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Abstract: For a class of vector fields, we show that one can selectively average terms which
are of the same order in a small parameter, giving an extension of standard averaging results.
Such selective averaging is illustrated for the phase reduction of a system of oscillators with
both coupling and external input, for which the coupling can be averaged to give a term which
only depends on phase differences, while the external input term is not averaged. For a coupled
two-neuron system, we use selectively averaged equations to find the optimal input which takes
the in-phase state to the anti-phase state.
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1. Introduction
Averaging is a powerful analysis technique in the dynamical systems toolbox, particularly for nonlinear
oscillations subjected to small perturbations [5, 13]. Typically, the averaged system retains important
information about the solutions for the original system, but is easier to analyze.

In this paper, we will extend averaging theorems from [13] to the case that we call selective averaging,
in which certain terms for a vector field are averaged while others are not. In

ẋ = εf0(x, t) + εf1(x, t), x(0) = x0, (1)

where f i : R
n ×R → R

n is continuous in x and t for i = 0, 1, this corresponds to averaging f0 but not
f1. The use of selective averaging will be illustrated for the phase reduction of a system of oscillators
with both coupling and external input. Moreover, for a coupled two-neuron system, we use selectively
averaged equations to find the optimal input which takes the in-phase state to the anti-phase state.

2. The selective averaging theorem
We assume that

Mi ≡ sup
x∈D

sup
0≤εt≤L

||f i(x, t)|| <∞, i = 0, 1,

424

Nonlinear Theory and Its Applications, IEICE, vol. 5, no. 4, pp. 424–435 c©IEICE 2014 DOI: 10.1588/nolta.5.424



where D ⊂ R
n and L is chosen so that x(t) ∈ D for all 0 ≤ t ≤ L/ε. Moreover, we assume that f0

and f1 satisfy
||f i(x, t) − f i(y, t)|| ≤ λfi ||x− y||, i = 0, 1

for x, y ∈ D; here λfi is called a Lipschitz constant for f i.
We first define the local average fT of a function f : R

n × R → R
n to be

fT (x, t) :=
1
T

∫ T

0
f(x, t+ s)ds.

The following lemmas will allow us to prove the Selective Averaging Theorem.

Lemma 2.1 (Lemma 4.2.3 from [13]) If the continuous vector field f : R
n×R → R

n is T -periodic
in t, then

fT (x, t) = f(x) =
1
T

∫ T

0
f(x, s)ds.

Lemma 2.2 Consider the initial value problem (1). With t on the time scale 1
ε , the solution x(t)

satisfies∥∥∥∥∥xT (t) − x0 − ε

∫ t

0
f0

T (x(σ), σ)dσ − ε

T

∫ T

0

∫ t+s

0
f1(x(σ), σ)dσds

∥∥∥∥∥ ≤ 1
2
εT ((1 + λf0L)M0 + λf0LM1).

Proof The proof is similar to [13, Lemma 4.2.7]. We express the solution to (1) as

x(t) = x0 + ε

∫ t

0
f0(x(σ), σ)dσ + ε

∫ t

0
f1(x(σ), σ)dσ.

Calculating the local average of the solution, we obtain

xT (t) = x0 +
ε

T

∫ T

0

∫ t+s

0
f0(x(σ), σ)dσds+

ε

T

∫ T

0

∫ t+s

0
f1(x(σ), σ)dσds.

