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Abstract
A model is developed for a non-uniform piezoelectric beam suitable for analyzing energy
harvesting behavior. System dynamics are projected onto a numerically developed basis to
produce energy functions which are used to derive equations of motion for the system. The
resulting model reproduces the experimentally observed transition to chaos while providing a
conservative estimate of power output and bandwidth.
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1. Introduction

Vibrational energy harvesting allows small amounts of power
to be extracted from otherwise wasted ambient energy sources.
Capturing this energy provides a power source for small
electronic devices without the need for batteries or wires and
power supplies, thus reducing installation/maintenance costs.
Piezoelectric systems are an attractive approach to vibrational
energy harvesting because of their high power density [1] and
ease of construction. Many piezoelectric energy harvesters
have been proposed and experimentally demonstrated, utilizing
both linear and nonlinear approaches; a few examples can be
seen in [2–7]. Linear devices typically utilize a beam in a
cantilever configuration with a piezoelectric portion that con-
verts mechanical deformation into electrical energy. This type
of device is well understood and modeled, but the bandwidth
over which energy can be harvested is very small. A detailed
discussion of modeling these linear systems can be seen in [8].
However, naturally occurring vibrations tend to have a mixed
frequency content which can be time varying, implying that
widening the bandwidth over which appreciable energy can be
harvested can lead to better performance. Several devices have
been proposed to incorporate nonlinearity to enhance the
bandwidth of energy recovery, commonly achieved through bi-

stability induced either through a buckled beam or magnetic
instabilities [9]. Buckled beams are particularly attractive
because construction of these devices is accomplished with
minimal additional components. While the theory of modeling
buckled beams has been developed [10], its application to
piezoelectric energy harvesting has been lacking.

Piezoelectric materials couple between mechanical
deformation and electrical field generation. The direct piezo-
electric effect is when a stress field causes charge surpluses at
its surface, usually detected through a potential difference
across the specimen. Alternatively, the converse piezoelectric
effect is when an electric field applied to the material causes a
strain to develop. Due to this coupling, piezoelectric materials
need to be modeled in the mechanical and electrical domain
simultaneously. Previous modeling attempts have included
Masana and Daqaq [11], who considered axially loaded pie-
zoelectric structures below the critical buckling load. Sneller
et al [12] generated a single-mode model using the theory
developed by [10], but did not consider the converse piezo-
electric effect. Cottone et al [13] generated a single-mode
Galerkin projection for a piezoelectric buckled beam, but the
mode shape was calculated about the unbuckled position, and
the resulting model required extensive parameter tuning to
enable the response to resemble the experimental data.
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In this paper a model is generated for a non-uniform
buckled beam, using d33 mode beams commercially available
from Advanced Cerametrics Inc. [14]. The experimental
system and methods are detailed in [15], but the experiments
performed in this paper operate at a different beam length and
buckling level than the previously published work, which
lowers the input power level at which appreciable energy can
be harvested. A numerical analysis is used to develop a basis
onto which the system dynamics are projected in order to
derive a low-dimensional model. This technique allows an
analytic model to be developed for a system that was pre-
viously intractable. The resulting model is designed to
reproduce the dynamic behavior seen in the experiment, with
the intention of providing a platform for in-depth dynamic
analysis of the underlying phenomena. Due to the complex
nature of the experiment, and the severe truncation required to
construct a model appropriate for dynamic analysis, perfect
agreement between model and experiment is neither expected
nor achieved; however, the model is able to successfully
capture the key features of the dynamics.

2. Experimental device

In a transversely isotropic piezoelectric material, coupling
between mechanical deformation and electric field can be
described with three non-zero constants: d31, d33, and d15. The
first subscript refers to the direction in which the electric field
is measured, and the second subscript denotes in Voigt
notation the direction of mechanical deformation. In piezo-
electric materials the poling direction is defined as the three-
direction. In the most commonly used piezoelectric material,
PZT, d15 is highest, followed by d33, and the lowest is d31.
Most piezoelectric energy harvesters have utilized setups that
capture electric fields created by the d31 coupling because
electrode placement is very simple. While d31 piezoelectrics
are simple to construct, a larger coupling coefficient, and
therefore better efficiency, can be realized by designing to
utilize the d33 orientation.

