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Preface

Research undertaken by modern chemical and biological engineers in-

corporates a wide range of mathematical principles and methods. This

book came about as the authors struggled to incorporate modern top-

ics into a one- or two-semester course sequence for new graduate stu-

dents, while not losing the essential aspects of traditional mathemati-

cal modeling syllabi. Topics that we decided are particularly important

but not represented in traditional texts include: matrix factorizations

such as the singular value decomposition, basic qualitative dynamics

of nonlinear differential equations, integral representations of partial

differential equations, probability and stochastic processes, and state

estimation. The reader will ®nd many more in the book. These topics

are generally absent in many texts, which often have a bias toward the

mathematics of 19th- through early 20th-century physics. We also be-

lieve that the book will be of substantial interest to active researchers,

as it is in many respects a survey of the appliedmathematics commonly

encountered by chemical and biological engineering practitioners, and

contains many topics that were almost certainly absent in their chemi-

cal engineering graduate coursework.

Due to the wide range of topics that we have incorporated, the level

of discussion in the book ranges from very detailed to broadly descrip-

tive, allowing us to focus on important core topics while also introduc-

ing the reader to more advanced or specialized ones. Some important

but technical subjects such as convergence of power series have been

treated only brie¯y, with references to more detailed sources. We en-

courage instructors and students to browse the exercises. Many of

these illustrate applications of the chapter material, for example, the

numerical stability of the Verlet algorithm used in molecular dynamics

simulation. Others deepen, complement, and extend the discussion in

the text.

During their undergraduate education in chemical and biological

engineering, students become very accomplished at numerical exam-

ples and problem solving. This is not a book with lots of numerical

examples. Engineering graduate students need to make the shift from

applying mathematical tools to developing and understanding them.

As such, substantial emphasis in this book is on derivations and some-
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times short proofs. We believe the text contains a healthy mix of fun-

damental mathematics, analytical solution techniques, and numerical

methods. Researchers in engineering must know mathematical struc-

tures, principles, and tools, because these guide analysis and under-

standing, and they also must be able to produce quantitative answers.

We hope this text will enable them to do both.

MDG JBR

Madison, Wisconsin Madison, Wisconsin

Added for the second edition. The second edition was printed as a

paperback to reduce the cost to the students.

MDG JBR

Madison, Wisconsin Santa Barbara, California
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1

Linear Algebra

1.1 Vectors and Linear Spaces

A vector is de®ned in introductory physics courses as a quantity hav-

ing magnitude and direction. For example, the position vector of an

object in three dimensions is the triple of Cartesian coordinates that

determine the position of the object relative to a chosen origin. Another

way of thinking of the position vector is as a point in three-dimensional

space, generally denotedR3. This view leads us to themore general and

abstract de®nition of a vector: A vector is an element of a linear

space:

De®nition 1.1 (Linear space). A linear space is a set V whose elements

(vectors) satisfy the following properties: For all x, y , and z in V and

for all scalars � and �

x �y 2 V closure under addition

�x 2 V closure under multiplication

x �y � y � x
x � �y � z� � �x �y�� z

x � 0 � x de®nition of the origin

x � ��x� � 0 de®nition of subtraction

���x� � ����x
��� ��x � �x � �x
��x �y� � �x ��y

1x � x;0x � 0

Naturally, these properties apply to vectors in normal 3-D space;

but they also apply to vectors in any ®nite number of dimensions as

1
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well as to sets whose elements are, for example, 3 by 3 matrices or

trigonometric functions. This latter case is an example of a function

space; we will encounter these in Chapter 2. Not every set of vectors

forms a linear space, however. For example, consider vectors pointing

from the origin to a point on the unit sphere. The sum of two such

vectors will no longer lie on the unit sphereÐvectors de®ning points

on the sphere do not form a linear space. Regarding notation, many

readers will be familiar with vectors expressed in boldface type, x, v,

etc. This notation is especially common in physics-based problems

where these are vectors in three-dimensional physical space. In the

applied mathematics literature, where a vector takes on a more general

de®nition, one more commonly ®nds vectors written in italic type as

we have done above and will do for most of the book.

1.1.1 Subspaces

De®nition 1.2 (Subspace). A subspace S is a subset of a linear space

V whose elements satisfy the following properties: For every x;y 2 S
and for all scalars �

x �y 2 S closure under addition

�x 2 S closure under multiplication (1.1)

For example, if V is the plane (R2), then any line through the origin

on that plane is a subspace.

1.1.2 Length, Distance, and Alignment

The idea of a norm generalizes the concept of length.

De®nition 1.3 (Norm). A norm of a vector x, denoted kxk, is a real

number that satis®es

k�xk � j�j kxk
kxk > 0;8x � 0

kxk � 0 if x � 0x �y � kxk � y triangle inequality

The Euclidean norm (or 2-norm) in Rn is our usual concept of length

kxk2 �
qPn

i�1 jxij2 in which xi is the ith component of the vector.

Unless otherwise noted, this is the norm that will be used throughout
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this book, and will generally be denoted simply as kxk rather than

kxk2. It should be noted, however, that this is not the only de®nition

of a norm, nor is it always the most useful. For example, the so-called

lp norms for vectors in Rn are de®ned, for 1 � p <1, by the equation

kxkp �
0@ nX
i�1
jxijp

1A1=p

Particularly useful are the cases p � 1, sometimes called the ªtaxicab

normº (why?) and p !1: kxk1 �maxi jxij.
The inner product generalizes the dot product of elementary algebra

and measures the alignment of a pair of vectors.

De®nition 1.4 (Inner product). An inner product of two vectors, de-

noted �x;y�, is a scalar that satis®es

�x �y;z� � �x; z�� �y; z�
��x;y� � ��x;y�
�x;y� � �y;x�
�x;x� > 0; if x � 0

The overbar denotes the complex conjugate. If �x;y� � 0, then x

and y are said to be orthogonal. Notice that the square root of the

inner product
p
�x;x� satis®es all the properties of a norm, so it is a

measure of the length of x. The usual inner product in Rn is

�x;y� �
nX
i�1
xiyi

in which case
p
�x;x� � kxk2. This is a straightforward generalization

of the formula for the dot product x � y in R2 or R3 and has the same

geometric meaning

�x;y� � kxk
y cos� (1.2)

where � is the angle between the vectors. See Exercise 1.1 for a deriva-

tion. If we are considering a space Cn of complex vectors rather than

real vectors, the usual inner product becomes

�x;y� �
nX
i�1
xiyi
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An equally valid choice1 of inner product in the complex case is

�x;y� �
nX
i�1
xiyi

Either convention can be used, as long as one does not switch between

de®nitions within a derivation.

TheCauchy-Schwartz inequality is an important result that gen-

eralizes (1.2). It states that for any vectors x and y ,���x;y��� � kxky (1.3)

This can be proven as follows. The result is clearly true if x or y is the

zero vector. If they are nonzero, then consider the vector x��y , where
� � �x;y�=�y;y�. We can interpret this vector geometrically as what

remains when the component of x that is parallel to y is subtracted

from x. That is, �x ��y;y� � 0. Taking the inner product of x ��y
with itself, and recalling that �x;y� � �y;x�, we ®nd

0 � �x ��y;x ��y�

� �x;x�� �x;y�
�y;y�

�y;x�� �y;x�
�y;y�

�x;y�� �x;y�
�y;y�

�y;x�

�y;y�
�y;y�

� kxk2 � �x;y��y;x�y2 � kxk2 �
���x;y���2y2

Rearranging and taking the square root yields (1.3). With this inequality

in hand, we can readily establish that the Euclidean norm (or 2-norm)

satis®es the triangle inequality in De®nition 1.3. Let x;y 2 Cn and

use the de®nition of the 2-norm and the Cauchy-Schwartz inequality to

obtainx �y2 � �x �y;x �y� � �x;x�� �x;y�� �y;x�� �y;y�
� kxk2 � 2

���x;y���� y2
� kxk2 � 2kxk

y� y2
� �kxk �

y�2
Taking the square root of both sides then veri®es the triangle inequality

for the 2-norm.

1If making this choice, one would also change the second property in De®nition 1.4

to ��x;y� � ��x;y�.
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Finally, we can represent a vector x in Rn as a single column of

elements, a column vector, and de®ne its transpose xT as a row

vector

x �

2664
x1
...

xn

3775 xT �
h
x1 � � � xn

i

Now the inner product �x;y� can be written xTy if x and y are real,

and xTy or alternately xTy if they are complex.

1.1.3 Linear Independence and Bases

If we have a set of vectors, say fx1; x2; x3g, in a space V , this set is said

to be linearly independent (LI) if the only solution to the equation

�1x1 ��2x2 ��3x3 � 0

is �i � 0 for all i. Otherwise the set is linearly dependent. A

space V is n-dimensional if it contains a set of n linearly independent

vectors, but no set of n�1 linearly independent vectors. If n LI vectors

can be found for anyn, no matter how large, then the space is infinite-

dimensional.

Everything said above holds independent of our choice of coordinate

system for a space. To actually compute anything, however, we need

a convenient way to represent vectors in a space. We de®ne a basis

fe1; e2; e3 : : :g as a set of LI vectors that span the space of interest, i.e.,

every vector x in the space can be represented

x � �1e1 ��2e2 ��3e3 � � � �
If a space is n-dimensional, then a basis for it has exactly n vectors

and vice versa. For example, in R3 the unit vectors in the x;y; and z

directions form a basis. But more generally, any three LI vectors form

a basis for R3.

Although any set of LI vectors that span a space form a basis, some

bases are more convenient than others. The elements of an orthonor-

mal (ON) basis satisfy these properties

�ei; ei� � 1 each basis vector has unit length

�ei; ej� � 0; i � j the vectors are mutually orthogonal

These properties may be displayed more succinctly

�ei; ej� � �ij �
8<:1; i � j0; i � j
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The symbol �ij is called the Kronecker delta. In an orthonormal

basis, any vector can be expressed

x �
X
i

�x; ei�ei

1.2 Linear Operators and Matrices

An operator transforms one vector into another. Operators appear

everywhere in applied mathematics. For example, the operator d=dx

transforms a function f�x� into its derivative. More abstractly, an op-

erator A is a mapping that takes elements of one set (the domain of A)

and converts them into elements of another (the range of A). Linear

operators satisfy the following properties for all vectors u and v in

their domain and all scalars �

A�u� v� � Au�Av
A��u� � ��Au� (1.4)

We focus here on operators on ®nite-dimensional vector spaces Rn;

operators on spaces of complex numbers are similar. (In Chapter 2 we

will look at an important class of operators in function spaces.) In these

spaces, and having chosen a coordinate system in which to represent

vectors, any linear operator can be expressed as multiplication by a

matrix. A matrix is an array of numbers

A �

266664
A11 A12 : : : A1n

A21 A22 : : : A2n

...
...

. . .
...

Am1 Am2 : : : Amn

377775
The ®rst subscript of each element denotes its row, while the second

denotes its column. The transformation of a vector

x �

266664
x1
x2
...

xn

377775 into another y �

266664
y1

y2

...

ym

377775
then occurs through matrix-vector multiplication. That is: y � Ax,
which means

yi �
nX
j�1
Aijxj ; i � 1;2; : : : ;m (1.5)
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In this example, the matrix A is m by n (rows by columns); it is an

element of the linear space Rm�n and multiplication by Amaps vectors

in Rn into vectors in Rm. That is, for the function de®ned by matrix

multiplication, f�x� � Ax, f : Rn ! Rm. Some readers will be familiar

with matrices written in bold and the matrix-vector product between

matrix A and vector x written as either Ax or A � x.
If one thinks of each row of A as a vector, then the ith component

of y can be thought of as the dot product between the ith row of A

and the vector x. This is probably the best way to remember the actual

algebra of the matrix-vector multiplication formula. A more intuitive

and general geometric interpretation (which will be used extensively as

we proceed through the chapter) is enabled by considering each column

of A as a vector, and thinking of the vector y as a linear combination

of these vectors. That is, y is in the space spanned by the columns of

A. If we let the ith column of A be the vector ci, then

y � x1c1 � x2c2 � x3c3 � : : :

�
nX
j�1
xjcj

(Note that in this equation xj is a scalar component of the vector x,

while cj is a vector.) This equation implies that the number of columns

of A must equal the length of x. That is, matrix-vector multiplication

only makes sense if the vector x is in the domain of the operator A.