Now, the term
ε

T

∫ T

0

∫ t+s

0
f0(x(σ), σ)dσds =

ε

T

∫ T

0

∫ t

0
f0(x(σ + s), σ + s)dσds+ εR1

=
ε

T

∫ t

0

∫ T

0
f0(x(σ), σ + s)dsdσ + εR1 + εR2,

where

‖R1‖ =

∥∥∥∥∥ 1
T

∫ T

0

∫ s

0
f0(x(σ), σ)dσds

∥∥∥∥∥ ≤ 1
T

∫ T

0

∫ s

0
M0dσds =

1
2
M0T,

and

‖R2‖ =

∥∥∥∥∥ 1
T

∫ t

0

∫ T

0
[f0(x(σ + s), σ + s) − f0(x(σ), σ + s)]dsdσ

∥∥∥∥∥
≤ λf0

T

∫ t

0

∫ T

0
‖x(σ + s) − x(σ)‖dsdσ

= ε
λf0

T

∫ t

0

∫ T

0

∥∥∥∥
∫ σ+s

σ
(f0(x(ζ), ζ) + f1(x(ζ), ζ))dζ

∥∥∥∥dsdσ

≤ ε
λf0

T

∫ t

0

∫ T

0

∫ σ+s

σ
‖f0(x(ζ), ζ) + f1(x(ζ), ζ)‖dζdsdσ

≤ ε
λf0

T

∫ t

0

∫ T

0

∫ σ+s

σ
(‖f0(x(ζ), ζ)‖ + ‖f1(x(ζ), ζ)‖)dζdsdσ

≤ ε
λf0

T

∫ t

0

∫ T

0
(M0s+M1s)dsdσ =

1
2
ελf0t(M0 +M1)T

≤ 1
2
λf0L(M0 +M1)T.

Putting these expressions together gives the result.
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Lemma 2.3 Consider the initial value problem (1). If y is the solution of the initial value problem

ẏ = εf0
T (y, t) + εf1(y, t), y(0) = x0,

then x(t) = y(t) + O(εT ) on the time scale 1
ε .

Proof The proof is similar to [13, Lemma 4.2.8].∥∥∥∥x(t) − x0 − ε

∫ t

0
f0

T (x(σ), σ)dσ − ε

∫ t

0
f1(x(σ), σ)dσ

∥∥∥∥
≤
∥∥∥∥∥x(t) − x0 − ε

∫ t

0
f0

T (x(σ), σ)ds− ε

T

∫ T

0

∫ t+s

0
f1(x(σ), σ)dσds

∥∥∥∥∥
+

∥∥∥∥∥ εT
∫ T

0

∫ t+s

0
f1(x(σ), σ)dσds− ε

∫ t

0
f1(x(σ), σ)dσ

∥∥∥∥∥ .
Now, the term∥∥∥∥∥ εT

∫ T

0

∫ t+s

0
f1(x(σ), σ)dσds− ε

∫ t

0
f1(x(σ), σ)dσ

∥∥∥∥∥
=

∥∥∥∥∥ εT
∫ T

0

∫ t+s

0
f1(x(σ), σ)dσds− ε

T

∫ T

0

∫ t

0
f1(x(σ), σ)dσds

∥∥∥∥∥
=

∥∥∥∥∥ εT
∫ T

0

(∫ t+s

0
f1(x(σ), σ)dσ −

∫ t

0
f1(x(σ), σ)dσ

)
ds

∥∥∥∥∥
=

∥∥∥∥∥ εT
∫ T

0

(∫ t+s

t
f1(x(σ), σ)dσ

)
ds

∥∥∥∥∥ ≤ ε

T

∫ T

0
sM1ds =

1
2
εM1T.

Putting this together with Lemma 2.2, we obtain∥∥∥∥x(t) − x0 − ε

∫ t

0
f0

T (x(σ), σ)dσ − ε

∫ t

0
f1(x(σ), σ)dσ

∥∥∥∥ ≤ 1
2
εT ((1 + λf0L)M0 + λf0LM1) +

1
2
εM1T.

Thus, we have

x(t) = x0 + ε

∫ t

0
f0

T (x(σ), σ)dσ + ε

∫ t

0
f1(x(σ), σ)dσ + O(εT ).

Now,

y(t) = x0 + ε

∫ t

0
f0

T (y(σ), σ)dσ + ε

∫ t

0
f1(y(σ), σ)dσ,

so

x(t) − y(t) = ε

∫ t

0
[f0

T (x(σ), σ) − f0
T (y(σ), σ)]dσ + ε

∫ t

0
[f1(x(σ), σ) − f1(y(σ), σ)]dσ + O(εT ).

Therefore,

‖x(t) − y(t)‖ ≤ ε

∫ t

0
(λf0 + λf1)‖x(σ) − y(σ)‖dσ + O(εT ).

Then, applying Gronwall’s Lemma [13, Lemma 1.3.1],

‖x(t) − y(t)‖ = O
(
εTeε(λf0+λf1 )t

)
.

