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Periodic Orbits and Chaotic Sets in a Low-Dimensional Model for Shear Flows∗

Jeff Moehlis†, Holger Faisst‡, and Bruno Eckhardt‡

Abstract. We consider the dynamics of a low-dimensional model for turbulent shear flows. The model is
based on Fourier modes and describes sinusoidal shear flow, in which fluid between two free-slip
walls experiences a sinusoidal body force. The model contains nine modes, most of which have a
direct hydrodynamical interpretation. We analyze the stationary states and periodic orbits for the
model for two different domain sizes. Several kinds of bifurcations are identified, including saddle-
node bifurcations, a period doubling cascade, and Hopf bifurcations of the periodic orbits. For both
domain sizes, long-lived transient chaos appears to be associated with the presence of a large number
of unstable periodic orbits. For the smaller minimal flow unit domain, it is found that a periodic
solution is stable over a range of Reynolds numbers, and its bifurcations lead to the existence of a
chaotic attractor. The model illustrates many phenomena observed and speculated to exist in the
transition to turbulence in linearly stable shear flows.
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1. Introduction. In discussing the transition to turbulence, one may broadly distinguish
two kinds of behavior. There are flows that show a linear instability of the laminar profile,
so that one can apply center manifold techniques to derive amplitude equations. Such flows
typically approach the turbulent state through a series of bifurcations that introduce additional
spatial and temporal degrees of freedom. Classical examples of this group are Taylor–Couette
and Rayleigh–Bénard flows [9, 28, 5]. For other flows the transition behavior is less well
established due to the absence of a linear instability of the laminar profile. The transition can
only be induced by perturbations of sufficient amplitude, the transition depends sensitively on
the initial conditions, the border between initial conditions that trigger turbulence and those
that do not is fractal, and the dynamics are high-dimensional right from the onset. This is the
case for many turbulent shear flows, including plane Couette flow and pipe flow [39, 37, 18].

From a dynamical systems perspective, one might expect that such shear flows have a
chaotic attractor associated with the turbulent state, coexisting with a stable fixed point cor-
responding to the laminar state. The boundary between the basins of attraction of the two
states could then be fractal, which would be consistent with many of the above observations.
However, results showing decay of the turbulent state, exponential distributions of turbulent
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lifetimes, and agreement of turbulent averages obtained from different initial conditions, sug-
gest that the turbulent state is not an attractor but an open hyperbolic structure, a chaotic
saddle [39, 4, 15, 18]. This chaotic saddle is present for moderately high values of the Reynolds
number Re, with a chaotic attractor appearing only, if it does at all, for higher values of Re.

For shear flows at low Re, all initial conditions decay to the laminar profile. Therefore,
such a chaotic saddle would have to appear at a finite Reynolds number. Given the challenge of
directly showing the existence of a chaotic saddle, we focus here on simpler dynamical entities,
namely, fixed points and periodic orbits. We expect that such solutions will form part of the
chaotic saddle. We note that the governing partial differential equations for several shear
flows have been shown to possess numerous branches of (unstable) steady or traveling states
consisting of wavy streamwise vortices and streaks [33, 34, 6, 44, 38, 15, 17, 46, 26, 25]; in
dynamical systems terms, such solutions correspond to (unstable) fixed points or periodic
orbits and can be used to approximate and explain the dynamics on the hyperbolic structure.

In this paper, we undertake a dynamical systems analysis of fixed points and periodic
orbits for a nine mode model for sinusoidal shear flow, in which fluid between two free-slip walls
experiences a sinusoidal body force. The model is based on Fourier modes and generalizes the
eight mode model presented, but not studied in detail from a dynamical systems perspective,
in [43]. Its dynamics and the relation to fully resolved shear flows with free-slip boundary
conditions are discussed in the companion paper [30].

The outline of the present paper is as follows. In section 2 we summarize the general
features of the model. The equations are given in section 3, with a special emphasis on the
symmetries. In section 4.1 we analyze the dynamics for the model for a domain of length 4π
and width 2π, which corresponds to the optimal domain size for plane Couette flow for the
formation of stationary coherent structures. This is followed by an analysis for the shorter
and narrower domain of length 1.75π and width 1.2π, which corresponds to the minimum
domain size, the minimal flow unit (MFU), which can sustain turbulence for plane Couette
flow, in section 4.2. We conclude with a few remarks in section 5.

2. Sinusoidal shear flow: Equations and symmetries. The geometry for sinusoidal shear
flow is shown in Figure 1. We take coordinates with x pointing downstream, y in the direction
of the shear, and z in the spanwise direction. The characteristic velocity U0 is taken to be the
laminar velocity arising due to the forcing at a distance d/4 from the top wall, where d is the
distance between the walls; see (2.5) and (2.6) below. Then, nondimensionalizing lengths in
units of d/2, velocities in units of U0, time in units of (d/2)/U0, and pressure in units of U2

0ρ,
where ρ is the fluid density, the evolution equations are

∂u

∂t
= −(u · ∇)u −∇p +

1

Re
∇2u + F(y),(2.1)

with Reynolds number defined to be

Re =
U0d

2ν
,(2.2)

where ν is the kinematic viscosity. The fluid is assumed to be incompressible,

∇ · u = 0,(2.3)



354 J. MOEHLIS, H. FAISST, AND B. ECKHARDT

x - streamwise

y - wall normal

z - spanwiselaminar profile
d

d
2Lz

d
2Lx

Figure 1. Geometry for sinusoidal shear flow.

and there are free-slip boundary conditions at the walls at y = ±1, i.e.,

uy|y=±1 = 0,
∂ux
∂y

∣∣∣∣
y=±1

=
∂uz
∂y

∣∣∣∣
y=±1

= 0.(2.4)

Finally, the flow is assumed periodic in the streamwise and spanwise directions, with lengths
Lx and Lz, respectively. Following [43], we take the nondimensionalized volume force to be

F(y) =

√
2π2

4Re
sin(πy/2)êx,(2.5)

so that the laminar profile is

U(y) =
√

2 sin(πy/2)êx.(2.6)

The laminar profile is inflectional, but it remains linearly stable for all Reynolds numbers [13].
In the following, we let α = 2π/Lx, β = π/2, and γ = 2π/Lz and denote the domain
0 ≤ x ≤ Lx, −1 ≤ y ≤ 1, 0 ≤ z ≤ Lz by Ω.