The experimental device consists of a nonuniform piezo-
electric beam in a buckled configuration, as seen in figure 1.

The beam is constructed from two flexible ceramic piezo-
electric elements from Advanced Cerametrics, Inc. [14]: a
single-layer element (catalog #PFC-W14) and a
bimorph element (catalog #PFCB-W14). The piezoelectric
layers in these beams are designed in a d33 configuration; the
interdigitated electrodes detect electric fields in the axial
direction, thus utilizing the d33 coupling coefficient. The
bimorph is constructed by placing a steel core between two
piezoelectric layers as shown in figure 2, so that bending the
beam produces an axial deformation in the piezoelectric
material. Bimorph and single-layer elements are bonded
together as shown in figure 3 with ≈10 mm overlap, and the
other ends are clamped to prevent displacement or rotation.
The mount is attached to a voice coil shaker and shaken

Figure 1. Cartoon of beam setup mimicking the experimental device.
The fixed ends are approximately 20 cm apart and the overlap is
approximately 10 mm. The lower detail is a zoomed in view of the
joint and is not to scale with the rest of the image.

Figure 2. Upper panel shows basic construction of bimorph beam on
the left, and a single layer of piezoelectric material on the right. The
axial direction in the beam is identified by the coordinate x, while the
thickness of the beam is indicated by t. Layers on top and bottom of
bulk piezoelectric material represent layers of interdigitated
electrodes, detailed in the lower panel. Not shown in this view is that
there are two layers of interdigitated electrodes along the steel shim.
Note that the interdigitated electrodes detect electric fields in the
axial direction, denoted as x in the drawings, which coincides with
the poling direction of the piezoelectric material and is therefore
defined as the three-direction.

Figure 3. Model construction imitating experimental setup, showing
different beam sections and how they are connected. The axial
coordinate x runs from 0 at the left-hand end of the beam to L at the
right-hand end. Both ends ( =x L0, ) are constrained with clamped
boundary conditions.
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vertically. This experimental device has been shown to gen-
erate a significant power output with a bandwidth larger than
a cantilevered bimorph beam [15]. Moreover, the beam has
been shown to produce significant power output when the
resulting behavior is chaotic.

3. Model derivation

The method selected for modeling this system involves
determining the buckled equilibrium position, finding natural
modes about this equilibrium position, and projecting them
onto an energy function. This will be used to derive equations
of motion for the beam where the independent variables are
the amplitudes of the natural modes and the equilibrium
shape. Due to the complexity of the experimental system,
analytic solutions as pursued in [10] are not available. To
overcome this obstacle, finite element analysis (FEA) is used
to determine both the equilibrium shape and the natural
modes about that operating point.

Symmetry is assumed for both the buckled equilibrium
and each beamʼs cross-section relative to the respective
neutral axis. All motions of the beam are assumed to be
transverse because the width of the beam is much greater than
the thickness. The fixed end of the bimorph beam is defined to
be at x = 0, and the fixed end of the single-layer beam is at
x = L. Integrals over the length of the beam are to be broken
into two separate ones each with uniform material parameters:
one over the length of the bimorph, and one over the length of
the single-layer beam:

∫ ∫ ∫≈ +x x x( · ) d ( · ) d ( · ) d , (1)
L L

L

L

0 0

b

s

where Lb is the point in the beam where the bimorph section
ends, and Ls is the point in the beam where the single-layer
beam begins (see figure 3). The beams overlap between Ls
and Lb; note that this region is included in both integrals
above. Dealing with the overlapping region in this manner is
an approximation that simplifies computations while main-
taining the proper mass distribution. Electric fields in the
material that are not detected by the electrodes are assumed to
provide negligible contributions to the dynamics and are
ignored. The response of the material at fixed electric field is
assumed to be linear.