We can now prove the following.
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Theorem 2.4 (Selective Averaging Theorem) Let x(t) be the solution to

ẋ = εf0(x, t) + εf1(x, t), x(0) = x0, (2)

and let y(t) be the solution to

ẏ = εf0(y) + εf1(y, t), y(0) = x0, (3)

where f0 is T -periodic, and f0 and f1 satisfy the assumptions given in Section 1. Then

‖x(t) − y(t)‖ = O(ε)

on the time scale 1/ε.

Proof This follows from Lemmas 2.1 and 2.3.

3. Application to phase reduction
A powerful technique for analyzing biological oscillators is the rigorous reduction to a phase model,
with a single variable for each oscillator describing the phase of the oscillation with respect to some
reference state [6, 7, 10, 15]. This tremendous reduction in the dimensionality and complexity of a
system often retains enough information to yield a useful understanding of its dynamics, and can
allow for the implementation of phase-based control algorithms.

Phase reduction is commonly applied to systems of coupled oscillators, where in the limit of weak
coupling one can use averaging to obtain terms which only depend on the phase differences of the
oscillators; see, for example, [4]. Phase reduction has also been applied to systems of uncoupled
oscillators which receive an external input, for example in [2]. Here we consider phase reduction for
coupled oscillators with an external input; by averaging only the coupling term, we provide justification
for models that are sometimes useful for neural control problems, e.g., [11, 14].

Suppose that the system
dx
dt

= F(x)

has a periodic orbit xγ(t) with period T = 2π
ω . Now consider

dxi

dt
= F(xi) + ε

∑
j

p(xi,xj) + εu(t)ê1, i = 1, · · · , N,

where xi is the state of the ith oscillator, p represents coupling between oscillators, u(t) is the external
input, and ê1 is a unit vector in the x1-direction. (For a neuron, this could correspond to an input
u(t) in the voltage equation.) Here, for simplicity we have assumed that all oscillators are identical
and have identical coupling to all other oscillators. Moreover, we have assumed that each receives
the same input u(t), but it is straightforward to generalize this to the case of different inputs as in
Section 3.1. We transform to phase variables as follows, cf. [10]:

dθi

dt
=
∂θi

∂xi
· dxi

dt
=
∂θi

∂xi
·
⎛
⎝F(xi) + ε

∑
j

p(xi,xj) + εu(t)ê1

⎞
⎠

= ω + ε
∂θi

∂xi
·
∑

j

p(xi,xj) + ε
∂θi

∂xi
· (u(t)ê1).

To lowest order in ε,

dθi

dt
= ω + εZ(θi) ·

∑
j

p(θi, θj) + εZ(θi) · (u(t)ê1), (4)

Z(θi) =
∂θi

∂xi

∣∣∣∣
xγ(θi)

, p(θi, θj) = p(xγ(θi),xγ(θj)).
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Here, Z(θ) is known as the phase response curve [15]. Let θi = φi + ωt; then
dφi

dt
= εZ(φi + ωt) ·

∑
j

p(φi + ωt, φj + ωt) + εZ(φi + ωt) · (u(t)ê1).

Now, apply the Selective Averaging Theorem to average the coupling term (to use this theorem, we
can consider the lift of φi to R):

dϕi

dt
=
ε

T

∫ T

0
Z(ϕi + ωt) ·

∑
j

p(ϕi + ωt, ϕj + ωt︸ ︷︷ ︸
ϕj−ϕi+ϕi+ωt

)dt+ εZ(ϕi + ωt) · (u(t)ê1).

Let s = ϕi + ωt, which gives

dϕi

dt
=

ε

2π

∑
j

∫ 2π

0
Z(s) · p(s, ϕj − ϕi + s)ds+ εZ(ϕi + ωt) · (u(t)ê1).

Then, letting ϑi = ϕi + ωt,

dϑi

dt
= ω +

ε

2π

∑
j

∫ 2π

0
Z(s) · p(s, ϑj − ϑi + s)ds+ εZ(ϑi) · (u(t)ê1).

That is,
dϑi

dt
= ω + ε

∑
j

h(ϑj − ϑi) + εZ(ϑi) · (u(t)ê1), (5)

where
h(ψ) =

1
2π

∫ 2π

0
Z(s) · p(s, ψ + s)ds.

From the Selective Averaging Theorem, we expect θi(t) − ϑi(t) = φi(t) − ϕi(t) = O(ε) on the time
scale 1/ε.