The governing equations and boundary conditions are equivariant with respect to the
following symmetries:

R · [(ux, uy, uz, p)(x, y, z, t)] = (ux, uy,−uz, p)(x, y,−z, t),(2.7)

TΔx,Δz · [(ux, uy, uz, p)(x, y, z, t)] = (ux, uy, uz, p)(x + Δx, y, z + Δz).(2.8)

Equivariance means that if there is a solution (u(x, t), p(x, t)) to (2.1), then the solution
obtained by acting on this solution with any product of the actions of (2.7) and (2.8) will also
be a solution. Physically, R is a reflection about the plane z = 0, and TΔx,Δz is a translation
by Δx in the streamwise direction and Δz in the spanwise direction.

3. A low-dimensional model. In direct numerical simulations of turbulent plane Cou-
ette flow [24], a “self-sustaining cycle” was identified. The cycle contains streamwise vortices
that cause streak formation, then the streaks break down to form normal vortices, then the
streamwise vortices regenerate through nonlinear interactions, and the process repeats. Wal-
effe proposed an eight mode model aimed at capturing the essentials of this process for a
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sinusoidal shear flow in [43]. His model includes modes describing the basic mean velocity
profile, downstream vortices, streaks, and instabilities of streaks. Our model is a nine mode
generalization of Waleffe’s eight mode model. The main difference is the inclusion of a mode
which represents the lowest order modification, with wave vector k = (0, 3π/2, 0), of the basic
profile (2.6), with wave vector k = (0, π/2, 0). Since, in general, if two modes with wave
vectors k1 and k2 enter into (u ·∇)u, a mode with wave vector k1 +k2 results, the generation
of such a modification of the basic profile requires modes with the y-component of their wave
vector equal to π. The extension of the existing modes to include such a wave vector is the
second modification to Waleffe’s modes.

Further discussion of our choice of modes and their interactions is given in [30]. Here we
merely state that the modes for the model are as follows: the basic profile,

u1 =

⎛
⎜⎝
√

2 sin(πy/2)
0
0

⎞
⎟⎠ ,(3.1)

a streak mode, capturing spanwise variation of the streamwise velocity,

u2 =

⎛
⎜⎝

4√
3

cos2(πy/2) cos(γz)

0
0

⎞
⎟⎠ ,(3.2)

a downstream vortex mode,

u3 =
2√

4γ2 + π2

⎛
⎜⎝ 0

2γ cos(πy/2) cos(γz)
π sin(πy/2) sin(γz)

⎞
⎟⎠ ,(3.3)

and modes for spanwise flows,

u4 =

⎛
⎜⎝

0
0

4√
3

cos(αx) cos2(πy/2)

⎞
⎟⎠(3.4)

and

u5 =

⎛
⎜⎝ 0

0
2 sin(αx) sin(πy/2)

⎞
⎟⎠ .(3.5)

Furthermore, we have the normal vortex modes

u6 =
4
√

2√
3(α2 + γ2)

⎛
⎜⎝−γ cos(αx) cos2(πy/2) sin(γz)

0
α sin(αx) cos2(πy/2) cos(γz)

⎞
⎟⎠(3.6)
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and

u7 =
2
√

2√
α2 + γ2

⎛
⎜⎝γ sin(αx) sin(πy/2) sin(γz)

0
α cos(αx) sin(πy/2) cos(γz)

⎞
⎟⎠ .(3.7)

The modes u5 and u7 are generated from the advection of u4 and u6, respectively, by the
basic profile u1; for example, (u1 · ∇)u4 ∼ u5. There is also a fully three-dimensional mode,

u8 = N8

⎛
⎜⎝ πα sin(αx) sin(πy/2) sin(γz)

2(α2 + γ2) cos(αx) cos(πy/2) sin(γz)
−πγ cos(αx) sin(πy/2) cos(γz)

⎞
⎟⎠ ,(3.8)

with normalization constant

N8 =
2
√

2√
(α2 + γ2)(4α2 + 4γ2 + π2)

,(3.9)

and, finally, the modification of the basic profile,

u9 =

⎛
⎜⎝
√

2 sin(3πy/2)
0
0

⎞
⎟⎠ .(3.10)

The modes are orthogonal and, following [43], are normalized so that∫∫∫
Ω

un · umd3x = 2(2π/α)(2π/γ)δnm .(3.11)

Each mode individually satisfies incompressibility and free-slip boundary conditions at the
walls.

Making the ansatz

u(x, t) =
∑
m

am(t)um(x)(3.12)

and performing a Galerkin projection, the amplitude equations take on the general form

dai
dt

=
β2

Re
δi,1 −

di
Re

ai +
∑
j,k

Ni,jkajak .(3.13)

The Kronecker-delta in the first term reflects the fact that only the first mode is driven. All
modes have a viscous damping rate −di/Re. The nonlinear terms satisfy energy conservation,∑

ijk Ni,jkaiajak = 0.
For our choice of modes and normalization, we obtain the amplitude equations

da1

dt
=

β2

Re
− β2

Re
a1 −

√
3

2

βγ

καβγ
a6a8 +

√
3

2

βγ

κβγ
a2a3,(3.14)
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da2

dt
= −

(
4β2

3
+ γ2

)
a2

Re
+

5
√

2

3
√

3

γ2

καγ
a4a6 −

γ2

√
6καγ

a5a7

− αβγ√
6καγκαβγ

a5a8 −
√

3

2

βγ

κβγ
a1a3 −

√
3

2

βγ

κβγ
a3a9,(3.15)

da3

dt
= −β2 + γ2

Re
a3 +

2√
6

αβγ

καγκβγ
(a4a7 + a5a6)

