],
riase 11e-3 [uN/(Vumj], rag= -1.4e-4 [pN/(prm )],
ky= 9.6 [uNjum], k= 7.3 [pN/um’], m =1.6e-9 [kg].
The electrostatic coefficients were determined
using finite element software. An estimate of the
quality factor was determined experimentally in a
535 mTorr vacuum environment, which is
consistent throughout all experiments, to be Q =
1558 These estimated parameters were used in
numerical simulations for comparison with the
experimental results.

A DC voltage was applied to the tuning
electrodes, with no AC excitation, and was slowly
increased. When Vo was large enough, the
topology of the potential energy became a double
well and small fabrication induced asymmetries
and noise caused device to buckle to one of the
new equilibrium positions. Figure 2 shows the

buckling event observed in the experiment.

36.0V 36.5V 370V 375V
Fig. 2 Microscope snapshots of a pair of
combiingers (Vo shown below each image). Their
relative position demonstrates the buckling event.

Notice that the onset of buckling occurs

_somewhere between Vo= 36V and 36.5V, which is

apparent by the relative position of the
combfingers.

To test the dynamics of the oscillator when a
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square root cosine signal was applied to the set of
AC excitation fingers, a Polytec laser vibrometer

was used [11]. For this experiment a DC signal, -

which is above 36.5V, is applied to the tuning
fingers while simultaneously applying the square
root cosine signal to the other set. The parameters
Va, Vi, and © were varied and the output signal
from the laser vibrometer was analyzed using an
oscilloscope. Above Vg = 36.5V the qualitative
behavior of the oscillator changes drastically,
which was also seen in numerical simulations.

Numerous points in parameter space (Va,Vo, @)
where attracting chaotic behavior exists have been
found. For instance, for Vy = 37.1V, V4 = 13.8V,
and @/2r = 2000Hz, sustainable chaos exists,
which is depicted in Figure 3a. Observing the
velocity signal over a long period of time, no
repeated behavior was observed, and the
amplitude of the signal was several orders of
magnitude greater than the noise floor, suggesting
that this was indeed chaotic behavior.
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Fig. 3 Chaotic time series found (a)
experimentally with Va =13.8Y Vp = 37.0Y and
w/Zr = 2000Hz (1 velocity (scaled) unit = 125
mm/s) and (b) numerically with Vy =15.0V Vy =
465V, and w/Zr = 2010Hz (v=z' s
nondimensional velocity where z=x/xg).
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Vadowity
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Using the theoretical parameters discussed above
sustainable chaos was found numerically for V, =
15.0V, Vy = 46.5V, and @/2r = 2010Hz, which are
reasonably close to the experimental parameters.
The resulting velocity time series shown in Figure
3b shows the chaotic behavior and provides
further proof that the experimental result was in
fact chaotic.

Analyzing the spectral content of the
oscillator’s time series is a good indicator of
whether or not the hehavior is chaotic. This was
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done by taking the modulus of Fourler transform
of the velocity time series obtained experimentally
and numerically, for the same V4, V), and o used
in Figure 3. Figure 4 a and b show respectively
the power spectra from experiment and numerical

simulation.
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Fig. 4 Broadband power spectrum of a chaotic
attractor found (a) experimentally and (b)
numerically for the same parameters as Figure 3
(the velocity units prior to taking the Fourier
transform are identical to Figure 3 (a} and (b)).

The broadband power spectrum seen in both
panels of Figure 4 is characteristic of chaos. Also,
both experimental and numerical power spectra
look strikingly similar.

A boundary, in 0/2a — V4 space, above which
chaos is predicted to occur, has been derived from
Equation (3). Figure 5 shows the boundary for
two DC voltages (dashed and dotted curves).

¥y (volts)

AC Drive Voltage,

0 Hucy 200G 3600

Drive Frequency, w /2 {1iz)

Fig. 5 Boundaries above which attracting chaos is
found in experiment (solid curve Vy=37.0V) and
chaos is predicted by Equation (3) (dashed curve:
Vo=47.0V and dotted curve: Vo=37.0V).

measured

A boundary has also been

1-4244-0842-3/67/$20.0002007 IEEE
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experimentally by fixing Vo=37.0V, increasing Va
until attracting chaotic behavior was observed,
and recording this Va every 50 Hz. Note, only
voltages below Va=25.0V were applied to the
device, since similar devices failed for voltages
slightly above this value. The important result
here is that the experimental boundary lies above
the theoretical boundaries. It is therefore
concluded that Equation (3) is a good predictive
tool for chaos in this type of MEM oscillator.

3. CONCLUSION

Mehikov’s method has been used to

~analytically predict the existence of chaos in a

MEM oscillator, which is governed by a nonlinear
version of the Mathieu equation. The criterion
resulting from this analysis is an inequality that is
useful for designing an oscillator’s parameters so
that chaos either occurs or does not occur as
desired. Using this criterion, an electrostatically
actuated and tuned MEM oscillator has been
designed to exhibit chaotic behavior.  An
experiment was set up, using a laser vibrometer to
track the vibration of the shuttle mass, and by
tuning various system parameters (Va, Vo),
chaos was found. Using the estimated system
parameters numerical simulations for nearby Va,
Vi, and , sustainable chaos was also found. In
conclusion, the criterion from Melnikov’s method
is a valid tool for predicting the existence of chaos
for the type of oscillator studied herein.
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