3.1. Mode generation

The FEA software ABAQUS [17] has been used to construct
a model of the beam. The model is constructed from two basic
units: a steel shim and a piezoelectric beam. The dimensions
and important material parameters (experimentally deter-
mined) of each section can be seen in table 1. These units are
assembled into a structure equivalent to the experimental
setup as seen in figure 3. Both free ends of the assembly are
constrained as fixed boundary conditions, allowing no trans-
lation or rotation to occur at the clamping points. A cartoon
representation of the setup can be seen in figure 1. To model
the buckled equilibrium, the axial degree of freedom is

allowed to translate and an axial force is applied. A quasi-
static analysis then determines the resulting buckled config-
uration, as seen in figure 4. Thereafter the axial degree of
freedom is fixed, and a linear frequency analysis is performed
to extract mode shapes (denoted U[ ] i( )) and the associated
natural frequencies about the buckled equilibrium configura-
tion. The mode shapes and their associated frequencies are
not constant as the degree of buckling changes, similar to the

Figure 4. Evolution of buckled equilibrium position with axial loads
between 1 and 2.2 N. Note that the right-hand side of the beam,
which consists of the single-layer portion, exhibits much larger
deviations from the centerline than the bimorph section. In this
paper, the curve at P = 1.3 N will be used for analysis.

Figure 5. Dependence of natural frequencies on the axial
compressive load. Note that eigenvalues two and three come very
close together when the axial load is approximately 1.25 N. Analytic
predictions for buckled beams indicate that there should be an
eigenvalue crossing between the second and third eigenvalues.
Examined closely it is clear that these eigenvalues do not cross in
this example, but independently evolve through this region. The
difference between observed model behavior and expected analytic
behavior is due to the symmetry breaking of the bonded joint. The
region where these eigenvalues approach each other has been found
to be a promising energy harvesting region.

Table 1. Material parameters for the two different sections used to
build the finite element model.

Steel shim Piezoelectric

Width (mm) 14 10
Height (mm) 0.4 0.4
Length (mm) 116 116
Mass/length (g mm−1) 0.045 0.015
Modulus (GPa) 180 15.2
Poisson ratio 0.3 0.3
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analytic solutions in [10] for a simple buckled beam. The
dependence of the associated frequencies on the compressive
load can be seen in figure 5. The linear mode shapes are
computed so that they are orthogonal with respect to the finite
element mass matrix M[ ]:

= +U M U[0] [ ] [ ][ ] . (2)i
T

i( 1) ( )

However, these modes are not orthogonal to the buckled
equilibrium shape. Examining the components of the
displacement, we find that the out-of-plane motions are
several orders of magnitude lower than those in the transverse
and axial directions and will be assumed to be negligible in
the frequency range of interest. The axial motion (u) is critical
to determining the buckled configuration, but subsequently
any axial motion due to oscillations about the buckled
equilibrium are very small compared to the transverse
motions. Therefore we will consider the axial motion fixed
after the initial buckling, and assume that only transverse
motions (w) of the beam are significant to time varying energy
storage. Assuming that the time and spatial dependence of w
can be separated and any arbitrary beam shape can be
reconstructed by linear combinations of the mode shapes, we
write the displacement functions as

=u x u x( ) ( ), (3)c

∑=
=

∞

w x t a t w x( , ) ( ) ( ), (4)
i

i i

0

or equivalently in vector notation,

=w x t a t w x( , ) ( ) · ( ). (5)

Here uc is the function representing the axial displacement
associated with beam buckling, a t( ) is a vector which
contains the mode amplitudes, and w x( ) is a vector of shape
functions, which are the transverse displacements of the mode
shapes. The buckled equilibrium transverse displacements are
assumed to represent a fundamental mode of the dynamic

response of the system, with its contribution to the total
displacements varying according to a t( )0 , and the subscript 0
has been assigned to it. Increasing indices in the summation
(4) indicate increasing natural frequency for the associated
mode shape. The shape of the first three mode shapes with the
respective buckled equilibrium shape and axial load are
shown in figure 6.

