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Abstract. Phase reduction methods have been tremendously useful for understanding the dynamics
of nonlinear oscillators, but have been difficult to extend to systems with a stable fixed
point, such as an excitable system. Using the notion of isostables, which measure the time
it takes for a given initial condition in phase space to approach a stable fixed point, we
present a general method for isostable reduction for excitable systems. We also devise an
adjoint method for calculating infinitesimal isostable response curves, which are analogous
to infinitesimal phase response curves for oscillatory systems. Through isostable reduction,
we are able to implement sophisticated control strategies in a high-dimensional model of
cardiac activity for the termination of alternans, a precursor to cardiac fibrillation.
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1. Introduction. Phase reduction methods have been fruitfully applied to many
physical, chemical, and biological systems [51], [52], [20], [28], [11], [22], [29], [2],
[33], [50], [49]. Such methods are useful for understanding the dynamics of perturbed
nonlinear oscillators because they allow for the reduction from a system

(1.1) ẋ = F (x) +G(x, t), x ∈ R
N ,

where x ∈ R
N is a vector of states and G ∈ R

N is the effect from an external stimulus,
to a system with a single variable,

(1.2) θ̇ = ω + Z(θ)TG(x(θ), t), θ ∈ S
1.

Here θ ∈ [0, 2π) describes the oscillator’s phase, ω is the oscillator’s natural frequency,
and Z(θ) ∈ R

N is the oscillator’s infinitesimal phase response curve (iPRC), which
describes the change in the oscillator’s phase from a small external stimulus. Phase
reduction is particularly powerful with control frameworks such as Hamilton–Jacobi–
Bellman, calculus of variations, or dynamic programming [27], since the computa-
tional effort of finding the desired control input grows exponentially with the number
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202 DAN WILSON AND JEFF MOEHLIS

of state variables. Phase reduction methods have also been useful for systems for
which the state dynamics are not fully known. For example, in vitro experiments on
biological tissue have successfully controlled spike timing in periodically firing neu-
rons using inputs computed from phase models [44], [34]. The calculation of iPRCs
is central to the utility of phase reduction. iPRCs can be calculated using a direct
method [24], which entails perturbing the system at a given phase and measuring the
resulting phase change, or numerically using a so-called “adjoint method” [11]; cf. [3].
Previously, the notions of phase and iPRCs were extended to excitable systems with
a stable fixed point [23], [40], but those methods relied on the existence of slow-fast
dynamics and required response curves to be calculated with a grid-based approach.

In this paper, we propose a more general method of phase reduction for excitable
systems based on the notion of isostables [31]. Here, a system is said to be excitable
if all initial conditions within a small neighborhood of a stable fixed point give tra-
jectories that decay directly to it, but some initial conditions further away from the
stable fixed point give trajectories that undergo large excursions before approach-
ing the fixed point. Isostables of excitable systems are analogous to isochrons for
asymptotically periodic systems. Isochrons can be understood as an extension of the
phase of oscillation to the basin of attraction of the limit cycle [52]; they represent
surfaces of constant phase. In this way, two locations in phase space which start on
the same isochron will asymptotically approach the same location on a periodic orbit
as time tends toward infinity. For excitable systems, it is not possible define a phase
because there is no periodic orbit. Instead, isostables can be defined as sets of points
in phase space that approach a fixed point together, in a well-defined sense described
below. Figure 1.1 highlights the similarities and differences between isochrons for
a two-dimensional system with a periodic orbit (left) and isostables for an excitable
system with a stable fixed point (right). The left panel shows a system with equations
found in [26], [37], and two initial conditions which start on the same isochron asymp-
totically converge to the same phase on the limit cycle. The right panel shows an
excitable system (3.1); initial conditions which start on the same isostable approach
the stable fixed point together.

The calculation of an isostable field, I(x), exploits the linear nature of the dy-
namics near a fixed point xo. For a linear system,

(1.3) ẋ = A(x− xo),

and solutions φ(t,x(0)) (also known as the flow) approach the fixed point as

(1.4) φ(t,x(0)) − xo =

n∑
j=1

sj(x(0))vje
λjt,

where sj(x) are the coordinates of the vector x in the basis {vj, j = 1, . . . , n}
of unit eigenvectors of A, with associated eigenvalues {λj , j = 1, . . . , n}, sorted
so that λ1 corresponds to the unique slowest direction of the stable manifold, i.e.,
Re(λj) < λ1 < 0 ∀ j > 1. Here, we assume that λ1 is real and unique and, as shown
in [31], the magnitude of s1(x) determines the infinite time approach to the origin.
In other words, hyperplanes of constant isostables, Iτ ≡ {x ∈ R

n|I(x) = τ}, near a
fixed point are parallel to the faster directions v2, . . . ,vn.

For nonlinear systems, the calculation of isostable fields within the fixed point’s
entire basin of attraction, I(x), can be calculated by monitoring the infinite time
approach of φ(t,x) to the fixed point, xo, by computing

(1.5) I(x) = lim
t→∞ e−λ1t||φ(t,x) − xo||,
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Fig. 1.1 Isochrons and isostables in two different systems. Isochrons can be used to analyze a system
with a periodic orbit, while isostables are appropriate to analyze systems with a stable fixed
point. The left panel shows isochrons for a system with a stable periodic orbit shown as
the gray curve, with the phase ranging from 0 to 2π. Black lines show isochrons equally
spaced in time in the sense that the time required to go from one of the displayed isochrons
to the next is always the same. Two trajectories shown as red, dashed lines start on the
same isochron and approach the periodic orbit with the same phase. Snapshots are shown
as white dots. The right panel shows an isostable field for a system with a stable fixed point
shown as the gray dot, and black lines show isostables which are equally spaced in time.
Three trajectories shown as red, dashed lines starting on the same isostable will approach
the fixed point together. Snapshots are shown as white dots. Isostables are calculated on
a grid of initial conditions using (1.5). Isochrons are calculated using a similar grid-based
approach, but can also be calculated in finer detail using methods detailed in [37].

where || · || can be any norm but for this paper we will be working with the 1-norm
on R

n. Intuitively, (1.5) compares the asymptotic approach to the fixed point along
the slowest direction of the stable manifold, v1, to an exponential function governed
by the associated eigenvalue, λ1. We emphasize that (1.5) is valid for systems with
a stable fixed point where λ1 is real and unique. In other cases, such as when λ1 is
complex or the fixed point is unstable, isostables can still be calculated, and we refer
the interested reader to [31] for a more complete discussion.