We note that a similar phase reduction result has been obtained using different means in [9].

3.1 Thalamic neural model
As mentioned previously, selective averaging can be useful for phase reduced neural systems. Here, we
formulate and solve an optimal control problem for a selectively averaged model of thalamic neurons
to compare the errors made in the phase reduction to errors made by using selective averaging. We
illustrate the utility of selective averaging for two periodically spiking neurons [12]:

CV̇1 = Im,1 − gG→G(V1 − VG→G)s2 + Iext(t), (6)

CV̇2 = Im,2 − gG→G(V2 − VG→G)s1,

where

Im,i = −IL(Vi) − INa(Vi, hi) − IK(Vi, hi) − IT (Vi, ri) + ISM ,

ḣi = (h∞(Vi) − hi)/τh(Vi),

ṙi = (r∞(Vi) − ri)/τr(Vi),

ṡi = αH∞(Vi − θg)(1 − si) − βsi, i = 1, 2. (7)

Here
H∞(V ) = 1/(1 + exp(−(V − θH

g )/σH
g )),

C = 1μF/cm2, gG→G = 0.02nS/μm2, VG→G = −100mV, α = 2msec−1, θg = 20.0, β = 0.08msec−1, θH
g =

−57.0, and σH
g = 2.0. The term ISM represents a baseline current which we take to be 5μA/cm2 caus-

ing the neuron to fire with a period T = 8.395 ms. This model reproduces the firing patterns of two
synaptically coupled thalamic neurons. The synaptic coupling is inhibitory (inhibits spiking and slows
down the periodic orbit), and we assume neuron 1 can be controlled through direct current injection,
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Fig. 1. Plots of relevant functions from equations (8) and (9).

Iext(t). For a full explanation of the functions IL, INa, IK , It, h∞, τh, r∞ and τr, we refer the reader
to [12].

In the absence of external stimuli and coupling, individual neurons from equations (6) and (7)
eventually settle to a periodic orbit. Employing phase reduction techniques, we reduce the model
equations to (cf. (4))

θ(t) = [θ1(t), θ2(t)]T ∈ S
2,

θ̇1 = ω + Z(θ1) [u(t) − gG→G(V (θ1) − VG→G)s(θ2)] ,

θ̇2 = ω − Z(θ2) [gG→G(V (θ2) − VG→G)s(θ1)] . (8)

Here θi ∈ [0, 2π) for i = 1, 2 with θ = 2π corresponding to when the neuron spikes, u(t) = Iext(t)/C
is the control input to neuron 1, ω = 2π/T , Z(x) is each neuron’s phase response curve, and V (x)
and s(x) describe the transmembrane voltage and coupling variables, respectively, as a function of
the phase, evaluated on the periodic orbit which exists in the absence of coupling and external input.
As we show in Section 2, provided the neural coupling is small enough, equation (8) can be further
simplified by selectively averaging the coupling between the neurons to get (cf. (5))

ϑ(t) = [ϑ1(t), ϑ2(t)]T ∈ S
2,

ϑ̇1 = ω + h(ϑ2 − ϑ1) + Z(ϑ1)u(t),

ϑ̇2 = ω + h(ϑ1 − ϑ2), (9)

where h(x) is the selectively averaged coupling function,

h(x) =
1
2π

∫ 2π

0
(−Z(a) [gG→G(V (a) − VG→G)s(x+ a)]) da,

and ϑi ∈ [0, 2π) for i = 1, 2. Relevant functions are shown in Fig. 1. Notice h(x) < 0 which is
consistent with inhibitory synaptic coupling; moreover, since h′(0) > 0 and h′(π) < 0, the in-phase
solution is stable and the anti-phase solution is unstable in the absence of input [1].

3.2 Minimum energy control of the reduced systems
Suppose we want to control the selectively averaged phase reduced system (9) from an in-phase state
to a particular anti-phase state while minimizing the overall energy used. To this end, we first consider
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a domain D comprised of continuous external stimuli u(t) that bring the system ϑ1(0) = ϑ2(0) = 0
to ϑ1(t1) = 0 and ϑ2(t1) = π. Of these stimuli, we seek to find the one which minimizes the energy
functional, G[u(t)] =

∫ t1
0 u(t)2dt.