3.2. Kinetic energy

The kinetic energy can be expressed by superimposing the
transverse beam motions onto the base excitation, y t( ):

∫

∫ ∫

≔ ∂
∂

+ ∂
∂

≈ + + +( ) ( )

T m x
w

t

y

t
x

m
w y x

m
w y x

1

2
( ) d

2
˙ ˙ d

2
˙ ˙ d , (6)

L

b L s

L

L

0

2

0

2 2b

s

⎜ ⎟⎛
⎝

⎞
⎠

where mb and ms are the mass per unit length of the
bimorph and single layer, respectively. The time derivative of
the displacement can be written as

∑= +
=

∞

w a w a w˙ ˙ ˙ . (7)
i

i i0 0

1

The buckled equilibrium displacement has been separated
from the linear modes to preserve the orthogonality proper-
ties. We obtain

∑

∑∑

= +

+

=

∞

=

∞

=

∞

( )

( )w a w a a w w

a a w w

˙ ˙ 2 ˙ ˙

˙ ˙ . (8)

i

i i

i j

i j i j

2
0

2
0
2

1

0 0

1 1

From the orthogonality condition (2), the last term
integrates to zero when ≠i j. This allows the kinetic

Figure 6. Buckled equilibrium state in terms of transverse displacement and the first three normal modes with their associated frequencies
about the buckled equilibrium with axial load of 1.3 N. The horizontal axis represents the distance along the beam from 0 to L, while the
vertical axis portrays the transverse deflection, actual for the buckled equilibrium mode and normalized for the linear modes.
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energy to be calculated as

∫

∫

∑

∑

∑

∑

≈ + +

+ +

+ + +

+ +

=

=

=

=

( )

( )

( )

( )

T
m

a w a a w w a w

a w y y x

m
a w a a w w a w

a w y y x

2
˙ 2 ˙ ˙ ˙

2 ˙ ˙ ˙ d

2
˙ 2 ˙ ˙ ˙

2 ˙ ˙ ˙ d , (9)

b L

i

n

i i i i

i

n

i i

s

L

L

i

n

i i i i

i

n

i i

0
0

2
0
2

1

0 0
2 2

0

2

0
2

0
2

1

0 0
2 2

0

2

b

s

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where n is the number of mode shapes that we have included
in a truncated calculation.

3.3. Potential energy

The potential energy has contributions from both mechanical
and electrical domains. In the mechanical domain, the strain
energy is calculated as one half the volume integral of the
product of stress and strain. In the electrical domain, the energy
is calculated as the negative of one half the volume (V) integral
of the product of electric displacement and electric field:

∫ ∫σ ε= −U V DE V
1

2
d

1

2
d , (10)

V V

where σ is the stress, ε is the strain, D is the electric
displacement, and E is the electric field. Piezoelectric
constitutive equations [8] describe elastic and dielectric
behavior and provide the connection between the mechanical
and electrical portions:

σ ε= −c e E , (11)ij ijkl
E

kl kij k

ε ϵ= + εD e E , (12)i ikl kl ik k

where cijkl
E is the tensor of elastic constants evaluated at fixed

electric field, ekij is the tensor of piezoelectric coupling
constants when electric field and strain are taken as the
independent variables, and ϵ ε

ik is the tensor of electric
permittivity constants evaluated at fixed strain. Euler–Bernoulli
beam theory assumes that all stress components are negligible
except those in the axial direction. Piezoelectric theory defines
the poling direction as the three-direction, which coincides in
our case with the axial direction in a d33 beam configuration.
The constitutive equations can therefore be reduced to

σ

ϵ

ε
= −

εD
c e

e E . (13)
E3

3

33 33

33 33

3

3

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

Piezoelectric constants are provided in a slightly different
form, as seen in table 2. The necessary coefficients are
calculated as [8]

=c Y , (14)E
33

=e d Y· , (15)33 33

ϵ ϵ= −ε σ d Y· , (16)33 33 33
2

where Y is the experimentally determined elastic modulus of
the section being analyzed as presented in table 1 and ϵ σ

33 is
the dielectric permittivity in the poled direction at fixed stress.
Combining (10) and (13), and dropping the subscripts we find
that

∫ ∫
∫

ε ε

ϵ

= −

−

U Y V e E V

E V

1

2
d d

1

2
d . (17)

V V

V

2

2

First we will deal with the strain energy, then later we will
come back to the electrical contributions to the potential
energy.