1.2.1 Addition and Multiplication of Matrices

The following terminology is used to describe important classes of ma-

trices.

1. A is square ifm � n.
2. A is diagonal if A is square and Aij � 0 for i � j. This is

sometimes written as A � diag�a1; a2; :::; an� in which ai is the

element Aii for i � 1;2; : : : ; n.

3. A is upper (lower) triangular if A is square and Aij � 0 for

i > j (i < j).

4. A is upper (lower) Hessenberg if A is square and Aij � 0 for

i > j � 1 (i < j � 1).

5. A is tridiagonal if it is both upper and lower Hessenberg.
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6. A is symmetric if A is square and Aij � Aji; i; j � 1;2; : : : ; n.

Addition of two matrices is straightforward: if A and B both have

the same domain and range, then

�A� B�ij � Aij � Bij
Otherwise, the matrices cannot be added.

Scalar multiplication is simple

��A�ij � ��Aij�
Suppose now that we have a vector z � Ay , where A is a matrix

and y a vector, and that furthermore y � Bz, where B and z are a

new matrix and vector, respectively. Let x;y and z have lengths q;n

and m. If A is m by n and B is n by q, then using the matrix-vector

multiplication formula (1.5) we can write

zi �
nX
k�1
Aikyk �

nX
k�1
Aik

0@ qX
j�1
Bkjxj

1A
�

qX
j�1

0@ nX
k�1
AikBkj

1Axj
Observe that this relationship between z and x can be written z �
A�Bx� � �AB�x as long as we take the matrix-matrix product AB to

obey the Matrix-matrix multiplication formula

�AB�ij �
nX
k�1
AikBkj ; i � 1; : : : ;m; j � 1; : : : q (1.6)

If A 2 Rm�n and B 2 Rp�q, then AB only exists if n � p, in which case

it is AB is an m by q matrix. Otherwise, the lengths of the rows of A

are incompatible with the columns of B.

A simple way to remember (1.6) is to note that if aTi represents the

ith row of A, and bj the jth column of B, then

�AB�ij � aTi bj ; i � 1; : : : ;m; j � 1; : : : q

Anothermore geometrically intuitive representation of thematrix-matrix

product arises from the observation that, for example, the ®rst column

of AB, whose elements we can denote �AB�i1; i � 1;2; : : :m, can be

written using (1.6), as

�AB�i1 �
nX
k�1
AikBk1
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This is thematrix-vector multiplication betweenA and the ®rst column,

b1, of B. More generally, (1.6) indicates that the jth column of AB is

the matrix-vector multiplication between A and the jth column of B,

and we can write

AB �
h
Ab1 Ab2 : : : Abq

i
Note that the existence of AB does not imply the existence of BA.

Both exist if and only if n � p and m � q. Even when both products

exist, AB is not generally equal to BA. In other words, the ®nal result

of a sequence of operations on a vector generally depends on the order

of the operations, i.e., A�Bx� � B�Ax�: in general, matrix-matrix mul-

tiplication does not commute. One important exception to this rule is

when one of the matrices is the identity matrix I. The elements of I

are given by Iij � �ij , so for example, in R3�3,

I �

2641 0 0

0 1 0

0 0 1

375
For any vector x and matrix A, Ix � x and AI � IA.

Example 1.5: Common transformations do not commute

Let matrices A and B be given by

A �
24p22 �

p
2
2p

2
2

p
2
2

35 B �
"
2 0

0 1
2

#

ThematrixA rotates a vector counterclockwise by�=4, while B stretches

it by a factor of 2 in the ª1º direction while compressing it by the same

factor in the ª2º direction. Show that the operations of stretching and

rotating a vector do not commute.

Solution

The matrices AB and BA are

AB �
"p

2 � 1

2
p
2p

2 1

2
p
2

#
BA �

" p
2 �p2

1

2
p
2

1

2
p
2

#

Since these are not equal, we conclude that the two vector operations

do not commute. �



10 Linear Algebra

1.2.2 Transpose and Adjoint

For every matrix A there exists another matrix, called the transpose

of A and denoted AT , such that
�
AT
�
ij � Aji. The rows of A become

the columns of AT and vice versa. (We already saw this notion in the

context of vectors: viewing x as a matrix with one column, then xT

is a matrix with one row.) A matrix that equals its transpose satis®es

Aji � Aij and is said to be symmetric; this can occur only for square

matrices. Some properties of the transpose of a matrix are

�AT �T � A
�A� B�T � AT � BT

�AB�T � BTAT

�ABC�T � CTBTAT

Properties involving matrix-vector products follow from the treatment

of a vector x as a matrix with only one column. For example

�Ax�T � xTAT

If A, x, and y are real, then the inner product between the vector Ax

and the vector y is given by

�Ax�Ty � xTATy (1.7)

One can generalize the idea of a transpose to more general opera-

tors. The adjoint of an operator L (not necessarily a matrix) is denoted

L� and is de®ned by this equation

�Lx;y� � �x; L�y� (1.8)

If L is a real matrix A, then �Lx;y� becomes �Ax�Ty and comparison

of (1.7) and (1.8) shows that

A� � AT

Similarly, if L is a complex matrix A then we show in the following

section that

A� � AT

By analogy with this expression for matrices, we will use the notation

x� � xT for vectors as well. In this case we can write the inner product

xTy as x�y .
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Some general properties of the adjoint of an operator are

�L��� � L
�L1 � L2�� � L�1 � L�2
�L1L2�

� � L�2 L�1
�L1L2L3�

� � L�3 L�2 L�1

If L � L�, then L is said to be self-adjoint or Hermitian. Self-adjoint

operators have special properties, as we shall see shortly, and show up

in many applications.

1.2.3 Einstein Summation Convention

Notice that when performing matrix-matrix or matrix-vector multipli-

cations, the index over which the sum is taken appears twice in the

formula, while the unsummed indices appear only once. For example,

in the formula

�ABC�ij �
NX
k�1

NX
l�1
AikBklClj

the indices k and l appear twice in the summations, while the indices i

and j only appear once. This observation suggests a simpli®ed notation

for products, in which the presence of the repeated indices implies

summation, so that the explicit summation symbols do not need to

be written. Using this Einstein summation convention, the inner

product xTy is simply xiyi and the matrix-vector product y � Ax is

yi � Aijxj . This convention allows us to concisely derive many key

results.

Example 1.6: Matrix identities derived with index notation

Establish the following matrix identities using index notation

(a) �Ax;y� � �x;ATy� (b) �AB�T � BTAT (c) AAT � �AAT �T

(d) A�AT � �A�AT �T (e) ATA � �ATA�T
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Solution

(a) �Ax;y� � �x;ATy�

�Ax;y� � Aijxjyi

� xjAijyi

� xjATjiyi

� xjATjiyi
� �x;ATy�

(b) �AB�T � BTAT

�AB�Tij � �AikBkj�T

� AjkBki
� BkiAjk
� BTikATkj
� �BTAT �ij

(c) AAT � �AAT �T

�AAT �ij � AikATkj
� AikAjk
� AjkAik
� AjkATki
� �AAT �ji
� �AAT �Tij

(d) A�AT � �A�AT �T

�A�AT �ij � Aij �Aji
� Aji �Aij
� �A�AT �ji
� �A�AT �Tij

(e) ATA � �ATA�T

�ATA�ij � ATikAkj
� AkiAkj
� ATjkAki
� �ATA�ji
� �ATA�Tij

�

1.2.4 Gram-Schmidt Orthogonalization and the QR Decomposition

We will encounter a number of situations where a linearly independent

set of vectors are available and it will be useful to construct from them a

set of orthogonal vectors. The classical approach to doing this is called

Gram-Schmidt orthogonalization. As a simple example, consider LI

vectors v1 and v2, from which we wish to ®nd an orthogonal pair u1

and u2. Without loss of generality we can set

u1 � v1
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It is straightforward to ®nd the component of v2 that is orthogonal to

u1Ðwe just subtract from v2 the component that is parallel to u1 (the

projection of v2 onto u1)

u2 � v2 � �v2; u1�

ku1k
u1

ku1k
In higher dimensions, where we have v3; v4, etc., we continue the pro-

cess, subtracting off the components parallel to the previously deter-

mined orthogonal vectors

u3 � v3 � �v3; u1�

ku1k2
u1 � �v3; u2�

ku2k2
u2

and so on.

We can apply Gram-Schmidt orthogonalization to the columns of

any m � n matrix A whose columns are linearly independent (which

implies thatm � n). Speci®cally, we can write

A � QR

where Q is an m � n matrix of orthonormal vectors formed from the

columns of A and R is an n�n upper triangular matrix. This result is

known as the QR decomposition. We have the following theorem.

Theorem 1.7 (QR decomposition). If A 2 Rm�n has linearly indepen-

dent columns, then there exists Q 2 Rm�n with orthonormal columns,

and upper triangular R such that

A � QR

See Exercise 1.38 for the proof. Because the columns of Q are or-

thonormal, QTQ � I.

1.2.5 The Outer Product, Dyads, and Projection Operators

Given two LI vectors v1 and v2 in Rn, Gram-Schmidt uses projection to

construct an orthogonal pair

u1 � v1
u2 � v2 � �vT2 Ãu1�Ãu1

where Ãu1 � u1=ku1k is a unit vector in the u1 direction, and now we

have used the inner product de®nition �u;v� � uTv . Observe that the
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right-hand side of the second equation is linear in v2, so we should be

able to put this equation in the form u2 � Av2, where A is a matrix.

The form of A illustrates some important concepts so we explicitly

construct it here. We can write A � I � P , where

Pv2 � �vT2 Ãu1�Ãu1

Noting that aTb � bTa for vectors a and b, this rearranges to

Pv2 � Ãu1�Ãu
T
1v2�

which has the form we seek if we move the parentheses to have

Pv2 � �Ãu1Ãu
T
1 �v2

That is, P is given by what we will call the outer product between

Ãu1 and itself: Ãu1Ãu
T
1 . More generally, the outer product uvT between

vectors u and v is a matrix, called a dyad, that satis®es the following

properties

�uvT �ij � uivj
�uvT �w � u�vTw�
wT �uvT � � �wTu�vT

wherew is any vector. The outer product is sometimes denoted u
v .
When the notation u � v is used to represent the inner product, u 
 v

or uv is used to represent the outer.

Finally, returning to the speci®c case P � Ãu1Ãu
T
1 , we can observe that

Pw � Ãu1�Ãu
T
1w�; the operation of P on w results in a vector that is the

projection of w in the Ãu1 direction: P is a projection operator. The

operator I � P is also a projectionÐit takes a vector and produces the

projection of that vector in the direction(s) orthogonal to Ãu1. We can

check that both Ãu1Ãu
T
1 and I � Ãu1Ãu

T
1 satisfy the general de®nition of a

projection operator

P2 � P

1.2.6 Partitioned Matrices and Matrix Operations

It is often convenient to consider a largematrix to be composed of other

matrices, rather than its scalar elements. We say the matrix is parti-

tioned into other smaller dimensional matrices. To make this explicit,

®rst we de®ne a submatrix as follows. Let matrix A 2 Rm�n, and de®ne
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indices 1 � i1 < i2 < � � � < ik � m, and 1 � j1 < j2 < � � � < j` � m,

then the k� ` matrix S, whose �a; b� element is

Sab � Aia;jb
is called a submatrix of A.

A matrix A 2 Rm�n is partitioned when it is written as

A �

266664
A11 A12 � � � A1`

A21 A22 � � � A2`
...

...
. . .

...

