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Chaos for a Microelectromechanical Oscillator
Governed by the Nonlinear Mathieu Equation
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Abstract—A variety of microelectromechanical (MEM) oscilla-
tors is governed by a version of the Mathieu equation that harbors
both linear and cubic nonlinear time-varying stiffness terms. In
this paper, chaotic behavior is predicted and shown to occur in this
class of MEM device. Specifically, by using Melnikov’s method,
an inequality that describes the region of parameter space where
chaos lives is derived. Numerical simulations are performed to
show that chaos indeed occurs in this region of parameter space
and to study the system’s behavior for a variety of parameters.
A MEM oscillator utilizing noninterdigitated comb drives for
actuation and stiffness tuning was designed and fabricated, which
satisfies the inequality. Experimental results for this device that are
consistent with results from numerical simulations are presented
and convincingly show chaotic behavior. [2006-0281]

Index Terms—Chaos, electrostatic actuation, Melnikov’s
method, noninterdigitated comb drives, nonlinear, parametric
resonators, tuning.

I. INTRODUCTION

A CLASS OF nonlinear parametrically excited micro-
electromechanical (MEM) oscillators has recently gar-

nered much attention in the research community. Due to the
abrupt changes in dynamic behavior (nearly instantaneous
jumps from a stable quiescent state to a stable oscillatory
state), parametrically excited oscillators are attractive for ap-
plications such as filtering [1], [2], mass sensing [3], [4],
and scanning probe microscopy [5]. A thorough analysis of
the governing equation of motion has provided an accurate
model of the dynamic response of such devices [6]–[8], which
has compared well with experimental results. Characteristic
to this class of oscillators is the presence of linear and cubic
nonlinear time-varying stiffness coefficients that arise due to
electrostatic forces produced by noninterdigitated comb drives
(as will be discussed further in the following sections). This
governing equation is a nonlinear version of the well-known
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Mathieu equation, which conventionally contains only linear
time-varying coefficients [9].

In recent work, a novel tuning technique for such oscillators
has been developed [2], [10]–[12]. Such oscillators consist of
two sets of noninterdigitated comb fingers. An ac signal is ap-
plied to one comb drive set to provide a time- and displacement-
dependent force that drives the device. To the second set, a
dc voltage is applied to tune the effective linear and nonlinear
stiffness of the device. Of interest in this study are tunable
MEM oscillators that are governed by the same equation as
in Rhoads et al. [6]. Specifically, we will analyze the chaotic
behavior for such a device.

Chaotic behavior has been discovered and reported for many
physical systems. A classical example of a chaotic system
is the Lorenz equations [13], which were derived to help
understand the dynamics of cellular convection. Chaos due to
various mechanisms has also been reported for nonlinear MEM
oscillators, including microcantilevers for atomic force mi-
croscopy [14]–[18], an in-plane MEM oscillator with separated
comb drive actuators for signal encryption applications [19],
an electrostatically actuated MEM cantilever control system
[20], and MEM oscillators based on variable gap capacitors
[21], [22]. To the authors’ knowledge, the presence of chaos
has not been thoroughly investigated for the Mathieu oscillators
with time-varying linear and nonlinear stiffness terms discussed
previously.

Knowledge of the conditions that cause such behavior to
occur is important both for creating devices that exploit chaotic
vibrations for signal encryption applications and for creat-
ing robust devices with predictable dynamic behavior. Here,
Melnikov’s method [23] has been employed to define the re-
gions of parameter space where homoclinic chaos can occur.
Numerical analysis was used to study the system’s behavior for
various parameter sets and to verify the result from Melnikov’s
method. Finally, a MEM oscillator was designed and fabricated
such that for a range of applied voltages and driving frequencies
chaos is predicted to occur from Melnikov’s method. The
chaotic behavior of this device was verified experimentally
using a laser vibrometer.

In Section II, the governing dynamics of the oscillator of
interest are presented. A general discussion of Melnikov’s
method and how it can be used to predict chaotic behavior in
nonlinear MEM oscillators is presented in Section III. Then, in
Section IV Melnikov’s method is applied to the MEM oscillator
of interest, ultimately yielding a criterion for chaotic behavior
to occur, and numerical results are presented and discussed. In
Section V, experimental results for a fabricated MEM system
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Fig. 1. SEM image of the MEM oscillator consisting of a proof mass (M),
mechanical flexures (K), a driving set of ac noninterdigitated comb fingers
(AC), and a tuning set of dc noninterdigitated comb fingers (DC).

showing convincing chaotic vibrations are presented and dis-
cussed. Finally, we conclude in Section VI.

