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Abstract. We consider a model for vehicle motion coordination for three vehicles that uses coupled oscillator
steering control. Prior work on such models has focused primarily on sinusoidal coupling functions,
which typically give behavior in which individual vehicles move either in straight lines or in circles.
We show that other, more exotic trajectories are possible when more general coupling functions
are considered. Such trajectories are associated with periodic orbits in the steering control sub-
system. The proximity of these periodic orbits to heteroclinic bifurcations allows for a detailed
characterization of the properties of the vehicular trajectories.
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1. Introduction. Many organisms display ordered collective motion [7], such as geese
flying in a Chevron-shaped formation [22], wildebeests herding on the Serengeti plains of
Africa [32], locusts swarming in sub-Saharan Africa [34], and fish schooling [28]. Collective
motion is also of great interest and importance for engineering applications such as forma-
tion control of unmanned vehicles and spacecraft [18, 29, 31], cooperative robotics [8], and
sensor networks [9]. Much recent work in the engineering community involves formulating
and studying interaction rules which allow a population to operate in a particular collective
motion state; e.g., [10, 14, 17, 18, 21, 24, 31].

In the present paper, we consider the “LPS model” for vehicle motion coordination de-
veloped by Leonard, Paley, and Sepulchre [25, 26, 27, 29, 30, 31]; cf. [19]. This considers N
Dubins-type vehicles [11] which are identical, move with constant unit speed, and are globally
(all-to-all) coupled:

ṙn = eiθn ,

θ̇n = un(r, θ), n = 1, . . . , N.
(1.1)

Here the complex vector rn denotes the position of vehicle n with respect to the origin, while
the angle θn denotes the orientation of its (unit) velocity vector with respect to the positive
real axis. Since rn = xn+iyn, with (xn, yn) ∈ R

2, we will hereafter use the following equivalent
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1192 MARGOT KIMURA AND JEFF MOEHLIS

equations for the velocity of each vehicle:

ẋn = cos(θn),
ẏn = sin(θn).

(1.2)

It can be shown that the system in (1.1) is invariant to rigid group rotation and translation
for controllers un(r, θ) that are functions of only the relative positions and headings of the
vehicles, defined as rm − rn and θm − θn, respectively [25, 26, 27, 29, 30, 31]; cf. [19].

The steering control un(r, θ) of the vehicles can be decomposed as

(1.3) un(r, θ) = ω0 + uhead
n (θ)︸ ︷︷ ︸

uphase
n (θ)

+ uspac
n (r, θ), n = 1, . . . , N,

where ω0 ∈ R is a constant, the heading controller uhead
n depends only on the relative orienta-

tion of the vehicles and governs the relative directions, and the spacing controller uspac
n is used

to attract the vehicles to a given spatial formation. Following [27, 29, 31], we call uphase
n (θ)

the phase controller. When the phase controller depends only on the differences θm − θn, a
useful connection with the coupled oscillator literature (e.g., [5, 6, 33]) is possible.

Constructing the spacing controller is more challenging in general, since it must be de-
signed to stabilize a specific formation. In [26, 27, 29, 30, 31], a controller that stabilizes a
circular formation and a proof of stabilization are given. The basic idea is to design a po-
tential function which is minimized when the vehicles are in the desired configuration. Then,
for uhead

n = 0, it is possible to construct a Lyapunov function to demonstrate that the de-
sired formation is asymptotically stable. For the overall system, one can use a composite
Lyapunov function, made up of a linear combination of the Lyapunov functions used for
the spacing and heading controls, to prove the stability of the overall desired configuration
[25, 26, 27, 29, 30, 31].

The benefits of this type of model for controlling the motion of a group of vehicles are
clear: the model takes advantage of results from research on coupled oscillators and translates
them into a simple but robust law governing individual vehicle motion that produces the
desired overall group motion.

Most of the previous work on the LPS model has assumed a sinusoidal coupling function
for the phase controller:

(1.4) uphase
n = ω0 +

k

N

N∑
j=1

sin(θm − θn).

With this phase controller alone (i.e., uspac
n = 0), the system converges asymptotically to a

synchronized phase arrangement for k > 0, and a phase-balanced solution for k < 0 [23, 25, 27,
29]. Both of these phase-space solutions lead to vehicular trajectories that are either straight
lines or circles, depending on the value of ω0: for ω0 �= 0, the trajectories converge to circles,
and for ω0 = 0, the trajectories converge to straight lines.