As mentioned previously, phase reduction is particularly useful to make compli-
cated problems in nonlinear dynamics analytically and computationally tractable. In
this paper, we choose a problem from cardiology to which we will apply the afore-
mentioned isostable reduction, but first we give a brief overview of the heart from a
dynamical systems point of view.

The heart beats roughly three billion times during a typical human lifetime to
transport blood containing oxygen, nutrients, immune cells, regulatory molecules, and
waste products to keep the body functioning. The heart is driven by a small area of
specialized cardiac muscle cells known as the sinoatrial node, which acts as pacemaker,
producing a propagating wave of electrical activity which spreads through the four
chambers of the heart (right atrium, left atrium, right ventricle, and left ventricle)
in a coordinated fashion. From a modeling perspective, the propagation of electrical
activity throughout the heart is often viewed as a reaction-diffusion equation on a one-,
two-, or three-dimensional representation of the myocardium, the muscular tissue of
the heart. This cardiological medium is made up of individual cells, or myocytes,
which are specialized muscle tissue that coordinate the action of a heart beat.
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204 DAN WILSON AND JEFF MOEHLIS

Myocytes are excitable cells: a large enough positive perturbation to the trans-
membrane voltage of a myocyte will elicit a depolarizing action potential and a con-
traction of the muscle tissue [52]. Cardiac action potentials last for a significant
amount of time, allowing the elevated transmembrane voltage to spread to nearby
cells and creating a wave of action potentials analogous to the way dominoes fall [13].
After this wave propagates through the myocardium, under normal conditions the
cells repolarize and remain quiescent until the pacemaker elicits another pulse.

Ideally, this healthy pattern of coordinated activity occurs throughout the host’s
lifespan. However, under certain conditions, the myocardium can become susceptible
to cardiac fibrillation, the uncoordinated contraction of the cardiac muscle, which can
be deadly in an otherwise healthy heart if not treated within minutes of onset. Most
researchers agree that atrial fibrillation is caused by the presence of unwanted spiral
waves [52] within the myocardium which interfere with the normal sinoatrial rhythm
[19], [12], [6].

Cardiac fibrillation can be the final step in an increasingly complex series of events
that begins with a phenomenon known as cardiac alternans. Cardiac alternans is the
beat-to-beat alternation of electrochemical cardiac dynamics at a constant rate of pac-
ing and has been implicated as a precursor to fibrillation [43]. These alternations in-
clude the strength of cardiac muscle contraction, action potential duration (APD), and
intracellular calcium concentration dynamics. In particular, the phenomenon known
as discordant alternans, where cardiac tissue in different spatial locations exhibit al-
ternans of APD of opposite phase, can produce particularly favorable conditions for
initiating the spiral wave reentry required for fibrillation [38], [39], [46], [47], [18].
Spiral waves are more likely to be initiated, for instance, with a premature beat when
there is a large degree of spatial heterogeneity in the refractory cells in the heart. For
a review of alternans from a dynamical systems perspective, we refer the reader to [7].

In recent decades, researchers have looked into ways of suppressing alternans as
a way of preventing cardiac fibrillation, bypassing the need for painful and damaging
defibrillating shocks. Many of these methods, such as those described in [41] and [8],
attempt to suppress alternans by monitoring the APD or the length of time that the
tissue remains depolarized (i.e., at elevated voltage) and appropriately modifying the
time at which the next action potential is elicited. These methods have been shown
to be successful in real cardiac tissue [21], [9], [25].

Using isostable reduction techniques we are able to work in a more useful coordi-
nate system to devise a novel and energy-efficient approach to terminating alternans.
In section 2 we develop the mathematical framework required for an isostable reduc-
tion for excitable systems (analogous to phase reduction for periodic systems) and the
corresponding infinitesimal isostable response curve (iIRC) (analogous to the iPRC
for periodic systems). We also develop an “adjoint method” to calculate an iIRC,
requiring only the knowledge of the trajectory along which the system approaches
the fixed point. Section 3 illustrates the isostable reduction for a relatively simple,
two-dimensional model of excitability. We devise an energy-optimal control tech-
nique to eliminate cardiac alternans in section 4, and illustrate this technique for the
13-dimensional Fox model of canine cardiac activity [15] in section 5. We find numer-
ically in section 6 that we can eliminate alternans using many orders of magnitude
less energy than with a pulsatile strategy, which may be important from a clinical
perspective to maximize the battery life of an implantable device and limit tissue
damage. We give concluding remarks in section 7.

2. Infinitesimal Isostable Response Curves. Following the derivation of the ad-
joint method for calculating iPRCs set forth in, for example, [3], we consider a general
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N -dimensional differential equation

(2.1) ẋ = F (x) +G(x, t), x ∈ R
N ,

where F (x) is the vector field, G(x, t) is an external stimulus, and x1, x2, . . . , xN are
the state variables. For a given set of initial conditions, suppose that the system
follows the known trajectory γ to the stable fixed point xo.

Our objective is to simplify (2.1) to a one-dimensional equation by defining scalar
isostable coordinates, ψ(x) ∈ (−∞,∞], for all x in some neighborhood U of xo within
its basin of attraction. It will be convenient to take ψ(x) = − log(I(x)), where I(x)
is defined in (1.5). Changing to isostable coordinates, from the chain rule we find

(2.2)
dψ(x)

dt
= ∇ψ(x) · (F (x) +G(x, t)) .