II. DYNAMICS OF A MEM OSCILLATOR GOVERNED BY

THE NONLINEAR MATHIEU EQUATION

The layout of the oscillator that was studied is shown in
Fig. 1, where M is the oscillator’s backbone (or proof mass),
AC and DC are noninterdigitated comb drive actuators, and
K are flexures. A square root cosine voltage signal V (t) =
VA

√
1 + cos(ωt), which decouples parametric and harmonic

excitation [5], is applied to the ac actuators. For tuning pur-
poses, a dc voltage V0 is applied to the dc actuators. The
electrostatic force generated by these actuators, which has
been previously studied and validated via numerical simu-
lation, finite-element analysis, and experimental investigation
[3], [10], is described by

Fes(x, t) =
(
r10x + r30x

3
)
V 2

0

+
(
r1Ax + r3Ax

3
)
V 2

A(1 + cos ωt) (1)

where r10 and r30 are, respectively, the linear and cubic non-
linear electrostatic stiffness of the dc comb fingers, and r1A and
r3A are, respectively, the linear and cubic nonlinear electrostatic
stiffness of the ac comb fingers. A unique feature of this type
of electrostatic actuator is that the stiffness coefficients (r10,
r30, r1A, and r3A) can be positive or negative depending on the
geometry and alignment of the comb fingers [10], [12]. As an
example, if the comb fingers are aligned with one another for
a given set of dimensions, then the linear electrostatic stiffness
could be positive and the nonlinear stiffness could be negative.
On the other hand, if the comb fingers are misaligned, then the
linear electrostatic stiffness could be negative and the nonlinear
stiffness could be positive. The dimensions of these fingers will
also strongly affect the magnitude and sign of these coefficients.
The mechanical flexures provide a restoring force to the system
that is described by

Fr(x) = k1x + k3x
3 (2)

TABLE I
DERIVATIVE OPERATOR AND NONDIMENSIONAL

PARAMETER DEFINITIONS

where k1 is the linear mechanical stiffness and k3 is the
cubic nonlinear mechanical stiffness that arises due to bound-
ary conditions that impart stress on the neutral axis of each
flexure (note that k3 > 0 due to the natural hardening na-
ture of the beams). Including a dissipative force due to lin-
ear viscous damping, the equation of motion for this system
becomes

mẍ + cẋ + k1x + k3x
3 +

(
r10x + r30x

3
)
V 2

0

+
(
r1Ax + r3Ax

3
)
V 2

A (1 + cosωt) = 0 (3)

where m is the mass, and c is the damping coefficient. Equation
(3) is a nonlinear version of the Mathieu equation and is valid
provided that the shuttle mass moves primarily in one direction
(i.e., no other modes of oscillation affect the motion of the
oscillator), that the aligned comb fingers remain approximately
aligned and misaligned comb fingers remain approximately
misaligned during oscillation (this is discussed for a tested
device in Section V), and that the dominant source of damping
in the system is due to viscous effects and is linear (this dynamic
model was previously studied and validated for a similar device
in [3], [6], and [7]).

For analytical purposes, time in (3) is rescaled as τ = ω0t,
where ω0 =

√
k1/m is the system’s pure elastic linear natural

frequency, and displacement is rescaled as z = x/x0, where
x0 is a characteristic length (e.g., the center-to-center distance
between comb fingers). The ratio of the driving frequency to the
natural frequency is defined to be Ω = ω/ω0. Rearranging, the
nondimensionalized equation of motion becomes

z′′+ αz′+ βz+ δz3+ γ(1+ cos Ωτ)z+ η(1+ cos Ωτ)z3 = 0
(4)

where the new derivative operator and nondimensional parame-
ters are defined in Table I.

III. MELNIKOV’S METHOD AND CHAOS

Melnikov’s method is an analytical technique, which can be
used to deduce the presence of chaos in a dynamical system.

Consider the general one degree of freedom system [23], i.e.,

ẋ = f0(x, y) + εg0(x, y, t) =
∂H

∂y
+ εg0(x, y, t) (5)

ẏ = f1(x, y) + εg1(x, y, t) = −∂H

∂x
+ εg1(x, y, t) (6)



1316 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 16, NO. 6, DECEMBER 2007

Fig. 2. (a) Phase space for the unperturbed system (ε = 0) that contains a
saddle point, homoclinic trajectories, and periodic orbits. (b) Phase space for
the Poincaré map when a perturbation (ε �= 0) is applied where the stable
manifold W s(p) and unstable manifold W u(p) separate.

where ε is a small parameter, g is periodic in t with period
T , and H is a real Hamiltonian function. Suppose that for
the unperturbed (ε = 0) autonomous system, a saddle point
with overlapping stable and unstable manifolds exists, corre-
sponding to a homoclinic orbit [see Fig. 2(a)]. When a small
perturbation is applied (i.e., ε �= 0), there will be a periodic orbit
close to the saddle point, which will be a fixed point p of the
Poincaré map defined by evolution for a time T (i.e., a point
in phase space is recorded once every period T ). The stable
and unstable manifolds (W s(p) and Wu(p), respectively) of
p will be close to their counterparts for the saddle point for
the unperturbed system, but the homoclinic orbit will typically
be broken, so that W s(p) and Wu(p) no longer lie on top
of one another [see Fig. 2(b)]. By Moser’s theorem and the
Smale–Birkhoff homoclinic theorem, if the stable and unstable
manifolds intersect transversely then the system’s dynamics
will contain a horseshoe [24]. The existence of a horseshoe
implies that there is a countable infinity of periodic orbits,
an uncountable number of aperiodic orbits, and a dense orbit,
which comes arbitrarily close to every point in the invariant
set of the horseshoe map. In other words, a chaotic set exists
in the system when a transverse intersection of the mani-
folds occurs. We emphasize that this set is not necessarily an
attractor.