+
β2(3α2 + γ2) − 3γ2(α2 + γ2)√

6καγκβγκαβγ
a4a8,(3.16)

da4

dt
= −3α2 + 4β2

3Re
a4 −

α√
6
a1a5 −

10

3
√

6

α2

καγ
a2a6

−
√

3

2

αβγ

καγκβγ
a3a7 −

√
3

2

α2β2

καγκβγκαβγ
a3a8 −

α√
6
a5a9,(3.17)

da5

dt
= −α2 + β2

Re
a5 +

α√
6
a1a4 +

α2

√
6καγ

a2a7

− αβγ√
6καγκαβγ

a2a8 +
α√
6
a4a9 +

2√
6

αβγ

καγκβγ
a3a6,(3.18)

da6

dt
= −3α2 + 4β2 + 3γ2

3Re
a6 +

α√
6
a1a7 +

√
3

2

βγ

καβγ
a1a8

+
10

3
√

6

α2 − γ2

καγ
a2a4 − 2

√
2

3

αβγ

καγκβγ
a3a5 +

α√
6
a7a9

+

√
3

2

βγ

καβγ
a8a9,(3.19)

da7

dt
= −α2 + β2 + γ2

Re
a7 −

α√
6
(a1a6 + a6a9)

+
1√
6

γ2 − α2

καγ
a2a5 +

1√
6

αβγ

καγκβγ
a3a4,(3.20)

da8

dt
= −α2 + β2 + γ2

Re
a8 +

2√
6

αβγ

καγκαβγ
a2a5

+
γ2(3α2 − β2 + 3γ2)√

6καγκβγκαβγ
a3a4,(3.21)
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da9

dt
= −9β2

Re
a9 +

√
3

2

βγ

κβγ
a2a3 −

√
3

2

βγ

καβγ
a6a8 ,(3.22)

where

καγ =
√
α2 + γ2, κβγ =

√
β2 + γ2, καβγ =

√
α2 + β2 + γ2.(3.23)

These equations have a strong similarity to the equations for Waleffe’s eight mode model [43],
but because some modes differ slightly there are different O(1) factors multiplying some terms,
and several additional terms, including all terms depending on a9. The laminar state in this
model corresponds to the fixed point at a1 = 1, a2 = · · · = a9 = 0, which is linearly stable for
all Re.

One expects that (3.14)–(3.22) will inherit the symmetries (2.7) and (2.8) of the full
evolution equations; however, because we have “pinned” the spanwise and streamwise locations
of the modes, they do not inherit the full continuous translation symmetries. Indeed, letting
a = (a1, a2, a3, a4, a5, a6, a7, a8, a9), we find that (3.14)–(3.22) are only equivariant under the
actions

TLx/2 · a = (a1, a2, a3,−a4,−a5,−a6,−a7,−a8, a9),(3.24)

TLz/2 · a = (a1,−a2,−a3, a4, a5,−a6,−a7,−a8, a9).(3.25)

(Writing (3.14)–(3.22) as da/dt = f(a), we readily verify that f(γa) = γf(a) for γ ∈ {TLx/2,
TLz/2}. Then d(γa)/dt = γda/dt = γf(a) = f(γa), so if a is a solution, so is γa.) Note that R
has an identical action to TLx/2. The two translation symmetries TLx/2 and TLz/2 generate the
four element group {Id, TLx/2, TLz/2, TLx/2,Lz/2}, which is isomorphic to the abstract group D2

(see, e.g., [29]). So if we find one fixed point or periodic orbit for our model, there will also
be three other symmetry-related fixed points or periodic orbits obtained by the actions of
this group, assuming the solution does not live in a fixed point subspace of one of the group
elements [21, 8]. For periodic orbits there is the additional possibility that application of a
symmetry shifts the orbit by half a period; i.e., with a suitable choice of origin in time, the
second half of an orbit becomes the symmetric image of the first half [11].

4. Behavior of the model. As shown in [30], both domains that we study here—the
moderately long and wide NBC domain that has been shown by Nagata, Busse, and Clever
to be optimal for the stationary orbits in plane Couette flow [33, 6, 7, 45] and the shorter
and narrower minimal flow unit (MFU) domain, the smallest domain which is able to sustain
turbulence for plane Couette flow [24]—show qualitatively similar behavior: at low Reynolds
numbers the transition has a fractal dependence on initial conditions, the turbulent state is
a chaotic saddle, and the lifetime distributions of the turbulent state are exponential, with a
median lifetime that increases rapidly with Reynolds number. We now describe a dynamical
systems analysis of (3.14)–(3.22) for these two domain sizes, including a bifurcation analysis
of fixed points and periodic orbits using AUTO [12].

In the following, the energy is defined to be the fluctuation energy with respect to the
laminar state, i.e.,

energy ≡ (1 − a1)
2 +

9∑
j=2

a2
j ≡ E .(4.1)
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Figure 2. Velocity field reconstruction for one of the (unstable) fixed points which exists at the saddle-node
bifurcation at Re = 308.16 for Lx = 4π, Lz = 2π. (Left) The mean velocity profile. (Right, top) Flow averaged
in the streamwise direction. The arrows indicate flow in the (y, z) plane, while the color indicates the averaged
velocity in the x-direction. (Right, bottom) Flow in the midplane of the domain, i.e., y = 0. The arrows indicate
flow in the (x, z) plane, the lines are zero contours of the x-velocity, and the color indicates the velocity in the
y-direction.

4.1. NBC domain. We first consider a moderate domain size with Lx = 4π and Lz = 2π,
a size which has been considered in many previous studies of shear flow turbulence, including
plane Couette flow [33, 7, 38, 32] and sinusoidal shear flow [38]. This corresponds to an optimal
domain size for plane Couette flow in the sense that the steady finite amplitude solutions
appear at the smallest value of Re. Reference [7] also shows that the optimal domains are
fairly elongated along a line with Lx/Lz = 2 but very narrow in the perpendicular direction.
The values for the optimum quoted in a more recent study [45], Lx = 3.47π and Lz = 1.74π,
give a bit smaller size but still the same ratio.

The first fixed points appear in a saddle-node bifurcation at Re = 308.16; for lower
Re our numerical search did not indicate any fixed points besides the laminar profile. The
fixed points are not symmetric and appear in groups of four, related by discrete symmetry
operations. So for Re above this critical value we have two sets of four symmetry-related
nontrivial fixed points. The velocity field reconstruction of one of the fixed points at the
saddle-node bifurcation is shown in Figure 2. We see that the fixed point corresponds to
streamwise vortices and “wavy” streaks and resembles the steady, finite amplitude solutions
found for plane Couette flow in [33, 6, 38].