In order to simplify (2.2), first consider any trajectory φ(t,x) in the basin of attraction
of the fixed point for which the external stimulus G is set to zero. Using (1.5), we
have

dψ(x)

dt
= lim

Δt→0

ψ(φ(t+Δt,x))− ψ(φ(t,x))

Δt

= lim
Δt→0

− log
[
limt→∞

(
e−λ1t(φ(t+Δt,x)−xo)

)]
+log

[
limt→∞

(
e−λ1t(φ(t,x)−xo)

)]
Δt

= lim
Δt→0

− log
[
ϑe−λ1teλ1(t+Δt)

]
+ log

[
ϑe−λ1teλ1t

]
Δt

= −λ1,
(2.3)

where ϑ is a positive constant determined by the direction of v1. In the second to
last line, we use the fact that the trajectory will eventually approach the fixed point
along the slowest direction of the stable manifold, and the last line is obtained solely
through algebraic manipulation. Recall that (2.3) was derived for G = 0, which, using
(2.2), implies that

(2.4) ∇ψ(x) · F (x) = ω

and thus

(2.5)
dψ(x)

dt
= ω +∇ψ(x) ·G(x, t),

where ω = −λ1 (recall that λ1 is negative) and is similar to the natural frequency
term in the classic phase reduction (1.2). We note that the isostable field can be
scaled by a constant if desired, which will yield a different value of ω. In the absence
of external stimuli, dψ

dt = ω, i.e., ψ(x) increases at a constant rate. By definition,
ψ(x) = ∞ corresponds to x = xo, meaning that in the absence of external control,
all trajectories in the domain of attraction of xo approach the fixed point in infinite
time.

Evaluating the vector field at xγ(ψ), which we define as the intersection of the
trajectory γ and the ψ(x) level set (i.e., isostable), we have

(2.6)
dψ(x)

dt
= ω +∇ψ(xγ(ψ)) ·G(xγ(ψ, t)),
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where we have dropped an error term of order |G|2 (cf. [29]), so that (2.6) is valid for
perturbations with small |G|. For phase reductions of systems with limit cycles, the
analogue of the term ∇ψ(xγ(ψ)) can be calculated experimentally using the “direct
method” [24] as well as the numerically using the “adjoint method” [11]; cf. [3]. Here
we detail an extension of the adjoint method for calculation of ∇ψ(xγ(ψ)) for systems
with a stable fixed point.

Suppose for the following analysis that G = 0 for t > 0. Consider an infinitesimal
perturbation Δx to the trajectory x(t) ∈ γ at time t = 0. Let xε(t) = xγ(t) + Δx(t)
be the trajectory starting at the perturbed initial condition. Then

(2.7)
dΔx(t)

dt
= DF (x(t))Δx(t) +O(||Δx||2),

where DF is the Jacobian matrix. Furthermore, for the associated isostable shift
defined as Δψ = ψ(xε(t)) − ψ(x(t)), we have

(2.8) Δψ = (∇x(t)ψ)
T ·Δx(t) +O(||Δx||2),

where ∇x(t)ψ is the gradient of ψ evaluated at x(t). Let 〈·, ·〉 denote the standard
Euclidean inner product on R

n. Following the derivation presented in [3], after the
initial perturbation at t = 0, Δψ is independent of time. Therefore, taking the time
derivative of (2.8) yields, to lowest order in ||Δx||,〈

d∇x(t)ψ

dt
,Δx(t)

〉
= −

〈
∇x(t)ψ,

dΔx(t)

dt

〉
,

= −〈∇x(t)ψ,DF (x(t))Δx(t)〉,
= −〈DFT (x(t))∇x(t)ψ,Δx(t)〉.(2.9)

The matrixDFT (x(t)) is the transpose, or adjoint, of the real-valued matrixDF (x(t)).
Equation (2.9) holds for arbitrary perturbations Δx(t), which gives

(2.10)
d∇x(t)ψ

dt
= −DFT (x(t))∇x(t)ψ.

In order to use (2.6) we need the isostable gradient at the intersection of γ and the
ψ(x) level set, but (2.10) gives the isostable gradient along γ. However, the one can
readily be inferred from the other with knowledge of the map x(t) → ψ(t).

The solution of (2.10) requires N initial conditions. Recalling that G = 0 for
t > 0 in the present analysis, we note that, close to the fixed point, we can rewrite
(2.1) as

(2.11) ẋ = A(x− xo) +O((x − xo)
2),

where A = DF (xo). Neglecting higher order terms, (2.11) is linear. We assume that
each eigenvalue λi = σi+iκi of A has negative real part, geometric multiplicity of one,
and corresponds to the right eigenvector vi. For convenience, we sort the eigenvalues
so the real part of λ1 has the smallest magnitude, i.e., |σ1| < |σ2| ≤ · · · ≤ |σN |.
Note that |σ1| must be strictly less than |σ2| and that dx(t)

dt · v1 �= 0 near the fixed
point for the following analysis. From linear systems theory, we know that trajectories
φ(t,x(0)) will approach the fixed point in a manner given previously by (1.4), with
sj(x(0)) = 〈x(0),vj〉. The infinite time approach to the fixed point will be governed
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∇ψ

level sets of ψ(x)

stable fixed point

v1

v2

Fig. 2.1 Level sets of ψ(x) for a two-dimensional system are shown as dashed lines. The faster and
slower directions of the stable manifold are shown with two and one arrows, respectively.

by the value of s1(x(0)), and any perturbation to sj(x(0)) for j ≥ 2 will not have any
effect on the trajectory’s infinite time approach to the origin. Thus,

(2.12)
〈∇x(t)ψ,vj

〉
= 0 ∀ j ≥ 2.

Equation (2.12) mandates that, close to the fixed point, ∇x(t)ψ must be orthogonal to
the subspace spanned by {v2, . . . ,vn}; in other words, ∇x(t)ψ is orthogonal to hyper-
planes of constant isostables. Because the geometric multiplicity for each eigenvector
is one, this defines a unique direction for ∇x(t)ψ near the fixed point. The isostable
portrait is summarized in Figure 2.1 for a two-dimensional system. The magnitude
can be obtained by noting that (2.5) must hold at all points along x(t). Using (2.12)
and (2.5), we can choose any point x1 along γ, close enough to the fixed point that
the system is described accurately by its linearization, to serve as an appropriate end
point condition to (2.10) and solve by integrating backward in time to determine ∇ψ
at all points close to γ. For convenience, we will scale the isostable coordinates ψ(x)
so that ψ(x1) = 1, which means that ω in (2.6) is determined by the time it takes
to reach ψ = 1 from ψ = 0, where ψ = 0 is chosen to be another location on γ as
convenient. Intuitively, ∇ψ does not exist for ψ = ∞ since any perturbation from the
fixed point will take an infinitely long time to reach the fixed point again. We can,
however, evaluate ∇ψ arbitrarily close to the fixed point.