Ak1 Ak2 � � � Ak`

377775
where each Aij is anmi � nj submatrix of A. Note that

Pk
i�1mi �m

and
P`
j�1nj � n. Two of the more useful matrix partitions are col-

umn partitioning and row partitioning. If we let the m-vectors ai; i �
1;2; : : : n denote the n column vectors of A, then the column partition-

ing of A is

A �
h
a1 a2 � � � an

i
If we let the row vectors (1�n matrices) aj ; j � 1;2; : : : ;m denote the

m row vectors of A, then the row partitioning of A is

A �

266664
a1
a2
...

am

377775
The operations of matrix transpose, addition, and multiplication

become even more useful when we apply them to partitioned matrices.

Consider the two partitioned matrices

A �

2664
A11 A12 � � � A1`
...

...
. . .

...

Ak1 Ak2 � � � Ak`

3775 B �

2664
B11 B12 � � � B1n
...

...
. . .

...

Bm1 Bm2 � � � Bmn

3775
in which Aij has dimension pi � qj and Bij has dimension ri � sj . We

then have the following formulas for scalar multiplication, transpose,

matrix addition, and matrix multiplication of partitioned matrices.

1. Scalar multiplication.

�A �

2664
�A11 �A12 � � � �A1`
...

...
. . .

...

�Ak1 �Ak2 � � � �Ak`

3775
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2. Transpose.

AT �

2664
AT11 AT21 � � � ATk1
...

...
. . .

...

AT
1` AT

2` � � � ATk`

3775
3. Matrix addition. If pi � ri and qj � sj for i � 1; : : : ; k and j �

1; : : : ; `; and k �m and ` � n; then the partitioned matrices can

be added

A� B �

2664
C11 � � � C1`
...

. . .
...

Ck1 � � � Ck`

3775 Cij � Aij � Bij

4. Matrix multiplication. If qi � ri for i � 1; : : : ; `, then we say the

partitioned matrices conform, and the matrices can be multiplied

AB �

2664
C11 � � � C1`
...

. . .
...

Ck1 � � � Ck`

3775 Cij �
X̀
t�1
AitBtj

These formulas are all easily veri®ed by reducing all the partitioned

matrices back to their scalar elements. Notice that we do not have to

remember any new formulas. These are the same formulas that we

learned for matrix operations when the submatrices Aij and Bij were

scalar elements (except we normally do not write the transpose for

scalars in the transpose formula). The conclusion is that all the usual

rules apply provided that the matrices are partitioned so that all the

implied operations are de®ned.

1.3 Systems of Linear Algebraic Equations

1.3.1 Introduction to Existence and Uniqueness

Any set ofm linear algebraic equations for n unknowns can be written

in the form

Ax � b
where A 2 Rm�n; b 2 Rn and x (2 Rn) is the vector of unknowns.

Consider the vectors ci that form the columns of A. The solution x (if

it exists) is the linear combination of these columns that equals b

b � x1c1 � x2c2 � x3c3 � : : :� xncn
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This view of Ax � b leads naturally to the following result. The system
of equations

Ax � b; A 2 Rm�n; x 2 Rn; b 2 Rm

has at least one solution x if and only if the columns of A are not

linearly independent from b.

For example, ifm � n � 3 and the columns ofA form an LI set, then

they span R3. Therefore, no vector b 2 R3 can be linearly independent

from the columns of A and therefore Ax � b has a solution for all

b 2 R3. Conversely, if the column vectors of A are not LI, then they do

not span R3 so there will be some vectors b for which no solution x

exists.

Consider the case where there are the same number of equations

as unknowns: n � m. Here the above result leads to this general

theorem.

Theorem 1.8 (Existence and uniqueness of solutions for square sys-

tems). If A 2 Rn�n, then

(a) If the columns of A are LI, then the matrix is invertible. The prob-

lem Ax � b has the following properties:

(a) Ax � 0 (the homogeneous problem) has only the trivial solution

x � 0,

(b) Ax � b (the inhomogeneous problem) has a unique nonzero solu-

tion for all b � 0.

(b) If the columns of A are NOT LI, then the matrix is singular or

noninvertible. In this case:

(a) Ax � 0 has an in®nite number of nonzero solutions. These solu-

tions comprise the null space of A.

(b) For b � 0, Ax � b has either:

i. No solution, if b is LI of the columns of A. That is, b is not in

the range of A, or

ii. An in®nite number of solutions, if b is in the range of A. These

solutions correspond to the superposition of a particular solu-

tion toAx � b and any combination of the solutions ofAx � 0,

i.e., x � xH � xP where AxP � b and AxH � 0.
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1.3.2 Solving Ax � b: LU Decomposition

We now turn to the issue of explicitly constructing solutions. For the

present, we restrict attention to n � m and to case (a) of the above

theorem. In this case, we can de®ne the inverse of A, denoted A�1.
This is a matrix operator that satis®es

1. A�1A � I (de®nition of A�1)

2. AA�1 � I

3. �AB��1 � B�1A�1

The ®rst property implies that A�1Ax � A�1b reduces to x � A�1b,
so Ax � b can be solved by ®nding A�1. Finding A�1 is not necessary,
however, to solve Ax � b, nor is it particularly ef®cient. We describe a

widely used approach called LU decomposition.

LU decomposition is essentially a modi®cation of Gaussian elimi-

nation, with which everyone should be familiar. It is based on the fact

that triangular systems of equations are easy to solve. For example,

this matrix is upper triangular2641 2 3

0 4 8

0 0 7

375
All the elements below the diagonal are zero. Since the third row has

only one nonzero element, it corresponds to a single equation with a

single unknown. Once this equation is solved, the equation above it

has only a single unknown and is therefore easy to solve, and so on.

LU decomposition depends on the fact that a square matrix A can be

written A � LU , where L is lower triangular and U is upper triangular.

Using this fact, solvingAx � b consists of three steps, the ®rst of which
takes the most computation:

1. Find L and U from A: LU factorization.

2. Solve Lc � b for c: forward substitution.

3. Solve Ux � c for x: back substitution.

The latter two steps are simple operations, because L and U are trian-

gular. Note that L and U are independent of b, so to solve Ax � b
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for many different values of b, then once A is factored, only the inex-

pensive steps 2 and 3 of the above process need be repeated. The LU

decomposition procedure (®rst step above) is illustrated on the matrix

A �

2643 5 2

0 8 2

6 2 8

375
Step a. Replace row 2 with a linear combination of row 1 and row

2 that makes the ®rst element zero. That is, r2 is replaced

by r2�L21r1, where L21 � A21=A11. For this example, A21 is

already zero, so L21 � 0 and r2 is unchanged.

Step b. Replace row 3 with a linear combination of row 1 and row

3 that makes the ®rst element zero. That is, r3 is replaced

by r3 � L31r1, where L31 � A31=A11. So L31 � 6=3 � 2 and A

is modi®ed to 2643 5 2

0 8 2

0 �8 4

375
Step c. Now the ®rst column of the matrix is zero below the diag-

onal. We move to the second column. Replace row 3 with a

linear combination of row 2 and row 3 that makes the sec-

ond element zero. That is, r�3� is replaced by r3 � L32r2,
where L32 � A32=A22. So L32 � �1 and A is modi®ed to2643 5 2

0 8 2

0 0 6

375 � U
This matrix is now the upper triangular matrix U . For a ma-

trix in higher dimensions, the procedure would be continued

until all of the elements below the diagonal were zero. The

matrix L is simply composed of the multipliers Lij that were

computed at each step

L �

264 1 0 0

L21 1 0

L31 L32 1

375 �
2641 0 0

0 1 0

2 �1 1

375
Note that all the diagonal elements of L are 1 and all above-

diagonal elements are zero. The elements on the diagonal

of U are called the pivots.
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Now, for any vector b the simple systems Lc � b and then Ux � c
can be solved to yield x. Notice that as written, the method will fail if

Aii � 0 at any step of the procedure. Modern computational routines

actually compute a slightly different factorization PA � LU where P

is a permutation matrix that exchanges rows to avoid the case Aii � 0

(see Exercise 1.9). With this modi®cation, known as partial pivoting,

even singular or nonsquare (m > n) matrices can be factored. However,

the substitution steps will fail except for values of b in the range of A.

To see this, try to perform the back substitution step with a matrix U

that has a zero pivot.

1.3.3 The Determinant

In elementary discussions of the solution to Ax � b that are based

on Cramer's rule, the determinant of the matrix A, denoted detA,

arises. One often ®nds a complicated de®nition based on submatri-

ces, but having the LU decomposition in hand a much simpler formula

emerges (Strang, 1980). For a square matrix A that can be decomposed

into LU , the determinant is the product of the pivots

detA �
nY
i�1
Uii

Ifm permutations of rows must be performed to complete the decom-

position, then the decomposition has the form PA � LU , and

detA � ��1�m
nY
i�1
Uii

The matrix A�1 exists if and only if detA � 0, in which case detA�1 �
�detA��1. Another key property of the determinant is that

detAB � detA detB

The most important use of the determinant that we will encounter in

this book is its use in the algebraic eigenvalue problem that appears

in Section 1.4.

1.3.4 Rank of a Matrix

Before we de®ne the rank of a matrix, it is useful to establish the follow-

ing property of matrices: the number of linearly independent columns

of a matrix is equal to the number of linearly independent rows.
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Example 1.9: Linearly independent columns, rows of a matrix

Given A 2 Rm�n. Assume A has c linearly independent columns and r

linearly independent rows. Show c � r .

Solution

Let fvigci�1 be the set of A's linearly independent column vectors. Let

the ai be all of A's column vectors and ai be all of A's row vectors, so

the A matrix can be partitioned by its columns or rows as

A � m

nh
a1 a2 � � � an

i
A � m

n266664
a1
a2
...

am

377775
Each column of the A matrix can be expressed as a linear combination

of the c linearly independent vi vectors. We denote this statement as

follows26664 � � � aj � � �

37775
A:m�n

�

26664 v1 � � � vc

37775
V :m�c

26664 � � � �j � � �

37775
�:c�n

in which the column vector �j 2 Rc contains the coef®cients of the

linear combination of the vi representing the jth column vector of ma-

trix A. If we place all the �j ; j � 1; : : : ; n next to each other, we have

matrix �. Next comes the key step. Repartition the relationship above

as follows266664
...

ai
...

377775
A:m�n

�

266664
...

vi
...

377775
V :m�c

266664
�1
...

�c

377775
�:c�n

and we see that the rows of A can be expressed as linear combinations

of the rows of �. The multipliers of the ith row of A are given by the

elements of the ith row of V , written as the row vector vi. We know

that all rows of A are expressible as linear combinations of the c rows

of �, but we do not know if the rows of � are independent. So we can
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conclude that the number of linearly independent rows ofA is less than

or equal to the number of rows of � or

r � c

Thus, for any A, the number of linearly independent rows of A is less

than or equal to the number of linearly independent columns of A. But

if we apply that result to AT , we obtain c � r because the linearly in-

dependent row (column) vectors of A are also the linearly independent

column (row) vectors of AT . Combining c � r with r � c, we conclude
that

c � r

and the result is established. The number of linearly independent

columns of a matrix is equal to the number of linearly independent

rows, and this number is called the rank of the matrix. �

De®nition 1.10 (Rank of a matrix). The rank of a matrix is the number

of linearly independent rows, equivalently, columns, of the matrix.

We also see clearly why partitionedmatrices are so useful. The proof

that the number of linearly independent rows of a matrix is equal to the

number of linearly independent columns consisted of little more than

partitioning a matrix by its columns and then repartitioning the same

matrix by its rows. For another example of why partitionedmatrices are

useful, see Exercise 1.17 on deriving the partitioned matrix inversion

formula, which often arises in applications.

1.3.5 Range Space and Null Space of a Matrix

Given A 2 Rm�n, we de®ne the range of A as

R�A� � fy 2 Rm j y � Ax; x 2 Rng

The range of a matrix is the set of all vectors that can be generated with

the product Ax for all x 2 Rn. Equivalently, if vi 2 Rn are the linearly

independent columns of A, then the range of A is the span of the vi.