Adopting the framework of Calculus of Variations [8], this amounts to finding all continuous relative
minimum functions u∗, which are defined such that there exists an ε > 0 such that for all other
continuous functions u that satisfy ||u − u∗|| < ε, G(u) − G(u∗) ≥ 0. The minimum of all relative
minimum functions will be the absolute minimum. These minimum functions can be found by first
defining cost functionals for each system. For the selectively averaged system (9), the cost functional
is A[u(t)] =

∫ t1
0 B[u(t)]dt where

B[u(t)] = u(t)2 + λ1

(
dϑ1

dt
− ω − Z(ϑ1)u(t) − h(ϑ2 − ϑ1)

)
+ λ2

(
dϑ2

dt
− ω − h(ϑ1 − ϑ2)

)
,

and λ1 and λ2 are Lagrange multipliers that force the dynamics to obey (9). Following the formalism
of Calculus of Variations, by defining Φ = [ϑ1, ϑ2, λ1, λ2], extremal functions (both minimizing and
maximizing) for the averaged system must satisfy the following Euler-Lagrange equations:

∂B
∂u

=
d

dt

(
∂B
∂u̇

)
,

∂B
∂Φ

=
d

dt

(
∂B
∂Φ̇

)
.

These equations are

u(t) = λ1Z(ϑ1)/2,

λ̇1 = λ1(h′(ϑ2 − ϑ1) − Z ′(ϑ1)u(t)) − λ2h
′(ϑ1 − ϑ2),

λ̇2 = −λ1h
′(ϑ2 − ϑ1) + λ2h

′(ϑ1 − ϑ2),

ϑ̇1 = ω + Z(ϑ1)u(t) + h(ϑ2 − ϑ1),

ϑ̇2 = ω + h(ϑ1 − ϑ2), (10)

where ′ = d/dϑ.
For the non-averaged, phase reduced system, we can also calculate an analogous optimal control.

In this case the cost functional is N [u(t)] =
∫ t1
0 M[u(t)]dt, where

M[u(t)] = u(t)2+ψ1

(
dθ1
dt

− ω − Z(θ1) [u(t) − gG→G(V (θ1) − VG→G)s(θ2)]
)

+ ψ2

(
dθ2
dt

− ω + Z(θ2)gG→G(V (θ2) − VG→G)s(θ1)
)
,

and ψ1 and ψ2 are Lagrange multipliers that force the dynamics to obey (8). Extremal functions for
the nonaveraged system can be found from the following Euler-Lagrange equations:

u(t) = ψ1Z(θ1)/2,

ψ̇1 = ψ1Z
′(θ1)gG→G(V (θ1) − VG→G)s(θ2) + ψ1[Z(θ1)gG→GV

′(θ1)s(θ2) − Z ′(θ1)u(t)]

+ ψ2Z(θ2)gG→G(V (θ2) − VG→G)s′(θ1),

ψ̇2 = ψ1Z(θ1)gG→G(V (θ1) − VG→G)s′(θ2) + ψ2Z
′(θ2)gG→G(V (θ2) − VG→G)s(θ1)

+ ψ2Z(θ2)gG→GV
′(θ2)s(θ1),

θ̇1 = ω + Z(θ1) [u(t) − gG→G(V (θ1) − VG→G)s(θ2)] ,

θ̇2 = ω − Z(θ2) [gG→G(V (θ2) − VG→G)s(θ1)] , (11)

where ′ = d/dθ.
We choose t1 = 41.98, corresponding to 5T , or 5 spikes of an unperturbed, uncoupled neuron. For

the equations (10), obtained for the selectively averaged system, we solve a two point boundary value
problem using a double bisection algorithm described in [3] to determine inital values of Lagrange
multipliers λ1(0) and λ2(0) which give resulting stimuli u(t) ∈ D. We note that the above methodology
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Fig. 2. Comparison of the results for the selectively averaged and nonaver-
aged systems. The top panel shows the optimal control using the selectively
averaged equations and nonaveraged equations as a solid and dashed line, re-
spectively. The bottom panel compares the selectively averaged and nonaver-
aged solutions, with the optimal control for the selectively averaged system
applied to both systems.

only guarantees a locally optimal solution, but we can limit our search for λ1(0) and λ2(0) so that
the resulting solutions yield optimal solutions that are small enough so that the phase reduction (8),
which requires sufficiently small inputs and coupling, is still valid.