We note that the preceding analysis is valid for stable fixed points with strictly
real λ1. If λ1 is complex, the iIRC can still be calculated by a similar analysis, but
instead of ∇ψ being orthogonal to the slower directions of the stable manifold near
the fixed point, as in (2.12), ∇ψ will be perpendicular to a cylindrical hypersurface of
constant isostable. We refer the interested reader to [31] for a discussion of isostables
for the case when λ1 is complex.

3. Illustration for a Simple FitzHugh–Nagumo-Based Model. We first illus-
trate the calculation of∇ψ(xγ(ψ)), which we will refer to as the infinitesimal isostable
response curve (iIRC), for FitzHugh–Nagumo-based equations as a prototypical model
for excitability [42]:

V̇ = c1V (V − a)(1 − V )− c2V w,(3.1)

ẇ = b(V − dw).
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Fig. 3.1 In the top-left panel, trajectories of (3.1) follow a similar path toward the fixed point; this
path is shown as a bold line. The top-right panel shows the V and w nullclines of (3.1),
as dashed lines. The bottom-left panel gives a global isostable portrait for (3.1) with black
lines showing constant isostables, equally spaced in time. The bottom-right panel shows a
close-up near the fixed point where the system is well-approximated by a linear system and
the isostables are parallel to v2, the fastest direction of the stable manifold. In all panels,
the stable fixed point is shown as a gray dot.

Nondimensionalized variables V and w represent, for example, voltage and gating
variables, respectively, of an excitable cell membrane. We will take a = 0.13, b =
0.013, c1 = 0.26, c2 = 0.1, and d = 1. We can see from Figure 3.1 that trajectories
follow a similar path as they approach the stable fixed point (V,w) = (0, 0); [23] and
[40] would call this a transient attractor. When the system is linearized around this
fixed point, we find |λ1| = 0.0130 and |λ2| = 0.0338. The top-right panel of Figure
3.1 shows nullclines for this system. The bottom-left panel shows the global isostable
portrait for (3.1), and the bottom-right panel gives a zoomed-in isostable portrait
near the fixed point.

We choose (V,w) ≈ (0.91, 0.24) to correspond to ψ = 0 and integrate forward until
the final condition is close enough to the origin for the linearization to be a good model.
The initial condition is chosen because most trajectories that start around (V,w) ≈
(1, 0.1) pass close to this point, as shown in the top-left panel of Figure 3.1. For this
model, integrating for 1000 time units is sufficient, and we take the resulting trajectory
to be γ and the end point condition to correspond to ψ = 1. We use γ to calculate the
iIRC for (3.1) using the adjoint method presented in section 2. For this choice of γ, ω =

1
1000 . Results are shown in Figure 3.2. The top-right panel shows γ, with the bottom-
right panels showing V (ψ) and w(ψ). The left panels show iIRCs for each variable at
different levels of zoom. As might be expected, as the trajectory approaches the fixed
point, the magnitude of the iIRC becomes very large, because even small perturbations
will significantly affect the asymptotic approach to the fixed point. Bottom-left panels
show zoomed-in plots of the iIRC as well as numerical verification at various points,
for example, by perturbing by ΔV at a given value of ψ and measuring the resulting
difference Δψ. The iIRC can then be approximated by ∂ψ

∂V ≈ Δψ
ΔV .
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Fig. 3.2 Calculation of the iIRC for the FitzHugh–Nagumo-based model using the adjoint method.
The top-right panel shows γ, with the bottom-right panels showing V (ψ) and w(ψ). iIRCs
calculated using the adjoint method are given in the left panels, with dots calculated ac-
cording to Δψ

ΔV
and Δψ

Δw
for a small but finite ΔV and Δw.

4. An Energy-Optimal Control Strategy for Terminating Cardiac Alternans.
As mentioned in section 1, cardiac alternans, the beat-to-beat alternation between
long and short action potentials, has been implicated as a precursor to cardiac fib-
rillation. In order to understand how alternans develop in cardiac tissue, one must
examine the relationship between action potential duration (APD), diastolic interval
(DI), and basic cycle length (BCL) in cardiac cells. The APD is defined as the amount
of time an action potential lasts, i.e., the amount of time the cell remains depolarized
(i.e., at elevated voltage) after it is excited, and the DI is the amount of time the
cell remains quiescent before the next action potential. The BCL is the amount of
time between successive action potentials and can be thought of as a constant “heart
rate,” for example, as generated by pacemaker cells. The APD of a cardiac cell is
typically a monotonically increasing function of DI, and the left panel of Figure 4.1
shows the APD plotted against the DI (commonly referred to as the APD restitution
curve) for the Fox model of cardiac activity [15], which we will consider further in
sections 5 and 6; the solid curve uses nominal parameters, and the dashed curve is
obtained when the value of the L-type Ca2+ channel permeability to Ca2+ is reduced
by 20 percent. As originally shown in [36], when the APD restitution curve has a
slope greater than 1, alternans can develop in cardiac tissue. To understand how
alternans may develop, we first examine the dashed APD restitution curve, which has
a slope that is strictly less than one. The plot in the bottom-right panel of Figure
4.1 uses this curve and can be interpreted as follows. Suppose, for a constant BCL of
185 ms, an action potential is elicited when the DI is around 42 ms. From the APD
restitution curve we can see that the following APD will be around 115 ms. Because
BCL = APD+DI, the next DI will be about 70 ms. The arrows show the result of
this procedure over multiple iterations, and the successive iterations spiral toward an
APD of about 125 ms. Conversely, the solid APD curve in the left panel of Figure 4.1
has a slope larger than one in places, and the top-right panel shows that for the same
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Fig. 4.1 The left panel shows APD restitution curves for two different parameter sets for the Fox
model and a dot-dashed line with a slope of one for reference. The solid APD restitution
curve has slope greater than one in places, and the associated top-right panel shows how a
stable period-2 orbit develops when the BCL is a constant 185 ms (represented by the gray
dashed line plotting 185 = DI + APD). For the dashed APD restitution curve, with slope
strictly less than one, the period-1 orbit is stable for a constant BCL of 185 ms as shown
in the bottom-right panel.

BCL of 185 ms, a stable orbit develops with APDs alternating between 118 and 156
ms; this is called a period-2 orbit because it takes two BCLs to repeat. Note that in
the top-right panel, every fifth transition is shown for clarity; also note that there is
an unstable period-1 orbit, meaning that it repeats every BCL, at the intersection of
APD restitution curve and the dashed line, represented by an open circle.