The Melnikov function gives a measure of the leading
order distance between the stable and unstable manifolds when
ε �= 0 and can be used to tell when the stable and unsta-
ble manifolds intersect transversely. It is defined to be the
integral

M(t0) =

∞∫
−∞

[f0(x0, y0)g1(x0, y0, t + t0)

− f1(x0, y0)g0(x0, y0, t + t0)] dt (7)

where q0(t) = (x0, y0) is the solution corresponding to the
unperturbed homoclinic trajectory. If M(t0) = 0 and M

′
(t0) �=

0 for some t0 and some set of parameters then the two manifolds
have a transverse intersection, a horseshoe exists, and chaos
occurs [23]. Melnikov’s method can serve as a useful tool in
the development of nonlinear MEM oscillators, giving bounds
on the parameters of a system where chaos, resulting from such
intersections, can occur.

IV. APPLICATION TO A MEM OSCILLATOR GOVERNED BY

A NONLINEAR VERSION OF THE MATHIEU EQUATION

A. Scaling and Conditions for Homoclinic Trajectories

In order to perform Melnikov analysis on (4), some rescaling
is performed. Specifically, (4) needs to be rewritten to take
the same form as (5) and (6). The following parameters cor-
responding to time-dependent and velocity terms (i.e., forcing
and damping) are assumed to be small:

α ≡ εα̃ = O(ε) γ ≡ εγ̃ = O(ε) η ≡ εη̃ = O(ε) (8)

which is a valid assumption for MEM oscillators. All other
time-independent terms are assumed to be first-order quantities
[i.e., β = O(1), δ = O(1)]. Defining z

′
= v and rewriting the

second-order differential equation as two first-order differential
equations gives the following perturbed system:

z
′
= v

v
′
= − βz − δz3

+ ε
[
−α̃v − γ̃ (1 + cos(Ωτ)) z − η̃ (1 + cos(Ωτ)) z3

]
.

(9)

For the unperturbed (ε = 0) system, the following Hamiltonian
is found:

H(z, v) =
1
2
v2 +

1
2
βz2 +

1
4
δz4. (10)

From this Hamiltonian, the following conditions are placed
on parameters so that the Hamiltonian exhibits a double-well
structure and, hence, has a homoclinic trajectory:

β < 0 δ > 0. (11)

The energy of the system can be visualized by plotting the
potential energy portion of (10), i.e., U(z) = βz2/2 + δz4/4,
as a function of displacement z, as shown in Fig. 3(a). For
β = 0, the potential energy is at a bifurcation point where it has
not quite reached a double-well state [dotted curve in Fig. 3(a)]
and is a symmetric quartic curve. As V0 is increased past the
critical value V β

0,crit, two wells (minima) are created, which
can be thought of as stable fixed points, and the fixed point at
the origin becomes unstable. By treating V0 as a bifurcation
parameter and plotting the position of each equilibrium point
(the maxima and minimum of the potential energy), Fig. 3(b)
is generated, which is the well-known pitchfork bifurcation.
In an experiment, small noise-induced perturbations cause the
device to leave the unstable origin and settle to one of the two
stable positions when V0 > V β

0,crit. By only activating the dc
comb drives and observing the device snap to a new equilibrium
position, this behavior can be exploited to verify condition (11)
prior to exploring the chaotic dynamics, as will be done in the
succeeding sections.

From (11), to obtain chaos the main obstacle that needs to be
overcome in the design process is to create a net negative linear
stiffness, i.e., β < 0. To overcome this seemingly unphysical
condition, the dc comb fingers can be chosen to have a large
negative linear stiffness, so that under reasonable V0 the net
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Fig. 3. Representative figures for ε = 0 and δ > 0, showing the (a) potential
energy U(z) = (1/2)βz2 + (1/4)δz4 with β ≤ 0, as a function of displace-
ment z, illustrating the system’s double-well structure (dotted curve represents
V0 = V β

0,crit, and all other curves represent the case when V0 > V β
0,crit, where

the solid curve represents the highest V0) and (b) bifurcation diagram showing
the position of each extremum as a function of V0 (solid curves give stable
solutions, and dashed curves give unstable solutions).

