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Abstract. We analyse a low-dimensional model for turbulent shear flows. The
model is based on Fourier modes and describes sinusoidal shear flow, in which
the fluid between two free-slip walls experiences a sinusoidal body force. The
model contains a total of nine modes, including modes describing the basic
mean velocity profile and its modification, downstream vortices, streaks, and
instabilities of streaks, with other modes being a consequence of the non-
linear interactions. The transition to turbulence for the model is subcritical
and intermittent, and the distributions of turbulent lifetimes are exponential, in
agreement with observations in many shear flows.
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1. Introduction

The understanding of the transition to turbulence in many flows has benefited from the analysis of
simplified models. Beginning with Lorenz’s numerical simulations of a three-mode caricature of
thermal convection [1], various models for convection and centrifugally unstable systems have
been derived and analysed. Such models highlight different kinds of bifurcations and a wide
variety of dynamical behaviour in systems with a linear instability [2]–[5]. However, describing
the transition to turbulence in shear flows such as plane Couette flow or pipe flow has proven much
more difficult: there is no linear instability around which centre manifold and other reduction
techniques can be applied; moreover, numerical simulations and experiments indicate that the
dynamics are spatially and temporally complicated right above the onset of turbulence [6]–[10].

Although there is considerable complexity in the dynamics of shear flows, there is also some
simplicity. Indeed, visual inspection of direct numerical simulations [11] and experiments in the
transition region [10, 12], proper orthogonal decomposition of the flow field [5, 13], and results
from linear stability analysis [7, 14, 15] all suggest that downstream vortices should play a major
role. These modes drive streaks, and, as discussed perhaps most strongly by Waleffe [14, 16],
the unstable modes of these streaks are recycled as downstream vortices. This suggests that it
should be possible to close the dynamics of shear flow turbulence with a few modes. What makes
the development of such low-dimensional models complicated is the fact that the peculiar form
of the non-linearity of the Navier–Stokes equations constrains the possible interactions among
modes, so that a poor choice of modes in a model can lead to trivial dynamics.

There have been several previous attempts to derive low-dimensional models for shear
flow turbulence. Because of their geometric simplicity, much of this effort has been in the
modelling of plane Couette flow, in which fluid is sheared between two infinite parallel no-slip
walls moving at the same speed but in opposite directions, and for sinusoidal shear flow, in which
fluid between two free-slip walls experiences a sinusoidal body force which gives rise to a
sinusoidal laminar profile. For example, building on his analysis of linear instabilities, Waleffe
proposed an eight-mode model and a further reduction to a four-mode model for sinusoidal shear
flow [16]. The dynamics of the eight-mode model were not studied in detail. For the four-mode
model, the ‘turbulent state’ is represented as a stationary point or a periodic solution [14, 16, 17].
On the other hand, analysis of a straightforward projection of the sinusoidal shear flow equations
onto a set of 19 Fourier modes gives a fluctuating turbulent state [18]. Eliminating a residual
symmetry reduces the number of degrees of freedom to nine without a change in qualitative
behaviour [19]. Different kinds of dynamical behaviour, including heteroclinic cycles, have
been observed in a model for plane Couette flow derived using modes extracted from a proper
orthogonal decomposition [13].We also note that for pipe flow, Brosa and Grossmann [20] studied
a model with 42 Galerkin modes selected from the couplings between the linear eigenmodes
of the Stokes problem. Finally, phenomena not unlike those observed in shear flows have also
been seen in models with couplings that maintain certain characteristics of the flow, but are not
derived from the Navier–Stokes equations [21]–[23].

The model that we present below has nine degrees of freedom. All but one of the modes
are already contained in the eight-mode model proposed by Waleffe [16], although there are
small but significant modifications to some modes. The essential elements are modes for the
basic mean velocity profile, the downstream vortices, the streaks, the instabilities of the streaks,
and several modes that result from the advection of the previous modes by the mean profile.
The key improvement on Waleffe’s eight-mode model [16] is that we include a mode for the
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modification of the structure of the mean velocity profile: as is well known for turbulent shear
flows, the fluctuations change the mean profile, and this is described to lowest order by the new
mode. In addition, unlike the modes in [16], the variation in the shear direction in some modes is
not a simple sine or cosine function, thus introducing additional couplings between the modes.
As a result, we are able to capture desired aspects of shear flow turbulence with a much lower
dimensional model than the 17-dimensional extension suggested in [16].