As might be expected, the APD restitution curve is not strictly a function of the
preceding DI. The APD can be affected by other things such as pacing history or
interactions between neighboring cells [45], [5], [4]. Nevertheless, the goal of “flatten-
ing” the APD restitution curve by reducing its slope provides a basis for developing
drug interventions that make it less likely for alternans and cardiac fibrillation to
develop [16], [1], [30].

Other strategies to terminate alternans have focused on stabilizing the unstable
period-1 rhythm through the application of external stimuli [8], [41] and have been
useful in designing experimentally successful, model-independent control techniques
[21], [9], [25]. Some other control techniques have attempted to control alternans using
model-based feedback control [10], [17]. While model-independent control techniques
are certainly more directly applicable to in vivo experiments, they must sacrifice
knowledge of the underlying dynamics which makes them, most likely, not optimal
from an energy perspective. On the other hand, model-based control strategies which
use feedback control make use of the underlying dynamics of the system but can be
hard to implement accurately in real time experiments, especially when the underlying
models for the experiment are of high dimension. Here, we propose an energy-optimal,
model-based control approach that only requires knowledge of a system’s iIRC. Con-
trol techniques based on response curve reduction are useful in high order models
because they do not require the full dynamics, only the one-dimensional dynamics
near a trajectory. Furthermore, iPRCs have been successfully measured for neurons
for control purposes [34], and we expect these methods to be readily adaptable to
measuring iIRCs for cardiac systems.
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In a common experiment to test control algorithms for alternans, in vitro cardiac
tissue is excited by an artificial pacemaker at a prescribed BCL which is known to
produce APD alternans. The APD of each beat is measured as the length of its action
potential. Previous, model-independent methods to suppress alternans have operated
by adjusting the pacemaker’s cycle length according to the following control algorithm
(cf. [9], [25]):

(4.1) Tn =

{
BCL +ΔTn if ΔTn < 0,

BCL if ΔTn ≥ 0,

where

(4.2) ΔTn = (β/2)(APDn −APDn−1),

Tn is the control-perturbed (external) pacemaker cycle length, β is the feedback gain,
and n is the beat number. In this article, we use β = 1. Typically, as the DI increases,
so will the following APD, and, intuitively, this control strategy works by giving a
premature pulse after the short APD, reducing the DI of the upcoming long APD and
subsequently increasing the DI of the next short APD. See panels C and E of Figure
6.1 for a numerical example of the control strategy from (4.1) and (4.2) applied to a
single cardiac cell.

We now devise a new alternans suppression methodology in the context of the
13-dimensional Fox model for canine cardiac activity [15]. We emphasize that the fol-
lowing results are not limited to this model, and we expect that this control strategy
could be applied successfully to other models which display alternans. For a BCL
of 175 ms, cardiac cells from the Fox model will display beat-to-beat alternans with
successive APD differences of approximately 36 ms. Figure 4.2 shows the associated
stable (solid line) and unstable (dashed line) periodic orbits in the V − [Ca2+]i plane,
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Fig. 4.2 Unstable period-1 orbit (dashed line) and stable period-2 orbit (solid line) in the V −[Ca2+]i
plane for the Fox model. In the top panels, curved arrows show the direction of the orbits
and gray dots show the location of the stable fixed point.

D
ow

nl
oa

de
d 

05
/2

9/
15

 to
 1

28
.1

11
.7

0.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

212 DAN WILSON AND JEFF MOEHLIS

where V is the transmembrane voltage and [Ca2+]i is the intracellular Ca2+ concen-
tration. We note that the control strategy from (4.1) is sufficient to suppress alternans
in this model, but our goal is to devise a control strategy that accomplishes the same
objective while using less energy and without artificially modifying Tn. To this end,
following [33] we adapt the energy-optimal methodology proposed for spike-timing
control in neurons for use in cardiac cells.

Consider the isostable model for a cardiac cell

(4.3) ψ̇ = ω +∇ψ ·G(t).
We assume that we only have control over the voltage variable, which we take to be the
first of the 13 components of x, so that G(t) = [u(t), 0, . . . , 0]T , where u(t) = i(t)/C
represents the control input, i(t) is the applied current, and C is the cell capacitance.
Equation (4.3) becomes

(4.4) ψ̇ = ω +
∂ψ

∂V
(ψ)u(t) = ω + I(ψ)u(t),

where I ≡ ∂ψ
∂V . Note that explicit x dependence has been dropped for notational

simplicity. While cardiac alternans is caused by a period-2 rhythm in the presence of
periodic forcing, the iIRC must be calculated by removing the forcing and letting the
state approach a fixed point. Recall from section 2 that the values ψ = 0 and ψ = 1
can be chosen as is convenient to define the iIRC. In a numerical setting, we can take
ψ = 1 as sufficiently close to the fixed point, but in an experimental setting, this may
not be possible. Therefore, we take I(ψ) = 0 ∀ ψ > 1.

Now that the iIRC has been found, we return to the case of periodic forcing. We
define t = 0 to be the time that the present action potential started and t1 to be the
time when ψ(x(t1)) next reaches 0. Suppose that, at a time determined by the BCL
(when the next action potential will start), for all stimuli u(t) which evolve ψ(t1) = 0
to ψ(BCL) = α > 0 for some phase α which will be chosen later, we want to find the

stimulus u(t) which minimizes the cost function M[u(t)]2 =
∫ BCL

t1
u2(t) dt, that is,

the power associated with the stimulus. (Other costs including the derivative of the
current and Faradaic charge transfer [32] can also be handled by other suitable cost
functions.) This is now in the form of an optimal control problem. We apply calculus
of variations to minimize [14],

(4.5) C[u(t)] =
∫ BCL

t1

[
u2(t) + λ1

(
dψ

dt
− ω − I(ψ)u(t)

)]
︸ ︷︷ ︸

M[u(t)]

dt,

where λ1 is a Lagrange multiplier, forcing the dynamics to satisfy (4.4). Associated
Euler–Lagrange equations are

u(t) = λ1(t)I(ψ)/2,(4.6)

ψ̇ = ω + (λ1I
2(ψ))/2,(4.7)

λ̇1 = −λ21I(ψ)I ′(ψ)/2,(4.8)

where ′ = d/dψ. The optimal control u(t) can be found by solving (4.7) and (4.8)
subject to ψ(t1) = 0, ψ(BCL) = α. This requires finding the initial condition λ1(t1)
which satisfies the boundary conditions, e.g., numerically with a shooting method. To
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examine the uniqueness of such an optimal control, we first note that the Hamiltonian
for this system,

(4.9) Ho = λ21I
2(ψ)/4 + λ1ω,

is conserved along trajectories of (4.7) and (4.8). With this in mind, we find that

ψ(BCL) =

∫ BCL

t1

ψ̇dt =

∫ BCL

t1

ω + λ1I
2(ψ(t))

2
dt =

∫ BCL

t1

√
ω2 + I2(ψ)Hodt,

∂ψ(BCL)

∂Ho
=

∫ BCL

t1

I2(ψ(t))

2
√
ω2 + I2(ψ)Ho

dt.