Fig. 4. Geometry of misaligned noninterdigitated comb drives proposed for
tuning the oscillator such that β < 0 and δ > 0.

stiffness β is negative. Various aspects of the comb finger and
flexure design are discussed in Section IV-B.

B. Design Considerations

In order to create a MEM oscillator satisfying (11), the dc
tuning comb drives [10]–[12] and flexures must be designed
accordingly. Since β ∼ k1 + r10V

2
0 and k1 is always positive,

the tuning comb drives need to be configured so that r10 < 0.
This is achieved by making the comb fingers misaligned with
respect to one another (see Fig. 4). Furthermore, V0 must be
larger than the following critical voltage

V β
0,crit =

√
−k1/r10 (12)

to achieve β < 0. To decrease this critical voltage, the oscillator
can be designed with small k1 and large r10. Long thin flexures
can be used to reduce k1.

The other critical coefficient is δ ∼ k3 + r30V
2
0 . Since k3 is

always positive, r30 can either be positive or negative to satisfy
δ > 0. Although it is preferable to design r30 > 0 so that δ > 0
for all V0, if r30 < 0 one can still satisfy δ > 0 by taking V0 less
than the critical voltage, i.e.,

V δ
0,crit =

√
−k3/r30. (13)

In this case by designing k3 as large and r30 as small, the
upper bound V δ

0,crit is increased. To increase the magnitude
of k3, fixed–fixed flexures, which are shown in Fig. 1 as beams
labeled K, can be used.

The magnitudes of r10 and r30 can be increased by increasing
the number of comb fingers and changing their dimensions. One
way to achieve this is by decreasing the gap between the comb
fingers. In addition, increasing the spacing between each finger
will make r30 more positive. The effects of geometry on these
parameters can be explored using finite-element software and
have been previously documented [10]–[12].

C. Applying Melnikov’s Method

Satisfying the conditions for a double-well potential gives
rise to a homoclinic orbit in the system’s phase space for
ε = 0. The homoclinic trajectory can be found by setting
H(z, v) = 0. Solving for the resulting displacement and dif-
ferentiating to determine velocity, the homoclinic trajectory is
given as follows [23]:

z0(τ) = ±
√

2|β|/δsech
(√

|β|τ
)
, (14)

v0(τ) =∓ |β|
√

2/δsech
(√

|β|τ
)
tanh

(√
|β|τ

)
. (15)

The Melnikov function (7) can now be evaluated, where
f0(z, v) = v, g0(z, v, τ) = 0, and

f1(z, v) = −βz − δz3

g1(z, v, τ) = −α̃v − γ̃ (1+ cos(Ωτ)) z − η̃ (1 + cos(Ωτ)) z3.

(16)

The integral becomes

M(τ0) =

∞∫
−∞

v0(τ)
[
−α̃z′0(τ) − γ̃ (1 + cos (Ω(τ + τ0))) z0(τ)

− η̃ (1 + cos (Ω(τ + τ0))) (z0(τ))3
]
dτ (17)

which yields

M(τ0) = κ
[
πΩ2

(
6δγ̃ + η̃

(
4|β| + Ω2

))
sin(Ωτ0)

+ 8α̃|β| 32 δ sinh
(
πΩ/

(
2
√

|β|
))]

(18)

where κ = −csch(πΩ/(2
√

|β|))/(6δ2). In order for the unsta-
ble and stable manifolds to intersect, Melnikov’s method states
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TABLE II
PHYSICAL PARAMETERS OF A REPRESENTATIVE DEVICE

STUDIED USING NUMERICAL ANALYSIS

that M(τ0) = 0 for some τ0. For this to hold, the following
criterion must be met:

Y (Ω) ≡
∣∣∣8α|β| 32 δ sinh

(
πΩ/

(
2
√

|β|
))∣∣∣

−
∣∣πΩ2

(
6δγ + η

(
4|β| + Ω2

))∣∣ < 0. (19)

Consequently, an oscillator whose parameters satisfy this
expression will have a chaotic invariant set, which may or may
not be an attractor. It is important to note that a large region of
parameter space will satisfy this inequality.

D. Numerical Analysis of a Realistic MEM Oscillator

For the purposes of this analysis, realistic parameters are
chosen based on an electrostatically driven Mathieu MEM
oscillator presented in DeMartini et al. [12]; these are shown
in Table II. (Note that these are not the exact parameters of
that device, rather they were chosen as representative values
for a device that can be designed and manufactured.) This
particular device is chosen for this study because it satisfies
the aforementioned homoclinic trajectory criterion, i.e., β <
0 and δ > 0. Since r30 > 0, δ > 0 will be true for all V0,
and V0 > V β

0,crit will therefore be the critical condition in this

analysis. It turns out that V β
0,crit = 50 V for these parameters.