In this paper, we explore the effects of more general coupling functions to see what other
types of coordinated motion are possible for this model using the phase controller alone. We
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will show that one can get trajectories that are much more exotic than straight lines or cir-
cles, and which may be advantageous in situations where one wants a relatively complicated
trajectory that is a natural result of the phase controller, rather than having to piece a sim-
ilar trajectory together with existing methods. The trajectories from our phase controller
are characterized by almost regular, Spirograph-like shapes, where the vehicles spend some
time circling one section of space before moving on to another area, eventually tracing out
an annulus, which may be useful in applications where one wants a robot to patrol an appro-
priately shaped space while periodically doing a more careful search of a subsection of that
space. These trajectories are related to heteroclinic cycles for the coupled oscillator system;
see [3, 16] for related heteroclinic orbits in systems of N coupled identical oscillators; cf. [4, 5].
To simplify our analysis, we will restrict the system to three vehicles. (A discussion of more
general coupling functions for two vehicles is given in [20].)

We begin with an analysis of the general phase control and then present a detailed analysis
of the resulting trajectories for a specific coupling function. Sections 2 and 3 consider the case
of all-to-all coupling, while section 4 considers a different coupling topology. Our conclusion
is given in section 5.

2. Identical all-to-all coupling: Phase dynamics.

2.1. Equations and symmetry. A system of three identical oscillators with all-to-all iden-
tical phase-difference coupling is given by

(2.1) θ̇n = ω0 + k
∑
m�=n

f(θm − θn), n = 1, 2, 3,

where θn ∈ [0, 2π) and the coupling function f is 2π-periodic. This system of equations is
equivariant with respect to the group S3 ×T 1, where S3 is the six-element permutation group
generated by

σ1 : (θ1, θ2, θ3) → (θ2, θ1, θ3),
σ2 : (θ1, θ2, θ3) → (θ2, θ3, θ1),

(2.2)

and T 1 is the circle group with action

(2.3) τφ : (θ1, θ2, θ3) → (θ1 + φ, θ2 + φ, θ3 + φ)

for all φ ∈ [0, 2π). This means that if (θ1(t), θ2(t), θ3(t)) is a solution to (2.1), then, for any
γ ∈ S3 × T 1, so is γ · (θ1(t), θ2(t), θ3(t)).

Equation (2.1) can be reduced to a two-dimensional system by introducing the 2π-periodic
variables ψ1 = θ1 − θ2 and ψ2 = θ1 − θ3:

ψ̇1 = θ̇1 − θ̇2 = k[f(−ψ1) + f(−ψ2) − f(ψ1) − f(ψ1 − ψ2)],

ψ̇2 = θ̇1 − θ̇3 = k[f(−ψ1) + f(−ψ2) − f(ψ2) − f(ψ2 − ψ1)].
(2.4)

Equation (2.4) inherits equivariance with respect to the actions obtained from (2.2) and (2.3)
on the ψ variables:

σ̂1 : (ψ1, ψ2) → (−ψ1, ψ2 − ψ1),
σ̂2 : (ψ1, ψ2) → (ψ2 − ψ1, −ψ1).

(2.5)
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(a) S3 Solution (b) S2 × S1 Solution (c) Z3 Solution

Figure 1. Phase-locked solutions guaranteed to exist for any coupling function f . The locations of the dots
on the phase circle are determined by the values of θ for the oscillators, with the number indicating how many
oscillators share the same phase. These solutions are labeled according to their isotropy subgroup, as described
in the text.

Note that τ̂φ : (ψ1, ψ2) → (ψ1, ψ2) acts as the identity for all φ. The actions σ̂1 and σ̂2 generate
the permutation group S3. We will sometimes find it convenient to think of ψ1 and ψ2 as
being restricted to [0, 2π), and other times it will be useful to allow them to take any real
value.

2.2. Solutions and bifurcations. Phase-locked solutions are characterized by each pair of
θ variables always differing by a fixed value. Thus in the ψ variables, phase-locked solutions
correspond to fixed points. The symmetry and stability properties of phase-locked solutions
are discussed below. As convenient, we will discuss these solutions in either the θ or the ψ
variables. The three types of phase-locked solutions shown in Figure 1 are guaranteed to
exist for any coupling function f of the form of (2.1), given a simple nondegeneracy condition
[4, 5, 6]. These are labeled according to their isotropy subgroup, which is the set of elements
of S3 × T 1 that leave the solution unchanged [15]. We note that the existence of a fixed point
at (ψ∗

1 , ψ
∗
2) implies the existence of fixed points at (ψ∗

1 + 2πj, ψ∗
2 + 2πm) for all j ∈ Z and

m ∈ Z.
The S3 solutions: Fixed points at (ψ∗

1 , ψ
∗
2) = (0, 0).