The vi are a basis for the range of A. Given A 2 Rm�n, we de®ne the

null space of A as follows

N�A� � fx 2 Rn j Ax � 0g
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Similarly the range and null spaces of AT are de®ned to be

R�AT � � fx 2 Rn j x � ATy; y 2 Rmg
N�AT � � fy 2 Rm j ATy � 0g

A basis for R�AT � is the set of linearly independent rows of A, trans-

posed to make column vectors. We can show that these four sets also

satisfy the two properties of a subspace, so they are also subspaces

(see Exercise 1.14).

Let r be the rank of matrix A. We know from the previous exam-

ple that r is equal to the number of linearly independent rows of A

and is also equal to the number of linearly independent columns of A.

Equivalently, the dimension of R�A� and R�AT � is also r

dim�R�A�� � dim�R�AT �� � r � rank�A�

We also can demonstrate the following pair of orthogonality relations

among these four fundamental subspaces

R�A� ? N�AT � R�AT � ? N�A�

Consider the ®rst orthogonality relationship. Let y be any element of

N�AT �. We know N�AT � � fy 2 Rm j ATy � 0g. Transposing this

relation and using column partitioning for A gives

yTA � 0

yT
h
a1 a2 � � �an

i
� 0h

yTa1 yTa2 � � � yTan
i
� 0

The last equation gives yTai � 0; i � 1; : : : ; n, or y is orthogonal to

every column of A. Since every element of the range of A is a linear

combination of the columns of A, y is orthogonal to every element of

R�A�, which gives N�AT � ? R�A�. The second orthogonality relation-

ship follows by switching the roles of A and AT in the preceding argu-

ment (see Exercise 1.15). Note that the range of a matrix is sometimes

called the image, and the null space is sometimes called the kernel.

1.3.6 Existence and Uniqueness in Terms of Rank and Null Space

We return now to the general case where A 2 Rm�n. The fundamen-
tal theorem of linear algebra gives a complete characterization
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of the existence and uniqueness of solutions to Ax � b (Strang, 1980):

every matrix A decomposes the spaces Rn and Rm into the four funda-

mental subspaces depicted in Figure 1.1. The answer to the question of

existence and uniqueness of solutions to Ax � b can be summarized

as follows.

1. Existence. Solutions to Ax � b exist for all b if and only if the

rows of A are linearly independent (m � r ).

2. Uniqueness. A solution to Ax � b is unique if and only if the

columns of A are linearly independent (n � r ).

We can also state this result in terms of the null spaces. A solution

to Ax � b exists for all b if and only if N�AT � � f0g and a solution

to Ax � b is unique if and only if N�A� � f0g. More generally, a

solution to Ax � b exists for a particular b if and only if b 2 R�A�, by
the de®nition of the range of A. From the fundamental theorem, that

means yTb � 0 for all y 2 N�AT �. And if N�AT � � f0g we recover

the existence condition 1 stated above. These statements provide a

succinct generalization of the results described in Section 1.3.1.

1.3.7 Least-Squares Solution for Overdetermined Systems

Now consider the overdetermined problem, Ax � b where A 2 Rm�n

with m > n. In general, this problem has no exact solution, because

the n columns of A cannot span Rm, the space where b exists. This

problem arises naturally in ®tting models to data. In general, the best

we can hope for is an approximate solution x that minimizes the resid-

ual (or error) r � Ax � b. In particular, the ªleast squaresº method

attempts to minimize the square of the Euclidean norm of the residual,

krk2 � rTr . Replacing r byAx�b, this quantity (divided by 2) reduces

to the function

P�x� � 1

2
xTATAx � xTATb � 1

2
bTb

P is a scalar function of x and the value of the vector x that minimizes

P is the solution we seek. That is, we now want to solve @P=@xl � 0; l �
1; : : : ; n, or in different notation, rP�x� � 0. Performing the gradient

operation yields

@P

@xl
� ATljAjkxk �ATljbj � 0
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N�A�

n� r

N�AT �

m� r

R�A�R�AT �

r r

AT A

R
mR

n

Ax � b

0 0

Figure 1.1: The four fundamental subspaces of matrix A (after

(Strang, 1980, p.88)). The dimension of the range of A

and AT is r , the rank of matrix A. The null space of A

and range of AT are orthogonal as are the null space of

AT and range of A. Solutions to Ax � b exist for all b

if and only if m � r (rows independent). A solution to

Ax � b is unique if and only if n � r (columns indepen-

dent).

or in matrix form

dP

dx
� ATAx �ATb � 0

Therefore, the condition that P be minimized is equivalent to solving

ATAx � ATb

These are called the normal equations. Notice that ATA is a square

matrix, so that we can solve this problem with LU decomposition,

provided ATA has full rank. QR decomposition also can be used:

ATA � RTQTQR � RTR. Since R is triangular, RTRx � ATb is as

easy to solve as LUx � ATb. In Exercise 1.41 you are asked to prove
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that ATA has full rank if and only if the columns of A are linearly in-

dependent.2

If ATA has full rank, the inverse is uniquely de®ned, and we can

write the least-squares solution to the normal equations as

xls � �ATA��1ATb (1.9)

The matrix on the right-hand side is ubiquitous in least-squares prob-

lems; it is known as the pseudoinverse of A (or Moore-Penrose pseu-

doinverse in honor of mathematician E. H. Moore and mathematical

physicist Roger Penrose) and given the symbol Ay. The least-squares

solution is then denoted

xls � Ayb Ay � �ATA��1AT

The normal equations have a compelling geometric interpretation

that illustrates the origin of their name. Substituting r into the normal

equations gives the condition ATr � 0. That is, the residual r � Ax�b
is an element of the null space of AT , N�AT �, which means r is orthog-

onal, i.e., normal, to the range of A, R�A� (right side of Figure 1.1). This

is just a generalization of the fact that the shortest path (minimum krk)
connecting a plane and a point b not on that plane is perpendicular to

the plane. Note that this geometric insight is our second use of the

fundamental theorem of linear algebra. This geometric interpretation

is perhaps best reinforced by a simple example.

Example 1.11: The geometry of least squares

We are interested in solving Ax � b for the following A and b.

A �

2641 1

2 1

0 0

375 b �

26411
1

375
(a) What is the rank of A? Justify your answer.

(b) Draw a sketch of the subspace R�A�.

(c) Draw a sketch of the subspace R�AT �.

2Putting proof aside for a moment, the condition is at least easy to remember. The

A in the overdetermined system for which we apply least squares has more rows than

columns. So the rank ofA is atmost the number of columns. The least-squares solution

is unique if and only if the rank is equal to this largest value, i.e., rank of A equals the

number of columns.
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(d) Draw a sketch of the subspace N�A�.

(e) Draw a sketch of the subspace N�AT �.

(f) Is there a solution to Ax � b for all b? Justify your answer.

(g) Is there a solution for the particular b given above? Justify your

answer.

(h) Assume we give up on solving Ax � b and decide to solve instead

the least-squares problem

min
x
�Ax � b�T �Ax � b�

What is the solution to this problem, x0?

(i) Is this solution unique? Justify your answer.

(j) Sketch the location of the b0 for which this x0 does solve Ax � b.
In particular, sketch the relationship between this b0 and one of

the subspaces you sketched previously. Also on this same draw-

ing, sketch the residual r � Ax0 � b.

Solution

(a) The rank of A is 2. The two columns are linearly independent.

(b) R�A� is the xy plane in R3.

(c) R�AT � isR2. Notice these are not the same subspaces, even though

they have the same dimension 2.

(d) N�A� is the zero element in R2.

(e) N�AT � is the z axis in R3.

(f) No. The rows are not independent.

(g) No. The range of A does not have a nonzero third element and

this b does.

(h) The solution is

x0 � �ATA��1ATb x0 �
"
0

1

#
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x

y

z

R�A�

b0

�r

b

N�AT �

Figure 1.2: Least-squares solution of Ax � b; projection of b into

R�A� and residual r � Ax0 � b in N�AT �.

(i) Yes, the least-squares solution is unique because the columns of

A are linearly independent.

(j) The vector b is decomposed into b0 2 R�A� and r � Ax0 � b 2
N�AT �.

b � b0 � ��r� r 2 N�AT � b0 2 R�A�

We want Ax0 � b0, so b0 � A�ATA��1ATb � Pb and the projec-

tion operator is P � A�ATA��1AT . The residual is r � Ax0 � b �
�P � I�b and we have for this problem

P � A�ATA��1AT �

2641 0 0

0 1 0

0 0 0

375 P � I �

2640 0 0

0 0 0

0 0 �1

375
Substituting in the value for b gives

b0 �

26411
0

375 r �

264 0

0

�1

375
The spaces R�A� and N�AT � are orthogonal, and therefore so are

b0 and r . The method of least squares projects b into the range
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of A, giving b0, and then solves exactly Ax � b0 to obtain x0.

These relationships are shown in Figure 1.2. �

The above analysis is only the beginning of the story for parameter

estimation. We have not dealt with important issues such as errors in

the measurements, quantifying the uncertainty in parameters, choice

of model form, etc. Many of these issues will be studied in Chapter 4

as part of maximum-likelihood estimation.

1.3.8 Minimum Norm Solution of the Underdetermined Problem

Consider the case of solving Ax � b with fewer equations than un-

knowns, the so-called underdetermined problem. Assume that the

rows of A are linearly independent, so a solution exists for all b. But

we also know immediately that N�A� � f0g, and there are in®nitely

many solutions. One natural way to choose a speci®c solution from

the in®nite number of possibilities is to seek the minimum-norm solu-

tion. That is, we minimize kxk2 subject to the constraint that Ax � b.
By analogy with the approach taken above in constructing the least-

squares solution, we de®ne an objective function

P�x� � 1

2
xTx � zT �Ax � b� � 1

2
xixi � zi�Aijxj � bi�

where now z is a vector of Lagrange multipliers. The minimization

condition @P=@xk � 0 is thus

xk � zjAjk
or x � ATz. Inserting this into the equation Ax � b yields

AATz � b
Since the rows of A are linearly independent, AAT is full rank.3 We can

solve this equation for z and insert into the equation x � ATz that we
found above to deduce the minimum-norm solution

xmn � AT �AAT ��1b (1.10)

Note the similarity in the solution structure of the underdetermined,

minimum-norm problem to the overdetermined, least-squares problem

given in (1.9). The singular value decomposition, which we introduce

in Section 1.4.7, allows for a uni®ed and general treatment of both the

underdetermined and overdetermined problems.

3Transpose the result of Exercise 1.41.
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1.3.9 Rank, Nullity, and the Buckingham Pi Theorem

As engineers, we often encounter situations where we have a number

of measurements or other quantities di and we expect there to be a

functional relationship �d between them

�d�d1; d2; : : : ; dn� � 0

In general, we would like to have a dimensionless representation of this

relation, one that does not depend on the units of measurement, i.e.,

����1;�2; : : : ;�l� � 0

where each �i has the form

� � da1

1 d
a2

2 � : : :� dann

and the exponents ai are chosen so that each�i is dimensionless. If the

set of n quantities di depend onm units (kilograms, meters, seconds,

amperes, . . . ), the key question is: what is the relationship between n,

m, and the number l of dimensionless variables �i that is required to

characterize the relationship between the variables?