In [12], the second set of comb fingers, used to drive the
oscillator, are aligned relative to one another giving rise to
r1A > 0 and r3A < 0. The driving voltage VA can be used to
tune the parameters γ and η to satisfy (19). It is important
to note that by choosing different comb finger arrangements
for actuation, e.g., misaligned comb fingers where r1A > 0 and
r3A < 0, Melnikov’s criterion can still be satisfied. The aligned
arrangement is chosen simply for comparison with the work
in [12]. Having the set of representative parameters, numerical
analysis is performed to study the system and to verify that (19)
does in fact describe the set of parameters where chaos occurs.

Depending on the magnitude of the ac and dc voltages
chosen, α, β, δ, γ, and η can be tuned to satisfy (19). As
an example, choosing V0 = 75 V, VA = 40 V, and setting
x0 = 1 yields α = 0.0005, β = −1.25, δ = 3.65, γ = 0.32,
and η = −0.128, which not only satisfy (19) for a certain range
of Ω but are also consistent with the aforementioned scaling
assumptions and requirements on β and δ. The function Y (Ω)
is plotted in Fig. 5. Chaos is predicted to occur for the band
of Ω where Y (Ω) < 0. For example consider the solid curve in
Fig. 5(a), where VA = 40 V and V0 = 75 V; for this parameter
set, chaos is predicted to occur for 0 < Ω < 6.6. Notice also in

Fig. 5. Function Y (Ω) where the (a) ac excitation voltage is held constant at
VA =40 V and dc tuning voltage is varied (solid: V0 =75 V; dashed: V0 =
70 V; dashed–dotted: V0 =65 V; dotted: V0 =60 V) and (b) dc tuning voltage
is held constant at V0 = 75 V and ac excitation is varied (solid: VA = 40 V;
dashed: VA = 35 V; dashed–dotted: VA = 30 V; dotted: VA = 25 V). When
Y (Ω) < 0, Melnikov’s method predicts that an invariant chaotic set exists.

Fig. 5(a) that as V0 decreases, the band of Ω for which chaos
occurs decreases. A similar trend occurs when VA is decreased,
as shown in Fig. 5(b).

Next, knowing that Melnikov’s method predicts that chaos
can occur for a range of parameters, it becomes important
to determine what type of chaos occurs, specifically whether
transient (temporary) chaos, attracting (sustained) chaos, or
both exist. This is done numerically by integrating (4) and
studying the system’s dynamics for a large number of parameter
sets and initial conditions. Both attracting and transient chaos
are found. Sustained chaos is the main interest in this paper, due
to its impact in practical engineering applications. Fig. 6 depicts
the system’s phase space and time series for a set of parameters
(VA = 40 V, V0 = 75 V, and Ω = 1.15) where attracting chaos
occurs. We determined that the chaos is sustained (attracting)
by integrating the equations for 106 time units and verifying
that the trajectories do not repeat.

Using the same voltages VA = 40 V and V0 = 75 V, nu-
merical bifurcation analysis with Ω treated as the bifurcation
parameter reveals the various transitions between periodic and
chaotic states. Fig. 7(a) was constructed by beginning with
Ω = 1.3, adiabatically decreasing Ω, integrating for a suffi-
cient amount of time at each step to remove transients, and
recording the instantaneous value of z each time the trajec-
tory pierced the Poincaré section defined by cos(Ωτ) = 0 and
sin(Ωτ) = 1. The two panels in Fig. 7 represent different
integration times at each Ω value. Due to the system’s sensitive
dependence on initial conditions, there are slight differences
between the two panels. These differences also indicate that
this system can have coexisting attractors for certain parameter
sets, with only one shown for each Ω in each panel of Fig. 7.
For 1.247 < Ω < 1.300 in Fig. 7(a), there is a stable periodic
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Fig. 6. Numerical simulations for VA = 40 V, V0 = 75 V, and Ω = 1.15
showing attracting chaos in (a) (z, v) phase space, (b) z time series, and
(c) v time series.

Fig. 7. Bifurcation diagrams obtained by setting VA = 40 V and V0 = 75 V
and adiabatically decreasing the value of Ω from Ω = 1.300 and omitting
transients after integrating for a sufficient number of time units. Here, the
instantaneous value of the nondimensionalized displacement z is plotted
when the trajectory pierces the Poincaré section defined by cos(Ωτ) = 0 and
sin(Ωτ) = 1. At each value of Ω, the equations are integrated for (a) 500
piercings of the Poincaré section and (b) 1500 piercings of the Poincaré section
before omitting transients. This system contains multiple attractors at certain Ω
values, but only one is depicted in each panel.

attractor with a period roughly two times that of the forcing. An
abrupt transition to a chaotic state occurs at Ω = 1.247, which
is shown in the figure as a filled band. Within this chaotic
region lies Ω = 1.15, which is consistent with the results
shown in Fig. 6. We verified that this is chaotic behavior by
integrating (4) and observing the oscillations for Ω values that
lie within these banded regions and by analyzing the Poincaré
maps and power spectra of the system. There are three large
banded chaotic regimes in the range 0.942 < Ω < 1.246, with
small periodic windows in between, which indicate that there
is a fairly large regime of parameter space for which this