3.3.1. Equilibrium strain energy. At equilibrium, the electric
field and electric displacement are zero, and only the buckled
mode shape contributes to the potential energy. Thus this
potential energy can be expressed as

∫ ε=U Y V
1

2
d . (18)

V
eq

2

Here the goal is to develop an expression for the strain energy
that has the buckled equilibrium mode amplitude as the
independent variable. In order for a double well potential to
exist, the energy function must be at least quartic. Forcing the
symmetric, stable equilibrium positions to occur at = ±a 10 ,
the potential energy can be approximated as

∫ ε η

β β

= ≈

− + +  ( )
U Y V

a a a

1

2
d

2 , (19)

eq
V

2
0

0
2

0
4

0
6

where
∂
∂
U

a

eq

0
must be equal to zero when evaluated at = ±a 10 .

From the FEA, there is a reference for the strain energy at two
configurations: the buckled equilibrium position ( = ±a 10 ),
and the constrained flat equilibrium ( =a 00 ). Using these
reference values allows one to solve for β.

3.3.2. Dynamic contributions to strain energy. We note that
for strains to be infinitesimal we must have

∂
∂

+ ∂
∂

+ ∂
∂

≪u

x

u

x

w

x
2 1. (20)

2 2
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

This can occur when

∂
∂

= ∂
∂

≪w

x

u

x
1. (21)

2
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

These conditions preclude even moderately large transverse
deflections when compared to the length of the beam. The

Table 2. Piezoelectric constants provided by Advanced Cerametrics
Inc. [14].

Constant Value Units

d33 375 −pm V 1

ϵ σ
33/ϵ0 1725 n a
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other possibility for fulfilling the infinitesimal strain condition
is that

∂
∂

<u

x
0 (22)

and the combination

∂
∂

+ ∂
∂

+ ∂
∂

u

x

u

x

w

x
2 (23)

2 2
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

is small because of cancellation of positive and negative
terms. This can happen in buckled beams, but if this condition
prevails and the beam oscillates from a positive deflection to a
negative deflection by passing through its straight configura-
tion, the axial strain could be large due to the absence of the
positive transverse deflection term. However, if we assume
that the oscillation from positive deflection to negative
deflection occurs by a combination of modes of deformation,
the beam may never be straight in such motion, and large
deflections may then be permitted. This relieves us of the
requirement (21), and instead we may rely on (20). Thus
under assumptions of small strain and moderate rotation, we
approximate the axial strain at any point from the Green–
Lagrange strain tensor [16] as

ε ≈
∂
∂

− ∂
∂

+
∂
∂

− ∂
∂

+ ∂
∂

u

x
z

w

x

u

x
z

w

x

w

x

1

2

1

2
, (24)

c

c

2

2

2

2

2 2
⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

where z is the distance of the specified point from the neutral
axis of the beam. FEA does not provide enough reference
points to generate a full description of the strain energy using
the amplitudes of the mode shapes. To overcome this
obstacle, it is necessary to use analytic predictions to
determine the shape of the energy surfaces. To generate
these approximate surfaces, the buckled equilibrium ampli-
tude will be fixed at unity, and two mode amplitudes varied
while all other amplitudes are equal to zero. The resulting
shape is then integrated over the approximate beam dimen-
sions as

∫Ω ε≈ Y V
1

2
d , (25)

V

2

where ε is as in (24). This produces an analytic prediction of
the strain energy (Ω) at one particular combination of mode
shapes. We repeat this procedure on a grid to span the
maximum mode amplitudes observed in simulation, which is
an iterative process. Now a surface has been produced
describing the energy variation with two mode shapes about
the buckled equilibrium. This surface is fit with a fourth-order
polynomial in two variables, remembering that symmetric
solutions dictate which terms are needed. As an example, the
polynomial describing the variation of strain energy with

variation of modes i and j is of the form:

Ω η≈ + + +

+ +

+ + +

+ + + +

a a a m a m a m a a

m a a a m a a a

m a a m a a m a a

m a a m a a m a m a

( , , )

, (26)

i j i j i j

i j i j

i j i j

i j i j i j

0 1 1
2

2
2

3

4 0
2

5 0
2

6 0
3

7 0
3

8
2 2

9
3

10
3

11
4

12
4

where the mʼs are the coefficients to be solved for in the fit.
Repeating this procedure for all combinations of mode
shapes, all of the planes can be combined to produce a
polynomial fit of the strain energy surface as a function of the
mode amplitudes. The approximate nature of this calculation
leaves a discrepancy between the strain energy at equilibrium
as calculated above and the FEA result. To ensure
consistency, the strain energy surface is multiplied by an
order one constant to make the strain energy at equilibrium
equal to the FEA results.

3.3.3. Piezoelectric terms. Terms containing piezoelectric
coupling and capacitive energy storage are:

∫ ∫ϵ ε= − −U E V e E V
1

2
d d . (27)

V V
piezo

2

The first term captures the electrical energy stored in the
capacitance of the piezoelectric material, which can be
expanded as

∫ ∫ ∫

∫

ϵ
ϵ

ϵ

≈ +

+

E V
E

V V

E
V

1

2
d

2
d d

2
d , (28)

V

B

P P

S

P

2
2

2

1 2

3

⎡
⎣⎢

⎤
⎦⎥

where P1 and P2 are the two piezoelectric layers of the
bimorph, and P3 is the single layer section of the beam.
Separate electrical circuits are defined on the bimorph section
and the single-layer section, therefore the electric field
variable has been divided into two contributions, one from
each beam section. Calculation of capacitive energy storage is
easily accomplished utilizing the volume of each piezoelectric
beam. The coupling between the mechanical and electrical
domains is contained in the second term and can be expanded
as

∫ ∫ ∫
∫

ε ε ε

ε

≈ +

+

e E V E e V e V

e E V

d d d

d . (29)

V
B

P P

S
P

1 2

3

1 2

3

⎛
⎝⎜

⎞
⎠⎟

Note that the piezoelectric coupling coefficient e has been
separated into different values for each section of the beam.
The absolute value of this parameter is the same for all three
layers, but due to coupling directions and orientation, the sign
of the coefficient can change. In the single-layer section, we
will define e3 as the same as the coupling constant e. In the
bimorph section, the coupling in the two layers is reversed, so
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we will define =e e1 and = −e e2 . This produces

∫ ∫ ∫

∫

ε ε ε

ε

≈ −

+

e E V e E V V

E V

d d d

d . (30)

V
B

P P

S
P

1 2

3

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

The contribution from the single layer is the electric field
times the membrane stretch. This integral will be converted to
a quadratic polynomial of the mode amplitudes by generating
linear combinations of the mode shapes, which is accom-
plished by calculating the arc length (s) of the resulting shape,
dividing by the natural length to calculate the stretch ratio,
then taking the natural logarithm of the stretch ratio to
determine the volume average axial strain:

∫… = + ∂
∂

s a a a
u

x
x( , , , ) 1 d , (31)n

L

L

0 1

2

S

⎜ ⎟⎛
⎝

⎞
⎠

∫ ε =
…

V
V

s a a a

L

1
d ln

( , , , )
, (32)

P

n0 1

03

⎛
⎝⎜

⎞
⎠⎟

where L0 is the natural, unstretched length of the beam.
Repeating the above process to span the expected mode
amplitudes generates a surface which is fit with a quadratic
polynomial with the mode amplitudes as the independent
variables:

∫ ε ≈ +V c c a ad [ ]: , (33)
P

T
1 3

3

⎡⎣ ⎤⎦
where ‘:’ indicates a matrix dot product, or Frobenius inner
product. The d33 beam is configured such that a voltage
difference is detected at the electrodes in response to an axial
deformation; in the bimorph beam this causes a voltage to
develop at the electrodes in response to a bending deforma-
tion, and we realize cancellation of any contribution from an
axial load. Therefore to leading order the mode amplitudes
will affect this integral in a linear fashion:

∫ ∫ε ε− ≈V V a cd d · , (34)
P P

2
1 2

where c2 is a vector of coefficients. The integrals on the left-
hand side of this equation can be evaluated at various
combinations of amplitudes, and this provides solutions for
these coefficients. The total potential energy can now be
expressed as
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3.4. Equations of motion

With the kinetic energy as defined in (9), and the potential
energy defined as (35), a Lagrangian function will be used to
derive equations of motion based on the mode amplitudes.