Symmetry. This phase-locked solution is invariant under the symmetry S3 = 〈σ1, σ2〉
in the θ variables, and S3 = 〈σ̂1, σ̂2〉 in the ψ variables; hence it has the name “S3

solution.” Since it corresponds to θ1 = θ2 = θ3, it is also sometimes referred to as the
“in-phase” or “synchronous” solution.
Stability analysis and bifurcations. The Jacobian for (2.4) at the fixed point (ψ∗

1 , ψ
∗
2) =

(0, 0) has a double eigenvalue λ1,2 = −3kf ′(0). Thus, the stability of the fixed point
depends solely on the sign of the real part of kf ′(0): if kf ′(0) is positive (resp.,
negative), then the S3 solution is stable (resp., unstable).

Suppose that there is a bifurcation parameter which causes the shape of the coupling
function f to change. It is immediately evident that the stability of the S3 fixed point changes
if the value kf ′(0) passes through zero as this parameter is varied. Because the fixed point
at (ψ∗

1 , ψ
∗
2) = (0, 0) will persist for all f , this corresponds to an S3-symmetric transcritical
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bifurcation. Assuming that there are no fixed points on the invariant lines ψ1 = 0, ψ2 = 0,
or ψ1 = ψ2, for (ψ1, ψ2) ∈ [0, 2π), at this bifurcation, a triangular heteroclinic connection
appears between the fixed points at (ψ∗

1 , ψ
∗
2) = (0, 0), (2π, 0), and (0, 2π). Since these points

are identified by the 2π-periodicity of ψ1 and ψ2, this can also be referred to as a homoclinic
connection. Thus, the authors of [4] call this an S3 transcritical/homoclinic bifurcation, or
S3THB. If the heteroclinic loop is attracting at the bifurcation, the system will have a stable
limit cycle very close to the triangle on the side of the bifurcation where the S3 solution is
unstable. Such a bifurcation will occur in the example below.

The S2 × S1 solutions: Fixed points at (ψ∗
1 , ψ

∗
2) = (0, 2π − δ), (2π − δ, 0), and (δ, δ) for

δ ∈ (0, 2π).
Symmetry. Arguments in [5, 6] imply that, provided f ′(0) �= 0, there must exist a
δ ∈ (0, 2π) such that there is a phase-locked solution with two oscillators in phase
and one oscillator shifted by the phase δ. The phase-locked solution corresponding to
(ψ∗

1 , ψ
∗
2) = (0, 2π − δ) is invariant under the group S2 = 〈σ1〉 in the θ variables, and

S2 = 〈σ̂1〉 in the ψ variables. Following [5], this is referred to as an S2 × S1 solution:
the S2 corresponds to the permutation just mentioned, and the S1 refers to the iden-
tity permutation acting on the other oscillator. The other phase-locked solutions are
related to this one by symmetry and are invariant under conjugate subgroups.
Stability analysis and bifurcations. The Jacobian at the fixed point (2π − δ, 0) has
eigenvalues λ1 = k[−f ′(δ) − 2f ′(−δ)] and λ2 = k[−2f ′(0) − f ′(δ)]. Note that the
symmetry-related fixed points at (2π − δ, 0) and (δ, δ) have the same stability. These
points can be sinks, sources, or saddles.

Bifurcations occur when either f ′(δ) + 2f ′(−δ) = 0 or f ′(δ) + 2f ′(0) = 0. Depending
on the relative values of f ′(δ), f ′(−δ), and f ′(0) for different parameters of f , the fixed
points’ stability can change to or from a sink, source, or saddle in a pitchfork or saddle-node
bifurcation; cf. [4]. Such solutions are involved in the S3THB bifurcation described above, and
can also be involved in the related global saddle-node heteroclinic bifurcation identified in [2].

The Z3 solutions: Fixed points at (ψ∗
1 , ψ

∗
2) = (2π

3 ,
4π
3 ) and (4π

3 ,
2π
3 ).

Symmetry. The fixed point (ψ∗
1 , ψ

∗
2) = (2π

3 ,
4π
3 ) corresponds to a solution for which

θ1 = θ2 + 2π
3 and θ2 = θ3 + 2π

3 . This is typically called the “splay state” because θ1,
θ2, and θ3 are equally spaced around the unit circle. This solution is invariant under
the three-element cyclic group Z3 generated by

(2.6) (θ1, θ2, θ3) →
(
θ2 +

2π
3
, θ3 +

2π
3
, θ1 +

2π
3

)
and hence is called the “Z3 solution.” In terms of the ψ variables, this solution is
invariant under 〈σ̂2〉, which is isomorphic to the group Z3. The fixed point (ψ∗

1 , ψ
∗
2) =

(4π
3 ,

2π
3 ) is invariant under the group Z3 generated by

(2.7) (θ1, θ2, θ3) →
(
θ3 +

2π
3
, θ1 +

2π
3
, θ2 +

2π
3

)
in the θ variables and 〈σ̂2σ̂1〉 in the ψ variables.
Stability analysis and bifurcations. The Jacobian at this fixed point (2π

3 ,
4π
3 ) has eigen-

values λ1,2 = k[−3
2(f ′(2π

3 )+f ′(4π
3 ))± 3i

2 |f ′(
4π
3 )−f ′(2π

3 )|]. Thus, unless f ′(4π
3 ) = f ′(2π

3 ),
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this fixed point will be either a spiral sink or a spiral source. At f ′(2π
3 )+f ′(4π

3 ) = 0, the
fixed point switches between a spiral sink and a spiral source, which is an indication
of a Hopf bifurcation, as found in [4].