Fig. 8. Bifurcation diagrams similar to Fig. 7 (VA = 40 V) stacked on top of
one another for different dc tuning voltages V0, which are specified in the upper
left-hand corner of each diagram. Evident from these plots is the relationship
between the banded chaotic regions and the dc tuning voltage.

oscillator can exhibit attracting chaotic behavior; therefore,
if an oscillator is created with parameters close to the ones
shown in Table II, then chaotic behavior should be relatively
easy to find by independently adjusting VA, V0, and Ω. We
note that qualitatively similar bifurcation diagrams have been
computed for a different nonparametrically forced nonlinear
oscillator in [25].

Holding VA = 40 V, a series of bifurcation diagrams show-
ing the dependence on V0 was created in the same manner as
Fig. 7; see Fig. 8 for 47.5 V < V0 < 80 V. For V0 = 52.5 V,
which is just above V0,crit for β < 0, thick banded chaotic
regions reside at low frequencies below Ω = 0.2. As the dc
voltage is increased, the chaotic bands become wider and
spread into the higher frequency regions of parameter space.
In a practical MEM device, it is likely that there will be an
upper limit on the value of V0 that the device can handle. For
applications where chaos is desirable, such as signal encryption,
when operating at lower dc tuning voltages chaos should be
present at low frequencies relative to the natural frequency of
the device.

V. EXPERIMENTAL VERIFICATION OF CHAOTIC BEHAVIOR

A MEM oscillator, which satisfies Melnikov’s criterion for
a range of applied ac and dc voltages, has been designed and
fabricated. An SEM image of the device is shown in Fig. 1.
Similar to the device discussed in Section IV, misaligned comb
fingers were chosen for dc tuning, aligned comb fingers were
chosen for actuation, and fixed–fixed flexures were chosen to
provide the highly nonlinear mechanical restoring force. The
dc tuning comb fingers were designed with a 2-µm width,
7-µm spacing, 1-µm gap, and 15-µm length. The ac driving
comb fingers were designed with a slightly different geometry,
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TABLE III
ESTIMATED PARAMETERS FOR THE EXPERIMENTAL DEVICE

specifically the comb fingers attached to the electrode were
designed with a 3-µm width and comb fingers attached to the
oscillator backbone were designed with a 2-µm width in order
to increase the displacement range of the oscillator (there is
an allowable displacement for aligned comb fingers, which if
exceeded will cause the comb drive stiffnesses to change; they
would become misaligned). In addition, the ac driving comb
fingers were made to have 11-µm spacing, 1.5-µm gap, and
15-µm length. Each fixed–fixed flexure was designed with
a 2-µm width and a 225-µm length, and the depth of the
entire structure was 20 µm. Parameters estimated through
finite-element simulations are shown in Table III. Note that
the value for Q in this table was estimated experimentally
for the device in a 535 mtorr vacuum, which was the vacuum
pressure used for all the results in this section. The pure elastic
linear natural frequency was 9.2 kHz in the experiment, which
differs slightly from the natural frequency estimated from the
parameters in Table III (12.3 kHz). In all experiments, the
driving frequency is less than the pure elastic linear natural
frequency (corresponding to the lowest frequency vibration
mode of the structure), so that other vibration modes do not
contaminate the oscillator’s response.

Variations in parameters resulting from small imperfections
in the fabricated structure will affect the onset of chaos accord-
ing to (19). However, since parameters β and δ depend on V0

and γ and η depends on VA, the device can still be tuned to give
chaos, and it is thus qualitatively insensitive to small parameter
variations.

To test whether the device can achieve (11), a dc voltage was
applied to the tuning set of comb fingers and was increased
until it buckled to a new equilibrium position. This was done
statically, and the relative position of the device was observed
through a microscope. As seen in Fig. 9, the device’s stable
equilibrium position, where the comb fingers are completely
aligned, becomes unstable somewhere between V0 = 36.0 V
[Fig. 9(a)] and V0 = 36.5 V [Fig. 9(b)], giving rise to a bifurca-
tion where two new stable equilibria are born. The slight mis-
alignment at 36.5 V shows that the system settled to one of the
new stable equilibria positions. It is important to note that the
device snaps to one of the two stable equilibria positions over
the other due presumably to the presence of small fabrication-
induced asymmetries that give rise to a distorted double-well
potential. As the dc voltage was increased, for example to
37.0 V [Fig. 9(c)], the oscillator’s new equilibrium position
moved further away from its original equilibrium position. This
is consistent with the behavior of the system’s double-well
potential when V0 is increased. It is therefore concluded that

Fig. 9. Zoomed-in views of comb fingers (in each panel, the left two fingers
are attached to the suspended structure and the right fingers are attached
to the static electrode), depicting the transition to the buckled state where
the effective linear stiffness is negative (β < 0) and the effective nonlinear
stiffness is positive (δ > 0). Here, a dc voltage is applied to the tuning set
of comb fingers and no ac excitation is provided to the other set. Note that
the comb fingers shown are originally aligned when no dc voltage is applied.
(a) Comb fingers remain aligned for V0 = 36.0 V. (b) When V0 = 36.5 V,
the structure buckles to one of two new equilibrium positions (i.e., β < 0 and
δ > 0), as shown by the slight misalignment of the fingers. (c), (d) As the
voltage is increased, to V0 = 37 V and V0 = 37.5 V respectively, the fingers
become more misaligned, which corresponds to the broadening of the double-
well potential.

for dc tuning voltages above 36.5 V the oscillator’s phase space
will have a homoclinic structure, with β < 0 and δ > 0. Since
r30 > 0, the δ > 0 criterion will be satisfied for all V0.

To test the dynamical behavior of the oscillator in its buckled
state, a vibrometer was used [26]. Since the motion of the de-
vice was in-plane with respect to the substrate, a 45◦ mirror was
machined, with a focused ion beam, next to the proof mass so
that the laser could be reflected off its vibrating surface. While
applying a dc voltage to the tuning set of comb fingers, which
was above the critical dc voltage, a square root cosine signal
was applied to the driving comb fingers to actuate the device.
For this experiment, there was an upper limit on the dc voltage
that was determined by the spacing of the comb fingers. Since
the oscillator displaces as V0 is increased past V β

0,crit, a point
can be reached where the relative position of the noninterdig-
itated comb fingers causes the sign of the electrostatic stiffness
coefficients to change (i.e., the misaligned fingers get closer
to being aligned and visa versa), in which case a homoclinic
orbit may no longer exist. From the force–displacement curve
obtained from finite-element analysis, it was found that the mis-
aligned tuning comb fingers could only displace ±2.2 µm and
the aligned driving comb fingers could only displace ±1.8 µm
before the sign of their respective stiffness coefficients changed.
As a result, only a very narrow band of V0 was explored.

Further evidence that the system contains a homoclinic struc-
ture comes from experimentally observed periodic attractors
for different choices of V0, VA, and ω. Before proceeding, it
is important to note that the vibrometer integrates the velocity
measurement to obtain the displacement, so there was some
drift associated with the experimental displacement values.
As a result, the displacement results have some amount of
offset so that zero displacement does not correspond to the
original equilibrium position. Fig. 10 shows an experimentally
observed periodic attractor for V0 = 37.1 V, VA = 13.2 V, and
a driving frequency of 1100 Hz, and Fig. 11(a) shows a different
experimentally observed periodic attractor for V0 = 37.1 V,
VA = 14.8 V, and a driving frequency of 1500 Hz. The shapes
of these periodic orbits in phase space are consistent with a
system that contains homoclinic trajectories for ε = 0 [23].
Fig. 11(b) shows a periodic attractor found numerically for
the parameters in Table III, with V0 = 47 V, VA = 15.9 V,
and a driving frequency of 1500 Hz. This strongly resembles
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Fig. 10. Periodic attractor for the experimental device for V0 = 37.1 V,
VA = 13.2 V, ω/2π = 1100 Hz, with the (a) phase space, (b) velocity time
series, and (c) displacement time series shown [1 velocity (scaled) unit =
125 mm/s and 1 displacement (scaled) unit = 8 µm].

the periodic orbit shown in Fig. 11(a), although, interestingly,
the period of the periodic orbit shown in Fig. 11(a) is twice the
period of the driving signal, while the period of the periodic
orbit shown in Fig. 11(b) (and that shown in Fig. 10) is equal to
the period of the driving signal.

In addition to finding numerous periodic attractors, regions of
(VA, V0, ω) parameter space where attracting chaos occurs were
found. For example, when V0 = 37.1 V, VA = 13.8 V, and
ω/2π = 2000 Hz, a chaotic attractor was found experimentally,
with a time series shown in Fig. 12(a). Using the parameters
from Table III and those near VA, V0, and ω, attracting chaos
was found numerically, as shown in Fig. 12(b). To verify
that the chaos is sustained, the equations were integrated for
106 time units. We note that here the experimental device was
tested at V0 = 37.1 V, which is slightly above its critical dc
tuning voltage. Since the predicted parameters in Table III are
not expected to be exactly the same as those for the device
due to fabrication issues, the critical dc tuning voltage for
homoclinic orbits to occur is different. The transition voltage
for the parameters in Table III is V β

0,crit = 45.2 V. To be
consistent with the experiment, a value of V0 = 46.5 V, which
is slightly above this theoretical prediction, was chosen for the
simulation shown in Fig. 12(b).

