Appendix

Partial-Fraction Expansion

Before we present MATLAB approach to the partial-fraction expansions of transfer functions, we discuss the manual approach to the partial-fraction expansions of transfer functions.

Partial-Fraction Expansion when \(F(s) \) Involves Distinct Poles Only. Consider \(F(s) \) written in the factored form

\[
F(s) = \frac{B(s)}{A(s)} = \frac{K(s + z_1)(s + z_2) \cdots (s + z_m)}{(s + p_1)(s + p_2) \cdots (s + p_n)}, \quad \text{for } m < n
\]

where \(p_1, p_2, \ldots, p_n \) and \(z_1, z_2, \ldots, z_m \) are either real or complex quantities, but for each complex \(p_j \) or \(z_j \) there will occur the complex conjugate of \(p_j \) or \(z_j \), respectively. If \(F(s) \) involves distinct poles only, then it can be expanded into a sum of simple partial fractions as follows:

\[
F(s) = \frac{B(s)}{A(s)} = \frac{a_1}{s + p_1} + \frac{a_2}{s + p_2} + \cdots + \frac{a_n}{s + p_n} \quad \text{(B-1)}
\]

where \(a_k \) \((k = 1, 2, \ldots, n)\) are constants. The coefficient \(a_k \) is called the residue at the pole at \(s = -p_k \). The value of \(a_k \) can be found by multiplying both sides of Equation (B-1) by \((s + p_k)\) and letting \(s = -p_k \), which gives

\[
\left[B(s) \right]_{s=-p_k} A(s) = \left[\frac{a_1}{s + p_1} (s + p_k) + \frac{a_2}{s + p_2} (s + p_k) + \cdots + \frac{a_n}{s + p_n} (s + p_k) \right]_{s=-p_k}
\]

\[
= a_k
\]
We see that all the expanded terms drop out with the exception of \(a_k\). Thus the residue \(a_k\) is found from
\[
a_k = \left[\frac{(s + p_k) B(s)}{A(s)} \right]_{s = -p_k}
\]
Note that, since \(f(t)\) is a real function of time, if \(p_1\) and \(p_2\) are complex conjugates, then the residues \(a_1\) and \(a_2\) are also complex conjugates. Only one of the conjugates, \(a_1\) or \(a_2\), needs to be evaluated, because the other is known automatically.

Since
\[
\mathcal{L}^{-1} \left[\frac{a_k}{s + p_k} \right] = a_k e^{-p_k t}
\]
\(f(t)\) is obtained as
\[
f(t) = \mathcal{L}^{-1}[F(s)] = a_1 e^{-p_1 t} + a_2 e^{-p_2 t} + \cdots + a_n e^{-p_n t}, \quad \text{for } t \geq 0
\]

EXAMPLE B-1 Find the inverse Laplace transform of
\[
F(s) = \frac{s + 3}{(s + 1)(s + 2)}
\]
The partial-fraction expansion of \(F(s)\) is
\[
F(s) = \frac{s + 3}{(s + 1)(s + 2)} = \frac{a_1}{s + 1} + \frac{a_2}{s + 2}
\]
where \(a_1\) and \(a_2\) are found as
\[
a_1 = \left[\frac{(s + 1) s + 3}{(s + 1)(s + 2)} \right]_{s = -1} = \left[\frac{s + 3}{s + 2} \right]_{s = -1} = 2
\]
\[
a_2 = \left[\frac{(s + 2) s + 3}{(s + 1)(s + 2)} \right]_{s = -2} = \left[\frac{s + 3}{s + 1} \right]_{s = -2} = -1
\]
Thus
\[
f(t) = \mathcal{L}^{-1}[F(s)]
\]
\[
= \mathcal{L}^{-1} \left[\frac{2}{s + 1} \right] + \mathcal{L}^{-1} \left[\frac{-1}{s + 2} \right]
\]
\[
= 2e^{-t} - e^{-2t}, \quad \text{for } t \geq 0
\]

EXAMPLE B-2 Obtain the inverse Laplace transform of
\[
G(s) = \frac{s^3 + 5s^2 + 9s + 7}{(s + 1)(s + 2)}
\]
Here, since the degree of the numerator polynomial is higher than that of the denominator polynomial, we must divide the numerator by the denominator.
\[
G(s) = s + 2 + \frac{s + 3}{(s + 1)(s + 2)}
\]
Note that the Laplace transform of the unit-impulse function \(\delta(t) \) is 1 and that the Laplace transform of \(d\delta(t)/dt \) is \(s \). The third term on the right-hand side of this last equation is \(F(s) \) in Example B–1. So the inverse Laplace transform of \(G(s) \) is given as

\[
g(t) = \frac{d}{dt} \delta(t) + 2d(t) + 2e^t - e^{-2t}, \quad \text{for } t \geq 0
\]

EXAMPLE B–3 Find the inverse Laplace transform of

\[
F(s) = \frac{2s + 12}{s^2 + 2s + 5}
\]

Notice that the denominator polynomial can be factored as

\[
s^2 + 2s + 5 = (s + 1 + j2)(s + 1 - j2)
\]

If the function \(F(s) \) involves a pair of complex-conjugate poles, it is convenient not to expand \(F(s) \) into the usual partial fractions but to expand it into the sum of a damped sine and a damped cosine function.