2.3. An example. As an example, we now consider the coupling function

(2.8) f(ϕ) = μ1 sin(ϕ) + μ2 cos(ϕ) + μ3 sin(2ϕ),

which will provide a spectrum of novel trajectories when applied to vehicle motion coordination
using the LPS model. While the coupling function given by (2.8) provides a nice example for
our analysis of these interesting trajectories, the phenomena that produce the trajectories we
consider are fairly generic, and so we expect to see similar bifurcations in the phase space and
trajectories for the vehicles for other appropriate coupling functions [3, 16].

The above analysis predicts that both a S3THB bifurcation involving the S3 and S2 × S1

solutions and, independently, a Hopf bifurcation involving the Z3 solutions will occur at
μ1 +2μ3 = 0 for the system (1.1) with coupling function (2.8). Numerical bifurcation analysis
using XPPAUT [12] shows that for μ2 = 1, μ3 = −0.06, and k = 1 and when treating μ1 as
the bifurcation parameter, the Hopf bifurcation is subcritical, and that the branch of unstable
periodic orbits turns around in a saddle-node bifurcation of periodic orbits to give stable
periodic orbits; see Figure 2. This figure also illustrates that the phase space for the system
can be divided into two triangles bounded by the invariant lines ψ1 = 0, ψ1 = 2π, ψ2 = 0,
ψ2 = 2π, and ψ1 = ψ2. Trajectories in these triangles are related by symmetry, and the
resulting vehicular trajectories are identical. Thus, without loss of generality, we will assume
that all initial conditions are chosen such that the system moves in the lower right triangle.

3. Identical all-to-all coupling: Vehicular trajectories. We now illustrate the richness of
possible vehicular trajectories for (1.1) with identical all-to-all phase-difference steering control
by considering the coupling function given in (2.8) with parameters μ1 = 0.1, μ2 = 1, and
μ3 = −0.06; see Figure 2(c) for the corresponding reduced phase-space system. If the system
converges to the stable Z3 solution, then the vehicles will move either in circles or in straight
lines, depending on the value of ω0, with each instantaneously moving in a direction at an
angle of ±2π

3 with respect to the others. Such motion has been found for the LPS model with
the coupling function f(θ) = sin(θ) [25, 26, 27, 29, 30, 31]. However, if the system converges
to the stable limit cycle, then the vehicles can display more exotic trajectories, such as the
trajectory shown in Figure 3. Thus, we will focus our analysis on the solutions that converge
to the stable limit cycle. As we will demonstrate later, these exotic trajectories are products
of a stable limit cycle in the reduced phase system, so one can expect to see qualitatively
similar trajectories for other appropriate coupling functions and coupling topologies.

Motion along the limit cycle is not uniform: the system slows near each of the fixed points
and moves quickly in regions away from a fixed point. As will be explained in the following, it
is from this nonuniform motion that the trajectories get their peculiar shapes. We first present
an explanation of the vehicular motion in an intuitive way, and then validate the intuition with
results from numerical simulations, which were done using a fourth-order variable-timestep
Runge–Kutta algorithm. Without loss of generality, we will restrict discussion to the motion
of vehicle 1 (denoted v1) only. The motion of vehicle 2 (v2) and vehicle 3 (v3) is identical to
but out of phase with the motion of v1; this is summarized in Table 1.
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Z3

p.o.

μ1

(c) μ1 = 0.1

ψ2 ψ2ψ2

ψ1 ψ1 ψ1

ψ1,Max

(a) μ1 = 0.03

Spiral Sink

Source
S3

Z3

Saddle Point

ψ1

ψ2

S2 × S1

Sink

Spiral Source

Saddle Point

Z3

S3S2 × S1

ψ1

ψ2

(e) μ1 = 0.13

S3

S2 × S1

(b) μ1 = 0.04 (d) μ1 = 0.12

Figure 2. The bifurcation diagram in terms of μ1, showing the phase portraits at several values of μ1 of
interest for μ2 = 1 and μ3 = −0.06. In the (ψ1, ψ2) plane, yellow dots represent saddle points, red shows
sources or unstable periodic orbits, and blue represents sinks or stable periodic orbits. Solid (resp., dashed)
lines in the bifurcation diagram indicate stable (resp., unstable) solutions.