Spectral analysis of an oscillator’s time series is a good indi-
cator of whether it is chaotic [27]. This was done here by taking
the Fourier transform of the time series obtained experimentally
and numerically with the same VA, V0, and ω as in Fig. 12.
The power spectrum was found by taking the modulus of the
Fourier transform, and it determines the relative strength of
each periodic component in the time series. In general, systems
whose time series are chaotic will have a broad power spectrum.
Fig. 13(a) shows such a broad power spectrum for the actual
device, suggesting chaotic oscillations for these parameters.
Fig. 13(b) shows a similarly broad power spectrum from numer-

Fig. 11. Comparison of a periodic attractor obtained in the (a) experiment
for V0 = 37.1 V, VA = 14.8 V, and ω/2π = 1500 Hz [1 velocity (scaled)
unit = 125 mm/s and 1 displacement (scaled) unit = 8 µm] and (b) numerical
simulation for V0 = 47.0 V, VA = 15.9 V, and ω/2π = 1500 Hz.

ical simulations. The peak of the experimental power spectrum
is apparently at half the driving frequency (although there is
also substantial power at the driving frequency), whereas the
peak of the numerical power spectrum is apparently at the
driving frequency (although there is also substantial power at
half the driving frequency). This suggests that the experimental
and numerical chaotic oscillations are quite similar but differ
somewhat in their details.

For the estimated parameter set in Table III and fixed V0, a
boundary was derived from (19) in ω−VA space, which predicts
where chaos occurs (above the curves). For comparison, this
boundary was also tested experimentally. This was done by fix-
ing V0 = 37.0 V, increasing VA until attracting chaotic behav-
ior was observed, and recording this VA every 50 Hz. For this
experiment, the device was only tested for VA below 25.0 V,
since similar devices failed for voltages slightly above this
value. No chaos was observed for frequencies past 3300 Hz
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Fig. 12. Comparison of a chaotic time series obtained in the (a) experiment
for V0 = 37.1 V, VA = 13.8 V, and ω/2π = 2000 Hz [1 velocity (scaled)
unit = 125 mm/s and 1 displacement (scaled) unit = 8 µm] and (b) numerical
simulation for V0 = 46.5 V, VA = 15.0 V, and ω/2π = 2010 Hz.

Fig. 13. Power spectra calculated by taking the Fourier transform of a chaotic
velocity time series from (a) experiment (V0 = 37.1 V, VA = 13.8 V, and
ω/2π = 2000 Hz) and (b) numerical analysis (V0 = 46.5 V, VA = 15.0 V,
and ω/2π = 2010 Hz), showing the broad-band nature of the chaotic attractor
[the scaled velocity units prior to taking the Fourier transform are identical to
Fig. 12 for (a) and (b)].

since the drive voltage necessary to achieve chaotic behavior
becomes too large. The boundary for attracting chaotic behavior
found in the experiment lies above the theoretical boundaries
for the existence of a chaotic set predicted by Melnikov’s
method, as shown in Fig. 14. The gap between the theoretical
and experimental curves could be due to the fact that the
chaos predicted by Melnikov’s method could be transient or
attracting, and we only show the experimental boundary for
attracting chaos.

Fig. 14. Boundaries for chaotic motion in ac drive voltage versus drive
frequency space. Above the experimental curve (solid curve), attracting chaos
exists (V0 = 37.0 V), and above the curves predicted by Melnikov’s method
(dashed curve: V0 = 47.0 V and dotted curve: V0 = 37.0 V), chaotic motion,
which could be transient or attracting, is possible.

VI. CONCLUSION

Using Melnikov’s method, chaos has been predicted to occur
in MEM oscillators that are governed by a version of the
Mathieu equation that includes both linear and nonlinear time-
dependent stiffness terms. The result of this analysis was an
inequality describing the set of parameters where chaos occurs,
which is a useful design tool for tailoring the oscillator’s
parameters so homoclinic chaos either occurs or does not occur
as desired. For a representative parameter set, numerical simu-
lations showed that chaos does occur in regions of parameter
space satisfying the criterion from Melnikov’s method and
helped to better understand the complicated dynamics of the
oscillator. A MEM oscillator with two sets of noninterdigitated
comb drives (one for ac actuation and one for dc tuning) was
designed and fabricated so that it satisfies Melnikov’s criterion
for a region of parameter space. By tuning the device with the
dc comb drives, the effective linear and nonlinear stiffnesses are
made to be negative and positive, respectively, which means
that the unperturbed system contains a homoclinic orbit. By
actuating the device with the second set of electrodes, many
interesting attractors are found, including periodic orbits and
chaos. Time series and broad-band spectra observed experi-
mentally show that the MEM device is chaotic for appropriate
parameters and that the criterion from Melnikov’s method is
valid for predicting chaotic behavior.
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