We will address this issue with a speci®c example. Consider ¯uid

¯ow through a tube. The ¯uid has density � and viscosity �, and ¯ows

with average velocity U through a tube with radius R and length L,

driven by a pressure drop �p. De®ning ��� to mean ªhas dimensions

of,º we seek dimensionless quantities of the form

� � �pa1Ua2�a3�a4Ra5La6

� ��
�
kg m

s2m2

�a1
�
m

s

�a2
�
kg

m3

�a3
�
kg m s

m2s2

�a4

�m�a5 �m�a6

All the units must cancel, so we require that

kg : a1 � a3 � a4 � 0

m : � a1 � a2 � 3a3 � a4 � a5 � a6 � 0

s : � 2a1 � a2 � a4 � 0

This is a system of three equations with six unknowns and has the form

Ax � 0, where A 2 Rm�n, m � 3; n � 6, and x � �a1; : : : ; a6�T . We

know that A has at most three LI columns, so in six dimensions there

must be at least three dimensions that cannot be spanned by these

three columns. In this case it is easy show that A does have three LI
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columns, which means that there are 6 � 3 � 3 families of solutions

ai that will yield proper dimensionless quantities. By inspection, we

can ®nd the solutions x � �0;1;1;�1;1;0�T , �1;�2;�1;0;0;0�T , and
�0;0;0;0;1;�1�T , yielding the three dimensionless groups

�1 � �UR
�

�2 � �p

�U2
�3 � R

L

Readers with a background in ¯uid mechanics will recognize �1 as the

Reynolds number (Bird, Stewart, and Lightfoot, 2002).

Because the solution to Ax � 0 is not unique, this choice of dimen-

sionless groups is not unique: each �i can be replaced by any nonzero

power of it, and the �is can be multiplied by one another and by any

constant to yield other equally valid dimensionless groups. For exam-

ple, �2 can be replaced in this set by �2�3 � �pR
�U2L ; ¯uid mechanicians

will recognize this quantity as the friction factor.

Nowwe return to the general case where we haven quantities andm

units. Because A hasm LI rows (and thusm LI columnsÐsee Example

1.9), it has a null space of n�m dimensions, and therefore there is an

n�m dimensional subspace of vectors x that will solve Ax � 0. This

result gives us the Buckingham Pi Theorem: given a problem with n

dimensional parameters containingm units, the problem can be recast

in terms of l � n�m dimensionless groups (Lin and Segel, 1974). This

theorem holds under the condition that rank�A� �m; in principle it is

possible for the rank of A to be less than m. One somewhat arti®cial

example where this issue arises is the following: if all units of length are

represented as hectares per meter, then the equations corresponding

to those two units would differ only by a sign. They would thus be

redundant and the rank of A would be one less than the number of

units. If m were replaced by rank�A�, then the Pi theorem would still

hold.

A less trivial example in which the Buckingham Pi theorem can cause

confusion is the case of problems involving mixtures. One might ex-

pect thatmoles (ormasses) of chemical species A andmoles of chemical

species B (or mole or mass fractions of these species) would be inde-

pendent units, but they are not. Unlike kilograms and meters, which

cannot be added to one another, moles of A andmoles of B can be added

to one another so they do not yield separate equations for exponents

the way that kilograms and meters do.
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xx�

f�x�

f�x��

0

d

m � df
dx

����
x

Figure 1.3: An iteration of the Newton-Raphson method for solving

f�x� � 0 in the scalar case.

1.3.10 Nonlinear Algebraic Equations: the Newton-RaphsonMethod

Many if not most of the mathematical problems encountered by engi-

neers are nonlinear: second-order reactions, ¯uid dynamics at ®nite

Reynolds number, and phase equilibrium are a few examples. We will

write a general nonlinear system of n equations and n unknowns as

f�x� � 0 (1.11)

where x 2 Rn and f 2 Rn. In contrast to the case with linear equations,

where LU decomposition will lead to an exact and unique solution (if

the problem is not singular), there is no general theory of existence and

uniqueness for nonlinear equations. In general, many solutions can

exist and there is no way of knowing a priori where they are or how

many there are. To ®nd solutions to nonlinear equations, one almost

always needs to make an initial guess and use an iterative method to

®nd a solution. A powerful and general method for doing this is called

Newton-Raphson iteration.

Consider an initial guess x and assume for the moment that the

exact solution xe is given by x � d, where d is as yet unknown, but is
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assumed to be small, i.e., the initial guess is good. In this case

f�xe� � f�x � d� � 0

We next expand f�x � d� in a Taylor series around x. It is now con-

venient to switch to component notation to express the second-order

Taylor series approximation for vector f

fi�x � d� � fi�x�� @fi
@xj

�����
x

dj � 1

2

@2fi
@xj@xl

�����
x

djdl �O
�
kdk3

�
where the notation O��p� denotes terms that are ªof order �p,º which

means that they decay to zero at least as fast as �p in the limit � ! 0.

An approximate solution to this equation can be found if the terms

that are quadratic and higher degree in d are neglected, yielding the

linearized problem

f�x � d� � f�x�� @f
@x

����
x
d

Setting f�x�d� � 0 and de®ning the Jacobianmatrix Jij�x� � @fi
@xj

���
x
,

this can be rearranged into the linear system

J�x�d � �f�x�

This equation can be solved for d (e.g., by LU decomposition) to yield

a new guess for the solution x� � x � d in which we use the notation

x� to denote the variable x at the next iterate. Denoting the solution

by d � �J�1�x�f�x�, the process can be summarized as

x� � x � J�1�x�f�x� (1.12)

This equation is iterated until kx� � xk or
f�x� reaches a prescribed

error tolerance. One iteration of (1.12) is depicted for a scalar function

in Figure 1.3.

An important question for any iterative method is how rapidly it

converges. To address this issue for the Newton-Raphson method, let

� � x�xe be the difference between the approximate solution and the

exact solution. Similarly, �� � x� � xe and therefore �� � � � x� � x.
Using this result and (1.12), the evolution equation for the error is

�� � �� J�1�xe � ��f�xe � ��
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Taylor expanding this equation around xe yields, again in index nota-

tion due to the Taylor series,

��i � �i �
0@J�1ij jxe � @J�1ij@xl

������
xe

�l �O
�
k�k2

�1A �
0@0� Jjkjxe�k � 1

2

@Jjk
@xl

�����
xe

�k�l �O
�
k�k3

�1A
� �i �

0@J�1ij Jjk���xe �k �
�@J�1ij
@xl

Jjk � 1

2
J�1ij

@Jjk
@xl

�������
xe

�l�k �O
�
k�k3

�1A
� �i �

0@�ik�k � �@J�1ij
@xl

Jjk � 1

2
J�1ij

@Jjk
@xl

�������
xe

�l�k �O
�
k�k3

�1A
� �

�@J�1ij
@xl

Jjk � 1

2
J�1ij

@Jjk
@xl

�������
xe

�l�k �O
�
k�k3

�

� �
�
@

@xl

�
J�1ij Jjk

�� 1

2
J�1ij

@Jjk
@xl

������
xe

�l�k �O
�
k�k3

�
� �

�
@

@xl
�ik � 1

2
J�1ij

@Jjk
@xl

������
xe

�l�k �O
�
k�k3

�
��i �

1

2
J�1ij

@Jjk
@xl

�����
xe

�l�k �O
�
k�k3

�

This result, which we can summarize as k��k � O
�
k�k2

�
, illustrates

that given a suf®ciently good guess, the Newton-Raphson iteration con-

verges rapidly, speci®cally quadratically, to the exact solution.

For example, if the error in iteration (1.12) after step k is 10�2, the
error after step k� 1 is � 10�4 and after step k� 2 is � 10�8. Indeed,
a good check of whether a code for implementing Newton-Raphson is

correct is to verify the quadratic convergence. Of course, this result

holds only if a suf®ciently good guess is given. If the initial guess is

poor, the iteration may not converge, or alternately may converge to a

solution far from the initial guess.

1.3.11 Linear Coordinate Transformations

As noted above, the components of a matrix operator depend on the

coordinate system in which it is expressed. Here we illustrate how the

components of a matrix operator change upon a change in coordinate
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system. Consider two vectors x and y and a matrix operator A, where

y � Ax. For example, we can take x and y to be two-dimensional, in

which case

x �
"
x1
x2

#
Now consider new variables x01 and x

0
2, where

x01 � T11x1 � T12x2
x02 � T21x1 � T22x2

This can be written x0 � Tx. Here x and x0 are the same vector, but

represented in the original (unprimed) and new (primed) coordinate

systems, and T is the operator that generates the new coordinate val-

ues from the original ones. It must be invertibleÐotherwise there is

not a unique mapping between the coordinate systems. Therefore, we

can write x � T�1x0 and y � AT�1x0; the matrix AT�1 yields the

mapping between x0 and y . If we also consider a coordinate transfor-

mation of the vector y of the form y 0 � Wy , then y 0 � WAT�1x0.
The matrix WAT�1 provides the mapping from x0 to y 0. Some impor-

tant coordinate transformations that take advantage of the properties

of the operator A are described in Section 1.4.

1.4 The Algebraic Eigenvalue Problem

1.4.1 Introduction

Eigenvalue problems arise in a variety of contexts. One of the most

important is in the solution of systems of linear ordinary differential

equations. Consider the system of two ordinary differential equations

dz

dt
� Az (1.13)

Here z 2 R2 and A 2 R2�2. If we guess, based on what we know about

the scalar case, that solutions will have the form

z�t� � xe�t

then we have that

Ax � �x (1.14)

If we can ®nd a solution to this equation, then we have a solution to

(1.13). (To obtain the general solution to (1.13) we must ®nd two solu-

tions to this problem.) This is the algebraic version of the eigenvalue

problem.
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The eigenvalue problem can be rewritten as the homogeneous sys-

tem of equations

�A� �I�x � 0

As with any homogeneous system, this generally has only the trivial

solution x � 0. For special values of �, known as the eigenvalues

of A, the equation has a nontrivial solution, however. The solutions

corresponding to these eigenvalues, which can be real or complex, are

the eigenvectors of A. Geometrically, the eigenvectors of A are those

vectors that change only a scalar multiple when operated on by A. This

property is of great importance because for the eigenvectors, matrix

multiplication reduces to simple scalar multiplication; Ax can be re-

placed by �x. Because of this property, the eigenvectors of a matrix

provide a natural coordinate system for working with that matrix. This

fact is used extensively in applied mathematics.

From the existence and uniqueness results for linear systems of

equations that we saw in Section 1.3.1, we know that the above ho-

mogeneous problem has a nontrivial solution if and only if A � �I is
noninvertible: that is, when

det�A� �I� � 0

This equation is called the characteristic equation forA, and det�A�
�I� is the characteristic polynomial. For an n�nmatrix, this poly-

nomial is always nth degree in �; this can be seen by performing LU

decomposition onA��I; therefore, the characteristic polynomial hasn

roots (not necessarily all real or distinct). Each root is an eigenvalue, so

an n�nmatrix has exactly n eigenvalues. Each distinct eigenvalue has

a distinct (i.e. linearly independent) eigenvector. Each set of repeated

roots will have at least one distinct eigenvector, but may have fewer

than the multiplicity of the root. So a matrix may have fewer than n

eigenvectors. The nature of the eigenvectors depends on the structure

of the matrix.

In principle, the eigenvalues of a matrix may be found by ®nding

the roots of its characteristic polynomial. Since polynomials of degree

greater than four cannot be factored analytically, approximate numeri-

cal methods must be used for virtually all matrix eigenvalue problems.

There are numerical methods for ®nding the roots of a polynomial, but

in practice, this procedure is dif®cult and inef®cient. An extremely

robust iterative method, based on theQR factorization of a matrix (Ex-

ercise 1.38), is themost commonly used technique for general matrices.

In some cases, only the ªdominantº eigenvalue (the eigenvalue with the
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largest magnitude) needs to be found. The power method (Exercise

1.57) is a rapid iterative technique for this problem. Generalizations of

the idea behind the power method form the basis of powerful Krylov

subspacemethods for iterative solutions of many computational linear

algebra problems (Trefethen and Bau III, 1997).