(4.10)

Note that in order for ψ(BCL) to be real-valued, Ho > −ω2/ sup[I2(ψ)]. Therefore,

for all valid choices of Ho,
∂ψ(BCL)
∂Ho

> 0. Thus ψ(BCL) increases monotonically with
Ho and implies that if a solution to (4.7) and (4.8) exists, it must be unique.

To implement the control strategy, we choose α to be

(4.11) α∗ ≡ ω(BCL− t1)− ω(APDn −APDn−1)/2.

This particular choice for α∗ is explained in Figure 4.3, which shows zoomed-in orbits
from Figure 4.2. We note that our proposed control strategy is functionally identical
to the strategy in (4.1) and (4.2), but the means of achieving the goal are different. In
(4.1) and (4.2), the time of the next pulse is modulated, which requires a large amount
of energy to elicit a premature pulse, while our new control strategy modifies the cell’s
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Fig. 4.3 Illustration of the alternans termination control strategy showing zoomed-in orbits from
Figure 4.2. Assuming the next action potential will be a long APD, the trajectory will reach
the short APD curve at exactly t = BCL, and the ensuing APD will be short. Advancing
the phase by an extra −ω(APDn−APDn−1) will cause the ensuing APD to be long again.
The control strategy is only valid until the cell’s next action potential at t = BCL. At this
point, the time can be reset to t = 0 and, if alternans persist, the control can be reapplied
in order to gradually drive the system to the unstable period-1 orbit. For reference, the
stable fixed point is shown as a gray dot.
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phase when the next pulse arrives. Assume the next action potential will be a long
APD; in the absence of control, the trajectory will reach the location corresponding
to the short APD at precisely t = BCL, and a short APD will occur afterwards. If
we wanted to drive the trajectory to another long APD, we would need to advance
ψ by an extra −ω(APDn − APDn−1) with an external control (recall that before a
long action potential, APDn−APDn−1 < 0). Note that the above control strategy is
only valid until the cell’s next action potential at t = BCL. At this point, the time
can be reset to t = 0 and, if alternans persist, the control can be reapplied in order
to gradually drive the system to the unstable period-1 orbit. We emphasize that it
is implicit in the preceding analysis that the state of the system remains close to the
trajectory γ from which the iIRC was derived. If the applied control creates a large
excursion from γ, it will degrade the performance of the controller and, in extreme
cases, can elicit a premature excitation.

5. Optimal Control Illustrated for the Fox Model of Cardiac Activity. We
now illustrate the optimal control strategy for terminating cardiac alternans for the
13-dimensional Fox model [15]. The Fox model is particularly attractive because it
considers ionic currents within canine cardiac cells and produces action potentials
that are consistent with experimental observations. Furthermore, it produces stable
electrical alternans at fast BCLs, making it ideal to test our optimal control strategy.
This model has one slowly changing variable, the sarcoplasmic reticulum Ca2+ con-
centration, [Ca2+]SR, which does not change much on a beat-to-beat basis for BCLs
in which the model exhibits alternans. This allows for the reduction of the dimen-
sionality through averaging [48], assuming that [Ca2+]SR = 318μmol. For reference,
when the reduced system is linearized around its stable fixed point, |λ1| = 0.0015 and
|λ2| = 0.0043.

The Fox model exhibits alternans for BCLs between 150 and 210 ms. Using a
Poincaré map, shown in Figure 5.1, we visualize the approach γ toward the fixed point
for many action potentials. We stimulate the reduced model for BCLs of 150, 160, 170,
180, 190, 200, and 210 and record the state during repolarization when V crosses −40,
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Fig. 5.1 State variables in the Fox model at various points during the long alternan action potential,
stimulated using multiple BCLs that produce alternans. Trajectories become closer as the
transmembrane voltage approaches the resting potential of about −94 mV.
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and −80, as well as when dV
dt = 0. Variables (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,

x12) correspond to (V, [Ca2+]i, f, d,m, h, j, fCa, XKr, XKs, Xto, Yto) from the reduced
model. Note that each variable has been normalized as the fraction of its maximum
value during stimulation; see [15] for the definitions of these variables and equations
for their dynamics.

In order to implement the control strategy from section 4, we restrict our attention
to the relaxation to the fixed point. The reason for this is two-fold: first, as shown
in Figure 4.3, the state variables follow a similar trajectory toward the fixed point
during repolarization so that the iIRCs will be expected to be similar on a beat-to-
beat basis. Second, the initial upstroke of the action potential occurs on a rapid
time scale, which would make it difficult to apply the control at the precise time it is
required. During the last moments of repolarization as the transmembrane potential
approaches its resting potential of about−94 mV, the beat-to-beat trajectories tend to
follow a similar path, but it is not as clearly defined as it is for the FitzHugh–Nagumo-
based model (3.1). There is some natural variance in the preferred approach in the
Fox model, and for this reason we calculate the iIRC for multiple action potentials,
which in the absence of an external depolarizing stimulus take different paths toward
the fixed point. We define the state at which V is largest during its final approach
to the fixed point on the long alternan as ψ = 0 (i.e., xγ(0) ≡ x | dV

dt = 0 and
dV
dt < 0 ∀ ψ ≥ 0) and simulate for 2000 ms to obtain xγ for each approach toward the
fixed point. We emphasize that there are multiple possible trajectories toward the
stable fixed point, and the curves xγ between trials are different. Results are shown in
Figure 5.2. The black line gives the mean iIRC for the voltage variable, and the gray
band gives an interval in which 90 percent of calculated iIRCs reside. We find that
perturbing later in the cycle will have a much smaller effect than perturbing earlier.
Note that the iIRCs for the other 11 variables were calculated but are not shown.