In the present paper we focus on the dynamics of the model. The dynamical system
behaviour of the model, and the analysis of the stationary states and periodic solutions and their
bifurcations, will be presented in a companion paper [24]. The outline is as follows: after general
remarks in section 2 we introduce the modes, their couplings, and the equations of motion in
section 3. We analyse the dynamics in the minimal flow unit, then for a wider and longer domain
in sections 4.1 and 4.2, respectively. The characteristics of the transition to turbulence are studied
in section 5. We conclude with a few remarks in section 6.

2. Sinusoidal shear flows

We use a coordinate system with x pointing downstream, y in the direction of the shear, and z in
the spanwise direction. The characteristic velocity U0 is taken to be the laminar velocity arising
due to the forcing at a distance d/4 from the top wall, where d is the distance between the walls;
see (5) and (6) below. Then, non-dimensionalizing the lengths in units of d/2, velocities in units
of U0, time in units of (d/2)/U0, and pressure in units of U2

0ρ, where ρ is the fluid density, the
evolution equations are

∂u

∂t
= −(u · ∇)u − ∇p +

1

Re
∇2u + F (y), (1)

with Reynolds number defined to be

Re = U0d

2ν
, (2)

where ν is the kinematic viscosity. The fluid is incompressible,

∇ · u = 0, (3)

and there are free-slip boundary conditions at the walls at y = ±1, i.e.,

uy|y=±1 = 0,
∂ux

∂y

∣∣∣∣
y=±1

= ∂uz

∂y

∣∣∣∣
y=±1

= 0. (4)

Finally, the flow is assumed to be periodic in the streamwise and spanwise directions, with
lengths Lx and Lz, respectively. FollowingWaleffe [16], we take the non-dimensionalized volume
force to be

F (y) =
√

2π2

4Re
sin(πy/2)êx, (5)
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giving the laminar profile

U(y) =
√

2 sin(πy/2)êx. (6)

The laminar profile is inflectional but remains stable for all Reynolds numbers Re [25]. In the
following, we let α = 2π/Lx, β = π/2, and γ = 2π/Lz, and denote the domain 0 � x � Lx,
−1 � y � 1, 0 � z � Lz by �.

3. A low-dimensional model

Our model is a nine-mode generalization of the eight-mode model considered in Waleffe
[16]. The additional ninth mode describes a modification to the basic mean velocity profile
by the turbulence. It has wave vector k = (0, 3π/2, 0), to be compared with the wave vector
k = (0, π/2, 0) of the basic profile (6). Since, in general, if two modes with wave vectors
k1 and k2 enter into (u · ∇)u, a mode with wave vector k1 + k2 results, generation of such
a modification of the basic profile requires modes with y-component of their wave vector
equal to π. Allowing such modes is the second major difference from the model of Waleffe.

The modes and wave vectors that should be included appear rather naturally, as follows.
A prominent feature of shear flows is the presence of streamwise vortices. Vortices that span
the entire gap have a wave vector k = (0, π/2, γ), as for u3 (the complete modes are given
below, equations (7)–(16)). A streak, u2, capturing spanwise variation of the streamwise velocity,
results from the advection of the basic profile u1 by the vortex, and hence has wave vectors
(0, 0, γ) and (0, π, γ). In fact, these Fourier modes are tied together through a cos2(πy/2) =
(1 + cos(πy))/2 dependence. Then, advecting the streak by the vortex gives a mode including
the wave vector (0, 3π/2, 0), as in the new mode u9. In [16], none of the modes, including the
streak, have wave vectors with y-component equal to π, and hence that model cannot produce a
modification of the shape of the basic profile.

The other modes in [16] are associated with instabilities of the streak mode, with their
specific forms determined by physical and symmetry considerations. For example, the streak
can develop instabilities with a component representing vortices pointing in the wall-normal
direction, described by wave vectors (±α, 0, ±γ). Because our streak mode has an additional
cos2(πy/2) dependence with respect to Waleffe’s streak mode, we modify the appropriate streak
instability modes u4 and u6 to have the same dependence. The resulting modes then couple to
other modes to generate the modification to the basic profile with wave vector (0, 3π/2, 0).

Finally, as in [16], we ‘pin’the spanwise and streamwise locations of the modes, which gives
only one real degree of freedom for each mode. Because of the translation symmetries in the
downstream and spanwise directions, there is actually no preferred location for these structures;
proper accounting for these symmetries would require two or more real (or one or more complex)
degrees of freedom for each mode in our model, except for u1 and u9, thereby greatly increasing
the dimensionality of our model, cf [13, 26]. Consideration of such an extension of the present
model is deferred to future work.