3.1. The intuitive description. The overall vehicle motion in Figure 3 can be decom-
posed into identical units, each of which contains a cluster and a tail. We will name the tail
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Figure 3. An example trajectory for vehicle 1 (v1) with parameters μ1 = 0.1, μ2 = 1, μ3 = −0.06,
ω0 = k = 1. This trajectory is taken over many cycles of the periodic orbit in the (ψ1, ψ2) plane.

Table 1
Relative phase and resulting behavior of all three vehicles in terms of position in the (ψ1, ψ2) plane. Here,

↑ means “increase(s),” and ↓ means “decrease(s).” The definition of “excursion” is given in the text.

Box ψ behavior θ behavior Vehicle motion

1 ψ1 ↑ to ≈ 2π θ1 & θ3 ↑ at the same rate v1 & v3: short excursion
ψ2 ≈ 0 θ2 temporarily ↓ v2: long excursion

2 ψ2 ↑ to ≈ 2π θ1 & θ2 ↑ at the same rate v1 & v2: short excursion
ψ1 ≈ 2π θ3 temporarily ↓ v3: long excursion

3 ψ1 ≈ ψ2 ↓ θ2 & θ3 ↑ at the same rate v2 & v3: short excursion
together to ≈ 0 θ1 temporarily ↓ v1: long excursion

connecting the units a long excursion. Each cluster can be further broken down to show two
general types of behavior: small approximately circular orbits, which we will call small orbits,
and the roughly semicircular excursions that connect the small orbits, which we will refer to
as short excursions. The vehicle path in a single unit can be described as a cycle through a
small orbit followed by a short excursion to another small orbit, followed by a second short
excursion to a third small orbit, followed by a long excursion to the next cluster. This is
illustrated in Figure 4.

We can understand this behavior by dividing the periodic orbit into six boxes, as labeled
in Figure 4. Simulations show that when the system in the (ψ1, ψ2) plane is in a lettered
box (i.e., near a fixed point), the vehicles move in a small orbit, and when the system is
in a numbered box, the vehicles undergo an excursion. This is expected, since the vehicles
would move in a circle if the system were actually at the fixed point (i.e., generically, at a
fixed point, θ̇j = constant �= 0). Therefore, one can intuitively expect the vehicles to show
switching behavior between small orbits and excursions as the system moves in the (ψ1, ψ2)
plane.
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Three units: one full circuit

Corresponding motion of the system

Boxes: B → 2

in the (ψ1, ψ2) plane

1

4

1

5

2

3

3
2

4

2
1

3

5

Boxes: 2 → C → 3

1

3
2

Boxes: 3 → A → 1

of a small orbit

Boxes: 1 → B

ψ1

4

One unit ψ2

Short excursion to Small orbit to another
short excursion

Small orbit to long
another small orbit excursion

Transition in and out

Figure 4. Behavior of v1 in the (x, y) plane with corresponding position of the system in the (ψ1, ψ2) plane.
The top explains the motion of v1 within one unit: Follow the ordered arrows in the time-series of pictures.
The bottom-left panel shows one full circuit of vehicle motion, and the bottom-right panel shows the various
boxes in the (ψ1, ψ2) plane.

3.2. Numerical analysis and validation.

3.2.1. Box definition. To validate the above intuition, we need to be more precise about
the boundaries of the boxes. Since the vehicles are always moving in a smooth and roughly
circular trajectory, it is natural to define the boxes in terms of the instantaneous radius of
curvature of the vehicles’ trajectories. This was calculated from simulation data for each point
by finding the radius of the circle defined by that point and its two neighboring points; see
Figure 5.

The lettered boxes were chosen by calculating where the radius of curvature for v1 was
within 0.01 of the minima of each trough, as seen in Figure 6. Boxes 1, 2, and 3 are then
defined as the intervening lengths of the periodic orbit in the (ψ1, ψ2) plane.

3.2.2. Approximate solutions. Within each box, we present an approximate solution with
a few simplifying assumptions.

Near a fixed point (i.e., in a lettered box), the behavior of the system is approximately
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Figure 5. Measurements of the radius of curvature for v1 moving in the trajectory shown in Figure 3
with the approximations at each nearby fixed point. It is evident from the periodic flat troughs that the radius
of curvature of the vehicles’ motion spends a significant amount of time at an approximately constant value.
Moreover, the value of that constant value is very close to the radius of curvature the vehicles’ motion would
have if the system were at the S2 × S1 solution. See Figure 6 for an enlargement.

the same as if the system were actually at the fixed point. At a fixed point, we have θ̇1 =
θ̇2 = θ̇3 ≡ , where  is a constant. This is easily integrated, giving

θi(t) = t+ θ0i.