Using average values of ∂ψ
∂V from Figure 5.2, we employ the control strategy on

the phase reduction (4.4) and illustrate for a BCL of 175 ms the cycle length at which
alternans are most pronounced. Also, we only apply control on the long alternan
because the iIRC from Figure 5.2 was calculated for long alternan trajectories. Results
are shown in Figure 5.3. The top panel shows the voltage trace of the cell during a

0 0.02 0.04 0.06 0.08

−3

−2.5

−2

−1.5

−1

−0.5

0

x 10
−3

∂
ψ
/
∂
V

ψ

Fig. 5.2 iIRC for the transmembrane voltage in the Fox model reduction using the adjoint method.
Ninety percent of values lie within the gray band, with the mean value plotted as a thick solid
line. The transmembrane voltage is within 95 percent of its resting potential at ψ ≈ 0.025.
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Fig. 5.3 Control of alternans in the Fox model. The top and middle panels show the voltage traces
for the cell and the applied control, respectively. The bottom two panels show plots of APD
and |APDn − APDn−1|, with the shaded sections showing when the controller is on. The
control strategy is quickly able to eliminate alternans in the model. Note that the control
applied at t ≈ 8100 is much smaller in magnitude than the first control application. Also,
the action potential that begins at t ≈ 7350 corresponds to APD42.

time when the controller is turned on. We see that the control eliminates alternans
by the next action potential. We note that once the alternans are eliminated, it takes
relatively little control effort compared to the first control application to keep the cell
in an alternan-free trajectory. The bottom two panels give plots of the beat-to-beat
action potentials, as well as |APDn−APDn−1|. Times when the controller is turned on
are denoted by shaded regions marked with a “C.” When the controller is on, the cell
remains alternan-free. When the controller is turned off, the cell gradually displays
alternans that become more and more pronounced, which are quickly alleviated once
the controller is turned back on.

6. Alternan Control with iIRCs Determined by the Direct Method. Amarked
advantage of this control strategy over other model-based strategies is that it only
requires knowledge of the iIRC of the system. In neuroscience, methods that rely on
analogous iPRCs are attractive because the iPRC can be approximated experimentally
using the direct method [24], [35], [34]. We note that the direct method can be used to
measure the iPRC along the entire periodic orbit in neuroscience applications, because
a neural spike, which can be measured as a sudden rise in the transmembrane voltage,
is a clear marker of a particular phase. In cardiological applications, the primary
observable (transmembrane voltage) only changes during repolarization, after which
another observable would be necessary to obtain a full iIRC. Nevertheless, here we
devise a feasible means of using the direct method to obtain at least part of a cardiac
cell’s iIRC for control purposes.

First, ψ = 0 is defined to be some marker voltage during repolarization; we will
illustrate this using the Fox model and, as above, we take the marker ψ = 0 to
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be the final local maximum during repolarization, i.e., at x for which dV
dt = 0 and

dV
dt < 0 ∀ ψ ≥ 0. Note that the phase resets upon each APD. Further, we define ψ = 1
to be when the transmembrane voltage reaches 95 percent of its resting potential. The
value ω can be obtained by determining t0→1, the average time it takes a cell to travel
from ψ = 0 to ψ = 1. For the Fox model, we average over BCLs ranging from 150
to 210 to find t0→1 = 105.06 ms, and we calculate ω = 1/t0→1. In order to obtain
one data point for the iIRC, a short-duration pulse of current can be applied to a
cardiac cell at a random isostable ψ and the resulting isostable change is measured by
observing the change in the time it takes to reach ψ = 1. The resulting value I(ψ) is
Δψ
Qp/C

, where Qp is the total charge injected through the cell membrane and Δψ is the

change in isostable. An experimentally reasonable sampling size of 300 data points
was calculated according to I(ψ) = Δψ

Qp/C
+0.025N (0, 1), where uncertainty is included

to mimic the undesired, but unavoidable noise in experimental measurements. The
data was fit to a sixth order polynomial, as is customary in calculation of iPRCs for
neurons [35], [34], and constrained so that I(1) = 0 and dI

dψ (0) = 0. Note that these
constraints are consistent with the qualities of the iIRC shown in Figure 5.2. Recall
that we assume I(ψ) = 0 for ψ > 1, and we enforce these extra constraints so that
the iIRC is smooth in at least the first derivative at ψ = 1.

In an experimental setting, an additional concern is that a control strategy that
must calculate a new optimal control on every application would be difficult to imple-
ment, because by the time the optimal control is calculated, the window to implement
it would have already passed. Indeed, a MATLAB routine on a good workstation takes
on the order of one second to solve the boundary value problem given by (4.7) and
(4.8), and the processing power of an implantable device will certainly be less than
that of a desktop computer. For this reason, we seek an approximate solution to the
boundary value problem when α ≈ ω(BCL −t1). First, notice that the line λ1 = 0
is invariant for (4.7)–(4.8) and corresponds to dψ

dt = ω, thus α = ω(BCL − t1). For
α ≈ ω(BCL− t1), we Taylor expand ψ(BCL) with respect to initial condition λ1(0),
yielding α = ω(BCL− t1) +

(
∂α

∂λ1(0)

∣∣
λ1(0)=0

)
λ1(0) to lowest order in α−ω(BCL− t1).

Recalling that α = ψ(BCL) and using α∗ from (4.11) for α, we have

(6.1) λ1(0) =
α− ω(BCL− t1)

∂α
∂λ1(0)

∣∣∣
λ1(0)=0

=
−ω(APDn −APDn−1)

2 ∂ψ(BCL)
∂λ1(0)

∣∣∣
λ1(0)=0

.

Let APDn −APDn−1 = O(ε). Asymptotically expanding λ1(t) and ψ(t) yields

λ1(t) = λ
(0)
1 (t) + ελ

(1)
1 (t) + ε2λ

(2)
1 (t) + · · · ,(6.2)

ψ(t) = ψ(0)(t) + εψ(1)(t) + ε2ψ(2)(t) + · · · .(6.3)

From (4.7) and (4.8), we see that λ
(0)
1 (t) = 0, λ

(1)
1 (t) = λ1(0)/ε+O(ε), and ψ(0)(t) =

ω(t − t1). In order to further simplify (6.1), we use the asymptotic expansion from
(6.2) and recall that λ1(0) is of order ε to yield

∂ψ(BCL)

∂λ1(0)

∣∣∣∣
λ1(0)=0

= lim
λ1(0)→0

∫ BCL

t1
[λ1(0) +O(ε2)](I2(ψ)/2)dt

λ1(0)
=

∫ BCL

t1

I2(ψ)

2
dt.