1.4.2 Self-Adjoint Matrices

Consider the real symmetric (thus self-adjoint) matrix

A �
"
2 1

1 2

#

The characteristic equation for A is �2 � 4� � 3 � 0 and its solutions

are �1 � 1; �2 � 3. The corresponding eigenvectors x � v1 and x � v2
are solutions to "

2� � 1

1 2� �

#
x � 0

These solutions are (to within an arbitrary multiplicative constant)

v1 �
"

1

�1

#
v2 �

"
1

1

#

Note that these vectors, when normalized to have unit length, form an

ON basis for R2. Now let

Q �
h
v1 v2

i
� 1p

2

"
1 1

�1 1

#

A vector x in R2 can now be represented in two coordinate systems,

either the original basis or the eigenvector basis. A representation in

the eigenvector basis will be indicated by a 0, so x0 � �x01 x02�T is the

vector containing the coordinates of x expressed in the eigenvector

basis. It can be shown that the coordinate transformation between

these bases is de®ned byQ, so thatx � Qx0 andx0 � Q�1x. Remember

that A is de®ned in the original basis so Ax makes sense, but Ax0 does
not. However, we can write

Ax � A�x01v1 � x02v2�
� x01Av1 � x02Av2
� x01�1v1 � x02�2v2
� Q�x0
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where

� �
"
�1 0

0 �2

#
�
"
1 0

0 3

#

Therefore, Ax � Q�x0. Using the transformation x0 � Q�1x gives

that Ax � Q�Q�1x, or A � Q�Q�1 . This expression can be reduced

further by noting that since the columns of Q form an orthonormal

basis, QkiQkj � �ij , or QTQ � I. Since Q�1Q � I by de®nition, it

follows that Q�1 � QT . Matrices for which this property holds are

called orthogonal. In the complex case, the property becomesQ�1 �
Q
T
andQ is said to beunitary. Returning to the example, the property

means that A can be expressed

A � Q�QT

As an example of the usefulness of this result, consider the system

of equations
dx

dt
� Ax � Q�QTx

By multiplying both sides of the equation by QT and using the facts

that QTQ � I and x0 � QTx, the equation can be rewritten

dx0

dt
� �x0 �

"
1 0

0 3

#
x0

or dx1=dt � x1, dx2=dt � 3x2. In the eigenvector basis, the differen-

tial equations are decoupled. They can be solved separately.

The above representation of A can be found for any matrix A that

satis®es the self-adjointness condition A � AT . We have the following

theorem.

Theorem 1.12 (Self-adjoint matrix decomposition). If A 2 Cn�n is self-

adjoint, then there exists a unitary Q 2 Cn�n and real, diagonal � 2
Rn�n such that

A � Q�Q�

The diagonal elements of �, �ii, are the eigenvalues �i of A. The

eigenvalues are all real, even if A is not. The columns of the matrix Q

are the (normalized) eigenvectors vi corresponding to the eigenvalues.

The eigenvectors are orthonormal and form a basis for Cn.

This result shows that for every self-adjoint matrix operator, there

is a natural orthogonal basis, in which the matrix becomes diagonal.
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That is, the transformation diagonalizes the matrix. Since the eigen-

values are all real, matrix multiplication reduces to simple contraction

or stretching along the (eigenvector) coordinate axes. In this basis, any

linear systems of algebraic or differential equations containing Ax re-

duce to n decoupled equations.

That the eigenvalues are real can be established as follows. We have

Av � �v and, by taking adjoints, v�A � �v�, after noting that A� � A.
Multiply the ®rst on the left by v� and the second on the right by v

and subtract to obtain 0 � �� � ��v�v . We have that v�v is not zero

since v � 0 is an eigenvector, and therefore � � � and � is real.

IfA has distinct eigenvalues, the eigenvectors are orthogonal, which

is also readily established. Given an eigenvalue �i and corresponding

eigenvector vi, we have that Avi � �ivi. Let ��j ; vj� be another eigen-
pair so that Avj � �jvj . Multiplying Avi � �ivi on the left by v�j , and
Avj � �jvj on the left by v�i and subtracting gives ��i��j��v�i vj� � 0.

If the eigenvalues are distinct, �i � �j this equation can hold only if

v�i vj � 0, and therefore vi and vj are orthogonal.

For the case of repeated eigenvalues, since orthogonality holds for

eigenvalues that are arbitrarily close together but unequal, we might

expect intuitively that it continues to hold when the eigenvalues be-

come equal. This turns out to be true, and we delay the proof until we

have introduced the Schur decomposition in Section 1.4.6.

1.4.3 General (Square) Matrices

Although many matrices arising in applications are self-adjoint, many

others are not, so it is important to include the results for these cases.

Now the eigenvectors do not necessarily form an ON basis, nor can the

matrix always be diagonalized. But it is possible to come fairly close.

There are three cases:

1. IfA is not self-adjoint, but has distinct eigenvalues (�i � �j ; i � j),

then A can be diagonalized

A � S�S�1 (1.15)

As before, � � S�1AS is diagonal, and contains the eigenvalues

(not necessarily real) of A. The columns of S contain the corre-

sponding eigenvectors. The eigenvectors are LI, so they form a

basis, but are generally not orthogonal.

2. IfA is not self-adjoint and has repeated eigenvalues, it may still be

the case that the repeated eigenvalues have distinct eigenvectors ±
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e.g. a root with multiplicity two that has two linearly independent

eigenvectors. Here A can be diagonalized as above.

3. If A is not self-adjoint and has repeated eigenvalues that do not

yield distinct eigenvectors, it cannot be completely diagonalized;

a matrix of this type is called defective. Nevertheless, it can

always be put into Jordan form J

A � MJM�1 (1.16)

where J � M�1AM is organized as follows: each distinct eigen-

value appears on the diagonal with the nondiagonal elements of

the corresponding row and column being zero, just as above.

However, repeated eigenvalues appear in Jordan blocks with

this structure (shown here for an eigenvalue of multiplicity three)264� 1 0

0 � 1

0 0 �

375
In the case of repeated eigenvalues, we can distinguish between

algebraic multiplicity and geometric multiplicity. Algebraic

multiplicity of an eigenvalue is simply its multiplicity as a root

of the characteristic equation. Geometric multiplicity is the num-

ber of distinct eigenvectors that correspond to the repeated eigen-

value. In case 2 above, the geometric multiplicity of each repeated

eigenvalue is equal to its algebraic multiplicity. In case 3, the al-

gebraic multiplicity exceeds the geometric multiplicity.

For a non-self-adjoint 5 by 5 matrix with repeated eigenvalues

�2 � �3 � �4,

J �

26666664
�1 0 0 0 0

0 �2 1 0 0

0 0 �3 1 0

0 0 0 �4 0

0 0 0 0 �5

37777775
The eigenvectors corresponding to the distinct eigenvalues are

the corresponding columns ofM . A distinct eigenvector does not

exist for each of the repeated eigenvalues, but a generalized

eigenvector can be found for each occurrence of the eigenvalue.

These vectors, along with the eigenvectors, form a basis for Rn.
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Example 1.13: A nonsymmetric matrix

Find the eigenvalues and eigenvectors of the nonsymmetric matrix

A �
"
1 2

0 3

#
and show that it can be put in the form of (1.15).

Solution

This matrix has characteristic equation �1����3��� � 0 and thus has

eigenvalues � � 1; � � 3. For � � 1, the eigenvector solves"
1� � 2

0 3� �

#"
x1
x2

#
�
"
0 2

0 2

#"
x1
x2

#
�
"
0

0

#
and it is straightforward to see that this is satis®ed by �x1; x2�T � v1 �
�1;0�T . For � � 3 we have"

�2 2

0 0

#"
x1
x2

#
�
"
0

0

#
which has solution v2 � �1;1�T . Here v1 and v2 are not orthogonal,

but they are LI, so they still form a basis. Letting

S �
h
v1 v2

i
�
"
1 1

0 1

#
one can determine that

S�1 �
"
1 �1
0 1

#
Since the columns of S are not orthogonal, they cannot be normalized

to form a matrix that satis®es S�1 � ST . Nevertheless, A can be diago-

nalized

S�1AS � � �
"
1 0

0 3

#
�

Example 1.14: A defective matrix

Find the eigenvalues and eigenvectors of the nonsymmetric matrix

A �
"
3 2

0 3

#
and show that it cannot be put in the form of (1.15), but can be put in

the form of (1.16).
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Solution

The characteristic equation for A is �3���2 � 0, so A has the repeated

eigenvalue � � 3. The eigenvector is determined from"
0 2

0 0

#
x �

"
0

0

#

which has solution x � v1 � �1;0�T . There is not another nontrivial

solution to this equation so the repeated eigenvalue � � 3 has only one

eigenvector. We cannot diagonalize this A.

Nevertheless, we will seek to nearly diagonalize it, by ®nding a gen-

eralized eigenvector v2 that allows us to construct a matrix

M �
h
v1 v2

i
satisfying

M�1AM � J �
"
� 1

0 �

#
Multiplying both sides of this equation by M yields that

AM � MJ �
h
v1 v2

i"� 1

0 �

#

which can be rearranged to

�A� �I�
h
v1 v2

i
�
h
0 v1

i
This equation can be rewritten as the pair of equations

�A� �I�v1 � 0;

�A� �I�v2 � v1
The ®rst of these is simply the equation determining the true eigenvec-

tor v1, while the second will give us the generalized eigenvector v2. For

the present problem this equation is"
0 2

0 0

#
v2 �

"
1

0

#

A solution to this equation is v2 � �0;1=2�T . (Any solution v2 must be

LI from v1. Why?) Constructing the matrix

M �
h
v1 v2

i
�
"
1 0

0 1=2

#
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one can show that

M�1 �
"
1 0

0 2

#
and that

J � M�1AM �
"
3 1

0 3

#
Note that we can replace v2 by v2 ��v1 for any � and still obtain this

result. �

1.4.4 Positive De®nite Matrices

Positive de®nite and positive semide®nite matrices show up often in

applications. Here are some basic facts about them. In the following, A

is real and symmetric and B is real. The matrix A is positive definite

(denoted A > 0), if

xTAx > 0; 8 nonzero x 2 Rn

The matrix A is positive semidefinite (denoted A � 0), if

xTAx � 0; 8x 2 Rn

You should be able to prove the following facts.

1. A > 0 () � > 0; � 2 eig�A�

2. A � 0 () � � 0; � 2 eig�A�

3. A � 0 () BTAB � 0 8B

4. A > 0 and B nonsingular () BTAB > 0

5. A > 0 and B full column rank =) BTAB > 0

6. A1 > 0; A2 � 0 =) A � A1 �A2 > 0

7. A > 0 () z�Az > 0 8 nonzero z 2 Cn

8. For A � 0, xTAx � 0 () Ax � 0

If symmetric matrixA is not positive semide®nite nor negative semidef-

inite, then it is termed inde®nite. In this case A has both positive and

negative eigenvalues.
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1.4.5 Eigenvalues, Eigenvectors, and Coordinate Transformations

Under the general linear transformation

y � Ax (1.17)

all the components of the vector y are coupled to all the components

of the vector x via the elements ofA, all of which are generally nonzero.

We can always rewrite this transformation using the eigenvalue decom-

position as

y � MJM�1x

Now consider the coordinate transformation x0 � M�1x and y 0 �
M�1y . In this new coordinate system, the linear transformation, (1.17)

becomes

y 0 � Jx0

In the ªworst case scenario,º J has eigenvalues on the diagonal, some

values of 1 just above the diagonal and is otherwise zero. In the more

usual scenario J � � and each component of y 0 is coupled only to one

component of x0Ðthe coordinate transformation associated with the

eigenvectors of A provides a coordinate system in which the different

components are decoupled. This result is powerful and is used in a

wide variety of applications.

Further considering the idea of coordinate transformations leads

naturally to the question of the dependence of the eigenvalue problem

on the coordinate system that is used to set up the problem. Given that

Ax � �x

let us take x0 � Tx, where T is invertible but otherwise arbitrary; this

expression represents a coordinate transformation between unprimed

and primed coordinates, as we have already described in Section 1.3.11.

Now x � T�1x0, and thus

AT�1x0 � �T�1x0

Multiplying both sides by T to eliminate T�1 on the right-hand side

yields

TAT�1x0 � �x0

Recall that we have done nothing to the eigenvalues �Ðthey are the

same in the last equation of this sequence as the ®rst. Thus the eigen-

values of TAT�1 are the same as the eigenvalues ofA. Therefore, if two
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matrices are related by a transformation B � TAT�1, which is called a

similarity transformation, their eigenvalues are the same. In other

words, eigenvalues of a matrix are invariant under similarity trans-

formations.