This corresponds to the following equations in the (x, y) plane:

ẋi = cos(t+ θ0i),
ẏi = sin(t+ θ0i).

These equations can also be integrated, yielding

xi = 1
� sin(t+ θ0i),

yi = − 1
� cos(t+ θ0i),

corresponding to motion in a circle of radius 1
� .

For the particular coupling function discussed in the example above,  = ω0 + 2kμ2.
Plugging in ω0 = k = μ2 = 1, we find that the vehicles move in circles with radius 1

3 if the
system is at an S3 solution. When the system is at one of the S2 × S1 solutions, found for
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Figure 6. An enlargement of Figure 5, showing how close the actual instantaneous radius of curvature
of v1 comes to the approximated values, and how the radius of curvature defines the location of the lettered
boxes. The dotted line represents what the radius of curvature would be at the S3 solution, and the red solid
line represents the radius at the S2 × S1 solution. The line segments show where the radius of curvature of v1
is within 0.01 of its minimum for each box. The edges of the boxes correspond to the intersections of these line
segments with the radius of curvature of v1. The numbered boxes are then assigned as the intervening spaces
between lettered boxes.

these parameters to be at (0.11511, 0.11511), (0, 2π−0.11511), or (2π−0.11511, 0), the radius
of the motion of v1 is approximately 0.334317. As one can see in Figure 6, the approximation
that the system is at an S2 × S1 fixed point is very close to the results obtained from the
actual simulation.

In the numbered boxes, we can approximate the behavior of the system by noting that in
Box 1, ψ2 ≈ 0, in Box 2, ψ1 ≈ 0, and in Box 3, ψ1 ≈ ψ2 and both decrease from a value close
to 2π to a value close to 0 at about the same rate.

Taking ψ2 = 0 (which is approximately true in Box 1) in (2.4), we obtain ψ̇2 = 0 and

(3.1) ψ̇1 = θ̇1 − θ̇2 = k[f(−ψ1) + f(0) − 2f(ψ1)],

a one-dimensional differential equation. Similarly, taking ψ1 = 2π = 0 (which is approximately
true in Box 2) in (2.4) gives the same formula as (3.1) but with ψ1 → ψ2. Finally, taking
ψ1 = ψ2 ≡ ψ (which is approximately true in Box 3), we obtain

(3.2) ψ̇1 = ψ̇2 = ψ̇ = k[2f(−ψ) − f(0) − f(ψ)],

which is related to (3.1) through ψ1 → −ψ.
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Figure 7. Demonstration of the validity of the approximation leading to (3.1): The graphs of the approxi-
mate solutions in Box 1 and actual simulation data show that the assumptions made are reasonable.

Numerical integration of the approximate equations very closely matches the data from
simulation in all three boxes; see Figures 7 and 8 for Boxes 1 and 3, respectively. (The
approximate solutions are nearly identical in Boxes 1 and 2, so only the simulation for Box 1
is shown.)

3.2.3. The Spirograph kaleidoscope. The ω0 and k terms effectively control the curvature
of the individual trajectories and the speed at which the system moves through the (ψ1, ψ2)
plane, respectively. The shape of the vehicular trajectories, even in transients, depends only
on the ratio ω0

k , as can be seen most easily in an equivalent form of (2.1):

(3.3) θ̇n = k

(
ω0

k
+
∑
m�=n

f(θm − θn)

)
, n = 1, 2, 3.

In this form, it is clear that the variable k simply scales time, while the actual dynamics depend
only on the constant ω0

k , which can be thought of as the effective natural frequency. Since we
have constrained our vehicles to have constant unit velocity, the only way that the vehicles
can compensate for a larger (resp., smaller) k (with appropriately scaled ω0), which would
make the vehicles move more quickly (resp., slowly), is to produce a smaller (resp., larger),
scaled, version of the exact same pattern, even in transients. This effect is demonstrated in
Figure 9.

There are many possible trajectories found by varying the ω0
k ratio, which have a base shape
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Figure 8. Demonstration of the validity of the approximation leading to (3.2): The graphs of the approxi-
mate solutions in Box 3 and actual simulation data show that the assumptions made are reasonable.

resembling a pattern from a Spirograph.1 It is possible to obtain a regular overall trajectory
(global) shape with any number of sides that either passes through the approximate center of
the polygon, or travels exclusively along the edges. In other words, the radius of the global
shape can be made to be anywhere between zero and infinity. Moreover, as one steps through
the possible values of ω0

k , the radius runs continuously from zero through infinity and back
to zero again, providing a kaleidoscope-like effect. Recognition of this trend allows one to
look at a trajectory for a given set of parameters, and to be able to expect roughly what the
trajectories will look like for neighboring values of ω0

k .
To sample over the different types of trajectories possible for ω0 > 0 and k > 0, we first

held ω0 = 1 and varied k from 0 to 1, and then held k = 1 and varied ω0 from 0 to 1. Some
example trajectories are shown in Figures 10 and 11. From simulations, we have found that
the global radius goes to infinity when ω0

k ≈ 0.1292 + 0.1189n, where n is an integer.