One of the sets of symmetry-related fixed points undergoes a Hopf bifurcation at Re =
310.34. The resulting periodic orbit branch bifurcates to lower Re and can be followed back
to a saddle-node bifurcation at Re = 186.99, where it has a period T = 46.80; the velocity
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Figure 3. Frames showing velocity reconstruction at different phases of the unstable periodic orbit at the
saddle-node bifurcation at Re = 186.99, with period T = 46.80. For this and the other figures and movies, the
frames show the reconstructed velocity field as in Figure 2. Time is given as t/T , where T is the period of the
periodic orbit. Clicking on the above image displays the associated movie (60614 01.mpg).

field reconstruction for one of the four symmetry-related periodic orbits at this bifurcation is
shown in Figure 3 and the accompanying movie. A period doubling bifurcation is also detected
along this branch at Re = 187.48. This is the beginning of an apparent period doubling
cascade which is numerically found to accumulate at Re ≈ 206. Note that all periodic orbits
involved with this cascade are unstable so that the resulting chaotic set at the end of the
cascade is a saddle. See Figure 4 for the bifurcation diagram for these solutions; in this and
other bifurcation diagrams, open diamonds, open circles, solid squares, and solid triangles
indicate saddle-node, Hopf, period doubling, and symmetry-breaking pitchfork bifurcations,
respectively. Open circles on a periodic orbit branch correspond to a “Hopf bifurcation of
periodic orbits,” which is also called a torus bifurcation. Here a quasi-periodic solution with
an additional, independent frequency is created. Finally, solid and dashed lines represent
stable and unstable solutions, respectively. On the vertical axis, we show the time-averaged
fluctuation energy 〈E〉.

Other periodic orbits, not connected to the fixed point branch through a Hopf or other
bifurcation, were detected using a Newton–Raphson algorithm on numerically calculated
Poincaré maps. The stability and bifurcations of these periodic orbits were then calculated

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60614_01.mpg


LOW-DIMENSIONAL MODEL FOR SHEAR FLOWS 361

150. 200. 250. 300. 350. 400.

0.50

0.55

0.60

0.65

0.70

0.75

〈E〉

Re

fixed pointsperiodic orbit

from Hopf bifurcation

periodic orbit from

period doubling bifurcation

more period doubling

bifurcations

Figure 4. Bifurcation diagram for Lx = 4π, Lz = 2π showing fixed points, the periodic orbit arising
from the Hopf bifurcation at Re = 310.34, and the periodic orbit arising from period doubling bifurcation at
Re = 187.48. Subsequent period doubled branches are not shown. In this and subsequent bifurcation diagrams,
open diamonds, open circles, solid squares, and solid triangles indicate saddle-node, Hopf, period doubling,
and symmetry-breaking pitchfork bifurcations, respectively. Open circles on a periodic orbit branch correspond
to a “Hopf bifurcation of periodic orbits,” also called a torus bifurcation. Here a quasi-periodic solution with
an additional, independent frequency is created. Finally, solid and dashed lines represent stable and unstable
solutions, respectively.

using AUTO. For example, there is a periodic orbit which arises in a saddle-node bifurcation
at Re = 89.76 with period T = 54.70. This periodic orbit has the symmetry

a(t + T/2) = TLx/2 · a(t)(4.2)

and is in fact stable over the small interval bracketed by torus bifurcations at 89.78 and
Re = 90.72. The velocity field reconstruction for this periodic orbit at the saddle-node
bifurcation is shown in Figure 5 and the accompanying movie. This periodic orbit appears at
the lowest value of Re of any that we found. It undergoes a symmetry-breaking bifurcation at
Re = 240.26, giving rise to a branch of periodic orbits which lack the symmetry given in (4.2),
cf. [42]. This branch of periodic orbits undergoes a saddle-node bifurcation at Re = 80.54, with
period T = 42.87, and velocity field reconstruction shown in Figure 6 and the accompanying
movie. Figure 7 shows the bifurcation diagram for these solutions.

The model was designed to capture the modes considered important for the turbulent
regeneration cycle. It is then natural to probe whether the evolution indeed follows the cycle.
As an indicator for the various elements we take the energy content in the vortex mode u3,
the streak mode u2, and the sum of the energies in the modes u4 through u8 as representative
of the instability of the streak. For the lowest periodic orbit in Figure 6 we obtain the time
evolution shown in Figure 8. The time evolution in the figure compares favorably with a
regeneration cycle: up to a time of about 0.4T the vortices are fairly stable and the streak
builds up. During the interval 0.4T to 0.6T the streak breaks down in an rapid process, and
during the remainder of the cycle the energy in the streak instability modes is fed back into
the downstream vortices.
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Figure 5. Frames showing velocity reconstruction at different phases of the unstable periodic orbit at the
saddle-node bifurcation at Re = 89.76, with period T = 54.70. The symmetry properties of this periodic orbit
are apparent. Clicking on the above image displays the associated movie (60614 02.mpg).

However, there are other solutions where this is not nearly as clear, and where the in-
terpretation of the dynamics is much less obvious. An example is given in Figure 9 for the
energetics of the unstable periodic orbit shown in Figure 10. From 0.1T to 0.2T the evolution
of the energy content in the modes is consistent with the regeneration cycle identified in [24].
However, for other time intervals there is no clear association to the phases of the regeneration
cycle. A survey of our results suggests that this situation is representative for most orbits.