(6.4)

Using (6.1), this implies that λ1(0) =
−ω(APDn−APDn−1)∫

BCL
t1

I2(ψ)dt
. Finally, substituting (6.2)
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and (6.3) into (4.6), we find

u(t) =
1

2
λ1(0)I(ψ

(0)) +O((APDn −APDn−1)
2)

=
−ω(APDn −APDn−1)I(ω(t− t1))

2
∫ BCL

t1
I2(ω(τ − t1))dτ

+O((APDn −APDn−1)
2).(6.5)

Using the iIRC computed using the direct method on noisy data, we illustrate
the use of the approximation to the optimal control strategy (6.5) and compare to the
method from (4.1). For the pulsed control strategy, as in [15] we use a −80 μA/μF
pulse of duration 1 ms to elicit a premature action potential and note that for pulse
intensities much below this, the pulse will not always elicit an action potential. Fur-
ther, we take the threshold for the control applications to be |APDn−APDn−1| ≥ 5.
We note that both control strategies work equally well with a smaller threshold, but
we choose 5 in order to better illustrate small differences between strategies. We
choose a BCL of 175 ms and begin applying control after n = 30 action potentials
for a total of 150 action potentials. Results are shown in Figure 6.1. Panel A shows
each data point in the numerical calculation of the iIRC, as well as the sixth order
polynomial fit (black line), and the iIRC calculated from the adjoint method (gray
dashed line), scaled by ωdir/ωadj, where ωdir and ωadj are the natural frequency for
the iIRC calculated for the direct method and adjoint method, respectively. Panels B
and D show a portion of the applied optimal control and the associated APD history,
respectively. In panel B, the first applied control is the largest, with the following
control applications being smaller in magnitude, because required alterations to the
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Fig. 6.1 Comparison of a pulsed versus approximately optimal control strategy. Panel A shows the
polynomial fit iIRC (black line) along with an appropriately scaled iIRC calculated from
the adjoint method (gray dashed line). Panel B (resp., C) gives a portion of the applied
optimal (resp., pulsatile) control associated with the APD history in the dashed rectangular
box from Panel D (resp., E). Panel D (resp., E) gives the APD history using the optimal
(resp., pulsatile) control strategy.
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action potential are much smaller. While the approximately optimal control strategy
does not perform quite as well as before, because we are using both a polynomial fit
for ∂ψ

∂V and an approximation of the optimal control, it is still sufficient to terminate
alternans. Panels C and E show a portion of the pulsed control and the associated
APD history, respectively. The most notable difference between these control strate-
gies is the energy consumption as measured by

∫
u(t)2dt. The energy-optimal control

strategy uses approximately 0.7097 units of energy, while the pulsed control strategy
uses 44800 units. We emphasize that this is not actual experimental data and that
we are neglecting the power consumption of the processor required to implement our
control logic. Nevertheless, our numerical simulations suggest that the optimal con-
trol strategy may be able terminate alternans at a cellular level using several orders
of magnitude less energy than a pulsed method.

7. Conclusion. This paper extends the notion of phase reduction to systems with
a stable fixed point through the development of an adjoint method for the efficient cal-
culation of infinitesimal isostable response curves (iIRCs). This method of reduction
is particularly useful for excitable systems that take similar trajectories toward their
fixed point, so that the iIRCs between trajectories are similar. This novel method
of phase reduction has been illustrated for both a simple, two-dimensional model of
excitability and for a more complicated, higher-dimensional model. Sections 4–6 of
this paper display the strength of this new reduction method, as it allows us to work
with a complicated, high-dimensional model in a more useful coordinate system.

With only the knowledge of a system’s iIRC, one can design a control strategy to
eliminate cardiac alternans, which has been implicated as a precursor to fibrillation,
that outperforms a pulsatile, model-independent strategy by several orders of magni-
tude in terms of energy. Even though the processor for a complicated control strategy
will likely use more energy than a processor for a simple controller, there is still
the potential for significant energy savings compared to a pulsatile strategy. While
model-independent control strategies are attractive from an experimental standpoint,
forfeiture of the state dynamics almost certainly comes at the price of using a nonop-
timal control strategy in terms of overall energy consumption, as we have shown here.
Furthermore, the proposed control strategy does not require premature excitation of
cardiac cells to eliminate alternans, but rather gently perturbs cells during an action
potential to eliminate alternans.

Certainly there are other considerations that need to be addressed before this
control strategy can be used in real experiments. For instance, it takes a nontrivial
amount of time to calculate the optimal control for a given sequence of action po-
tentials, and the processor must be reasonably quick at calculating the control and
determining the precise time at which it should be applied. However, some of these
challenges could be addressed by using the approximation to the optimal control de-
rived in section 6. Also, it may be challenging to both stimulate cardiac tissue and
record APDs simultaneously. Nevertheless, we believe that this control strategy holds
promise for successful implementation in real cardiac systems.

Phase reduction is particularly attractive when the full dynamics of a system
are unknown, as is the case for biological tissue in a experimental setting. Control
strategies based on phase reduction have been successful in the control of in vitro
neurons [34], [44], and we expect that similar techniques to experimentally measure
iIRCs will carry over to excitable biological systems. We imagine that this control
strategy could ultimately be applied to hearts in vivo with a grid of independent pairs
of sensors and actuators, each using this control strategy to locally eliminate alternans.
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While not as elegant as a strategy that eliminates alternans from a single point source
control, a control strategy that employs reduction using iIRCs to view cardiac action
potentials in a more natural coordinate system allows for lower-amplitude, lower-
energy perturbations, and thus may be desirable from a clinical standpoint in terms
of maximizing the battery life of an implantable device and mitigating the risk of
tissue damage.

Phase reduction has proven to be a powerful tool for the analysis of complex
systems with periodic orbits and has led to many interesting and important results.
This new method of isostable reduction could be of similar use by allowing for the
study of complicated excitable systems in a more natural and convenient coordinate
system.
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