In many situations, invariants other than the eigenvalues are used.

These can be expressed in terms of the eigenvalues. The two most

common are the trace of a matrix A

tr A �
nX
i�1
Aii �

nX
i�1
�i

and the determinant

detA � ��1�m
nY
i�1
Uii �

nY
i�1
�i

Example 1.15: Vibrational modes of a molecule

The individual atoms that make up a molecule vibrate around their

equilibrium positions and orientations. These vibrations can be used

to characterize the molecule by spectroscopy and are important in de-

termining many of its properties, such as heat capacity and reactivity.

We examine here a simple model of a molecule to illustrate the origin

and nature of these vibrations.

Let the�th atom of a molecule be at position x� � �x�; y�; z��T and
have massm�. The bond energy of the molecule is U�x1;x2;x3; : : : ;xN�

where N is the number of atoms in the molecule. Newton's second law

for each atom is

m�
d2x�
dt2

� �@U�x1; : : : ;xN�
@x�

Let X � �x1; y1; z1; x2; y2; z2; : : : ; xN ; yN ; zN�T and M be a 3N � 3N

diagonal matrix with the masses of each atom on the diagonals. That

is, M11 � M22 � M33 � m1, M44 � M55 � M66 � m2, M3N�2;3N�2 �
M3N�1;3N�1 � M3N;3N � mN . Now the equations of motion for the

coordinates of the atom become

Mij
d2Xj
dt2

� �@U�X�
@Xi

An equilibrium shape Xeq of the molecule is a minimum of the bond

energy U , and can be found by Newton-Raphson iteration on the prob-

lem @U
@Xi
� 0. Assume Xeq is known and characterize small-amplitude

vibrations around that shape.
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Solution

Let ÃX � X � Xeq be a small perturbation away from the equilibrium

shape. Because
d2Xeq

dt2 � 0, this perturbation satis®es the equation

Mij
d2 ÃXj
dt2

� �@U�Xeq � ÃX�

@Xi

Taylor expanding the right-hand side of this equation, using the fact

that @U
@Xi

���
Xeq

� 0, and neglecting terms of O�
 ÃX2� yield

@U�Xeq � ÃX�

@Xi
� Hik ÃXk

where

Hik � @2U

@Xi@Xk

�����
Xeq

is called the Hessian matrix for the function U . Thus the governing

equation for the vibrations is given by

Mij
d2 ÃXj
dt2

� �Hik ÃXk

By de®nition, H is symmetric. Furthermore, rigidly translating the en-

tire molecule does not change its bond energy, so H has three zero

eigenvalues, with eigenvectors

V � �1;0;0; : : : ;1;0;0�T V � �0;1;0; : : : ;0;1;0�T

V � �0;0;1; : : : ;0;0;1�T

These correspond to moving the whole molecule in the x, y , and z

directions, respectively. Furthermore, because Xeq is a minimum of

the bond energy, H is also positive semide®nite.

We expect the molecule to vibrate, so we will seek oscillatory solu-

tions. A convenient way to do so is to let

ÃX�t� � Zei!t � Ze�i!t

recalling that for real!, ei!t � cos!t� i sin!t. Substituting into the

governing equation yields

�!2Mij�Zje
i!t � Zje�i!t� � �Hik�Zke

i!t � Zke�i!t�
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Gathering terms proportional to ei!t and e�i!t , we can see that this

equation will be satis®ed at all times if and only if

!2MijZj � HikZk (1.18)

This looks similar to the linear eigenvalue problem, (1.14), and reduces

exactly to one if all atoms have the same mass m (in which case M �
mI).

We can learn more about this problem by considering the proper-

ties of M and H. Since M is diagonal and the atomic masses are pos-

itive, M is clearly positive de®nite. Also recall that H is symmetric

positive semide®nite. Writing M � L2, where L is diagonal and its di-

agonal entries are the square roots of the masses, we can write that

!2L2Z � HZ . Multiplying by L�1 on the left yields !2LZ � L�1HZ
and letting ÄZ � LZ results in !2 ÄZ � L�1HL�1 ÄZ . This has the form

of an eigenvalue problem ÄH ÄZ � !2 ÄZ , where ÄH � L�1HL�1. Solving

this eigenvalue problem gives the frequencies! at which the molecule

vibrates. The corresponding eigenvectors ÄZ , when transformed back

into the original coordinates via Z � L�1 ÄZ , give the so-called ªnormal

modes.º Each frequency is associated with a mode of vibration that in

general involves different atoms of the molecule in different ways. Be-

cause ÄH is symmetric, these modes form an orthogonal basis in which

to describe the motions of the molecule. A further result can be ob-

tained by multiplying (1.18) on the left by ZT , yielding

!2ZTMZ � ZTHZ

Because ZTMZ > 0 and ZTHZ � 0, we can conclude that !2 � 0 with

equality only when Z is a zero eigenvector of H. This result shows

that the frequencies ! are real and thus that the dynamics are purely

oscillatory.

Observe that the quantityZTMZ arises naturally in this problem: via

the transformation ÄZ � LZ it is equivalent to the inner product ÄZT ÄZ .

It is straightforward to show that for any symmetric positive de®nite

W , the quantity xTWy satis®es all the conditions of an inner product

between real vectors x and y ; it is called a weighted inner product.

In the current case, the eigenvectors ÄZ are orthogonal under the usual

ªunweightedº inner product, in which case the vectors Z � L�1 ÄZ are

orthogonal under the weighted inner product with W � M . �
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1.4.6 Schur Decomposition

A major problem with using the Jordan form when doing calculations

on matrices that have repeated eigenvalues is that the Jordan form is

numerically unstable. For matrices with repeated eigenvalues, if di-

agonalization is not possible, it is usually better computationally to

use the Schur form instead of the Jordan form. The Schur form only

triangularizes the matrix. Triangularizing a matrix, even one with re-

peated eigenvalues, is numerically well conditioned. Golub and Van

Loan (1996, p.313) provide the following theorem.

Theorem 1.16 (Schur decomposition). If A 2 Cn�n then there exists a

unitary Q 2 Cn�n such that

Q�AQ � T

in which T is upper triangular.

The proof of this theorem is discussed in Exercise 1.43. Note that

even though T is upper triangular instead of diagonal, its diagonal el-

ements are still its eigenvalues. The eigenvalues of T are also equal

to the eigenvalues of A because T is the result of a similarity trans-

formation of A. Even if A is a real matrix, T can be complex because

the eigenvalues of a real matrix may come in complex conjugate pairs.

Recall a matrix Q is unitary if Q�Q � I. You should also be able to

prove the following facts (Horn and Johnson, 1985, p.14,67).

1. If A 2 Cn�n and BA � I for some B 2 Cn�n, then

(a) A is nonsingular

(b) B is unique

(c) AB � I

2. The matrix Q is unitary if and only if

(a) Q is nonsingular and Q� � Q�1

(b) QQ� � I
(c) Q� is unitary

(d) The rows of Q form an orthonormal set

(e) The columns of Q form an orthonormal set
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If A is self-adjoint, then by taking adjoints of both sides of the Schur

decomposition equality, we have that T is real and diagonal, and the

columns of Q are the (normalized) eigenvectors of A, which is one way

to show that the eigenvectors of a self-adjointmatrix are orthogonal, re-

gardless of whether the eigenvalues are distinct. Recall that we delayed

the proof of this assertion in Section 1.4.2 until we had introduced the

Schur decomposition.

If A is real and symmetric, then not only is T real and diagonal, but

Q can be chosen real and orthogonal. This fact can be established by

specializing the results in Exercises 1.42 and 1.43 to real rather than

complex matrices and noting that the eigenvalues are real. The theo-

rem summarizing this case is the following (Golub and Van Loan, 1996,

p.393), where, again, it does not matter if the eigenvalues of A are re-

peated.

Theorem 1.17 (Symmetric Schur decomposition). If A 2 Rn�n is sym-

metric, then there exists a real, orthogonal Q and a real, diagonal �

such that

QTAQ � � � diag��1; �2; : : : ; �n�

where diag�a; b; c; : : :� denotes a diagonalmatrix with elementsa;b; c; : : :

on the diagonal.

Note that the f�ig are the eigenvalues of A and the columns of Q,

fqig, are the corresponding (normalized) eigenvectors.

For real but not necessarily symmetric A, you can restrict yourself

to real matrices by using the real Schur decomposition (Golub and Van

Loan, 1996, p.341). But the price you pay is that you can achieve only

block upper triangular T , rather than strictly upper triangular T .

Theorem 1.18 (Real Schur decomposition). If A 2 Rn�n then there ex-

ists a real, orthogonal Q such that

QTAQ �

266664
R11 R12 � � � R1m
0 R22 � � � R2m
...

...
. . .

...

0 0 � � � Rmm

377775
in which each Rii is either a real scalar or a 2�2 real matrix having com-

plex conjugate eigenvalues; the eigenvalues of Rii are the eigenvalues

of A.
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1.4.7 Singular Value Decomposition

Another highly useful matrix decomposition that can be applied to non-

square in addition to square matrices is the singular value decomposi-

tion (SVD). Any matrix A 2 Cm�n has an SVD

A � USV�

in which U 2 Cm�m and V 2 Cn�n are square and unitary

U�U � UU� � Im V�V � VV� � In

and S 2 Rm�n is partitioned as

S �
"

�r�r 0r��n�r�
0�m�r��r 0�m�r���n�r�

#

in which r is the rank of the A matrix. The matrix � is diagonal and

real

� �

2664
�1

. . .

�r

3775 �1 � �2 � � � � � �r > 0

in which the diagonal elements, �i are known as the singular values of

matrix A. The singular values are real and positive and can be ordered

from largest to smallest as indicated above.

Connection of SVD and eigenvalue decomposition. GivenA 2 Cm�n

with rank r , consider the Hermitian matrix AA� 2 Rm�m, also of

rank r . We can deduce that the eigenvalues of AA� are real and non-

negative as follows. Given ��; v� are an eigenpair of AA�, we have

AA�v � �v;v � 0. Taking inner products of both sides with respect

to v and solving for � gives � � v�AA�v=v�v . We know v�v is

a real, positive scalar since v � 0. Let y � A�v and we have that

� � y�y=v�v and we know that y�y is a real scalar and y�y � 0.

Therefore � is real and � � 0. And we can connect the eigenvalues and

eigenvectors of AA� to the singular values and vectors of A. The r

nonzero eigenvalues of AA� (�i) are the squares of the singular values

(�i) and the eigenvectors of AA� (qi) are the columns of U (ui)

�i�AA
�� � � 2

i �A� i � 1; : : : r

qi � ui; i � 1; : : :m
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Next consider the Hermitian matrix A�A 2 Rn�n, also of rank r . The

r nonzero eigenvalues of A�A (�i) are also the squares of the singular

values (�i) and the eigenvectors of A�A (ri) are the columns of V (vi)

�i�A
�A� � � 2

i �A� i � 1; : : : r

ri � vi; i � 1; : : : n

These results follow from substituting the SVD into both products and

comparing with the eigenvalue decomposition (Theorem 1.12)

AA� � �USV���VS�U�� � USS�U� � Q�Q�

A�A � �VS�U���USV�� � VS�SV� � R�R�

Real matrix with full row rank. Consider a real matrix A with more

columns than rows (wide matrix,m < n) and full row rank, r �m. In

this case both U and V are real and orthogonal, and the SVD takes the

form

A � U
h
� 0

i"VT1
VT2

#
in which V1 contains the ®rst m columns of V , and V2 contains the

remaining n�m columns. Multiplying the partitioned matrices gives

A � U�VT1
and notice that we do not need to store the V2 matrix if we wish to

represent A. This fact is handy if A has many more columns than

rows, n�m because V2 2 Rn�m�n requires a large amount of storage

compared to A.