With the above considerations in mind, the modes for the model are: the basic profile

u1 =




√
2 sin(πy/2)

0

0


 , (7)
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the streak

u2 =




4√
3

cos2(πy/2) cos(γz)

0

0


 , (8)

the downstream vortex

u3 = 2√
4γ2 + π2




0

2γ cos(πy/2) cos(γz)

π sin(πy/2) sin(γz)


 , (9)

and the spanwise flows

u4 =




0

0
4√
3

cos(αx) cos2(πy/2)


 (10)

and

u5 =




0

0

2 sin(αx) sin(πy/2)


 . (11)

Furthermore, we have the normal vortex modes

u6 = 4
√

2√
3(α2 + γ2)




−γ cos(αx) cos2(πy/2) sin(γz)

0

α sin(αx) cos2(πy/2) cos(γz)


 (12)

and

u7 = 2
√

2√
α2 + γ2




γ sin(αx) sin(πy/2) sin(γz)

0

α cos(αx) sin(πy/2) cos(γz)


 , (13)

generated from the advection of u4 and u5 by both the streak u2 and the vortex u3. These
interactions also give rise to a fully three-dimensional mode,

u8 = N8




πα sin(αx) sin(πy/2) sin(γz)

2(α2 + γ2) cos(αx) cos(πy/2) sin(γz)

−πγ cos(αx) sin(πy/2) cos(γz)


 , (14)
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Table 1. Matrix of couplings between the modes: (ui · ∇)uj with indices i from
the row and j from the column contributes to mode k, with k the entry in the
matrix. Dashes indicate couplings that vanish exactly. Boldface entries indicate
couplings that are absent in Waleffe’s model. All pairs except for the entry (3,1)
and, of course, the dashed ones, couple to higher-order Fourier modes outside the
set contained in our model. The lack of coupling within this set is indicated by ∗.

i\j 1 2 3 4 5 6 7 8 9

1 – – – 5 4 7 6 ∗ –
2 – – – 6 7,8 4 5 5 –
3 2 1,9 – 7,8 6 5 4 4 2
4 – 6 7,8 – – 2 3 3 –
5 – 7,8 6 – – 3 2 2 –
6 – ∗ 5 ∗ 3 ∗ ∗ ∗ –
7 – ∗ 4 3 ∗ ∗ ∗ ∗ –
8 6 ∗ 4 3 ∗ 1,9 ∗ ∗ 6
9 – – – 5 4 7 6 ∗ –

with normalization constant

N8 = 2
√

2√
(α2 + γ2)(4α2 + 4γ2 + π2)

. (15)

Finally, we have the new mode mentioned earlier, the modification of the basic profile

u9 =




√
2 sin(3πy/2)

0

0


 . (16)

The modes are orthogonal, and normalized so that
∫ ∫ ∫

�

un · um d3x = 2(2π/α)(2π/γ)δnm. (17)

Each mode individually satisfies incompressibility and free-slip boundary conditions at the
walls. Note that the modes with a cos2 πy dependence are not pure Fourier modes, but rather
superpositions of two Fourier modes. Introducing independent amplitudes for the pure modes
would increase the number of equations, but also raise the risk of causing a collapse in the
dynamics if the non-linear couplings between the modes are not strong enough. This issue has
not been explored further.

Table 1 shows how these modes couple through the advection term to generate other modes.
In the ith row and jth column, a dash indicates that (ui · ∇)uj vanishes exactly, an entry k

indicates a contribution to mode k since

∫ ∫ ∫
�

(ui · ∇)uj · uk d3x �= 0, (18)
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and ∗ indicates that (ui · ∇)uj has only a non-trivial projection to modes outside the set
contained in our model. Bold entries are couplings that are not contained in Waleffe’s eight-
mode model [16]. The asymmetry in the couplings indicates that sometimes one mode advects
another but not vice versa, i.e., (ui · ∇)uj can be different from (uj · ∇)ui.