4. The Arbiter configuration. We have also found interesting phase dynamics and vehic-
ular trajectories for coupling topologies other than all-to-all. Here we focus on the coupling
topology shown in Figure 12, which we have nicknamed the “Arbiter” configuration.

1A “Spirograph” is a toy invented by Denys Fisher and was first introduced to the United States in 1966
by Kenner, Inc. The name “Spirograph” is a trademark of Hasbro, Inc. The toy allows the user to create
intricate designs: The user puts a pen on a point within a circle, which rotates around the inside or outside
of another shape, typically also a circle. The geometric curves produced by a Spirograph are mathematically
known as hypotrochoids and epitrochoids [1]. An interactive applet demonstrating what patterns are possible
with a Spirograph can be found at [13].
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Figure 9. Five trajectories with the same initial conditions in (x, y) and (ψ1, ψ2), and with the same ratio
ω0
k

, but with different values of k (and appropriately scaled ω0).

The equations for the Arbiter configuration for N = 3 are

θ̇1 = ω0 + k[f(θ2 − θ1) + f(θ3 − θ1)],

θ̇2 = ω0 + kf(θ1 − θ2),

θ̇3 = ω0 + kf(θ1 − θ3).

(4.1)

Transforming (4.1) into the ψ coordinates as in section 2.3 gives

ψ̇1 = k[f(−ψ1) + f(−ψ2) − f(ψ1)],

ψ̇2 = k[f(−ψ1) + f(−ψ2) − f(ψ2)].
(4.2)

It is evident that the (ψ1, ψ2) equations are equivariant under permutation of ψ1 and ψ2, and
that the lines ψ1 = 2πn and ψ2 = 2πn, where n is an integer, are no longer invariant. The
system does have an invariant line at ψ1 = ψ2. Along this line, ψ1 = ψ2 ≡ ψ, and we see that
if there exists a δ∗ such that 2f(−δ∗) − f(δ∗) = 0, then there will be at least one fixed point
on the invariant line at (ψ1, ψ2) = (δ∗, δ∗). An argument for the existence of such a δ∗ under
quite general conditions follows.

4.1. Existence of S2 × S1 solutions with ψ1 = ψ2. Letting

(4.3) c1(δ) = 2f(−δ), c2(δ) = f(δ),
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Figure 10. A few examples of vehicular trajectories for v1 from coupling function (2.8) with μ1 = 0.1,
μ2 = 1, and μ3 = −0.06, while holding ω0 = 1 and varying k from 0 to a value close to 1.

a valid δ∗ will satisfy

(4.4) c1(δ∗) = c2(δ∗).

If |f(δ)| ≥ 0 for all δ, it is possible that no such δ exists: for example, take f(δ) = 1. Therefore,
we assume that there exists a φ1 �= 0 such that f(φ1) = 0, but f ′(φ1) �= 0. Then, by periodicity
of f , there must be a φ2 �= 0 such that f(φ2) = 0 but f ′(φ2) �= 0.

If f(0) �= 0, without loss of generality, we can assume that c1(0) > c2(0) > 0. This implies
that c1(2π) > c2(2π) > 0. Now,

min[c2(δ)] = min[f(δ)] ≡ β,

min[c1(δ)] = min[2f(−δ)] = min[2f(δ)] = 2[min f(δ)] = 2β,

where β < 0, as shown in Figure 13. This implies that there exists a δ∗∗ such that c1(δ∗∗) <
c2(δ∗∗). Therefore, by the intermediate value theorem, there must be at least two valid values
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Figure 11. A continuation of Figure 10: A few example vehicular trajectories for v1 holding k = 1 and
varying ω0 from 1 to 0.

δ∗1,2 such that c1(δ∗1) = c2(δ∗1) and c1(δ∗2) = c2(δ∗2). Furthermore, all further viable values for
δ∗ will occur in pairs.

A similar argument can be made to prove the existence of a δ∗ ∈ (0, 2π) if f(0) = 0
(corresponding to the existence of an S3-symmetric fixed point) provided that there exists a
φ1 �= 0 such that f(φ1) = 0 and f ′(φ1) �= 0.