The Lagrangian  is computed as the kinetic energy minus
the potential energy, and the equations of motion are gener-
ated via the Euler–Lagrange equation as follows:

ζ∂
∂

− ∂
∂

= = … 
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d ˙
˙ ( ), 0, , , (36)
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where F is the time integral of the voltage, v, called the flux
linkage ( =v Ḟj j ). The terms on the right side of the equations
represent losses in the system. Modes of the system are
assumed to have damping losses proportional to their
velocity, ζi corresponding to the ith mode. Current flowing
out of the system removes energy from the electrical portion.
Deriving a model using a buckled equilibrium shape plus the
first three mode shapes (referred to as a three-mode model),
we produce equations of the form:

ω ω

= + + + +

+ + + +

+ + + +

+ + +

+ + + +

+ + +
+ + +
+ + + +
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2 8 0 9 1 10 2 11 3

3 12 0 13 1 14 2 15 3 16

where b is a matrix of coefficients with as many rows as shape
functions, and d and h are vectors of coefficients. This three-
mode model consists of ten degrees of freedom: eight for the
shape functions and two for the piezoelectric voltages. The
primary motivation for generation of this model is to replicate
the behavior that generates the transition to high power output
to allow further dynamic analysis and optimization of the
system. Therefore, the modes are selected by determining the
minimum number required to replicate experimental behavior
while keeping the degrees of freedom within the range which
can be dynamically analyzed.

4. Comparison with experimental results

Evaluation of the model requires determination of damping
coefficients. Experimental results only provide voltage out-
puts, and therefore provide insufficient data for determination
of modes or their respective damping ratios. Damping coef-
ficients have been adjusted to match the input power level at
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which inter-well oscillations begin, while ensuring that higher
mode numbers are increasingly damped and the unforced
system when perturbed returns to equilibrium quickly. The
resulting coefficients can be seen in table 3. Evaluation of the
Jacobian matrix at one of the stable equilibrium positions
shows that this system is stiff, with the eigenvalues presented
in table 4. To deal with this, a backwards differentiation
formula is used for numerical integration, with an analytic
Jacobian to aid in convergence.

Traditionally frequency response measurements present
data as a ratio between the input and the output amplitude,
commonly presented as decibels. Linear systems that have the
property of superposition can be accurately described with
this method, but nonlinear systems do not possess the prop-
erty of superposition, so presenting data in this way can be
misleading. Additionally, nonlinear systems often produce
non-sinusoidal signals where amplitude is poorly defined. A
more appropriate method for comparing nonlinear systems is
to ensure that the root mean square (rms) excitation power
level is constant as the frequency is varied, requiring the
forcing amplitude to vary as well as the frequency. This
allows rms power outputs at different frequencies to be
compared without skewing the results. In this paper all power
figures are reported as rms values.

The comparison of power output of the model and
experiment, both in response to 6.5W of input power, can be
seen in figure 7. The experimental setup is buckled to a
transverse maximum displacement of approximately 1.8 mm
with an error bound of approximately 0.5 mm, while the
model is specified to have a compressive force of 1.3 N,
which results in 1.34 mm maximum transverse deflection,
which is within the error bound of the experiment. Perfect
agreement of results is not expected due to the complex nature
of the system and the severe truncation associated with our
low-order model. Nevertheless every attempt has been made
in the model to keep results for all parameters within the
expected error bounds of the experiment.

