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Abstract. Isochrons are foliations of phase space that extend the notion of phase of a stable periodic orbit to
the basin of attraction of this periodic orbit. Each point in the basin of attraction lies on only one
isochron, and two points on the same isochron converge to the periodic orbit with the same phase.
Global isochrons, that is, isochrons extended into the full basin of attraction rather than just a
neighborhood of the periodic orbit, can form remarkable foliations. For example, accumulations of
all isochrons can occur in arbitrarily small regions of phase space; the limit of such an accumulation
is called the phaseless set, which lies on the boundary of the basin of attraction of the periodic orbit.
Since global isochrons must typically be approximated numerically, such complicated geometries are
often difficult to realize for actual examples. Indeed, the computation of global isochrons can be
challenging, particularly for systems with multiple time scales. We present a novel method for com-
puting isochrons via the continuation of a two-point boundary value problem, which is particularly
effective for systems with multiple time scales. We use this method to compute global isochrons for
a two-dimensional reduced Hodgkin–Huxley model and illustrate that the one-dimensional isochrons
for a planar multiple-time-scale system can accumulate in the interior of the basin of attraction of
the periodic orbit in a way similar to two-dimensional isochrons accumulating on the boundary of a
three-dimensional basin of attraction.
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1. Introduction. Many biological systems produce rhythmic oscillations that are self-
sustained, with an internal source of energy being transformed into oscillations of chemical
concentrations and electrical and mechanical properties. Such biological oscillators have a
long, successful history of being modeled using ordinary differential equations [27, 29]. A
prototypical example of a biological oscillator is the stable periodically firing action potential
generated by the giant axon of a squid for a range of constant bias currents [26]. This behavior
was famously modeled by Hodgkin and Huxley [26] using a four-dimensional system of coupled
nonlinear ordinary differential equations, representing the voltage difference across a neural
membrane and three gating variables related to ionic flow across the membrane.

A powerful technique for analyzing a biological oscillator is the rigorous reduction to a
phase model, with a single variable describing the phase of the oscillation with respect to some
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reference state; see, for example, [4, 21]. This tremendous reduction in the dimensionality and
complexity of a system often retains enough information to yield a useful understanding of its
dynamics. Moreover, the analysis of the system is greatly simplified, because phase models
tend to depend on only a very small number of parameters [4]. Such a reduction to a phase
model is based on the notion of isochrons of the oscillator for the system. The concept of
isochrons of a stable periodic orbit Γ (the oscillator) was first introduced by Winfree [45] in
1974. In that paper he provides formal definitions that we reformulate in the next section.
In words, isochrons are (codimension-one) manifolds of initial conditions in phase space, with
the property that all solution trajectories that correspond to initial conditions on the same
isochron asymptotically approach Γ at the same phase [45]. Hence, isochrons are defined
relative to Γ and make sense only for points in its basin of attraction B(Γ). The phase-
dependent family of isochrons gives a sense of how long a trajectory spends in different regions
of phase space: for example, a trajectory moves slowly through regions of state space where
isochrons that are equally spaced in phase lie relatively close to each other. Winfree poses
a number of conjectures in [45] and, in particular, wonders about the geometry of isochrons
at the boundary ∂B(Γ) of B(Γ). He argues that, under suitable genericity conditions, each
isochron must come arbitrarily close to any point on ∂B(Γ), which he calls the phaseless set
[45, appendix, Conjecture C]. Guckenheimer provides proofs of these conjectures in [21] and
illustrates them with several examples; in particular, he gives an example [21, Figure 4] that
illustrates Conjecture C in a three-dimensional phase space and explains how this inevitably
leads to very complicated geometries of the (two-dimensional) limits of the isochrons on ∂B(Γ).

In this paper we present a two-dimensional example with a unique globally attracting
periodic orbit Γ for which the associated one-dimensional isochrons foliate the phase space
in a remarkably complicated way that is manifest only in the interior of B(Γ). Indeed,
the complex geometry of the limits of isochrons on ∂B(Γ), as predicted and illustrated by
Guckenheimer, can occur only in three dimensions. We show that similar complex structures
can be realized (and readily visualized) in a planar phase space of a system with multiple time
scales; if the ratio between the time scales is sufficiently small, then the isochrons interact
with a bounded set of points similar to a phaseless set in the interior of B(Γ). In order
to find these isochrons, we present a new method for computing global isochrons that is
based on the continuation of a suitably posed two-point boundary value problem (BVP); we
refer to [10] for an introduction to the continuation of BVPs. With the exception of simple
examples, isochrons cannot be calculated analytically, and one has to resort to numerical
approximations. An important advantage of our method is the fact that we compute each
isochron via continuation, which automatically provides an arclength parameterization of it
that organizes phase space according to the notion of arclength distance to Γ. With this
method we are able to compute many isochrons and show their detailed structure as each
accumulates onto an equilibrium, which is the only point not contained in B(Γ).

This paper is organized as follows. In the next section we give formal definitions and
present a brief overview of existing computational methods for finding linear or higher-order
local approximations. We specifically focus on a BVP set-up to obtain linear approximations
of the isochrons, and describe in section 3 how to use these to compute global isochrons
via continuation of a BVP. We provide a pseudocode implementation that performs the
computations using the software package AUTO [11] and briefly discuss the accuracy of the
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method. Section 4 presents the planar example that exhibits complexity similar to that
illustrated by Guckenheimer near the basin boundary for a three-dimensional system. We use
the dynamical system considered in [29, 34] for a two-dimensional reduction of the Hodgkin–
Huxley model. We are able to compute global isochrons up to such detail that we not only
visualize Winfree’s Conjecture C [45], but can also analyze the complicated structure in the
interior of B(Γ). We end with a discussion in section 5.

2. Definitions and background. Let us begin with a precise definition of an isochron.
Consider an autonomous vector field

(2.1)
dx

dt
= F (x),

with solutions x = x(t) that satisfy x(0) = x0 ∈ R
n; here, Rn is the phase space of (2.1).

In this paper we consider planar vector fields, that is, n = 2, so that the isochrons are one-
dimensional. In principle, it is not essential to have n = 2 in what follows, and we come back to
this in section 5. We assume that F is sufficiently smooth; that is, F is at least C1. The vector
field (2.1) induces a flow Φ : R×R

n → R
n, and we will use the notation Φ(t,x0) = Φt(x0). We

further assume that (2.1) has an orbit Γ with period TΓ and that Γ is a hyperbolic attractor;
that is, all Floquet multipliers of Γ lie inside the complex unit circle, except for the trivial
multiplier 1 associated with the direction tangent to Γ. We associate a phase with points on Γ
as follows. Let γ0 ∈ Γ be the point where the phase is zero; here we choose γ0 to be the global
maximum of Γ with respect to the first coordinate. Then Γ = {Φ(t, γ0) | 0 ≤ t < TΓ}, and
a point γt = Φ(t, γ0) has phase θ(γt) = t/TΓ. The phase θ(γt) takes values in [0, 1), which
follows the definition by Winfree [45], but other conventions, such as [0, 2π) or [0, TΓ), can
easily be obtained via rescaling.

Isochrons are closely related to an extended notion of phase that is also defined for points
that do not lie on Γ, as follows.

Definition 2.1 (asymptotic phase). Let x0 ∈ R
n be an initial condition for (2.1) that lies

inside the basin of attraction of Γ. Then the unique asymptotic phase θ(x0) of x0 is given by
the condition

lim
t→∞ ‖Φ(t,x0)− Φ(t+ θ(x0)TΓ, γ0)‖ = 0.

Hence, the orbit through x0 converges asymptotically to Γ in such a way that it will be in
phase with the point Φ(θ(x0)TΓ, γ0) on Γ.

The asymptotic phase (which Winfree calls the latent phase) is defined only for points
x0 ∈ R

n that lie in the basin B(Γ) of Γ. If Γ is a global attractor of a planar vector field, then
B(Γ) is the entire phase space, with the exception of one or possibly more unstable equilibria.
The complement of B(Γ) is also called the phaseless set of Γ.

Definition 2.2 (isochron). An isochron is a level set of the asymptotic phase function θ :
B(Γ) ⊂ R

n → [0, 1), that is, the collection of all points in the basin of attraction of Γ with the
same asymptotic phase. We tend to associate isochrons with their corresponding phase points
on Γ. More precisely, for γ ∈ Γ,

I(γ) = {x0 ∈ B(Γ) | θ(x0) = θ(γ)}.
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Definition 2.1 implies that isochrons map to each other under the flow; that is, with a
slight abuse of notation,

(2.2) I(Φt(γ0)) = Φt(I(γ0)).
In particular, each isochron I(γ) is invariant under the time-TΓ map ΦTΓ(·), which has γ as
its fixed point.

We want to consider isochrons from a dynamical systems point of view. We may think of Γ
as a normally hyperbolic manifold, because we assume that only its trivial Floquet multiplier
lies on the complex unit circle. Then the tangent bundle of Rn over Γ can be split into a linear
bundle tangent to Γ and a linear stable normal bundle transverse to Γ that is invariant under
the linearization of the flow. Moreover, we can define vector directions associated with these
two tangent bundles in the tangent space of Rn at γ for each point γ ∈ Γ. Since Γ is a periodic
orbit, it is easy to find these vector directions: γ is a fixed point of the time-TΓ map ΦTΓ(·), and
the tangent and normal vector directions are the eigenvectors of the Jacobian matrix DΦTΓ(γ)
associated with the trivial and nontrivial Floquet multipliers, respectively. The local theory
of normally hyperbolic, invariant, compact manifolds [25, section 4, Theorem 4.1] ensures
the existence of an n-dimensional stable manifold W s(Γ) = B(Γ) that is invariantly foliated
by (n − 1)-dimensional submanifolds W ss(γ), γ ∈ Γ, that are as smooth as the function F
that defines (2.1). Moreover, W s(Γ) is tangent to the linear stable normal bundle of Γ, and
each W ss(γ) is tangent to the corresponding linear stable eigenspace at γ. By definition,
I(γ) = W ss(γ), γ ∈ Γ; see [21, 25, 45].

The interpretation of I(γ) as a leaf W ss(γ) of the invariant foliation of W s(Γ) offers a
natural way of computing isochrons as stable manifolds, which is precisely the approach that
we take in this paper. Our method is based on the idea of computing stable manifolds via
the continuation of orbit segments [15, 31], which assumes knowledge of the periodic orbit Γ
as well as the linear approximation of the stable manifold. Before explaining our method,
we summarize in the next section several methods for obtaining local approximations of the
isochrons.

2.1. Linear approximations of isochrons. The development of computational methods for
isochrons has mainly focused on their linear approximations [17, 18, 46]. Indeed, the linear
approximation suffices for computing the so-called infinitesimal phase response curve (PRC).
To our knowledge Guillamon and Huguet [22] are the first to use higher-order approximation
methods for the local approximation of isochrons. We briefly discuss these methods here but
primarily focus on the approach that we take for the computations in this paper.

The so-called direct method is based on the formal definition for the infinitesimal PRC.
Since I(γ) is a level set of the asymptotic phase θ, we know that the gradient ∇θ(γ) evaluated
at the base point γ is perpendicular to the tangent of I(γ) at γ; this gradient is equal to the
infinitesimal PRC [38]. The gradient ∇θ(γ) is given by the limits

∂θ

∂xi
(γ) = lim

Δxi→0

θ(γ +Δxi �ei)− θ(γ)

Δxi
,

where x = (x1, x2, . . . , xn) and �ei denotes the ith basis vector of R
n. The direct method

finds the partial derivatives ∂
∂xi

θ(γ), i = 1, 2, . . . , n, by comparing the phase of a base point
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γ ∈ Γ with the phases of solutions in the infinite-time limit, starting from points that are
infinitesimally shifted from γ [4, 18, 46]. This method is straightforward and mimics how
phase differences are measured in experiments.

The so-called adjoint method views ∇θ(γ) as an eigenvector for the adjoint of the Jacobian
matrix of the time-TΓ map evaluated at γ. The classical derivation uses Taylor expansions of
the orbit through an infinitesimal perturbation of γ; see [4, 16, 17, 27, 28] for more details.
However, this approach is essentially the same as computing the linear stable normal bundle
of Γ, which defines the linear approximation of I(γ), γ ∈ Γ. Let us explain this briefly because
it is directly related to the method we use in this paper.

Consider the n × n Jacobian matrix of the time-TΓ map ΦTΓ(·) evaluated at γ. Since we
assume that Γ is hyperbolic, this matrix DΦTΓ(γ) has exactly one eigenvalue equal to 1—
the associated eigenvector is the direction tangent to Γ at γ—and the other n− 1 eigenvalues
(counted with multiplicity) are all inside the complex unit circle; that is, they all have modulus
less than 1. The (n − 1)-dimensional hyperplane spanned by the (generalized) eigenvectors
associated with these eigenvalues with modulus less than 1 is the linear approximation of
I(γ). If n = 2, then the linear approximation of I(γ) is simply given by the eigenvector
associated with the only stable eigenvalue of DΦTΓ(γ). As soon as n > 2, however, it is more
natural to define this linear approximation by a vector perpendicular to I(γ) at γ. Indeed, this
perpendicular vector is precisely ∇θ(γ), and it is given by the left eigenvector �vγ associated
with the trivial eigenvalue 1 of DΦTΓ(γ). (Recall that a left eigenvector of a matrix is a right
eigenvector of its adjoint.)

The standard method for finding �vγ for any base point γ ∈ Γ is the power method; the
eigenvalue 1 is the largest eigenvalue of (the adjoint of) DΦTΓ(γ), so an arbitrary vector
direction converges to �vγ when multiplied iteratively with this matrix. The Jacobian matrix
DΦTΓ(γ) is approximated using finite differencing, and the standard method uses backward
integration along the periodic orbit Γ. For example, XPP [16] uses this method for finding
PRCs numerically, and MATLAB code for this approach can be found in [28, Chapter 10].

2.2. Linear approximation as a two-point BVP. We propose a more direct method for
computing �vγ and the associated family for all γ ∈ Γ that defines the linear stable normal
bundle. The idea is to compute Γ and this associated vector bundle in a single two-point BVP;
see [12, 13, 33] and, in particular, [9, 19], where this idea is used in the particular context
of computing infinitesimal PRCs. We do not already assume knowledge of Γ. Instead, we
combine (2.1) with the first variational equation

(2.3)

⎧⎪⎨⎪⎩
dx

dt
= F (x),

d�v

dt
= adj[DF (x)] �v.

Here, adj[DF (x)] is the transpose (or adjoint) of the Jacobian matrix DF of the flow evaluated
at a point x that varies in time according to the first equation of (2.3). Of course, this first
equation should define the periodic orbit Γ, so we impose the boundary condition

(2.4) x(TΓ) = x(0) =: γ,
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where the period TΓ of Γ is unknown. The first variational equation is the second equation of
(2.3); it is linear, but with a time-varying matrix, and its solution is a vector bundle �v = �v(t).
As the initial condition, we require �v(0) = �vγ ∈ R

n. Note that (2.4) automatically implies that
DF (x), and thus its adjoint, is also periodic; if the linear bundle is orientable, this period is the
(unknown) period TΓ, and if it is nonorientable, we may set up the computation using period
2TΓ for both Γ and its normal bundle. Consequently, the vector bundle �v that is associated
with an eigenvector of DΦTΓ(γ) is periodic in the sense that the vector direction is mapped
to itself after one full period, which we denote TΓ for both orientable and nonorientable cases
from now on. Indeed, the length of �vγ shrinks or expands by a factor that is equal to the
Floquet multiplier associated with this vector bundle. However, we are interested in the vector
bundle associated with the trivial Floquet multiplier, so we have

(2.5) �v(TΓ) = �v(0) =: �vγ ,

and we assume that �vγ is normalized to unit length. The combined system (2.3)–(2.5) is well
posed and defines the solution up to a phase condition that fixes γ. Note that the trivial
bundle �v ≡ 0 for Γ is a solution that coexists with the actual eigenvector bundle we are after.
Since the trivial bundle is a solution for any Floquet multiplier, one can find the nontrivial
vector bundle as a branching solution from the trivial family that bifurcates at the particular
Floquet multiplier 1; we refer to [12, 13, 33] for details.

We note here that for planar systems the vector bundle is always orientable. Furthermore,
it is just as easy to compute the linear stable normal bundle �ns directly by using

(2.6)

⎧⎨⎩
d�ns

dt
= DF (x) �ns,

�ns(TΓ) = μTΓ �ns(0),

combined with (2.1) and (2.4). Here, μ is the stable Floquet multiplier of Γ. (Note that we
use the Jacobian rather than its adjoint here.) Since μ can be extremely close to 0 in systems
with multiple time scales, it can be advantageous to use a logarithmic formulation in terms
of the Floquet exponent: When we set μ = eλ and �ns = eλt �w, the equation for the first
variational part becomes ⎧⎨⎩

d�w

dt
= DF (x) �w − λ �w,

�w(TΓ) = �w(0).

We again refer to [12, 13, 33] for details.

2.3. Higher-order local approximations of isochrons. We end with a brief discussion of
higher-order methods. As mentioned, the first such method in the context of computing local
approximations of isochrons was published only recently in [22]. However, any higher-order
method for computing local stable manifolds can be adapted for this purpose. For exam-
ple, Taylor expansions [41] are used to find higher-order approximations of local manifolds,
and this technique has recently been studied in the context of higher-order approximations
of the asymptotic phase function θ [43]; see also [24] for similar formulations of higher-order
jets along manifolds, and [39] for a recursive implementation of the higher-order derivatives.
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Guillamon and Huguet [22] use the so-called parameterization method that is originally de-
signed for computing invariant manifolds [5]; that is, they view the isochron I(γ) as a leaf of
the invariant foliation of the stable manifold of Γ at γ. The parameterization method uses
Fourier expansions to represent the manifold. In principle, this approach results in high-order
approximations that are valid in a relatively large neighborhood of Γ and lead to global ap-
proximations of the isochrons. However, it appears that Fourier expansions are not ideal for
systems with multiple time scales, because the convergence of the expansion is typically slow
and many terms are needed to obtain reasonably large portions of the isochrons; see [22] for
details. Therefore, in [22] the parameterization method is used only for computing a local ap-
proximation of I(γ), which is then extended by other means to obtain a global approximation
of the isochron.

3. Extending the isochrons. Globally, the isochrons are nonlinear (immersed) manifolds
formed by the leaves of the invariant foliation of the stable manifold of the periodic orbit Γ
[21, 25]. As mentioned before, the isochron I(γ) of a point γ ∈ Γ is the stable manifold
W ss(γ) that is invariant under the time-TΓ map ΦTΓ(·) and associated with the fixed point γ.
The dynamics on I(γ) generated by ΦTΓ(·) is a contraction; that is, I(γ) is an overflowing
manifold and any local approximation can be extended by inverse iterations of ΦTΓ(·). The
methods described in sections 2.1–2.3 can be used to obtain a local approximation of I(γ)
that is valid only in a small neighborhood of Γ. Throughout this section we focus on planar
vector fields; that is, I(γ) is one-dimensional. Then we can employ standard techniques for
the computation of global stable manifolds to compute global extensions of I(γ); see, for
example, the discussion of such methods in [30].

To our knowledge, iterates of the inverse of ΦTΓ(·) have, thus far, been computed only
by numerical integration. The most straightforward way is to integrate the flow backward
in time, but forward integration techniques using shooting have also been employed [6]. We
specifically mention two recent publications that use backward integration methods, namely,
by Sherwood and Guckenheimer [40] and by Guillamon and Huguet [22]. Unfortunately,
biological oscillators often give rise to models with multiple time scales, which are rather
sensitive to numerical integration. In such cases, the computation of large extensions of a
local isochron with backward integration requires exponentially small variations in the initial
condition, which cannot be achieved using standard double-precision arithmetic.

In the next section we propose a new method for computing global extensions of isochrons
based on the continuation of BVPs [31]. Our approach is particularly well suited for systems
with multiple time scales, because it does not rely on high-precision knowledge of initial con-
ditions. The accuracy of the method uses information of the flow along entire orbit segments.
Furthermore, the continuation automatically generates a mesh parameterized by arclength.

3.1. Global isochrons as a family of orbit segments. The method we propose for com-
puting global extensions of isochrons is also based on the idea of viewing the isochron I(γ)
of a point γ ∈ Γ as a stable manifold W ss(γ) of ΦTΓ(·). The set-up is very similar to that
in [15] for the computation of one-dimensional manifolds of the fixed point of a Poincaré map
that is associated with a periodic orbit of the underlying vector field. Indeed, the isochron
of a point γ on Γ is nothing but the Poincaré section through γ of the time-TΓ return map
ΦTΓ(·). In [15] the Poincaré section is known, and the associated Poincaré map is unknown
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but defined implicitly as the (local) return to this section. In the present setting, the Poincaré
map is defined as the time-TΓ map, and the associated section is not known. If (2.1) were a
periodically forced system with forcing period TΓ, then the Poincaré section of the time-TΓ

map would be the phase space at fixed TΓ-periodic time intervals. Hence, for this special case
both the Poincaré map and the section are known explicitly. In general, however, the section
associated with the time-TΓ map is defined implicitly by the fact that points return to it after
precisely the period TΓ of Γ. This unknown Poincaré section is the isochron I(γ) that we wish
to compute.

Just as for the integration methods mentioned above, we assume knowledge of a first local
approximation of the isochron I(γ). We find that the linear approximation is sufficient for
finding good global approximations of I(γ) [30, 35]. Particularly in the context of systems
with multiple time scales, the contraction rates along the manifolds are extremely strong,
which means that one can start with a local approximation in a very small neighborhood of Γ
and still grow the manifold rapidly away from Γ. We compute the linear approximation of
I(γ) with the method described in section 2.2. Let us assume that we have computed the
vector direction �vγ ∈ R

2 that is perpendicular to the linear approximation �ns
γ ∈ R

2 of I(γ).
We define the line segment

(3.1) Lη(γ) := {γ + δ�ns
γ | 0 ≤ |δ| ≤ η},

parameterized by δ. For η 	 1 this line segment gives a good approximation of I(γ), and we
denote points on it by Lη(γ; δ).

We view I(γ) as defined by a one-parameter solution family of a two-point BVP. Since
we implemented our method in AUTO [11], we use AUTO notation to formulate the BVP.
We consider orbit segments {u(t) | 0 ≤ t ≤ 1} that correspond to orbit segments {x(t) |
0 ≤ t ≤ TΓ} of (2.1). That is, we consider orbit segments on the time interval [0, 1] of the
rescaled vector field

(3.2) u̇ = TΓ F (u).

An orbit segment corresponds to a point on I(γ) if both u(0) and u(1) are on I(γ). Note
that the two points u(0) and u(1) are related, because we keep TΓ fixed. The idea is now to
find u(0) such that u(1) lies on the numerical approximation of I(γ). Initially, all we have is
the linear approximation of I(γ), which leads to the boundary condition

(3.3) u(1) = Lη(γ; δ),

for some δ with 0 ≤ |δ| ≤ η 	 1, where η is prespecified. The fact that we keep TΓ fixed
serves as a second condition, giving a unique solution for given δ. We can now solve the
BVP (3.2)–(3.3) by continuation, where we keep TΓ fixed and use δ as a free parameter. The
periodic orbit Γ starting at γ solves (3.2)–(3.3) for δ = 0. Hence, the continuation can be
started from the known solution

(3.4) uΓ := {u(t) | 0 ≤ t ≤ 1, u(0) = u(1) = γ}.
We use AUTO [11] for the continuation and let δ vary from 0 to η. Since AUTO [11] adapts
the continuation step size automatically, we obtain a good distribution of points along the
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isochron and can easily monitor the arclength of the approximation. The major advantage
of this method over the integration methods mentioned earlier is the fact that AUTO [11]
measures the variation between two orbit segments along the entire orbit segment and not
just at the initial value. This avoids the extreme sensitivity on initial conditions that is so
typical for multiple-time-scale systems. As a result, we are able to compute isochrons up to
very long arclengths.

The continuation of the BVP (3.2)–(3.3) extends the isochron I(γ) from the linear ap-
proximation Lη(γ) of arclength 2η 	 1 up to a longer nonlinear approximation that typically
has an arclength of order O(1) for multiple-time-scale systems. There are two different tech-
niques for extending I(γ) further. In the spirit of [15], one can change the boundary condition
(3.3) to restrict u(1) to the new longer approximation of I(γ). This works well as long as the
curvature along I(γ) does not grow very large. For the example in section 4 we use a different
technique: we perform continuation for the time-(2TΓ) map; that is, we compute the family
of orbit segments that return to Lη(γ) after two full periods TΓ of Γ, then for the time-(3TΓ)
map, and so on, as follows. Suppose that after the continuation for the time-((k− 1)TΓ) map,
we have δ = η and the corresponding solution is

ulast := {u(t) | 0 ≤ t ≤ 1, u(1) = Lη(γ; η)}
= {x(t) | 0 ≤ t ≤ (k − 1)TΓ, x((k − 1)TΓ) = Lη(γ; η)}.

We then start a new continuation run, where we solve

u̇ = kTΓ F (u),

with the same boundary condition (3.3) as before. The continuation can be started by con-
catenating the solutions ulast and uΓ and rescaling them back to the [0, 1] interval. That is,
we define

(3.5) u(t) =

{
ulast(k t), 0 ≤ t ≤ k−1

k ,

uΓ(k (t− 1) + 1), k−1
k < t ≤ 1.

Of course, the concatenation contains a small discontinuity (or jump) at t = k−1
k , but as

a seed solution for Newton’s method, this will typically converge to a proper solution and
successfully start the continuation. If the convergence fails because the discontinuity is too
large, then more advanced techniques based on Lin’s method can be employed; see [33] and
references therein for details.

Our method is implemented in AUTO [11] using the Python interface, such that it au-
tomatically computes an arbitrary number of isochrons uniformly distributed in time or arc-
length along the periodic orbit up to a prespecified number of returns; the algorithm Isochron

for computing one isochron reads in pseudocode as follows.
Algorithm Isochron.

Input : F , right-hand-side of vector field stored in AUTO file F.f;
Γ, periodic orbit starting at γ = ΦθTΓ(γ0) for some θ ∈ [0, 1);

stored in AUTO file s.Γ with parameters as follows:
γ ∈ R

2, phase point on Γ and
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�ns
γ ∈ R

2, normalized linear approximation of I(γ), define Lη(γ),

δ ∈ R, distance along �ns
γ is initially 0, can be accessed as PAR(25);

Global variables:
η, maximal distance on �ns

γ ;

k, number of iterates of ΦTΓ(·) to be considered;
Output : branch of global isochron I(γ) up to kth iterate of ΦTΓ(·)

stored in AUTO file b.iso with each point stored as (PAR(26),PAR(27));
Begin
δ = 0

# Step 1: Continuation from Γ until distance δ along �ns
γ reaches η

run(equation=’F’, start=’s.Γ’, δ, η)
# last computed solution (where δ = η) of first iterate is stored in file s.last
save(’s.last’)

# computed branch forms first part of global isochron I(γ)
save(’b.iso’)

# Step 2: Restart with second and higher iterates
for i in range(2, k)

# Append Γ in s.Γ to last computed solution in s.last to continue
s.concat = Concatenate(s.last, s.Γ)
# Increase the number of mesh intervals accordingly
NTST = NTSTlast + NTSTΓ

δ = 0

run(equation=’F’, start=’s.concat’, δ, η)
# last computed solution (where δ = η) of ith iterate is stored in file s.last
save(’s.last’)

# computed branch forms extension of global isochron I(γ)
append(’b.iso’)

End.
The procedure Concatenate in Isochron performs the concatenation (3.5). The con-

tinuation uses an AUTO constant file as given in Table 1, which is the constants file for the
example of the reduced Hodgkin–Huxley model in section 4. Here, standard AUTO notation
is used for the constants. In particular, NTST and NCOL specify the number of mesh intervals

Table 1
Accuracy parameters in the AUTO [11] constants file as used in the example of the reduced Hodgkin–Huxley

system in section 4. Note that the number of mesh intervals NTST increases with each iteration of the return
map ΦΓT (·). We refer to the AUTO manual [11] for further details on the meaning of these parameters.

NDIM = 3, IPS = 4, IRS = 0, ILP = 0
ICP = [PAR(25), PAR(26), PAR(27)]
NTST = 100, NCOL = 4, IAD = 3, ISP = 0, ISW = 1, IPLT = 0, NBC = 4, NINT = 0
NMX = 5000, NPR = 1, MXBF = 0, IID = 2, ITMX = 8, ITNW = 5, NWTN = 3, JAC = 0
EPSL = 10−8, EPSU = 10−8, EPSS = 10−6

DS = 10−5 = 0.1 η, DSMIN = 10−8, DSMAX = 102, IADS = 1
THL = {PAR(11) : 0.0}, UZR = {PAR(25) : [−η, η]}, STOP = [’UZ1’]
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and collocation points used in AUTO to compute the periodic orbit Γ. Initially, NTST equals
the number NTSTΓ of mesh intervals used for the computation of Γ. The kth iterate of ΦΓT (·)
uses NTST = k × NTST mesh intervals, due to the concatenation of the end solution ulast

of the (k − 1)st iterate with the solution uΓ of the periodic orbit. The solution of the BVP
is computed with a Newton/Chord method using a maximum of ITNW iterates, where the
Jacobian matrix is kept fixed after NWTN iterates. The convergence criterion is EPSL for the
parameters and EPSU for the solution components; the stop criterion |δ| = η is determined
with accuracy EPSS using a maximum of ITMX iterates. The continuation starts with a step
size DS, which should be less than η.

3.2. Computational accuracy. While a complete error analysis of our method is beyond
the scope of this paper, we include here a brief discussion of the accuracy of the computa-
tions. The computational error arises from two sources: the fact that we start on the linear
approximation of the isochron and the fact that iterates of the map ΦTΓ(·) must be calcu-
lated numerically. These two errors can be analyzed separately, and the combined influence
is typically measured assuming that the numerical integration error is negligible compared to
the error from starting on the linear approximation. However, particularly in systems with
multiple time scales, this underlying assumption can easily be violated.

We calculate iterates of ΦTΓ(·) by solving BVPs with the method of orthogonal collocation
with piecewise polynomials, as implemented in AUTO [11]. The order of accuracy of the
orthogonal collocation method is NCOL with superconvergence at the end points of the mesh
intervals and the parameters [3, 10]. If we assume that the discretization used to obtain ΦTΓ(·)
is sufficiently accurate, then the accuracy of the isochrons is fully controlled by the maximal
distance η on the linear approximation. Note that the computation of isochrons is the same as
computing a stable manifold; hence the same error analysis applies. However, the associated
fixed point, that is, the phase point γ ∈ Γ for which the isochron is computed, is not an isolated
fixed point of ΦTΓ(·). Hence, γ is not hyperbolic, and we must adapt the error analysis given
in [30] for manifolds of hyperbolic fixed points; specifically, we must take into account that
the local contraction rates on the manifold are algebraic, rather than exponential, and follow
the analysis in [35] for manifolds of nonhyperbolic equilibria of vector fields.

In practice, it is very difficult to estimate the computational error a priori as well as a
posteriori. For example, we have no explicit error bounds for the computations of isochrons for
the reduced Hodgkin–Huxley model in the next section. However, the numerical computations
show a consistency that is maintained (at least) up to the arclengths of our computations: the
numerically computed isochrons do not intersect themselves or each other, even if a very large
number are computed to show the foliation of the plane. We believe that this consistency is
a powerful argument that the resulting structure of the isochrons is correct; see [30] for an
example where this argument is used to illustrate the contrary, because the structure that
results from computing the invariant manifolds violates the theory.

4. Isochrons of the reduced Hodgkin–Huxley model. To illustrate the method for com-
puting isochrons, we consider a two-dimensional reduced model of the Hodgkin–Huxley equa-
tions [26]. The model is based on the dynamical interplay between ionic conductances and
electrical activity using the voltage, V , and three gating variables, denoted m, n, and h, for
the conductance channels. In the reduced planar model the gating variable m is replaced by
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its quasi–steady-state function m∞(V ), and the gating variable h is replaced by 0.8−n, which
is a reasonable approximation of its average value; see [28, 29, 34]. The reduced model of the
Hodgkin–Huxley equations can then be written as the vector field

(4.1)

⎧⎪⎪⎨⎪⎪⎩
V̇ =

1

C

[
Iapp − ḡNa [m∞(V )]3 (0.8 − n) (V − VNa)

− ḡK n4 (V − VK)− gL(V − VL)
]
,

ṅ = αn(V ) (1− n)− βn(V )n,

where

αn(V ) =
0.01(V + 55)

1− exp[−(V + 55)/10]
, βn(V ) = 0.125 exp

(−(V + 65)

80

)
,

αm(V ) =
0.1(V + 40)

1− exp[−(V + 40)/10]
, βm(V ) = 4 exp

(−(V + 65)

18

)
,

m∞(V ) =
αm(V )

αm(V ) + βm(V )
,

and the parameters are given by

ḡNa = 120, ḡK = 36, gL = 0.3, Iapp = 10,

VNa = 50, VK = −77, VL = −54.4, C = 1.

System (4.1) has a stable periodic orbit Γ with period TΓ ≈ 11.8463; it is shown in Figure 1.
Panel (a) gives the time series of Γ for the V -coordinate. The time series illustrates that Γ is
a relaxation oscillation organized by the much slower dynamics of n relative to the dynamics
of V . Panel (b) shows Γ in (V, n)-space along with the nullclines V̇ = 0 and ṅ = 0 in green and
red, respectively. The nullclines intersect approximately at x∗ := (V, n) ≈ (−59.6044, 0.4026),
which is the only equilibrium of (4.1). This equilibrium is a source with complex eigenvalues.

The slow-fast nature of (4.1) also has an effect on the location of the isochrons. Figure 2
shows the isochrons of one hundred points γi = ΦθiTΓ(γ0) ∈ Γ with phases θi = i

100 , for
i = 0, 1, . . . , 99. The isochrons are colored with a cyan-to-magenta color gradient with respect
to their phases θi. Here, we associate the zero phase (cyan) with the point γ0 := (V, n) ≈
(44.7064, 0.4597) on Γ where V is maximal; note that γ0 must then lie on the V -nullcline. As
can be seen in Figure 2, most isochrons start at points on Γ that are located close to the left
branch of the V -nullcline (Γ intersects the left branch of the V -nullcline at only one point);
this means that the phase changes most rapidly with respect to arclength along this segment
of Γ. The density of isochrons in this region also nicely illustrates the fact that the foliation
of isochrons indeed covers the entire phase plane.

Each isochron in Figure 2 has two branches, one on the outside of Γ and one on the inside.
The branches on the outside of Γ go off to infinity with asymptotes that are almost horizontal.
Indeed, the dynamics of points outside and far away from Γ is dominated by the V -velocity,
and their asymptotic phases are mostly determined by their n-coordinates. Since the isochrons
foliate the entire basin of attraction of Γ, which is the plane minus the equilibrium x∗, the
branches of the isochrons inside Γ must end up at x∗, which is the phaseless set of (4.1).
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Figure 1. The stable periodic orbit Γ (gray) of the reduced Hodgkin–Huxley model (4.1). Panel (a) shows
the time series of the V -coordinate of Γ, which emphasizes the slow-fast nature of the model; panel (b) shows Γ
in phase space along with the V -nullcline (green) and the n-nullcline (red) that intersect at the source equilibrium
x∗ (not labeled).

However, Figure 2 seems to show isochrons that bend away from x∗, and the accumulation
onto x∗ is not at all obvious. In the next section we focus on the specific behavior of a single
isochron to investigate this seeming contradiction.

4.1. The 0-phase isochron. The isochron branches inside Γ do end up at the equilib-
rium x∗, but the accumulation process is rather complicated. Figure 3 shows the 0-phase
isochron of Γ, that is, for the point γ0 with maximal V that lies on the intersection of Γ
with the V -nullcline. We colored I(γ0) such that its color changes from red to blue as the
arclength distance to γ0 increases. The linear approximation of the isochron is almost hori-
zontal here, and we found �vγ0 := (0.99999988,−0.00013711). Figure 3(a) shows the isochron
I(γ0) computed up to the time-(4TΓ) map for a maximum distance of δ = η = 10−4 on the
linear approximation. By moving a point along I(γ0) starting at γ0, we illustrate with the
accompanying animation (77724 01.gif [393KB]) how the inside branch approaches x∗. The

http://link.aip.org/mm/SJADAY/090777244/77724_01.gif
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Figure 2. A total of 100 isochrons uniformly distributed in time along the stable periodic orbit (gray) of
the reduced Hodgkin–Huxley model (4.1), colored according to their phases. The 0-phase point γ0 is labeled, and
the V -nullcline (green) and the n-nullcline (red) are included for reference.

equilibrium x∗ is not labeled in the figure, but it lies at the intersection of the two nullclines.
In panel (b), the n-coordinate along I(γ0) is plotted versus its arclength, where the arclength
is 0 at γ0. We see that I(γ0) initially stays almost horizontal (it is roughly linear) until it
comes close to the V -nullcline. Then, instead of approaching x∗ directly, I(γ0) bends around
and moves away from x∗ while it closely follows the V -nullcline. At some maximum value
n ≈ 0.6802, where the arclength of I(γ0) is a little over 100, the isochron bends back virtually
on top of itself toward x∗. We call this behavior of the isochron an “excursion.” After this
first excursion, I(γ0) makes a counterclockwise loop around x∗ before moving back up along
the V -nullcline. During this second excursion, I(γ0) does not come as high as during the first,
reaching n ≈ 0.5517. On the way down, I(γ0) first makes a clockwise loop around x∗ before
turning around, making a counterclockwise loop, and moving back up for the third excursion.
Figure 3(c) shows an enlargement near x∗, where we can see the switches to counterclockwise
loops as relatively sharp turns, which we call “boomerang turns.” The continuation up to the
time-(4TΓ) map gives three excursions and three boomerang turns, which form a spiral pattern
that converges to x∗. We find more excursions that involve an increasingly larger number of
clockwise loops before a boomerang turn if we perform continuation for the time-(kTΓ) map
with k > 4. Panel (d) shows the value of V̇ versus the arclength of I(γ0) to illustrate that
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Figure 3. The 0-phase isochron I(γ0) of the point γ0 on the stable periodic orbit (gray) of the reduced
Hodgkin–Huxley model (4.1) is colored with a red-to-blue color gradient with respect to arclength distance to γ0.
Panel (a) shows I(γ0) in the phase plane, where the V -nullcline (green) and the n-nullcline (red) are included
for reference; panel (b) shows the n-coordinate of I(γ0) versus its arclength—this panel also serves as a colorbar
for the figure; panel (c) is an enlargement to illustrate the accumulation onto the equilibrium x∗ (not labeled);
panel (d) shows the value of V̇ along I(γ0) versus its arclength, where V̇ > 0 below the V -nullcline (green) in
panel (c) and V̇ < 0 above it. The associated animation (77724 01.gif [393KB]) shows a point moving along
the inside branch of I(γ0).

I(γ0) does not actually lie on the V -nullcline; the V -nullcline is the horizontal 0-axis (green)
in Figure 3(d). In fact, I(γ0) intersects the V -nullcline only when it loops around x∗.

4.2. Global properties of the 0-phase isochron. The fact that we are able to compute
very large portions of the isochron I(γ0) as a one-dimensional curve parameterized by arc-
length allows us to study its properties in unprecedented detail. The excursions of I(γ0)
create curve segments that are extremely close to each other. By definition, each point on
these curve segments arrives under the flow on the linear approximation Lη(γ0) with η = 10−4

http://link.aip.org/mm/SJADAY/090777244/77724_01.gif


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1216 HINKE M. OSINGA AND JEFF MOEHLIS

−80 −60 −40 −20 0 20 40
0.3

0.4

0.5

0.6

0.7

0.8

−45.0 −44.5 −44.0 −43.5

0.58

0.59

0.60

0 0.25 0.5 0.75 1

−80

−60

−40

−20

0

20

40

V

n
(a)

V

n

V̇ = 0

(b)

V

t/TΓ

(c)

Figure 4. Pairs of jump-right and jump-left orbits at V = −45.0 and V = −40.0 on the 0-phase isochron
(cyan) of the reduced Hodgkin–Huxley model (4.1). All four orbit segments lie on Lη(γ0) with η = 10−4

after one period. Panel (a) shows the phase plane; panel (b) is an enlargement illustrating that a jump-
left orbit lies to the right of the V -nullcline (green); panel (c) shows the time series of V for these four orbit
segments over one period, overlaid on the corresponding time series for the periodic orbit (gray). The associated
animations (77724 02.gif [289KB] and 77724 03.gif [174KB]) show the in-phase convergence of a jump-right
orbit at V = −40.0 and a jump-left orbit at V = −45.0, respectively.

at exactly the same time modulo the period TΓ. Hence, each point identifies a unique or-
bit segment in the one-parameter family of orbit segments that solves the BVP (3.2)–(3.3).
Figure 4 shows four such orbit segments associated with four points along I(γ0); they form
two pairs, one with V = −45.0 and one with V = −40.0, that lie on corresponding pairs of
segments of the first excursion. The isochron I(γ0) has the same color as in Figure 2, namely,
cyan. The phase portrait in panel (a) illustrates that one of the orbit segments in each pair
suddenly moves to the left as it converges to Γ, while the other moves to the right; we call
them jump-left and jump-right orbits, respectively. This does not necessarily mean that their
initial conditions must lie on opposite sides of the V -nullcline, as is illustrated in Figure 4(b)
for the pair with V = −45.0. Indeed, the jump-left orbit closely follows the V -nullcline and
moves to the right until it crosses the V -nullcline before making the jump. Figure 4(c) shows
the time series of the orbit segments; here, the jump-right orbits move up and the jump-left
orbits move down before converging to Γ. These moves are indeed very fast in time, which is

http://link.aip.org/mm/SJADAY/090777244/77724_02.gif
http://link.aip.org/mm/SJADAY/090777244/77724_03.gif
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why we refer to them as jumps. The initial plateaus in panel (c), particularly of the jump-left
orbits, illustrate how the orbit segments linger close to the repelling branch of the V -nullcline
in order to jump at exactly the right moment to meet Lη(γ0) after period TΓ; see also the
animations 77724 02.gif [289KB] and 77724 03.gif [174KB].

Figure 4(b) shows that pairs of jump-right and jump-left orbits that start with the same
V -coordinate do not straddle the repelling branch of the V -nullcline. However, they must
straddle the corresponding repelling slow manifold. A repelling slow manifold Sr

ε consists of
all points with forward trajectories that stay O(ε) close to the repelling branch of the critical
manifold for O(1) time, delimited by folds with respect to the fast flow; here, 0 < ε 	 1
represents the (local) ratio between the slow and fast time scales. For the reduced Hodgkin–
Huxley model (4.1) the critical manifold is the one-dimensional V -nullcline, with the repelling
branch in between its local maximum and minimum. We refer to [2, 8, 14] for more details on
slow manifolds and their effects on the dynamics of the system. Since a slow manifold has the
same dimension as the corresponding critical manifold, (4.1) has a one-dimensional repelling
slow manifold Sr

ε that consists of a single orbit segment very close to the repelling branch of
the V -nullcline. Hence, Sr

ε is an orbit segment, and neither jump-left nor jump-right orbits
can cross it. The 0-phase isochron I(γ0) winds around Sr

ε , with jump-left orbits starting from
points on I(γ0) that lie to the left of Sr

ε and jump-right orbits starting from points on I(γ0)
that lie to the right of it. Note that the points that correspond to jump-left orbits must lie
closer to Sr

ε than those that correspond to jump-right orbits, because they linger near the
V -nullcline for longer.

The second excursion of I(γ0) consists of two segments that lie even closer to Sr
ε . Points

on these segments correspond to orbit segments that reach Lη(γ0) after two periods TΓ. This
is illustrated in Figure 5. Panels (a) and (b) show phase portraits of two pairs of jump-right
and jump-left orbits at V = −55.0 and V = −50.0, respectively. These orbits must follow Sr

ε

for a relatively longer time, so that they reach Lη(γ0) only after the second full period; see
their time series shown in panel (c). As in Figure 4(c), the jump-left orbits have the longest
plateaus in Figure 5(c), and the jump-right orbits almost reach Lη(γ0) already during the first
period.

The change from jump-right to jump-left orbits is continuous, by which we mean that the
segments on I(γ0) that correspond to jump-right and jump-left orbits are separated by short
segments along which the concept of a left or right jump is not well defined. Indeed, close to
the maximum of an excursion, I(γ0) intersects Sr

ε . The repelling slow manifold Sr
ε is really a

segment of an orbit xr = xr(t) that converges to Γ. While it is not clear where xr ceases to
correspond to Sr

ε , the points on I(γ0) near its intersection with Sr
ε correspond to orbits that

closely follow xr, and they do not really “jump.”
As I(γ0) loops around x∗, there is no nearby repelling slow manifold, although the orbit xr

that corresponds to Sr
ε continues all the way backward in time to x∗. The points on segments

of I(γ0) near x∗ also correspond to orbit segments that cannot easily be distinguished as jump-
right or jump-left orbits. Figure 6 illustrates the behavior of the orbits generated from points
on a part of I(γ0) that loops around x∗. We picked four orbit segments that all start on I(γ0)
with V = −59.2 and end on Lη(γ0) with η = 10−4 after two periods TΓ; the orbit segments
are colored purple, pink, khaki green, and orange in the order of their initial conditions on
I(γ0). The orbit segments are shown in Figure 6(a), with an enlargement near x∗ in panel (b)

http://link.aip.org/mm/SJADAY/090777244/77724_02.gif
http://link.aip.org/mm/SJADAY/090777244/77724_03.gif
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Figure 5. Pairs of jump-right and jump-left orbits at V = −55.0 and V = −50.0 on the 0-phase isochron
(cyan) of the reduced Hodgkin–Huxley model (4.1). All four orbit segments lie on Lη(γ0) with η = 10−4 after two
periods. Panel (a) shows the phase plane, with an enlargement in panel (b); panel (c) shows the time series
of V for these four orbit segments over two periods, overlaid on corresponding time series for the periodic
orbit (gray). The associated animations (77724 04.gif [357KB] and 77724 05.gif [354KB]) show the in-phase
convergence of a jump-right orbit at V = −55.0 and a jump-left orbit at V = −50.0, respectively.

and their time series in panel (c). Particularly in Figure 6(c), it is hard to decide whether
the orbit segments actually jump. Their initial conditions are shown in Figure 6(b); note that
even in this enlargement the first (purple) and last (orange) of these points lie virtually on
top of each other. Following I(γ0) down from the top-right in Figure 6(b) (which is covered
by orange from the last orbit), the first (purple) orbit starts at the end of the first excursion
just before I(γ0) makes a counterclockwise loop around x∗; this segment of the first excursion
corresponds to jump-left orbits. The purple orbit does turn to the left, but it makes only a
small loop around x∗ before moving to the right instead. Similarly, the second (pink) orbit
starts immediately after the first boomerang turn of I(γ0) and makes a left turn in the sense
that it loops around x∗ before moving right. The third (khaki green) orbit segment starts into
the counterclockwise loop and traces I(γ0) back for a while before making a right jump; see
Figure 6(a). One could say that this (khaki green) orbit closely follows the orbit xr, and, in
fact, apart from the boomerang turns, there is a clear spiraling curve on I(γ0) that seems to
trace xr. Indeed, part of the last (orange) orbit segment lies almost on top of the khaki green

http://link.aip.org/mm/SJADAY/090777244/77724_04.gif
http://link.aip.org/mm/SJADAY/090777244/77724_05.gif
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Figure 6. The transition from jump-left to jump-right orbits as the 0-phase isochron (cyan) of the reduced
Hodgkin–Huxley model (4.1) loops around the equilibrium. Four orbit segments are shown, each with V = −59.2.
All four orbit segments lie on Lη(γ0) with η = 10−4 after two periods. Panel (a) shows the phase plane, with an
enlargement in panel (b); panel (c) shows the time series of V for these four orbit segments over two periods,
overlaid on the corresponding time series for the periodic orbit (gray).

orbit segment, but its starting point lies only past the loop around x∗. This orbit segment
has the distinct features of a jump-right orbit, marking the start of the second excursion.

The second excursion of I(γ0) must necessarily intersect the repelling slow manifold Sr
ε , or

more precisely, xr, at a point that lies exactly one period TΓ earlier on xr than the intersection
point of the first excursion of I(γ0) with xr. We can deduce from Figure 6 that the transition
from the second excursion to the third excursion of I(γ0) will happen in much the same way as
the transition illustrated in Figure 6 for the first excursion. Note that the second boomerang
turn on I(γ0), shown in Figure 6(b), is a rotated and contracted version of the first boomerang
turn; similar transitions with similar further rotated and contracted boomerang turns happen
for all subsequent excursions; see also Figure 3(c), where the first three boomerang turns of
I(γ0) are colored pale green, light blue, and dark blue, successively.

4.3. Properties of all global isochrons. The previous two sections described the behavior
of the single isochron for the point γ0 with zero phase. Any other point γ on the periodic
orbit Γ of the reduced Hodgkin–Huxley model (4.1) will have a different isochron associated
with a different phase θ(γ). However, recall from (2.2) that the isochrons are diffeomorphic
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transformations of I(γ0); namely, this means that they are foliations of the stable manifold
of Γ. Indeed, if γ = ΦθTΓ(γ0), then

I(ΦθTΓ(γ0)) = ΦθTΓ(I(γ0)).

In other words, I(γ) can be obtained by integrating each point on I(γ0) for the fixed time
θ TΓ, where θ = θ(γ) is the phase of γ. Note that forward integration leads to a contraction
toward Γ. Since I(γ0) is computed up to a finite arclength, the transformation of I(γ0) under
the flow ΦθTΓ will lead to an approximation of I(γ) that has a shorter arclength. For θ close
to 1, the shortening is O(1) due to the large difference in time scales of the system.

We compute all isochrons I(γ) in the same way as for I(γ0); that is, we compute the stable
manifoldW ss(γ) as the invariant manifold of the time-TΓ map that intersects the point γ on Γ.
This means that the accuracy of I(γ) is the same as that of I(γ0), and, in particular, we start
with the linear approximation Lη(γ) at γ using the same bound η = 10−4. Figure 7 shows
an example of the isochron I(γ30) with γ30 = Φθ30TΓ(γ0), where θ30 = 30

100 = 0.3; this means
that γ30 := (V, n) ≈ (−72.7092, 0.5480), and the direction tangent to I(γ30) is approximately
given by the vector �vγ30 := (−0.99999972, 0.00075031). As for I(γ0), we perform continuation
up to the time-(4TΓ) map and color I(γ30) such that its color changes from red to blue as
the arclength distance to γ30 increases. The figure is organized in the same way as Figure 3.
Panel (a) shows I(γ30) in (V, n)-space along with the nullclines V̇ = 0 (green) and ṅ = 0
(red). The accompanying animation (77724 06.gif [221KB]) illustrates how the inside branch
of I(γ30) approaches the equilibrium x∗ at the intersection of the two nullclines; see also the
enlargement in panel (c). Figure 7(b) shows the n-coordinate of I(γ30) versus its arclength.
The isochron first moves toward x∗, but then it makes a counterclockwise loop around x∗

and starts making excursions, similar to those of I(γ0), that closely follow the V -nullcline,
or more precisely, the slow manifold Sr

ε that lies very close to the V -nullcline. The first two
excursions are clearly seen in Figure 7(b); the first peak reaches n ≈ 0.5860, which lies between
the peaks from the first (n ≈ 0.6802) and second (n ≈ 0.5517) excursions of I(γ0), and the
second peak reaches n ≈ 0.4669. In Figure 7(c) we observe similar rotations around x∗ and
boomerang turns marking transitions from clockwise to counterclockwise rotations, as shown
in Figure 3(c) for I(γ0). Figure 7(d) shows the value of V̇ versus the arclength of I(γ30).
This figure also helps to understand the behavior, in particular near x∗ in panel (c); below
the V -nullcline in panel (c) we have V̇ > 0, and V̇ < 0 on the other side of the V -nullcline.
Note that the first two crossings of the V -nullcline in Figure 7(d) happen at points on I(γ30)
that lie before the points shown in Figure 7(c). That is, I(γ30) starts from γ30 in Figure 7(a)
in the regime V̇ < 0, and it crosses the V -nullcline at a short arclength distance from γ30 just
before it enters a neighborhood of x∗. The first counterclockwise loop around x∗ is the first
downward peak in Figure 7(d) after about arclength 30 of I(γ30).

We calculated all one hundred isochrons I(γi) that are shown in Figure 2 in the same way;
here γi = ΦθiTΓ(γ0), where θi =

i
100 for i = 0, 1, . . . , 99. These isochrons all have properties

similar to those for I(γ0) and I(γ30); namely, apart from the initial approach to x∗, each
isochron makes a series of excursions followed by boomerang turns as it converges to x∗.

4.4. Fundamental domains of isochrons. There clearly is a strong interaction between
the isochrons of the reduced Hodgkin–Huxley model (4.1) and its repelling slow manifold Sr

ε .

http://link.aip.org/mm/SJADAY/090777244/77724_06.gif
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Figure 7. The isochron I(γ30) of the point γ30 with phase θ30 = 30
100

on the periodic orbit (gray) of the
reduced Hodgkin–Huxley model (4.1) is colored with a red-to-blue color gradient with respect to arclength distance
to γ30. Panel (a) shows I(γ30) in the phase plane, along with the V -nullcline (green) and the n-nullcline (red);
panel (b) shows the n-coordinate of I(γ30) versus its arclength—this panel also serves as a colorbar for the
figure; panel (c) is an enlargement to illustrate the accumulation onto the equilibrium x∗ (not labeled); panel
(d) shows the value of V̇ along I(γ30) versus its arclength; compare also Figure 3. The associated animation
(77724 06.gif [221KB]) shows a point moving along the inside branch of I(γ30).

Each isochron makes a series of excursions that involve oscillations around Sr
ε . In this section

we study this interaction in detail.
Let us focus again on the isochron I(γ0) shown in Figure 3 and consider the location of

the excursions of I(γ30), shown in Figure 7, relative to those of I(γ0). As mentioned before,
the first excursion of I(γ30) reaches a maximum n ≈ 0.5860 that lies between the maxima
n ≈ 0.5517 and n ≈ 0.6802 of the second and first excursions, respectively, of I(γ0). Due to
the steepness of the V -nullcline here, we can assume that the intersection points of I(γ0) and
I(γ30) with Sr

ε lie quite close to these maxima. Recall that Sr
ε is, in fact, a segment of the

http://link.aip.org/mm/SJADAY/090777244/77724_06.gif
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Figure 8. The isochrons I(γ0) (cyan) and I(γ30) (pale blue) of the reduced Hodgkin–Huxley equations
(4.1) together with the orbit segment x̂r (black) that contains the repelling slow manifold Sr

ε . Panel (a) shows
the isochrons and x̂r in the phase plane, and panel (b) shows an enlargement near the equilibrium x∗ (not
labeled).

(special) orbit xr = xr(t) that comes from x∗. Let us denote the first three intersection points
of I(γ0) with xr(t) by r1, r2, and r3, and let us assume that time along xr(t) is chosen such
that r2 = xr(0). Then we have

r1 = xr(TΓ) = ΦTΓ(r2) and

r3 = xr(−TΓ) = Φ−TΓ(r2).

The first two intersection points of any isochron I(γ) with xr(t) are then easily found using
the phase θ(γ) = θ of γ; namely, these are ΦθTΓ(r2) and Φ(θ−1)TΓ(r2). Note that this holds for
any θ ∈ [0, 1]. Hence, the segment between xr(0) and xr(TΓ) defines a fundamental domain
that consists of intersection points of all isochrons of Γ such that the first intersection point
maps to the last intersection point under ΦTΓ(·). The preimage of this fundamental domain
is the segment between xr(−TΓ) and xr(0). Note that all isochrons of Γ must pass this entire
segment exponentially closely on either side in order to reach and return from the fundamental
domain. In fact, we may define the entire orbit segment x̂r := {xr(t) | −∞ < t ≤ 0} as a
curve along which all isochrons of Γ pass exponentially closely at least twice.

Figure 8 shows both isochrons I(γ0) and I(γ30) in one figure together with an approxima-
tion of x̂r (black curve). The isochron I(γ0) is colored cyan and I(γ30) is colored pale blue,
which are the same colors as in Figure 2. The view in panel (a) shows that large parts of the
two isochrons lie very close together, virtually on top of x̂r. Indeed, even the enlargement
in Figure 8(b) hardly distinguishes the curves; only the boomerang turns that correspond
to transitions from clockwise to counterclockwise rotations are different. Moreover, both iso-
chrons make at least two excursions along x̂r, and the second excursion begins and ends (well)
before the first (cyan) boomerang turn of I(γ0). Hence, what seems to be a single curve that
leaves Figure 8(b) below the V -nullcline through the side {V = −58.2} is, in fact, at least four
curves, not counting x̂r. We can identify the segment just before the first (cyan) boomerang
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Figure 9. A total of 100 isochrons (cyan-to-magenta color gradient with respect to their phases) uniformly
distributed in time along the stable periodic orbit (gray) of the reduced Hodgkin–Huxley model (4.1). Shown
are two successive enlargements near the equilibrium x∗ (not labeled). The black curve represents the orbit
segment x̂r.

turn of I(γ0) (which corresponds to the end of its first excursion) and the segment immedi-
ately after the first clockwise rotation of I(γ0) around x∗ (which corresponds to the start of
its second excursion) as marking a strip on the side {V = −58.2} through which all these
curves pass.

We can give similar arguments for any isochron I(γ) with phase θ(γ) = θ. Indeed, I(γ)
must reach the point Φ(θ−1)TΓ(r2), associated with its phase θ, that lies in between r3 and r2
on x̂r. Moreover, in doing so it cannot intersect another isochron. Therefore, all isochrons
must pass through the strip bounded by the first and second excursions of I(γ0). This means
that the seemingly single curve that leaves Figure 8(b) below the V -nullcline through the side
V = −58.2 consists of infinitely many curves!

Figure 9 presents a different illustration of the phenomenon. Shown are two successive
enlargements near the equilibrium x∗ of Figure 2. The approximation of x̂r (black curve) is
overlaid in both panels. We observe a self-similar structure of the isochrons in this neighbor-
hood of x∗, and the foliation of the phase space by the isochrons appears to be organized by
a contracting transformation that is reminiscent of a λ-lemma [37]; certainly, the successive
points Φ−kTΓ(r2) contract to x∗ in accordance with the λ-lemma.

Winfree conjectures in [45, appendix, Conjecture C] that any isochron must come arbitrar-
ily close to any point in the phaseless set, that is, the boundary ∂B of the basin of attraction
B(Γ) of Γ. For our example, this means that all isochrons come arbitrarily close to the equi-
librium x∗, which is the only point in the phaseless set. Figure 8 illustrates that x̂r, which lies
in the interior of B(Γ), is an “almost phaseless set,” because all isochrons come exponentially
close to x̂r, rather than arbitrarily close.

Our findings are consistent with Winfree’s conjecture, but they also show that extreme
phase sensitivity can occur on a codimension-one set in the interior of B(Γ). To be more
precise, while all isochrons are exponentially close to (the left of) the segment on x̂r between
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xr(0) and xr(TΓ), they are even closer (on both sides) to the segment between xr(−TΓ) and
xr(0), and again even closer to the segment between xr(−2TΓ) and xr(−TΓ), and so on. Of
course, these segments on x̂r between xr(−kTΓ) and xr(−(k − 1)TΓ) for k = 1, 2, . . . become
successively shorter and lie successively closer to x∗. However, the arclength of the segment
between xr(−TΓ) and xr(0) decreases with the ratio ε of the slow and fast time scales and is
zero in the limit ε → 0. Note that a change in the ratio between two time scales alters the
slow manifold Sr

ε—it lies closer to the V -nullcline as ε decreases. For each ε we can define a
corresponding orbit segment xr

ε(t) such that xr
ε(0) is equal to the second intersection of I(γ0)

with xr
ε(t). It is important to realize that the first intersection of I(γ0) with xr

ε(t) will always
be well away from x∗; in fact, this point will move further away in arclength along xr

ε(t),
rather than closer to x∗ as ε decreases. If we consider an ε-dependent family of the reduced
Hodgkin–Huxley equation, then for arbitrary distance ρ and arbitrary k ∈ N we can choose
0 < ε 	 1 such that all isochrons will pass within distance ρ of any point on the segment
{xr

ε(t) | −∞ < t ≤ −kTΓ}.
5. Discussion. We have illustrated with the example of a reduced Hodgkin–Huxley model

that isochrons of planar multiple-time-scale systems can be organized into a remarkably com-
plex structure; we believe that this phenomenon is not specific to the reduced Hodgkin–Huxley
model. Indeed, Winfree provides a computer-generated sketch of the isochrons of a FitzHugh–
Nagumo model that show similar “boomerang turns” organized in the same way; see Box C
on pages 170–172 in [46]. As predicted by the theory [21, 45], the isochrons foliate the plane,
with one side extending to infinity and the other converging to the sole singularity at the equi-
librium x∗ of the reduced Hodgkin–Huxley model. However, the convergence to this phaseless
set is by no means immediate. The isochrons make several “excursions” along the repelling
slow manifold of the reduced Hodgkin–Huxley model. During each such excursion, the iso-
chron passes both to the left and to the right of the repelling slow manifold, corresponding to
trajectories that converge to the periodic orbit via a left or a right jump, respectively, along
the fast direction of the system.

The geometry of the isochrons in a neighborhood of the equilibrium x∗ for the reduced
Hodgkin–Huxley model nicely illustrates the extreme phase sensitivity that exists in the neigh-
borhood of a phaseless set. We found that the neighborhood of the repelling slow manifold for
the reduced Hodgkin–Huxley model is also a region of phase space which will display phase
sensitivity, even though it is not a true phaseless set. The structure of the isochrons near the
repelling slow manifold is similar to the behavior of isochrons near a one-dimensional basin
boundary, to which all isochrons come arbitrarily close [45, 21], and reminiscent of the sketch
by Guckenheimer [21] showing the limiting structure of two-dimensional isochrons on the two-
dimensional boundary of a three-dimensional basin of attraction. Indeed, our calculations
illustrate that such structures exist in the interior of a basin of attraction as the isochrons
accumulate near the repelling slow manifold; we call the repelling slow manifold an “almost
phaseless set,” because the density of the isochrons is not arbitrarily small but depends on
the ratio ε 	 1 between the slow and fast time scales of the system. (In the limit ε → 0, the
repelling slow manifold converges to a phaseless set.)

The isochrons are important for understanding the response properties of an oscillator
to a stimulus. Local approximations to isochrons near the periodic orbit are related to the
infinitesimal phase response curve, which can be interpreted as the phase shift of an oscil-
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lation due to an infinitesimal, impulsive perturbation as a function of the phase at which
the perturbation is applied [4, 19, 23]. Global isochrons can be used to understand phase
response curves for finite perturbations (cf. [36]) or phase response surfaces which are useful
for situations in which an oscillator is stimulated repeatedly before it relaxes back to the limit
cycle attractor [22]. Winfree [45] noted that a system near a phaseless set could have its
phase randomized by small noise, an idea which has recently been applied, for example in [7],
to desynchronize a population of neurons; in particular, the phase of each neuron is altered
randomly after the system is driven to the phaseless set using minimal-time optimal control
with an amplitude-constrained input current. Our results suggest that a controller such as
that considered in [7] could target the repelling slow manifold rather than the equilibrium x∗

in order to desynchronize a population of neurons through phase randomization.
While isochrons have received the most attention in the context of biological oscillators,

the concept of an isochron is also important in power electronics. Power generation systems
consist of several generating units that operate in parallel. Before a new unit, for example, a
wind turbine or solar panel, can be connected to a utility network, one must ensure precise
amplitude, frequency, and phase conditions. In particular, phase agreement between the volt-
ages of the generator and the power system at the instant of connection is critical because of
the electromagnetic transients that follow [20, 44]. To put it in the language of isochrons, the
connection of a new unit causes a perturbation of the system away from its stable periodic or-
bit. To ensure grid synchronization, the perturbed initial condition must lie on the isochron of
the phase at the moment the connection is made. While automatic synchronization methods
exist, their performance is not always reliable, and most systems use a combination of manual,
semiautomatic, and automatic synchronizing schemes [42]. The reliability of automatic syn-
chronization methods is related to the behavior of the corresponding global isochrons. This
is an interesting direction for future work that ties in well with the possible extension of our
techniques for higher-dimensional isochrons, as discussed below, because the primary concern
is whether a perturbation with a specific voltage lies on a particular isochron.

We computed the global isochrons with a new numerical method based on two-point
boundary value continuation. We view an isochron I(γ) associated with a particular phase
point γ on the periodic orbit Γ as the global stable manifold of γ for the time-TΓ map, where
TΓ is the period of Γ. Based on the method in [15], we view the isochron as a one-parameter
family of orbit segments with one end point on the approximation computed so far and the
other tracing new parts of the global manifold. The boundary value problem set-up uses
the orbit segment that defines Γ starting at γ as the first known solution on I(γ); other
solutions are found by continuation along the linear approximation of I(γ) in a prespecified
small neighborhood of Γ. Each continuation step uses global information about the variation
along the entire orbit segment to control the accuracy of the computation. Hence, the extreme
sensitivity of initial conditions that is typical for systems with multiple time scales is spread
effectively along the entire orbit segment. We implemented our method using the latest version
of AUTO [11] with the Python scripting interface to select and compute automatically an
arbitrary number of isochrons along a periodic orbit that are uniformly spaced in time or
arclength. The adaptive step selection of AUTO ensures that the continuation generates a
nicely distributed mesh along each isochron that automatically parameterizes the curves by
arclength. The numerical accuracy and convergence properties of this approach allow the
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computation of one-dimensional isochrons up to unprecedented arclengths.
In theory, it is straightforward to generalize the computational method presented in this

paper to isochrons of three- or higher-dimensional vector fields. However, the isochrons are
then two- or higher-dimensional manifolds, and their computation becomes increasingly dif-
ficult for the same reasons as in the computation of global two- or higher-dimensional sta-
ble manifolds [32]. To our knowledge, the first publication that contains computations of
two-dimensional isochrons, by using backward integration methods, appeared very recently
in [1]. In practice, it may be sufficient to find one-dimensional intersections of such higher-
dimensional isochrons with a subspace of suitable dimension. For example, one could trace
the intersection curve of a three-dimensional isochron of the four-dimensional Hodgkin–Huxley
model with the hyperplane where the two additional coordinates, which are not present in
our two-dimensional reduced model, are constant. The computational complexity of such an
approach is comparable to the computation of one-dimensional isochrons of a planar system,
but one must take into account the fact that the intersection curve of a higher-dimensional
isochron may not be simply connected; see [15] for examples of such invariant manifolds.
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