4.2. Example. Using the example coupling function (2.8) with μ1 = 0.1, μ2 = 1, μ3 =
−0.06, and k = 1, we find that the system has saddle points at (ψ∗

1 , ψ
∗
2) = (4.29213, 4.29213)
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Figure 12. The Arbiter configuration. Here the arrows indicate the coupling between agents.
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Figure 13. Illustration of the argument that given the constraints mentioned in the text, there must be at
least two possible values for δ∗. Without loss of generality, we can set c1(0) > c2(0) > 0, which gives c1(2π) >
c2(2π) > 0 by periodicity. However, by noting that min[f(−δ)] = min[f(δ)], it is clear that min[c1(δ)] =
2min[c2(δ)]. Therefore, c1(δ) and c2(δ) must cross in at least two points. The points where the two functions
cross are viable values for δ∗, and this proves the existence of the S2 × S1 solutions.

and (1.35235, 1.35235), which are guaranteed to exist from the above argument, and spiral
sinks at (ψ∗

1 , ψ
∗
2) = (4.8432, 1.63105) and (1.63105, 4.8432). For these parameters, there are

also two symmetry-related stable periodic orbits in the (ψ1, ψ2) coordinates; see Figure 14. The
vehicular trajectories corresponding to motion along several cycles of one of the stable periodic
orbits is shown in Figure 15, which is reminiscent of the trajectories found in section 2.3. For
the same reasons as in section 3.2.3, one can also produce a variety of trajectories by varying
the values of ω0 and k, as shown in Figure 16.

We find that at least one stable periodic orbit exists in the (ψ1, ψ2) system between the
saddle-node bifurcations of limit cycles at μ1 = ±0.115681. (For some parameters, there are
two symmetry-related periodic orbits.) Within this range, there are several global bifurcations
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ψ1

ψ2

Figure 14. The (ψ1, ψ2) plane for the Arbiter coupling topology with N = 3, and coupling function (2.8)
with μ1 = 0.1, μ2 = 1, μ3 = −0.06, ω0 = 1, k = 1. The existence of stable periodic orbits suggests that this
system may provide interesting patterns of vehicular motion.

involving the S2 × S1 fixed points on the line ψ1 = ψ2. The details of these bifurcations are
outside of the scope of our present study, but we do note that it would be possible to interpret
the vehicular motion in terms of visits near and between the fixed points, as was done in
section 3.

5. Conclusion. In this paper, we considered a model for vehicle motion coordination
developed by Leonard, Paley, and Sepulchre which uses coupled oscillator steering control.
We showed that novel trajectories are possible using only the phase controller when coupling
functions more general than sinusoidal are considered. Such trajectories are associated with
periodic orbits in the steering control subsystem, and the proximity of these periodic orbits to
heteroclinic bifurcations allowed a detailed characterization of the properties of the vehicular
trajectories.

Similar trajectories are expected to be possible for such systems with N > 3 vehicles.
An attempt to understand the details of such trajectories would likely benefit from previous
studies of phase-locked solutions for coupled oscillator systems with phase-difference coupling
[5, 6, 33] and heteroclinic orbits for such systems [3, 16].

The trajectories described in this paper may have applications in sensor area covering
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Figure 15. Motion of v1 using the Arbiter coupling topology with N = 3 corresponding to the motion of
the system along a stable periodic orbit in Figure 14.

problems in which one is particularly interested in certain regions of an annulus in the plane,
with the option of either passing through the center or moving along the circumference of the
area to be covered. For example, the trajectory shown in 1c of Figure 10 may be useful for
the case where one wants agents to carefully patrol four evenly distributed areas as well as
check the area in the center of those four areas periodically. If one desires to check sections of
a circular area but is not interested in the area in the center of the sections, a trajectory such
as 2e of Figure 11 may be appropriate. Should the areas inside the circular area be of higher
interest than the perimeter, then a trajectory such as 2n of Figure 16 may be of interest. If
one desires to patrol an annulus evenly in sections, a trajectory similar to 4e or 2f of Figure 11
may be useful. Most parameter values provide trajectories where an almost regular polygon-
like global trajectory drifts around the center of pattern; thus, over time, the trajectories
eventually cover an annulus. An example of this can be found in plot 3e of Figure 11—this
is a “polygon” with slightly more than 2 sides, that is drifting around, and will eventually fill
out an annulus. These patterns may be useful for applications where it is desirable for a robot
patrolling an annulus-shaped space to not only periodically thoroughly investigate subregions
of the space, but to also be relatively difficult to predict.

Despite the fact that the system is very stable in the reduced phase space, the trajectories
described here are quite sensitive to variations in the parameters of the coupling equations.
Should these trajectories prove to be potentially useful for a particular area coverage problem,
it may be worthwhile to investigate the use of spacing control, and to make the global behavior
robust to uncertainty and perturbations in the parameters.
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Figure 16. Various vehicular trajectories generated using the Arbiter coupling topology and the example
coupling function (2.8) with μ1 = 0.1, μ2 = 1, μ3 = −0.06, while varying the values of ω0 and k, as was done
in Figures 10 and 11.
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