Real matrix with full column rank. Next consider the case in which

real matrix A has more rows than columns (tall matrix,m > n) and full

column rank. In this case the SVD takes the form

A �
h
U1 U2

i"
�

0

#
VT

in which U1 contains the ®rst n columns of U , and U2 contains the

remainingm�n columns. Multiplying the partitioned matrices gives

A � U1�V
T

and notice that we do not need to store the U2 matrix if we wish to

represent A.
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N�A� N�AT �

R�A�R�AT �

AT A

R
mR

n

Ax � b

0 0

fvigri�1 fuigri�1

fuigmi�r�1fvigni�r�1

Figure 1.4: The four fundamental subspaces of matrix A � USVT .

The range of A is spanned by the ®rst r columns of

U , fu1; : : : ; urg. The range AT is spanned by the ®rst

r columns of V , fv1; : : : ; vrg. The null space of A is

spanned by fvr�1; : : : ; vng, and the null space of AT is

spanned by fur�1; : : : ; umg.

SVD and fundamental theorem of linear algebra. The SVD provides

an orthogonal decomposition of all four of the fundamental subspaces

of matrix A. Consider ®rst the partitioned SVD for real-valued A

A �
h
U1 U2

i"
� 0

0 0

#"
VT1
VT2

#
A � U1�V

T
1

Now consider Avk in which k � r � 1. Because vk is orthogonal to

V1 � fv1; : : : ; vrg, we have Avk � 0, and these n � r orthogonal vk
span the null space of A. Because the columns of V1 are orthogonal to

this set, they span the range of AT . Transposing the previous equation

gives

AT � V1�UT
1
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and we have fur�1; : : : ; umg span the null space of AT . Because the

columns of U1 are orthogonal to this set, they span the range of A.

These results are summarized in Figure 1.4.

SVD and least-squares problems. We already have shown that if

A has independent columns, the unique least-squares solution to the

overdetermined problem

min
x
kAx � bk2

is given by

xls � �ATA��1ATb
xls � Ayb

The SVD also provides a means to compute xls. For real A, the SVD

satis®es

A � U1�V
T AT � V�UT

1

ATA � V�UT
1 U1�V

T � V�2VT

The pseudoinverse is therefore given by

Ay � V��2VTV�UT
1

Ay � V��1UT
1

and the least-squares solution is

xls � V��1UT
1 b

SVD and underdetermined problems. We already have shown that

if A has independent rows, the unique minimum-norm solution to the

underdetermined problem

min
x
kxk2 subject to Ax � b

is given by

xmn � AT �AAT ��1b
The SVD also provides a means to compute xmn. In this case we have

A � U�VT1 and substituting this into the minimum-norm solution gives

xmn � V1��1UTb

Note the similarity to the least-squares solution above.
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1.5 Functions of Matrices

1.5.1 Polynomial and Exponential

We have already de®ned some functions of square matrices using ma-

trix multiplication and addition. These operations create the class of

polynomial functions

p�A� � �0I ��1A��2A
2 � � � � ��mAm

withA 2 Cn�n, �i 2 C; i � 0; : : : ;m. We wish to expand this set of func-

tions so that we have convenient ways to express solutions to coupled

sets of differential equations, for example. Probably the most impor-

tant function for use in applications is the matrix exponential. The

standard exponential of a scalar can be de®ned in terms of its Taylor

series

ea � 1� a� 1

2!
a2 � 1

3!
a3 � � � � a 2 C

This series converges for all a 2 C. Notice that this expression is an

in®nite-order series and therefore not a polynomial function. We can

proceed to de®ne the matrix exponential analogously

eA � I �A� 1

2!
A2 � 1

3!
A3 � � � � A 2 Cn�n

and this series converges for all A 2 Cn�n. Let's see why the matrix

exponential is so useful. Consider ®rst the scalar ®rst-order linear dif-

ferential equation

dx

dt
� ax x�0� � x0 x 2 R; a 2 R

which arises in the simplest chemical kinetics models. The solution is

given by

x�t� � x0eat

and this is probably the ®rst and most important differential equation

that is discussed in the introductory differential equations course. By

de®ning thematrix exponential we have the solution to all coupled sets

of linear ®rst-order differential equations. Consider the coupled set of

linear ®rst-order differential equations

d

dt

266664
x1
x2
...

xn

377775 �
266664
a11 a12 � � � a1n
a21 a22 � � � a2n
...

...
. . .

...

an1 an2 � � � ann

377775
266664
x1
x2
...

xn

377775
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with initial condition 266664
x1�0�

x2�0�
...

xn�0�

377775 �
266664
x10
x20
...

xn0

377775
which we express compactly as

dx

dt
� Ax x�0� � x0 x 2 Rn; A 2 Rn�n (1.19)

The payoff for knowing the solution to the scalar version is that we also

know the solution to the matrix version. We propose as the solution

x�t� � eAtx0 (1.20)

Notice that we must put the x0 after the eAt so that the matrix multi-

plication on the right-hand side is de®ned and gives the required n�1

column vector for x�t�. Let's establish that this proposed solution is

indeed the solution to (1.19). Substituting t � 0 to check the initial

condition gives

x�0� � eA0x0 � e0x0 � Ix0 � x0
and the initial condition is satis®ed. Next differentiating the matrix

exponential with respect to scalar time gives

d

dt
eAt � d

dt
�I � tA� t

2

2!
A2 � t

3

3!
A3 � � � � �

� 0�A� t
1!
A2 � t

2

2!
A3 � � � �

� A�I � t
1!
A1 � t

2

2!
A2 � � � � �

� AeAt

We have shown that the scalar derivative formula d=dt�eat� � aeat
also holds for the matrix case, d=dt�eAt� � AeAt . We also could have

factored theA to the right instead of the left side in the derivation above

to obtain d=dt�eAt� � eAtA. Note that although matrix multiplication

does not commute in general, it does commute for certain matrices,

such as eAt and powers of A. Finally, substituting the derivative result

into (1.19) gives

dx

dt
� d

dt
�eAtx0� � �AeAt�x0 � A�eAtx0� � Ax
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and we see that the differential equation also is satis®ed.

Another insight into functions of matrices is obtained when we con-

sider their eigenvalue decomposition. Let A � S�S�1 in which we as-

sume for simplicity that the eigenvalues of A are not repeated so that

� is diagonal. First we see that powers of A can be written as follows

for p � 1

Ap � AA � � �A| {z }
ptimes

� �S�S�1��S�S�1� � � � �S�S�1�
� S��� � � ��| {z }

ptimes

�S�1

� S�pS�1

Substituting the eigenvalue decomposition into the de®nition of the

matrix exponential gives

eAt � I � tA� t
2

2!
A2 � t

3

3!
A3 � � � �

� SS�1 � tS�S�1 � t
2

2!
S�2S�1 � t

3

3!
S�3S�1 � � � �

� S�I � t�� t
2

2!
�
2 � t

3

3!
�
3 � � � � �S�1

eAt � Se�tS�1

Therefore, we can determine the time behavior of eAt by examining the

behavior of

e�t �

266664
e�1t

e�2t

. . .

e�nt

377775
and we deduce that eAt asymptotically approaches zero as t !1 if and

only if Re��i� < 0; i � 1; : : : ; n. We also know that eAt is oscillatory if

any eigenvalue has a nonzero imaginary part, and so on.

The matrix exponential is just one example of expanding scalar

functions to matrix functions. Any of the transcendental functions

(trigonometric functions, hyperbolic trigonometric functions, logarithm,

square root, etc.) can be extended to matrix arguments as was shown

here for thematrix exponential (Higham, 2008). For example, the square

root of a matrix A is any matrix B that satis®es B2 � A. If A �
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S�S�1, then one solution (the principal square root) is B � S�1=2S�1,
where �1=2 � diag��1=21 ; �1=22 ; : : :�. More generally, �1=2 can be replaced

by diag���1=21 ;��1=22 ; : : :�. Moreover, for any linear scalar differential

equation having solutions consisting of these scalar functions, coupled

sets of the corresponding linear differential equations are solved by the

matrix version of the function.

Bound on eAt . When analyzing solutions to dynamicmodels, we often

wish to bound the asymptotic behavior as time increases to in®nity. For

linear differential equations, this means we wish to bound the asymp-

totic behavior of eAt as t !1. We build up to a convenient bound in a

few steps. First, for scalar z 2 C, we know that

jezj �
���eRe�z��Im�z�i��� � ���eRe�z�������eIm�z�i��� � eRe�z�

Similarly, if we have a diagonal matrix D 2 Cn�n, D � diag�d1; : : : ; dn�,

then the matrix norm of eD iseD �max
x�0

eDx
kxk � e�

in which � �maxi�Re�di��. In fact, if this max over the real parts of the

eigenvalues occurs for index i�, then x � ei� achieves the maximum ineDx =kxk. Given a real, nonnegative time argument t � 0, we also

have that eDt � e�t t � 0

Next, if the matrix A is diagonalizable, we can use A � S�S�1 to obtain

eAt � Se�tS�1

and we can obtain a bound by taking norms of both sideseAt � Se�tS�1 � kSke�tS�1
For any nonsingular S, the product kSk

S�1 is de®ned as the con-

dition number of S, denoted ��S�. A bound on the norm of eAt is

therefore eAt � ��S�e�t t � 0 A diagonalizable

in which � � maxi Re��i� � max�Re�eig�A���. So this leaves only the

case in which A is not diagonalizable. In the general case we use the
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Schur formA � QTQ�, with T upper triangular. Van Loan (1977) shows

that4 eAt � e�t n�1X
k�0

kNtkk
k!

t � 0 (1.21)

in which N � T �� where � is the diagonal matrix of eigenvalues and

N is strictly upper triangular, i.e., has zeros on as well as below the

diagonal. Note that this bound holds for any A 2 Cn�n. Van Loan

(1977) also shows that this is a fairly tight bound compared to some

popular alternatives. If we increase the value of � by an arbitrarily small

amount, we can obtain a looser bound, but one that is more convenient

for analysis. For any �0 satisfying

�0 >max�Re�eig�A���

there is a constant c > 0 such thateAt � ce�0t t � 0 (1.22)

This result holds also for any A 2 Cn�n. Note that the constant c de-

pends on the matrix A. Establishing this result is discussed in Exercise

1.71. To demonstrate one useful consequence of this bound, consider

the case in which all eigenvalues of A have strictly negative real parts.

Then there exists �0 such that Re�eig�A�� < �0 < 0, and (1.22) tells us

that eAt ! 0 exponentially fast as t !1 for the entire class of ªstableº

A matrices. We do not need to assume that A has distinct eigenvalues

or is diagonalizable, for example, to reach this conclusion.

1.5.2 Optimizing Quadratic Functions

Optimization is a large topic of fundamental importance in many engi-

neering activities such as process design, process control, and process

operations. Here we would like to introduce some of the important

concepts of optimization in the simple setting of quadratic functions.

You now have the required linear algebra tools to make this discussion

accessible.

Scalar argument. The reader is undoubtedly familiar with ®nding the

maximum and minimum of scalar functions by taking the ®rst deriva-

tive and setting it to zero. For conciseness, we restrict attention to

4Note that there is a typo in (2.11) in Van Loan (1977), which is corrected here.
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(unconstrained) minimization, and we are interested in the problem5

min
x
f�x�

What do we expect of a solution to this problem? A point x0 is termed

a minimizer if f�x0� � f�p� for all p. A minimizer x0 is unique if

no other point has this property. In other words, the minimizer x0 is

unique provided f�x0� < f�p� for all p � x0. We call x0 the mini-

mizer and f 0 � f�x0� the (optimal) value function. Note that to avoid

confusion f 0 �minx f�x� is called the ªsolutionº to the problem, even

though x0 is usually the item of most interest, and x0 � argminx f�x�

is called the ªargument of the solution.º

We wish to know when the minimizer exists and is unique, and how

to compute it. We consider ®rst the real, scalar-valued quadratic func-

tion of the real, scalar argument x, f�x� � �1=2�ax2 � bx � c, with
a;b; c; x 2 R. