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Abstract

We model turbulent plane Couette flow for a
Minimal Flow Unit (the smallest domain in which
turbulence can be sustained) by expanding the velo-
city field as a sum of optimal modes calculated via
the proper orthogonal decomposition from numerical
data. Ordinary differential equations are obtained by
Galerkin projection of the Navier-Stokes equations onto
these modes. We consider a 6 mode (11-dimensional)
model. When losses to neglected modes are ignored,
the model captures some aspects of the turbulent state
very well, but fails to accurately reproduce the velo-
city field dynamics. However, when energy-transfer to
neglected modes is included, there is strong agreement
with results from direct numerical simulations. This
model provides empirical evidence that the “backbone”
for Minimal Flow Unit turbulence is a periodic orbit.
We then calculate the phase response curve for this
periodic orbit, which describes the phase-shift of the
oscillation as a function of the phase of an impulsive
perturbation to the mean flow. We see that, depending
on its timing, such a perturbation can either advance or
retard the time at which subsequent streak breakdowns
occur. This suggests how streak breakdown can be con-
trolled through appropriately timed perturbations.

1 Introduction

In plane Couette flow (PCF), fluid is sheared be-
tween two infinite parallel plates moving at speed Uy,
in opposite directions +e,; see Figure 1.1. The z, y,
z-directions are defined to be the streamwise, wall nor-
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Figure 1.1: Geometry for plane Couette flow.

mal, and spanwise directions, respectively. We nondi-
mensionalize lengths in units of d/2 where d is the gap
between the plates, velocities in units of Uy, time in
units of (d/2)/Uy, and pressure in units of UZp where
p is the fluid density. Laminar flow is then given by
Uy = ye,, —1 < y < 1. The laminar state is linearly
stable for all Reynolds numbers Re = 24 [1], where v
is the kinematic viscosity; however, both experiments
and simulations exhibit sustained turbulence for suffi-
ciently high Re and/or perturbation amplitudes (see,
e.g., [2]). Writing u = (u1,u2,u3), x = (2,y,2), the
evolution equation for the perturbation (u(x,t), p(x,t))
to laminar flow is

0 0 1 _,
%Y= —(u-V)u—y%u—uzew—Vp-i— ﬁv u. (1.1)
The fluid is assumed to be incompressible, i.e.,

V.-u=0, (1.2)

and there are no-slip boundary conditions at the plates,
ie.,

ulyesr = 0. (1.3)
Finally, the flow is assumed periodic in the stream-
wise and spanwise directions, with lengths L, = 1.757



and L, = 1.27, respectively. This corresponds to the
Minimal Flow Unit, the smallest domain in which turb-
ulence can be sustained [3].

To model turbulent PCF, we perform a proper or-
thogonal decomposition (POD) on data from direct
numerical simulations (DNS) of (1.1) at Re = 400.
This identifies an energetically dominant set of empir-
ical eigenmodes (“POD modes”) from the data. We
then construct models by Galerkin projection of (1.1)
onto finite-dimensional subspaces spanned by the dom-
inant modes, yielding ordinary differential equations
for the evolution of the modal amplitudes; see [4]
for details and references on this procedure, and [5]
for an application to PCF turbulence at Re = 400
for a moderate aspect-ratio domain with L, = A4,
L, = 2m. (See also [6] for a similar approach to
the study of MFU turbulence for channel flow, and,
e.g., [7] and [8] for other low-dimensional models for
shear flow turbulence.) Here we consider a 6 mode
(11-dimensional) model which consists of a mode repre-
senting the spatial mean flow, two streamwise-invariant
modes, one spanwise-invariant mode, and two “fully
three-dimensional” modes. When energy-transfer to
neglected modes is included, this model shows strong
agreement with results from DNS. In particular, it pro-
vides empirical evidence that the “backbone” for Min-
imal Flow Unit turbulence is a periodic orbit. Consid-
eration of this periodic orbit suggests how streak break-
down can be controlled through appropriately timed
perturbations. We hope that this study of a “simple”
turbulent flow in a simple geometry will stimulate the
application of similar control ideas to delaying sepa-
ration, reducing drag, and enhancing mixing in other
turbulent flows.

2 Turbulence for The Minimal Flow Unit

The nature of the weakly turbulent flow in the Min-
imal Flow Unit was first described in [3]. Here the
authors define the RMS modal velocity as

1
M(ng,n.) = (/ [ﬁ%("z,yanz) + ﬂ%(nmy,nz)

—1
~ 1/2
+ 43(na,y,ns)] dy)/ , (21)

where the tildes represent Fourier mode amplitudes,
and they discuss the temporal behavior of this quantity
for various wavenumber pairs (n,n.). They find that
the RMS modal velocity for several modes shows al-
most periodic behavior and, in particular, that M(0, 1)
and M(1, 0) are roughly of opposite phase: a peak in the
former is often accompanied by a trough in the latter,
and vice versa, as illustrated in Fig. 2.1 (cf. Fig. 3(a)
in [3]). This figure also shows that the temporal dy-
namics of M(1,1) is much the same as that of M(1,0),

while M(0,2) does not display a great deal of regular-
ity. A close-up of one representative “cycle” is shown
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Figure 2.1: The behavior of the RMS modal velocities
for several wavenumbers.
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Figure 2.2: One representative cycle from Fig. 2.1.

in Fig. 2.2 (cf. Fig. 3(b) in [3]). Here the pertinent be-
havior is somewhat more clearly observed. Fig. 2.3 (cf.
Fig. 2 in [3]) shows midplane contours of the stream-
wise velocity at the times labeled on the M(0, 1) curve
in Fig. 2.2. At the time labeled ‘1’ the flow shows
prominent streaks, that is, streamwise-coherent struct-
ures with variation of the streamwise velocity with re-
spect to spanwise position. The streaks have broken
down by the time labeled ‘5’, then they regenerate and
the process begins anew.



Figure 2.3: Midplane streamwise-velocity contours from
the DNS.

3 The Proper Orthogonal Decomposition

Details of the POD procedure are described in
Ref. [4]; here we summarize key aspects. The POD
modes ® = (@1, P3, P3) are chosen to maximize the
average projection of the perturbation u = (u1, us, us3)
onto each mode. First, we define the inner product on
the space of velocity fields [L2(Q)]?® as

(f,g)zg | [ 5ssc0dx,

where the subscripts identify components of the func-
tions and * denotes complex conjugation. The POD
modes are chosen to maximize the average projection
of the perturbation u onto each mode; specifically, we
seek functions ®(x) € [L?(2)]® such that the quantity
{|(u, ®)[2)/||®||? is maximized, where || - || = (-,-)!/?
and (-) is an (ensemble or time) averaging operation.
This leads to the eigenvalue problem

=AM, 8" (x), i=1,23, (3.1)
where the “quantum numbers” n € Z*, and wavenum-
bers ng,n, € Z distinguish different POD modes. The
eigenvalue Ay, is twice the average kinetic energy in
the POD mode ®,.. The (orthogonal) POD modes
are normalized so that

(q)(n) &) ) = OOt O -

! ’
NaNz? =~ Ny,

The POD modes are optimal in the sense of cap-
turing, on average, the most kinetic energy possible for

a projection onto a given number of modes. Moreover
each <I>£Z:)nz inherits linear properties from the ensemble
{u®} such as incompressibility and boundary condi-
tions.

In our application to plane Couette flow, we ex-
pand the perturbation velocity field u in terms of POD
modes as

o0

u(x,t):i ;i Z

a,
n=1nz;=—00 N=—00

@)@ (x), (3.2)

NazTz Nz Mz

where the amplitudes ag;)nz are complex unless n, =

n, = 0, in which case they are real. Translation sym-
metry in x and z implies optimality of the Fourier de-
composition in these directions [4]:

) A nzx  nuz
Q(") — TNans 9 T z .
nan. (%) vz e\ T
(3.3)

Ref. [5] describes how (3.1) can be reformulated as
a matrix eigenvalue problem. Results using 4000 snap-
shots of the numerical data (expanded to 4 x 4000 =
16000 snapshots by symmetry operations, see [4, 5])
are given in Table 3.1. We note that most of the en-
ergy is contained in the (n,nz,n;) = (1,0,0) mode,
which represents the bulk of the turbulent modifica-
tion of the mean flow. Fig. 3.1 shows the three most
energetic POD modes.

Table 3.1: Eigenvalues of and percentage of average ki-
netic energy captured by the POD modes.

(na nwa nZ) /\%Z)nz %Eg:)nz
(1,0,0)  4.4550  68.02
(1,0,£1)  0.7821  23.88
(1,0,£2) 0.0543  1.66
(1,+£1,0) 0.0386  1.18
(1,0,4£3) 0.0195  0.59
(2,0,0) 00174  0.27
(2,0,+1) 0.0123  0.38
(1,£1,£2) 0.0109  0.33
(1,£1,£1) 0.0090  0.27
(3,0,0)  0.0068  0.10

4 Behavior of 11-Dimensional Model

We first consider the dynamics of an 11-dimensional
model constructed by Galerkin projection of (1.1) onto
the (]'7 07 0)7 (17 07 ]')7 (17 07 2)7 (17 ]'7 0)7 and (17 ]'7 :t]')
modes. (The behavior of the (1,0,-1), (1,0,—2),
(1,—1,0), and (1, —1,£1) modes is thereby determined



Figure 3.1: POD modes with (n,n;,n.) = (1,0,0),
(1,0,1), and (1,0,2). For the latter two, the
vectors show the spanwise and wall normal
components of the velocity, while the red
(resp., blue) shading shows positive (resp.,
negative) streamwise velocity.

by complex conjugation, since u is real.) The equations
for this model and more details are given elsewhere [9].
Integration of these equations reveals traveling wave
behavior, with a solution of the form

al® =™ exp(i(—wn.t + a,(z’:)nz)), (4.1)

Ng Nz NgNz

1) . . .
where 0‘(()0) is necessarily zero. Comparisons of the

model behavior with that of the DNS projected onto
the selected modes is given in Fig. 4.1. While the
(1,0,0), (1,0,1) and (1,0, 2) modes reproduce the av-
erage energy budget rather well [9], the dynamical be-
havior of the model is unsatisfactory. The dynamics of
the (1,0,1) and (1,0, 2) modal coefficients obtained by
projection of the DNS show the behavior to be roughly
confined to a torus; each of these modes moves rela-
tively quickly in and out along a radius in the plane,
and drifts more slowly and chaotically around the cir-
cumference. The low-dimensional model we have de-
scribed fails to reproduce the radial motion, and cari-
catures the circumferential motion as a simple travel-
ing wave. Velocity field reconstructions of these trav-
eling waves are not given here, but a little thought
reveals that they would illustrate a simple transla-
tion of streak/vortex structures in the spanwise direc-
tion. Indeed, this model completely fails to capture
the streak breakdown and regeneration process, as the
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Figure 4.1: Behavior of the 11-dimensional model with-
out modeling losses to neglected modes.

RMS modal velocities remain constant in time [9].

5 Improvements to the 11-Dimensional Model

Here we improve the 11-dimensional model consid-
ered in the previous section by including terms which
model losses to modes which have been neglected in
our truncation. The simplest model for such losses is a
spectral eddy viscosity model (cf. [4]), where terms of
the form

—av(n? +n2)ail),
are added to the equation for the evolution of asf;)nz.
The effectiveness of the spectral eddy viscosity model
is tested by numerically calculating the magnitude of
the neglected terms; a least squares fit between the
numerically calculated terms and those that result from
application of the model gives v = 0.0333. We then
“tune” the O(1) parameter « to get a good fit between
the behavior of the model and the DNS.

The bifurcation diagram of Fig. 5.1 shows exis-
tence and stability of solutions as a function of a. As
a is increased from zero, we encounter several solu-
tion types: the previously described traveling waves
(denoted TW), two different types of standing waves
(SW; and SW5) and modulated traveling waves (de-
noted MW). Diagrams of the behavior of the (1,0,1)
and (1,0,2) modal amplitudes for these solutions are
shown at the bottom of Fig. 5.1. All solutions with the
exception of the MW are stable over some interval of a.

We note that the SWy solution, for which the
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Figure 5.1: (Top) Schematic bifurcation diagram with
respect to «. (Bottom) Projections as in
Fig. 4.1 of the (1,0, 1) and (1, 0, 2) modal am-
plitudes for the solutions.

(1,0,1) and (1,0,2) modal amplitudes oscillate along
radii, captures the most interesting DNS dynamics,
namely the streak breakdown and regeneration pro-
cess. When a = 0.8 we obtain the dynamics of the
RMS modal velocities illustrated in Fig. 5.2; this solu-
tion also gives reasonable velocity field reconstructions:
see Fig. 5.3. The model’s turbulence statistics also ex-
hibit the same qualitative forms as those of the DNS [9].
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Figure 5.2: RMS modal velocity for 11-dimensional
model with modeling of losses to neglected
modes (o = 0.8).
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Figure 5.3: Midplane streamwise-velocity contours for
the 11-dimensional model with modeling of
losses to neglected modes (a = 0.8).

6 Control Using the Phase Response Curve

A phase response curve (PRC) describes the phase-
shift of an oscillation as a function of the phase of
a stimulus or impulsive perturbation [10]. For the
present problem, suppose that the speed Uy of the par-
allel plates is very briefly changed. This perturbation
will have the largest effect on the turbulent mean flow,
which is captured in our model by the amplitude a(()})).
We thus consider how the timing of an instantaneous
perturbation a&,) — a((,})) + Aa affects the time at which
subsequent streak breakdowns occur.

We define 8 = 0 to be the phase of the periodic orbit
at which M(1,0) is minimal, i.e., before streak break-
down. The phase 0 is a simple parametrization of time,
evolving according to 6 = 27 /T, where T is the period
of the periodic orbit. Thus, at § = 27 the periodic
orbit has returned to the state at which M(1,0) is min-
imal. Let A# be the change in phase associated with
the perturbation Aa. A positive (resp., negative) Af
means that the next streak breakdown occurs before
(resp., after) its unperturbed occurrence. We calculate

00 . A6
da = Al Ra (6.1)
by solving the appropriate adjoint problem with the
software XPPAUT [11]. The phase parametrization of
the periodic orbit and the PRC are shown in Figure 6.1;
note that the abscissa for the PRC plot represents the
phase at which the perturbation is applied. @~We see
that the perturbation can either advance or retard the
time at which the subsequent streak breakdowns oc-
cur. Figure 6.2 illustrates that, to delay the subsequent
streak breakdowns, our model predicts that it is best



Figure 6.1: (Top) Omne periodic cycle for our phase
parametrization. (Bottom) The phase re-
sponse curve for perturbations as described
in the text.

to apply the perturbation just after the current streak
breakdown; for clarity, a relatively large perturbation
Aa = 0.5 to the O(1) quantity a(()})) has been used for
this figure. Comparison with full simulations of the
perturbed flow are in progress.

7 Conclusion

We have modeled turbulent plane Couette flow for
a Minimal Flow Unit (the smallest domain in which
turbulence can be sustained) by expanding the velo-
city field as a sum of optimal modes calculated via
the proper orthogonal decomposition from numerical
data. Ordinary differential equations were obtained by
Galerkin projection of the Navier-Stokes equations onto
these modes. We found that a 6 mode (11-dimensional)
model, with additional modeling of neglected modes,
nicely captures the streak breakdown and regeneration
process as a periodic orbit. We then calculated the
phase response curve for this periodic orbit for an im-
pulsive perturbation to the mean flow. Depending on
its timing, such a perturbation can either advance or
retard the time at which subsequent streak breakdowns
occur; this suggests how streak breakdown can be con-
trolled through appropriately timed perturbations.
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