Phase portraits for dynamic comparison are constructed by
plotting the voltage measured across the single layer beam
against the voltage measured across the bimorph. The system is
first allowed to evolve for several seconds to allow any tran-
sient to die out, then when a consistent behavior is seen, data
are gathered by measuring the voltage across a 2.2 kΩ resistor.
The system is then strobed at the forcing frequency to create a
Poincaré map, which is overlaid on the phase portrait. These
plots are shown in figure 8, and it can be seen that similar
behavior in the chaotic region occurs in the model and the
experiment. The system starts as a twisted period-1 orbit which
repeats indefinitely as seen in panels (a) and (e) of figure 8. As
the forcing frequency is increased there is a torus which loses
any recognizable structure and ceases to repeat itself, resulting
in chaotic behavior as seen in panels (b) and (f). Further
increase of the forcing frequency returns to a twisted periodic
orbit (panels (c) and (g)), which simplifies and untwists until a
much simpler period-1 orbit is achieved which persists
throughout the low power region, as seen in panels (d) and (h).
Note that the experimental system contains much more high
frequency content than the model; however the model suc-
cessfully captures the essential behavior of the system.

The power output of the model is indicated as being
slightly lower than is measured in the experiment, which is
most likely due to the use of the nominal piezoelectric coupling
coefficient, which is expected to have some variation. Note that
the high power output frequencies for the model and experi-
ment are slightly different, but indicate the same sort of
behavior around the high power output areas. The lower fre-
quency peak exhibits shoulders around the highest output area
in both model and experiment, but the model does not have
quite as much bandwidth as the experimental peak. This is
presumably due to the severe truncation in the model used to
reduce the system from infinite dimensional to ten degrees of
freedom. The second peak around 120–140 Hz also demon-
strates wider bandwidth for the experiment than the model, and

Figure 7. A comparison of the power output of the experiment and
the predicted output of the model. Points marked as (a) through (h)
will be used to compare dynamic behavior of the experimental
system and the model, as shown in figure 8.

Table 3. Damping ratios prescribed to provide inter-well behavior at
similar excitation level to experimental observations.

Mode (i) Damping ratio (ζi)

0 1 × 10−11

1 12 × 10−8

2 2 × 107

3 2 × 105

Table 4. Eigenvalues of the Jacobian matrix at stable equilibrium.

Eigenvalues at equilibrium

−76015
−55787
−27893
−4.73

−49.05 ± 2185i
−75.67 ± 719.3i
−16.84 ± 130.5i
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any higher frequency peaks are very attenuated in the model.
As the driving frequency of the system increases, the number
of modes required to capture the behavior seen in the experi-
ment goes up. However, our model has been truncated to allow
accurate analysis of the lowest lobe of power output. In spite of
these discrepancies, the model appears to capture the critical
behavior of the system and gives a good indication of the
power output over a significant frequency range.

A second demonstration of the ability of the model to pro-
vide conservative estimates of both power output and bandwidth
can be seen in figure 9. This response is based on the same beam
configuration, but at a lower driving power of 5.5W. As the input
power level is lowered further, the beam settles into single-well
behavior around 55Hz and power output drops off significantly.

5. Conclusion

A model has been generated for a complex, nonlinear energy
harvesting system. FEA was used to determine a basis for

projecting the system dynamics onto, as well as a reference
for stresses and strains in the equilibrium positions. This
approach allows a system to be modeled when analytic
solutions are unavailable. It was found that to properly cap-
ture the small strain snap-through effects of the system, it is
necessary to keep several modes in addition to the buckled
equilibrium shape so that the system never passes through the
flat, unstable equilibrium where the strains would be rela-
tively high. The model demonstrates good quantitative
agreement with the power output of the experiment in both
power level and frequency of occurrence. Experimental
transitions between dynamic behavior patterns are replicated
closely, indicating that the model is appropriate for dynamic
analysis of the underlying phenomena. Further work on this
model will be focused on a detailed dynamic analysis with a
goal of determining how design parameters can be tuned to
optimize energy harvesting performance. We note that nom-
inal material parameters are used in this paper; it was not
necessary to tune these for better agreement. Overall, the
model provides a source for understanding and optimizing
energy harvesting ability with a system that exhibits a much
broader response than a linear resonator.
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