We repeat the procedure for finding locally optimal inputs for the equations (11), which correspond
to the nonaveraged system, to compare the results. The top panel of Fig. 2 shows the optimal control
for the averaged (9) and nonaveraged (8) equations as solid and dashed lines, respectively. We see
both strategies give solutions which are not far from each other. Next, we simulate (9) and (8)
using the optimal control obtained through selective averaging. We find that the solution for the
nonaveraged system, θ(t), remains close to the solution for the averaged system, ϑ(t), throughout the
simulation, with the difference in magnitude growing as the simulation time increases, as expected
from the selective averaging theorem. Using the optimal control for the selectively averaged system,
ϑ(5T ) = [0, π]T as expected, and applying the same control on the nonaveraged system (which is not
optimal for this system) yields θ(5T ) = [0.10, 3.06]T , and is quite close to the antiphase target.

Finally, we compare the solution to the full equations given by (6) and (7) to the solution of the
phase reduced equations (8) and to the averaged phase reduced equations (9). For the full equations,
we infer the phase of each neuron Θ(t) = [Θ1(t),Θ2(t)]T ∈ S

2 at each time step by simulating each
neuron separately in the absence of input and coupling to determine when it spikes next. Results are
shown in Fig. 3. We find that the error between the averaged and nonaveraged phase reductions and
the full equations is much larger than the error between the phase reductions themselves. The ending
condition of the full system is Θ(5T ) = [0.11, 3.90]T and the error between the phase of the target and
the phase of the second neuron is much greater than for either of the phase reduced systems. This
larger error comes from the open loop nature of the solutions, as small errors made at the beginning
of the simulation become larger as time progresses.

In this context, selective averaging may be useful in reducing the complexity of an optimal control
problem. Comparing the equations of optimality for the averaged equations (10) and the nonaveraged
equations (11), we see that averaging makes the optimal equations less complicated, and less compu-
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Fig. 3. The top panel shows each neuron’s transmembrane voltage as a func-
tion of time found from (6), and the bottom panel shows the relative error
between solutions as a function of time.

tationally intensive. For a more complicated form of coupling, selective averaging may dramatically
reduce time required to iteratively calculate an optimal solution, which may be attractive if the op-
timal control must be calculated in real time and applied in an in vitro experiment. Furthermore,
phase reduction is necessary to decrease the dimensionality of this optimal control problem from 8
to 2, and we see from Fig. 3 that the additional error made through selective averaging is small.
Finally, selective averaging may also be attractive because it allows us to connect our intuition and
results for systems with phase difference coupling. For instance, averaging the coupling function to
get h(x) allows us to see that the synaptic coupling will be inhibitory (negative sign), meaning that
the optimal control will most likely need to be predominantly excitatory (positive sign), in order reach
the particular target we have prescribed. This intuition would be more difficult to obtain by using
the nonaveraged equations (8).

4. The general selective averaging theorem

Following [13], we can also prove a general selective averaging theorem. Consider a vector field
f : R

n × R → R
n which is continuous in x and t, and Lipschitz continuous in x on D ⊂ R

n. If the
average

f(x) = lim
T→∞

1
T

∫ T

0
f(x, s)ds

exists and the limit is uniform in x on compact sets K ⊂ D, then we call f a Krylov-Bogoliubov-
Mitropolsky (KBM) vector field. The following lemmas will allow us to prove the General Selective
Averaging Theorem.

Lemma 4.1 (Lemma 4.3.1 from [13]) If f0 is a KBM vector field, and assuming that εT = o(1)
as ε ↓ 0 (that is, limε↓0 εT = 0), then on a time scale 1

ε one has

f0
T (x, t) = f0(x) + O

(
δ0(ε)
εT

)

where
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δ0(ε) = sup
x∈D

sup
t∈[0, L

ε )

ε

∥∥∥∥
∫ t

0

[
f0(x, s) − f0(x)

]
ds
∥∥∥∥ .