We found many unstable periodic orbits which arise through saddle-node bifurcations at
values of Re between 100 and 200. Some have symmetry properties, such as the periodic orbit
which is born in a saddle-node bifurcation at Re = 166.37 with period T = 329.48, for which

a(t + T/2) = TLz/2a(t);(4.3)

the velocity field reconstruction for this periodic orbit is shown in Figure 10 and the accom-
panying movie. Other periodic orbits undergo a number of period doubling bifurcations as
the branch is followed, such as the periodic orbit which is born in a saddle-node bifurcation at
Re = 113.86 with period T = 99.45. While most periodic orbit branches can be followed to at
least Re = 1000, others are isolas in which the branch closes on itself: for example, the periodic
orbit which is born in a saddle-node bifurcation at Re = 171.05 with period T = 228.75 lives

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60614_02.mpg


LOW-DIMENSIONAL MODEL FOR SHEAR FLOWS 363

−1 0 1
−1

0

1

u
x

y

0 5 10
0

2

4

6

x

z

−0.2

−0.1

0

0.1

0.2

0 2 4 6
−1

0

1

z

y

−1

0

1

t/T:  0.752

−1 0 1
−1

0

1

u
x

y

0 5 10
0

2

4

6

x

z
−0.2

−0.1

0

0.1

0.2

0 2 4 6
−1

0

1

z

y

−1

0

1

t/T:  1.000

−1 0 1
−1

0

1

u
x

y

0 5 10
0

2

4

6

x

z

−0.2

−0.1

0

0.1

0.2

0 2 4 6
−1

0

1

z

y

−1

0

1

t/T:  0.248

−1 0 1
−1

0

1

u
x

y

0 5 10
0

2

4

6

x

z

−0.2

−0.1

0

0.1

0.2

0 2 4 6
−1

0

1

z

y

−1

0

1

t/T:  0.501

Figure 6. Frames showing velocity reconstruction at different phases of the unstable periodic orbit at the
saddle-node bifurcation at Re = 80.54, with period T = 42.87. Clicking on the above image displays the
associated movie (60614 03.mpg).

on a branch which does not exist beyond a saddle-node bifurcation at Re = 250.48. A sample
of the periodic orbits found are shown in Figure 11. We emphasize that, despite the complex-
ity of this figure, it does not contain many more periodic orbits known to exist, either through
our Newton–Raphson procedure or because a period doubling cascade was detected. Figure 11
also shows mean and r.m.s. statistics for the turbulent state obtained by summing over many
trajectories for a “total lifetime” between 2×104 and 105 for each Re = 150, 160, . . . , 400. For
such statistical computations, the parts of the trajectories that correspond to the approach to
and the decay from the chaotic saddle are neglected. This is done approximately by cutting
off the initial and final 3 × Re time units. This strongly suggests that the chaotic transient
trajectory involves visits amongst the various unstable periodic orbits that we have found.
Indeed, careful examination of transient trajectories shows that such visits do occur, although
visits near a specific periodic orbit tend to be short-lived.

4.2. MFU domain. We now analyze the dynamics of the model for a domain with a
different aspect ratio, of size Lx = 1.75π and Lz = 1.2π; it is the smallest domain for plane
Couette flow that was numerically found to sustain turbulence [24]. Previous models for shear
flows for this domain size include [41] for plane Couette flow; see also [36].

Fixed points are born in a saddle-node bifurcation at Re = 794.51, with velocity field

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60614_03.mpg
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Figure 7. Bifurcation diagram for Lx = 4π, Lz = 2π for the symmetric (resp., nonsymmetric) periodic
orbit that arises in a saddle-node bifurcation at Re = 89.78 (resp., Re = 80.54). Some period doubled branches
are not shown.
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Figure 8. Energy in the vortex mode (a2
3 multiplied by 20 for clarity, solid line), streaks (a2

2, dashed line),
and streak instability modes (a2

4 +a2
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7 +a2

8, dotted line) for the unstable periodic orbit at its saddle-node
bifurcation at Re = 80.54, Lx = 4π, Lz = 2π. The time evolution of these energies is consistent with the
self-sustaining process identified in [24].

reconstruction at this bifurcation shown in Figure 12. One of the sets of symmetry-related
fixed points undergoes a Hopf bifurcation at Re = 795.12. The resulting periodic orbit branch
bifurcates to lower Re and can be followed back to a saddle-node bifurcation at Re = 452.99,
where it has period T = 51.35. The velocity field reconstruction for one of the symmetry-
related periodic orbits at this bifurcation is shown in Figure 13 and the accompanying movie.
While this is qualitatively similar to the situation for Lx = 4π and Lz = 2π described above,
there are no period doubling bifurcations detected along the branch of periodic orbits which
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for clarity, dashed line), and streak instability modes (a2
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orbit shown in Figure 10 at its saddle-node bifurcation at Re = 166.37, Lx = 4π, Lz = 2π. The energetics for
0.5T < t < T are identical because of the symmetry properties of the periodic orbit.
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Figure 10. Frames showing velocity reconstruction at different phases of the unstable periodic orbit at the
saddle-node bifurcation at Re = 166.37, with period T = 329.48. The symmetry properties of this periodic orbit
are apparent. Clicking on the above image displays the associated movie (60614 04.mpg).
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Figure 11. Bifurcation diagram for Lx = 4π, Lz = 2π showing a sample of the unstable periodic orbits.
The vertical bars indicate the range of the chaotic transient (mean ± r.m.s.).
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Figure 12. Velocity field reconstruction for one of the fixed points which exists at the saddle-node bifurcation
at Re = 794.51 for Lx = 1.75π, Lz = 1.2π.

arises in the Hopf bifurcation. Hence there is no period doubling cascade to a chaotic saddle
associated with these periodic orbits.

Using the Newton–Raphson method, we find other periodic orbits not connected to the
fixed point branch through bifurcations. For example, there is a periodic orbit which arises
in a saddle-node bifurcation at Re = 83.43, with period T = 28.66, and symmetry given
by (4.2). It undergoes a symmetry-breaking bifurcation at Re = 100.96, giving rise to a branch
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Figure 13. Frames showing velocity reconstruction at different phases of the unstable periodic orbit at
the saddle-node bifurcation at Re = 452.99, with period T = 51.35. Clicking on the above image displays the
associated movie (60614 05.mpg).

of periodic orbits which lack the symmetry given by (4.2). This branch of periodic orbits
undergoes a saddle-node bifurcation at Re = 79.35, with period T = 22.62, and velocity field
reconstruction shown in Figure 14 and the accompanying movie. This periodic orbit appears
at the lowest value of Re of any that we have found for this domain size. Furthermore, a
number of period doubling bifurcations are detected as this branch is followed. Indeed, the
bifurcation structure described here is qualitatively similar to that found above for the domain
size Lx = 4π, Lz = 2π.