Ordinary differential equations are obtained by Galerkin projection [5, 16], i.e. by plugging
the ansatz

u(x, t) =
∑

m

am(t)um(x) (19)

with real amplitudes am into (1), multiplying by un(x), integrating over �, and using (17). This
gives

(
8π2

αγ

)
ȧn = −

∑
m,l

amal

∫ ∫ ∫
�

[(um · ∇)ul] · un d3x

+
1

Re

∑
m

am

∫ ∫ ∫
�

(∇2um) · un d3x

+
∫ ∫

�

F · un d3x. (20)

The pressure term makes no contribution here because the modes are divergence-free, their
y-component vanishes at the walls, and they satisfy periodic boundary conditions in x and z,
cf [5]. For our choice of modes, we obtain the amplitude equations

da1

dt
= β2

Re
− β2

Re
a1 −

√
3

2

βγ

καβγ

a6a8 +

√
3

2

βγ

κβγ

a2a3, (21)

da2

dt
= −

(
4β2

3
+ γ2

)
a2

Re
+

5
√

2

3
√

3

γ2

καγ

a4a6 − γ2

√
6καγ

a5a7

− αβγ√
6καγκαβγ

a5a8 −
√

3

2

βγ

κβγ

a1a3 −
√

3

2

βγ

κβγ

a3a9, (22)

da3

dt
= −β2 + γ2

Re
a3 +

2√
6

αβγ

καγκβγ

(a4a7 + a5a6) +
β2(3α2 + γ2) − 3γ2(α2 + γ2)√

6καγκβγκαβγ

a4a8, (23)

da4

dt
= − 3α2 + 4β2

3Re
a4 − α√

6
a1a5 − 10

3
√

6

α2

καγ

a2a6

−
√

3

2

αβγ

καγκβγ

a3a7 −
√

3

2

α2β2

καγκβγκαβγ

a3a8 − α√
6
a5a9, (24)
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da5

dt
= − α2 + β2

Re
a5 +

α√
6
a1a4 +

α2

√
6καγ

a2a7

− αβγ√
6καγκαβγ

a2a8 +
α√
6
a4a9 +

2√
6

αβγ

καγκβγ

a3a6, (25)

da6

dt
= −3α2 + 4β2 + 3γ2

3Re
a6 +

α√
6
a1a7 +

√
3

2

βγ

καβγ

a1a8

+
10

3
√

6

α2 − γ2

καγ

a2a4 − 2

√
2

3

αβγ

καγκβγ

a3a5 +
α√
6
a7a9 +

√
3

2

βγ

καβγ

a8a9, (26)

da7

dt
= −α2 + β2 + γ2

Re
a7 − α√

6
(a1a6 + a6a9) +

1√
6

γ2 − α2

καγ

a2a5 +
1√
6

αβγ

καγκβγ

a3a4, (27)

da8

dt
= −α2 + β2 + γ2

Re
a8 +

2√
6

αβγ

καγκαβγ

a2a5 +
γ2(3α2 − β2 + 3γ2)√

6καγκβγκαβγ

a3a4, (28)

da9

dt
= −9β2

Re
a9 +

√
3

2

βγ

κβγ

a2a3 −
√

3

2

βγ

καβγ

a6a8, (29)

where

καγ =
√

α2 + γ2, (30)

κβγ =
√

β2 + γ2, (31)

καβγ =
√

α2 + β2 + γ2. (32)

These equations have a strong similarity to Waleffe’s eight-mode model [16], but because some
modes differ there are different O(1) factors multiplying some terms, and several additional
terms, including all terms that contain a9. While the numerical factors can be expected to play
a minor role for the qualitative behaviour, all couplings seem to be significant. For example,
for Waleffe’s eight-mode model we have been unable to locate any unstable, stationary finite
amplitude coherent structures consisting of streamwise vortices and streaks, as have been found
numerically for shear flows such as plane Couette flow [27, 28]. On the other hand, for our
nine-mode model, with its additional couplings, we do find such solutions: see figure 1.

The laminar state corresponds to the fixed point with a1 = 1, and a2 = · · · = a9 = 0, which
is linearly stable for all Re. In the next section, we will see that turbulence exists for the model
despite the stability of the laminar state: the model thus captures the subcritical nature of the
transition to turbulence.
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(a)

(b)

Figure 1. Unstable, stationary finite amplitude coherent structures at lowest Re

for which they exist for domains of size Lx = 4π, Lz = 2π, for (a) full equations
describing plane Couette flow (Re = 125), and (b) our model for sinusoidal shear
flow (Re = 308). The three panels show the mean profile (left), the downstream
vortices (upper right) and the flow in the midplane between the plates (lower
right). For the vortices, the flow is averaged in the downstream direction. The
velocity fields are represented by vectors for the components shown in the plane
and by colours for the velocity perpendicular to the plane. The solid lines in the
lower right panel indicate zero contours of the x-velocity. To aid in comparing
these flows with different boundary conditions, in the upper right panel in (a) we
subtract off the laminar profile, while in (b) we subtract off the component of the
flow proportional to the laminar profile.

4. Dynamics of the model

In [11], plane Couette flow is considered for a minimal flow unit, the smallest domain
which is numerically found to sustain turbulence. It elucidates a ‘self-sustaining process’
in which streamwise vortices cause streak formation, then the streaks break down to give
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Figure 2. Dynamics of the model with Re = 400 for Lx = 1.75π, Lz = 1.2π.
The three panels are as for figure 1, except that in the upper right panel the colour
indicates the full averaged downstream velocity, i.e., the component proportional
to the laminar profile is included. The frame shown is from the accompanying
animation.

x-dependent flow, then the streamwise vortices regenerate and the process repeats. It has been
suggested that such a self-sustaining process is a universal characteristic of shear flow turbulence
[11, 16, 29, 30]. In section 4.1, we analyse the model in the highly constrained geometry of a
minimal flow unit.

On the other hand, the analysis of Nagata [27] and Busse and Clever [28] for the optimal
domain size for the formation of stationary coherent structures suggests considering a longer
and wider domain. The dynamics for that domain are given in section 4.2.

4.1. Domain with Lx = 1.75π, Lz = 1.2π

We first consider a flow domain with Lx = 1.75π and Lz = 1.2π. For plane Couette flow, this
corresponds to the minimal flow unit, the smallest domain which is found numerically to sustain
turbulence [11]. Previous models for shear flows for this domain size include [26] for plane
Couette flow. See also [31] for a discussion of models for minimal flow unit channel flow.

The dynamics for the model at Re = 400 are shown in figure 2. The movie clearly shows
the following series of events: if we start with a vortex (indicated in the upper right panel by
the arrows for the velocity field in the plane), the formation of a streak can be observed next
(indicated by the colours for the downstream component). The streak then goes unstable by the
sinusoidal mode that is the basic instability kept for the model [16]: it shows up prominently
in the midplane cross section of the velocity field. The sinusoidal modulation grows, breaks up
into patches and rearranges with the regions of vertical motions shifted by half a wave length:
the consequences for the vortices are that they disappear and then reform with a reversed sense
of rotation.

Figure 3 shows the timeseries for all nine amplitudes in the model for the solution shown in
figure 2. The fluctuations are compatible with a non-periodic, irregular turbulent state. However,
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Figure 3. The amplitudes for a typical chaotic transient for the domain of size
Lx = 1.75π and Lz = 1.2π, and Reynolds number Re = 400. This corresponds
to the solution shown in figure 2 and the associated movie.

the eventual decay to the laminar state shows it does not belong to a turbulent attractor but
rather to a transient state on a chaotic saddle. Notice that the amplitude of a1 becomes large
near t ≈ 1600, indicating an attempt to leave the turbulent state and to relax to the laminar one.
However, the conditions for relaxation to the laminar state are not only that a1 has to become
large, but also that the other modes have to be small, which is not satisfied until t ≈ 2600 when
the trajectory finally escapes the turbulent region.

4.2. Domain with Lx = 4π, Lz = 2π

The moderately longer and wider domain with Lx = 4π and Lz = 2π has been considered in
many previous studies of shear flow turbulence, including plane Couette flow [13, 19, 27, 28]
and sinusoidal shear flow [19]. This corresponds to an optimal domain size for plane Couette
flow in the sense that the steady finite amplitude solutions appear at the smallest value of Re

[28, 32].
The dynamics in the wider domain is similar to that for the smaller one, but perhaps a bit

more violent. The reversals of the vortices are still present, but the dynamics of the sinusoidal
instability in the midplane representation is less regular. In a full numerical simulation, more
modes would be present and the variations in space and time can be expected to be even more
irregular.

The timeseries for all the nine amplitudes in the model for the solution shown in figure 4
are displayed in figure 5. As for the minimal flow unit domain, the fluctuations are compatible
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Figure 4. Dynamics of the model with Re = 400 for the aspect ratio Lx = 4π,
Lz = 2π. The panels and the representation of the flow are the same as in
figure 2. The frame shown is from the accompanying animation.
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Figure 5. The amplitudes for a typical chaotic transient for a domain of size
Lx = 4π and Lz = 2π, and Reynolds number Re = 400, and it corresponds to
the solution shown in figure 4 and the associated movie.

with a non-periodic, irregular, transient turbulent state. Notice that the amplitude of a1 becomes
large several times, indicating an attempt to leave the turbulent state and to relax to the laminar
one, e.g. near the times t = 800, 2700, 4500, 7800 and, most clearly, near t = 6500, where it
almost succeeds. Finally, near t = 10 000 the flow laminarizes.
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Figure 6. Colour-coded lifetimes of perturbations in the minimal flow unit for
different values of Re and the initial energy. Integrations were only carried out
up to t = 1000.

5. Transition behaviour

The finite lifetime of the trajectories for our model shown in the previous section indicates that
the turbulent state is not an attractor. Similar behaviour has been seen in the other shear flows
without a linear instability, and it has been suggested that the turbulent state is a chaotic saddle
[9, 18, 33]. The typical characteristic of a chaotic saddle is an exponential lifetime distribution
[34]–[36] that has also been seen in experiments and simulations [9, 37].

For low values of the Reynolds number Re, the model shows an apparent fractal dependence
of lifetimes on Re and on initial energy E of a perturbation (figure 6). Here initial conditions are
chosen so that a2 = a3 = a4 = a5 = √

E − 1/2, a1 = a6 = a7 = a8 = a9 = 0.
The strong variations of the lifetime with initial conditions suggests a probabilistic

description, e.g. the study of the survival probability P(t) to be still turbulent after a time
t. For the determination of P(t) for a set of Reynolds numbers we used ensembles of 1000
randomly selected initial conditions on an energy shell

∑
i a

2
i = 0.3 that were integrated for

a maximum time of 10 000 units. The results in figure 7 support an exponential lifetime
distribution, with a characteristic mean lifetime that increases rapidly with Reynolds number.
However, for Re > 320 we have clear deviations from exponential decay. They appear
first for long lifetimes, but set in earlier for increasing Reynolds number. The simplest
explanation for this change is that a stable attractor appears and absorbs a finite fraction of
initial conditions. Analysis of the periodic orbits in the system indeed shows this to be the
case [24].
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different values of Re. The red lines show exponential fits to the distributions.

The lifetime distributions for the longer and wider domain with Lx = 4π and Lz = 2π

are shown in figure 8; initial conditions are specified as for figure 6. The cuts at fixed Reynolds
number in figure 9 and the successive magnifications in figure 8 indicate how strongly the
lifetimes vary under tiny variations in parameters and how sensitively the system responds to
changes in initial conditions. Survival probabilities for the larger domain are shown in figure 10.
An exponential form is a good representation of the data for all Reynolds numbers. There does
not seem to be a co-existing non-trivial stable state, as there was for the minimal flow unit,
cf [24].

For both geometries, the median lifetimes increase rapidly with Reynolds number, perhaps
exponentially, as indicated in figure 11. A rapid increase of lifetimes has also been observed in
experiments [9, 10], numerical simulations [37, 38] and in other models for spatially extended
systems [36, 39].

6. Conclusions

The calculations and simulations show that nine judiciously chosen modes can capture the
dynamics of vortices and streaks in turbulent shear flows. Interactions between the modes are
sufficient to keep the dynamics alive and non-periodic, as expected for a turbulent flow. For a
wide range of parameters, the turbulent states do not persist indefinitely, but decay after a while.
The survival probability is exponential, as expected for a chaotic saddle. The appearance of an
attracting state in the minimal flow unit for large Reynolds numbers shows that a transition to
an attractor is possible, but this depends on the domain size and most likely also on the number
of modes included.

The model captures the dynamics of vortices and shows characteristics of the self-sustaining
process elucidated in [11, 16]. As suggested there, the cycle closes and the instability of the
streaks drives modes that can be recycled to form vortices, thus completing the self-sustaining
regeneration cycle.
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domains studied here; ×, the larger domain; + , the minimal flow unit. Straight
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Even the Reynolds number at which long-lived turbulence is found to be present is not too
different from that found in full numerical simulations. For the free-slip boundary conditions, a
critical Reynolds number of about 130 has been found in [40]. As can be expected for the more
flexible free-slip boundary conditions, it is about 2/5 of the values for the transition in plane
Couette flow [19, 37]. That it is so close to the value we find here must be considered fortuitous,
since experiments with other low-dimensional models show wide variations in behaviour under
changes in the number and characteristics of modes kept.
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