Here δ0(ε) quantifies the behavior of f0 relative to its average.

Lemma 4.2 Let y be the solution of the initial value problem

ẏ = εf0
T (y, t) + εf1(y, t), y(0) = x0, (12)

and suppose f0 is a KBM vector field with order function δ0(ε). Then the solution of

ż = εf0(z) + εf1(z, t), z(0) = x0 (13)

satisfies
y(t) = z(t) + O

(
δ0(ε)
εT

)
with t on a time scale 1

ε .

Proof The proof is similar to ([13, Lemma 4.3.5]). We express the solutions to (12) and (13) respec-
tively as:

y(t) = x0 + ε

∫ t

0
f0

T (y(s), s)ds+ ε

∫ t

0
f1(y(s), s)ds,

z(t) = x0 + ε

∫ t

0
f0(z(s))ds+ ε

∫ t

0
f1(z(s), s)ds.

Using Lemma 4.1,

y(t) − z(t) = ε

∫ t

0

(
f0(y(s)) − f0(z(s))

)
ds+ O

(
δ0(ε)t
T

)
+ ε

∫ t

0
(f1(y(s), s) − f1(z(s), s))ds.

The Lipschitz-continuity of f0 implies∥∥∥∥
∫ t

0

[
f0(y(s)) − f0(z(s))

]
ds

∥∥∥∥
=

∥∥∥∥∥
∫ t

0

(
lim

T→∞
1
T

∫ T

0

[
f0(y(s), ρ) − f0(z(s), ρ)

]
dρ

)
ds

∥∥∥∥∥
≤
∫ t

0

(
lim

T→∞
1
T

∫ T

0

∥∥f0(y(s), ρ) − f0(z(s), ρ)
∥∥ dρ

)
ds

≤
∫ t

0

(
lim

T→∞
1
T

∫ T

0
λf0‖y(s) − z(s)‖dρ

)
ds

=
∫ t

0
λf0‖y(s) − z(s)‖ds.

Thus,

‖y(t) − z(t)‖ ≤ ε

∫ t

0
(λf0 + λf1)‖y(s) − z(s)‖ds+ O

(
δ0(ε)t
T

)
.

Applying Gronwall’s Lemma [13, Lemma 1.3.1] we obtain

‖y(t) − z(t)‖ = O
(
δ0(ε)t
T

eε(λf0+λf1 )t

)
.

The result follows by taking t on the time scale 1/ε.

We can now prove the following.
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Theorem 4.3 (General Selective Averaging Theorem) Let x be a solution of the initial value
problem

ẋ = εf0(x, t) + εf1(x, t), x(0) = x0.

We assume that f0 is a KBM-vector field with order function δ0(ε). Let z be the solution of the initial
value problem

ż = εf0(z) + εf1(z, t), z(0) = x0.

Then
x(t) = z(t) + O(

√
δ0(ε)).

Proof The proof similar to [13, Theorem 4.3.6]. By Lemma 2.3 we know that the solution y of

ẏ = εf0
T (y, t) + εf1(y, t)

satisfies
x(t) = y(t) + O(εT )

on a time scale 1
ε . Also, from Lemma 4.2,

y(t) = z(t) + O
(
δ0(ε)
εT

)
.

Then, from the triangle inequality

‖x(t) − z(t)‖ ≤ ‖x(t) − y(t)‖ + ‖y(t) − z(t)‖,

we have
x(t) = z(t) + O(εT ) + O

(
δ0(ε)
εT

)
.

If we let T =
√
δ0(ε)/ε, then the result follows.

We note that f0 does not need to be periodic for this theorem.

5. Conclusion
In this paper, we extended averaging theorems from [13] to the case in which terms of the same
order are selectively averaged. We applied such selective averaging to the phase reduction of a system
of oscillators with both coupling and external input; here the coupling term was averaged to give
phase difference coupling, while the external input term was not averaged. Our results give rigorous
justification for models considered in papers such as [11, 14], which are motivated by neural control.
As a new illustration that selective averaging can be a useful tool for problems in neural control, we
applied it to obtain a simpler system for calculating the optimal input which takes the in-phase state
to the anti-phase state for a coupled two-neuron system.
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