Noting that \(s^2 + 2s + 5 = (s + 1)^2 + 2^2 \) and referring to the Laplace transforms of \(e^{-\alpha t} \sin \omega t \) and \(e^{-\alpha t} \cos \omega t \), rewritten thus,

\[
\mathcal{L}[e^{-\alpha t} \sin \omega t] = \frac{\omega}{(s + \alpha)^2 + \omega^2}
\]

\[
\mathcal{L}[e^{-\alpha t} \cos \omega t] = \frac{s + \alpha}{(s + \alpha)^2 + \omega^2}
\]

the given \(F(s) \) can be written as a sum of a damped sine and a damped cosine function:

\[
F(s) = \frac{2s + 12}{s^2 + 2s + 5} = \frac{10 + 2(s + 1)}{(s + 1)^2 + 2^2}
\]

\[
= \frac{5}{(s + 1)^2 + 2^2} + 2 \cdot \frac{s + 1}{(s + 1)^2 + 2^2}
\]

It follows that

\[
f(t) = \mathcal{L}^{-1}[F(s)]
\]

\[
= 5e^{-t} \sin 2t + 2e^{-t} \cos 2t, \quad \text{for } t \geq 0
\]

Partial-Fraction Expansion when \(F(s) \) Involves Multiple Poles. Instead of discussing the general case, we shall use an example to show how to obtain the partial-fraction expansion of \(F(s) \).

Consider the following \(F(s) \):

\[
F(s) = \frac{s^2 + 2s + 3}{(s + 1)^3}
\]

The partial-fraction expansion of this \(F(s) \) involves three terms,

\[
F(s) = \frac{B(s)}{A(s)} = \frac{b_1}{s + 1} + \frac{b_2}{(s + 1)^2} + \frac{b_3}{(s + 1)^3}
\]
where b_3, b_2, and b_1 are determined as follows. By multiplying both sides of this last equation by $(s + 1)^3$, we have

\[(s + 1)^3 \frac{B(s)}{A(s)} = b_1(s + 1)^2 + b_2(s + 1) + b_3 \quad (B-2)\]

Then letting $s = -1$, Equation (B-2) gives

\[\left[(s + 1)^3 \frac{B(s)}{A(s)}\right]_{s=-1} = b_3\]

Also, differentiation of both sides of Equation (B-2) with respect to s yields

\[\frac{d}{ds}\left[(s + 1)^3 \frac{B(s)}{A(s)}\right] = b_2 + 2b_1(s + 1) \quad (B-3)\]

If we let $s = -1$ in Equation (B-3), then

\[\frac{d}{ds}\left[(s + 1)^3 \frac{B(s)}{A(s)}\right]_{s=-1} = b_2\]

By differentiating both sides of Equation (B-3) with respect to s, the result is

\[\frac{d^2}{ds^2}\left[(s + 1)^3 \frac{B(s)}{A(s)}\right] = 2b_1\]

From the preceding analysis it can be seen that the values of b_3, b_2, and b_1 are found systematically as follows:

\[b_3 = \left[(s + 1)^3 \frac{B(s)}{A(s)}\right]_{s=-1}\]
\[= (s^2 + 2s + 3)_{s=-1}\]
\[= 2\]

\[b_2 = \left\{\frac{d}{ds}\left[(s + 1)^3 \frac{B(s)}{A(s)}\right]\right\} \quad (s=-1)\]
\[= \left[\frac{d}{ds} (s^2 + 2s + 3)\right]_{s=-1}\]
\[= (2s + 2)_{s=-1}\]
\[= 0\]

\[b_1 = \frac{1}{2!}\left\{\frac{d^2}{ds^2}\left[(s + 1)^3 \frac{B(s)}{A(s)}\right]\right\} \quad (s=-1)\]
\[= \frac{1}{2!}\left[\frac{d^2}{ds^2} (s^2 + 2s + 3)\right]_{s=-1}\]
\[= \frac{1}{2} (2) = 1\]
We thus obtain
\[f(t) = \mathcal{L}^{-1}[F(s)] \]
\[= \mathcal{L}^{-1}\left[\frac{1}{s + 1} \right] + \mathcal{L}^{-1}\left[\frac{0}{(s + 1)^2} \right] + \mathcal{L}^{-1}\left[\frac{2}{(s + 1)^3} \right] \]
\[= e^{-t} + 0 + t^2 e^{-t} \]
\[= (1 + r^2)e^{-t}, \quad \text{for } t \geq 0 \]

Comments. For complicated functions with denominators involving higher-order polynomials, partial-fraction expansion may be quite time consuming. In such a case, use of MATLAB is recommended.

Partial-Fraction Expansion with MATLAB. MATLAB has a command to obtain the partial-fraction expansion of \(B(s)/A(s) \). Consider the following function \(H(s)/A(s) \):
\[
\frac{B(s)}{A(s)} = \frac{\text{num}}{\text{den}} = \frac{b_0 s^n + b_1 s^{n-1} + \cdots + b_n}{s^a + a_1 s^{a-1} + \cdots + a_n}
\]

where some of \(a_i \) and \(b_i \) may be zero. In MATLAB row vectors \(\text{num} \) and \(\text{den} \) specify the coefficients of the numerator and denominator of the transfer function. That is,
\[
\text{num} = [b_0 \ b_1 \ \cdots \ b_n] \\
\text{den} = [1 \ a_1 \ \cdots \ a_n]
\]

The command
\[
[r,p,k] = \text{residue}(\text{num},\text{den})
\]
finds the residues \(r \), poles \(p \), and direct terms \(k \) of a partial-fraction expansion of the ratio of two polynomials \(B(s) \) and \(A(s) \).

The partial-fraction expansion of \(B(s)/A(s) \) is given by
\[
\frac{B(s)}{A(s)} = \frac{r(1)}{s - p(1)} + \frac{r(2)}{s - p(2)} + \cdots + \frac{r(n)}{s - p(n)} + k(s) \quad \text{(B-4)}
\]

Comparing Equations (B-1) and (B-4), we note that \(p(1) = -p_1, p(2) = -p_2, \ldots, p(n) = -p_n; r(1) = a_1, r(2) = a_2, \ldots, r(n) = a_n \); \([k(s) \text{ is a direct term.}] \)

EXAMPLE B-4 Consider the following transfer function,
\[
\frac{B(s)}{A(s)} = \frac{2s^3 + 5s^2 + 3s + 6}{s^3 + 6s^2 + 11s + 6}
\]
For this function,
\[
\begin{align*}
\text{num} &= [2 \ 5 \ 3 \ 6] \\
\text{den} &= [1 \ 6 \ 11 \ 6]
\end{align*}
\]
The command
\[
[r,p,k] = \text{residue(num,den)}
\]
gives the following result:
\[
\begin{align*}
[r,p,k] &= \text{residue(num,den)} \\
r &= \\
&= -6.0000 \\
&= -4.0000 \\
&= 3.0000 \\
p &= \\
&= -3.0000 \\
&= -2.0000 \\
&= -1.0000 \\
k &= 2
\end{align*}
\]
(Note that the residues are returned in column vector \(r \), the pole locations in column vector \(p \), and the direct term in row vector \(k \).) This is the MATLAB representation of the following partial-fraction expansion of \(B(s)/A(s) \):
\[
\frac{B(s)}{A(s)} = \frac{2s^3 + 5s^2 + 3s + 6}{s^3 + 6s^2 + 11s + 6} = \frac{-6}{s + 3} + \frac{-4}{s + 2} + \frac{3}{s + 1} + 2
\]
Note that if \(p(j) = p(j + 1) = \cdots = p(j + m - 1) \) (that is, \(p_j = p_{j+1} = \cdots = p_{j+m-1} \)), the pole \(p(j) \) is a pole of multiplicity \(m \). In such a case, the expansion includes terms of the form
\[
\frac{r(j)}{s - p(j)} + \frac{r(j + 1)}{(s - p(j))^2} + \cdots + \frac{r(j + m - 1)}{(s - p(j))^m}
\]
For details, see Example B-5.
EXAMPLE B-5 Expand the following \(\frac{B(s)}{A(s)} \) into partial fractions with MATLAB.

\[
\frac{B(s)}{A(s)} = \frac{s^2 + 2s + 3}{(s + 1)^3} = \frac{s^2 + 2s + 3}{s^3 + 3s^2 + 3s + 1}
\]

For this function, we have

\[
\text{num} = [1 \ 2 \ 3] \\
\text{den} = [1 \ 3 \ 3 \ 1]
\]

The command

\[
[r,p,k] = \text{residue(num,den)}
\]

gives the result shown next:

\[
\begin{align*}
\text{num} &= [1 \ 2 \ 3] ; \\
\text{den} &= [1 \ 3 \ 3 \ 1] ; \\
[r,p,k] &= \text{residue(num,den)} \\
\[r = \]
1.0000 \\
0.0000 \\
2.0000 \\
\[p = \]
-1.0000 \\
-1.0000 \\
-1.0000 \\
k &= []
\end{align*}
\]

It is the MATLAB representation of the following partial-fraction expansion of \(\frac{B(s)}{A(s)} \):

\[
\frac{B(s)}{A(s)} = \frac{1}{s + 1} + \frac{0}{(s + 1)^2} + \frac{2}{(s + 1)^3}
\]

Note that the direct term \(k \) is zero.