Other unstable periodic orbits found for this domain size include one born in a saddle-node
bifurcation at Re = 103.91 with period T = 91.62, one born in a saddle-node bifurcation at
Re = 148.68 with period T = 92.95, and one born in a saddle-node bifurcation at Re = 168.43
with period T = 111.98. However, perhaps most interesting is the unstable periodic orbit
born in a saddle-node bifurcation at Re = 122.37 with period T = 39.58 and symmetry
given by (4.3). As this branch is followed, a symmetry-breaking bifurcation is detected at
Re = 226.26, and torus bifurcations are detected at Re = 354.57 and Re = 507.40. Between
these torus bifurcations, the periodic orbit is stable. At Re = 400, the stable periodic orbit
has period T = 112.51. It shows signatures of the self-sustaining process identified in [24],
but the peak in the streak energy actually comes before the peak in the vortex mode energy;

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60614_05.mpg
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Figure 14. Frames showing velocity reconstruction at different phases of the unstable periodic orbit at
the saddle-node bifurcation at Re = 79.35, with period T = 22.62. Clicking on the above image displays the
associated movie (60614 06.mpg).
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Figure 15. Energy in the vortex mode (a2
3 multiplied by 5 for clarity, solid line), streaks (a2

2, dashed line),
and streak instability modes (a2
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8, dotted line) for the stable periodic orbit at Re = 400,
Lx = 1.75π, Lz = 1.2π. The energetics for 0.5T < t < T are identical because of the symmetry properties of
the periodic orbit.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60614_06.mpg


LOW-DIMENSIONAL MODEL FOR SHEAR FLOWS 369

−1 0 1
−1

0

1

u
x

y

0 5 10
0

2

4

6

x

z
−0.2

−0.1

0

0.1

0.2

0 2 4 6
−1

0

1

z

y

−1

0

1

t/T:  1.000

−1 0 1
−1

0

1

u
x

y

0 5 10
0

2

4

6

x

z

−0.2

−0.1

0

0.1

0.2

0 2 4 6
−1

0

1

z

y

−1

0

1

t/T:  0.252

−1 0 1
−1

0

1

u
x

y

0 5 10
0

2

4

6

x

z

−0.2

−0.1

0

0.1

0.2

0 2 4 6
−1

0

1

z

y

−1

0

1

t/T:  0.500

−1 0 1
−1

0

1

u
x

y

0 5 10
0

2

4

6

x

z

−0.2

−0.1

0

0.1

0.2

0 2 4 6
−1

0

1

z

y

−1

0

1

t/T:  0.752

Figure 16. Frames showing velocity reconstruction at different phases of the stable periodic orbit at Re =
400, with period T = 112.51. The symmetry properties of the periodic orbit are apparent. Clicking on the above
image displays the associated movie (60614 07.mpg).

see Figure 15, the velocity reconstruction in Figure 16, and the accompanying movie, all at
Re = 400. A sample of the periodic orbits found for this domain size together with the
turbulent fluctuations is shown in Figure 17. As for the domain size Lx = 4π, Lz = 2π,
the overlap between fluctuations and orbits strongly suggests that the chaotic transient visits
neighborhoods of the various unstable periodic orbits that we have detected.

We now explore the fate of the quasiperiodic solution which arises from the torus bifurca-
tion at ReT = 354.57. Some features are highlighted in Figures 18–20, which show Poincaré
maps constructed by intersecting the flow on attractors with the hyperplane a2 = 0, keeping
only points for which ȧ2 < 0. If such a map traces a circle, as in Figure 18(a), the corre-
sponding solution to the full equations lies on a torus and is quasi-periodic; on the other hand,
if such a map traces a discrete set of points, as in Figure 19, the corresponding solution to
the full equations is periodic. Chaotic behavior for the full equations is captured by more
complicated Poincaré maps, as in Figure 20(b).

The transitions between periodic, quasi-periodic, and chaotic states are summarized in
Figure 21. This shows the instantaneous value of a1 whenever the trajectory pierces the
Poincaré section defined above. This plot is generated by adiabatically decreasing the value
of Re from Re = 360, omitting transients; therefore, if coexisting attractors exist, only one

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60614_07.mpg
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Figure 17. Bifurcation diagrams for Lx = 1.75π, Lz = 1.2π showing a sample of the periodic orbits. The
vertical bars indicate the range of the chaotic transient (mean ± r.m.s.).
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Figure 18. Poincaré maps as defined in the text for attractors at (a) Re = 354, (b) Re = 353.

is shown. The line from Re = 360 to Re = ReT represents the stable periodic orbit. For Re
just below ReT , the plot shows a filled band, which represents a stable quasi-periodic solution.
The apparent discontinuous transition between periodic and quasi-periodic behavior near ReT
suggests that the quasi-periodic solution does not bifurcate supercritically from the periodic
orbit branch. This is confirmed through direct integrations which show that the stable quasi-
periodic solution exists for Re as high as 356. Thus, apparently an unstable quasi-periodic
solution branch bifurcates (subcritically) from Re = ReT to higher values of Re, then turns
around in a saddle-node bifurcation at Re ≈ 356, giving a stable quasi-periodic solution for
lower Re. That is, there is an interval of bistability between the periodic and quasi-periodic
orbits for ReT < Re < 356.

As Re decreases further, there is a transition from the quasi-periodic solution to chaos,
including the presence of periodic windows. Such transitions have been observed experimen-
tally [20, 3, 14, 27], in numerical studies of ordinary differential equations [40, 19, 31], and in
two-dimensional invertible maps [10, 1, 2]. The dynamics for such a transition are organized
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Figure 19. Poincaré maps as defined in the text for attractors at (a) Re = 352, (b) Re = 351.7, (c)
Re = 351. The numbers indicate the order in which the trajectory pierces the Poincaré section; for (b) and (c),
the number refers to one of the dots in the nearby cluster.

by the approach of the quasi-periodic solution (the invariant circle for the map) to a periodic
solution (a fixed point for the map) [1]. This leads to the birth of periodic solutions in saddle-
node bifurcations when an Arnol’d tongue is entered and destruction again when the tongue
is left. Inside and far away from the tip of the Arnol’d tongue, the invariant circle becomes
wrinkled (cf. Figure 18) due to tangencies of invariant manifolds of the periodic orbits which
arise at the saddle-node bifurcations at the edge of a tongue, which can produce chaotic be-
havior inside the tongue (via associated period doubling cascades, cf. Figure 19) [1]. For the
present problem, the attractor associated with the quasi-periodic solution born at Re = ReT
is destroyed in an apparent boundary crisis at Re ≈ 335. Such a boundary crisis occurs when
a chaotic attractor collides with the stable manifold of an unstable periodic orbit [23, 22].

5. Conclusions. In this paper, we have undertaken a dynamical systems analysis of fixed
points and periodic orbits for a nine mode model for sinusoidal shear flow, in which fluid
between two free-slip walls experiences a sinusoidal body force. This study complements the
one on the statistical and transitional behavior in [30]. Like many other shear flows the
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Figure 20. Poincaré maps as defined in the text for attractors at (a) Re = 350, (b) Re = 348, (c)
Re = 338.25, (d) 335. In (c), there is a stable periodic orbit.
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model maintains a stable laminar profile for all Reynolds numbers, yet shows a transition to
turbulence for finite amplitude perturbations at a sufficiently high Reynolds number. It can
thus provide some guidance in the analysis of realistic systems.

We have identified several kinds of bifurcations, including saddle-node bifurcations, a
period doubling cascade, and Hopf bifurcations of the periodic orbits. There does not seem
to be a particular rhythm or rhyme to the form, shape, and bifurcations of the orbits, except
perhaps the cascades of periodic doubling bifurcations. Thus, despite the severe reduction
in spatial variability, the periodic orbits and their dynamical structure are not as simple as,
e.g., for the Lorenz system [35]. A periodic orbit analysis as performed there will remain
inaccessible until a better understanding of the periodic orbit structure is achieved.

Interestingly, in both domains that we considered the nontrivial state that appears at
the lowest Reynolds number is a periodic state. Similar behavior was found in another low-
dimensional model [16]. Fully resolved calculations in plane Couette flow give a stationary
state, and in pipe flow and plane Poiseuille flow it is a traveling wave, i.e., a stationary state in
a uniformly translating frame of reference. We do not have an explanation for this difference,
but we suspect that it is related to the accessibility of more pathways for energy transport and
damping in the full numerical simulations, as they are the main difference from the models
discussed here. One should note, however, that our understanding of the nonlinear dynamics
of the full systems is insufficient to rigorously conclude that there are no periodic states at
lower Reynolds numbers; that there has been no evidence for them so far may simply be
related to their being confined to a tiny region in phase space outside the regions probed.

Perhaps the most interesting observation concerns the difference in behavior between the
two domain sizes, namely, the appearance of a stable orbit in the smaller domain. This
suggests that it might be possible to probe at fairly low Reynolds numbers the transition
between the repellor and the attractor by changing the domain size. The changes in lifetime
distribution should be characteristic of the transition and might then be used to detect similar
behavior under variations in Reynolds number. In particular, it seems worthwhile to further
study the torus break-up and its effects on the lifetime statistics of turbulent transients and
to look for experimental realizations of such transitions.

Another observation concerns the overlap between the turbulent fluctuations and the pe-
riodic states, e.g., in the projections onto the energy axis in Figures 11 and 17. In contrast
to many other low-dimensional systems, where all periodic orbits contribute to the invariant
measure, several of the periodic orbits seem to lie far outside the range of turbulent fluctua-
tions. Their relevance and contributions to the turbulent dynamics and their participation in
the invariant measure may thus be questioned; at least it seems reasonable to exclude them
when calculating statistical averages. They may be evidence for other invariant subsets, but
one would like to have objective criteria for their inclusion or exclusion.

The similarities between the model discussed here and one proposed earlier [16] have
already been discussed. We close by mentioning observations in a another model obtained
by Galerkin projection of the governing equations for plane Couette flow onto a set of eleven
energetically optimal modes found from a proper orthogonal decomposition of direct numerical
simulation data [41]. The model shares with the present one a stable periodic orbit at Re = 400
in the MFU domain. The model also includes the energy transfer into truncated modes by
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an effective eddy viscosity. In the absence of such a transfer, one finds a stable flow structure
which uniformly translates in the spanwise direction. For higher transfer rates one finds a
periodic solution for which the streamwise vortices switch their sense of rotation every period.
For yet higher transfer rates, one finds a periodic solution for which the streamwise vortices
maintain their sense of rotation throughout each period.

A comparison between the different models shows that they capture some of the qualitative
features of the flow structures and their dynamics but that there is still quite some variability.
Nevertheless, they show the range of possible behavior, can be used to study specific features
in a focused manner, and can contribute to building intuition about the dynamical system
behavior of shear flows without a linear instability. It is with this in mind that several projects
in our group and at other places continue to include investigations of these and related models.
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[3] P. Bergé, Y. Pomeau, and C. Vidal, Order Within Chaos: Towards a Deterministic Approach to
Turbulence, John Wiley & Sons, New York, 1984.

[4] S. Bottin, F. Daviaud, P. Manneville, and O. Dauchot, Discontinuous transition to spatiotemporal
intermittency in plane Couette flow, Europhys. Lett., 43 (1998), pp. 171–176.

[5] P. Chossat and G. Iooss, The Couette-Taylor Problem, Springer-Verlag, New York, 1994.
[6] R. Clever and F. Busse, Tertiary and quaternary solutions for plane Couette flow, J. Fluid Mech., 344

(1997), pp. 137–153.
[7] R. M. Clever and F. H. Busse, Three-dimensional convection in a horizontal fluid layer subjected to

a constant shear, J. Fluid Mech., 234 (1992), pp. 511–527.
[8] J. D. Crawford and E. Knobloch, Symmetry and symmetry-breaking bifurcations in fluid mechanics,

in Annual Review of Fluid Mechanics, Ann. Rev. Fluid Mech. 23, Annual Reviews, Palo Alto, CA,
1991, pp. 601–639.

[9] M. C. Cross and P. C. Hohenberg, Pattern formation out of equilibrium, Rev. Modern Phys., 65
(1993), pp. 851–1112.

[10] J. Curry and J. Yorke, A transition from Hopf bifurcation to chaos: Computer experiments on maps
in R2, in The Structure of Attractors in Dynamical Systems, Lecture Notes in Math. 668, Springer-
Verlag, New York, 1978, pp. 48–68.

[11] P. Cvitanovic and B. Eckhardt, Symmetry decomposition of chaotic dynamics, Nonlinearity, 6 (1993),
pp. 277–311.

[12] E. Doedel, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, and X. Wang, AUTO
97: Continuation and Bifurcation Software for Ordinary Differential Equations, available via FTP
from directory http://ftp.cs.concordia.ca/pub/doedel/auto/, 1997.

[13] P. Drazin and W. Reid, Hydrodynamic Stability, Cambridge University Press, Cambridge, UK, 1981.
[14] R. E. Ecke and I. G. Kevrekidis, Interactions of resonances and global bifurcations in Rayleigh-Bénard

convection, Phys. Lett. A, 131 (1988), pp. 344–352.
[15] B. Eckhardt, H. Faisst, A. Schmiegel, and J. Schumacher, Turbulence transition in shear flows, in

Advances in Turbulence IX (Barcelona, 2002), I. Castro, P. Hanock, and T. Thomas, eds., CIMNE,
Barcelona, Spain, 2002, p. 701.

[16] B. Eckhardt and A. Mersmann, Transition to turbulence in a shear flow, Phys. Rev. E (3), 60 (1999),
pp. 509–517.

[17] H. Faisst and B. Eckhardt, Traveling waves in pipe flow, Phys. Rev. Lett., 91 (2003), 224502.

http://ftp.cs.concordia.ca/pub/doedel/auto/


LOW-DIMENSIONAL MODEL FOR SHEAR FLOWS 375

[18] H. Faisst and B. Eckhardt, Sensitive dependence on initial conditions in transition to turbulence in
pipe flow, J. Fluid Mech., 504 (2004), pp. 343–352.

[19] V. Franceschini and C. Tebaldi, Breaking and disappearance of tori, Commun. Math. Phys., 94
(1984), pp. 317–329.

[20] J. P. Gollub and S. V. Benson, Many routes to turbulent convection, J. Fluid Mech., 100 (1980),
pp. 449–470.

[21] M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory,
Volume II, Springer-Verlag, New York, 1988.

[22] C. Grebogi, E. Ott, and J. Yorke, Crises, sudden changes in chaotic attractors, and transient chaos,
Phys. D, 7 (1983), pp. 181–200.

[23] C. Grebogi, E. Ott, and J. A. Yorke, Chaotic attractors in crisis, Phys. Rev. Lett., 48 (1982),
pp. 1507–1510.

[24] J. Hamilton, J. Kim, and F. Waleffe, Regeneration mechanisms of near-wall turbulence structures,
J. Fluid Mech., 287 (1995), pp. 317–348.

[25] S. Kato and M. Yamada, Unstable periodic solutions embedded in a shell model turbulence, Phys. Rev.
E (3), 68 (2003), 025302.

[26] G. Kawahara and S. Kida, Periodic motion embedded in plane Couette turbulence: Regeneration cycle
and burst, J. Fluid Mech., 449 (2001), pp. 291–300.

[27] I. G. Kevrekidis, R. Rico-Martinez, R. E. Ecke, R. M. Farber, and A. S. Lapedes, Global
bifurcations in Rayleigh-Bénard convection. experiments, empirical maps and numerical bifurcation
analysis, Phys. D, 71 (1994), pp. 342–362.

[28] E. L. Koschmieder, Bénard Cells and Taylor Vortices, Cambridge University Press, Cambridge, UK,
1993.

[29] J. S. Lomont, Applications of Finite Groups, Dover, New York, 1993.
[30] J. Moehlis, H. Faisst, and B. Eckhardt, A low-dimensional model for turbulent shear flows, New J.

Phys., 6 (2004), 56.
[31] J. Moehlis and E. Knobloch, Wrinkled tori and bursts due to resonant temporal forcing, Phys. D, 151

(2001), pp. 99–124.
[32] J. Moehlis, T. Smith, P. Holmes, and H. Faisst, Models for turbulent plane Couette flow using the

proper orthogonal decomposition, Phys. Fluids, 14 (2002), pp. 2493–2507.
[33] M. Nagata, Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infin-

ity, J. Fluid Mech., 217 (1990), pp. 519–527.
[34] M. Nagata, Three-dimensional traveling-wave solutions in plane Couette flow, Phys. Rev. E (3), 55

(1997), pp. 2023–2025.
[35] G. Ott and B. Eckhardt, Periodic orbit analysis of the Lorenz attractor, Z. Phys. B, 94 (1994),

pp. 259–266.
[36] B. Podvin and J. Lumley, A low-dimensional approach for the minimal flow unit, J. Fluid Mech., 362

(1998), pp. 121–155.
[37] P. Schmid and D. Henningson, Stability and Transition of Shear Flows, Springer-Verlag, New York,

1999.
[38] A. Schmiegel, Transition to Turbulence in Linearly Stable Shear Flows, Ph.D. thesis, Philipps-

Universität Marburg, Marburg, Germany, 1999.
[39] A. Schmiegel and B. Eckhardt, Fractal stability border in plane Couette flow, Phys. Rev. Lett., 79

(1997), pp. 5250–5253.
[40] I. Schreiber and M. Marek, Transition to chaos via two-torus in coupled reaction-diffusion cells, Phys.

Lett. A, 91 (1982), pp. 263–266.
[41] T. Smith, J. Moehlis, and P. Holmes, Models for minimal flow unit turbulent plane Couette flow using

the proper orthogonal decomposition, J. Fluid Mech., submitted.
[42] J. W. Swift and K. Wiesenfeld, Suppression of period doubling in symmetric systems, Phys. Rev.

Lett., 52 (1984), pp. 705–708.
[43] F. Waleffe, On a self-sustaining process in shear flows, Phys. Fluids, 9 (1997), pp. 883–900.



376 J. MOEHLIS, H. FAISST, AND B. ECKHARDT

[44] F. Waleffe, Three-dimensional coherent states in plane shear flows, Phys. Rev. Lett., 81 (1998),
pp. 4140–4143.

[45] F. Waleffe, Homotopy of exact coherent structures in plane shear flows, Phys. Fluids, 15 (2003),
pp. 1517–1534.

[46] H. Wedin and R. Kerswell, Exact coherent structures in pipe flow: Travelling wave solutions, J. Fluid
Mech., 508 (2004), pp. 333–371.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


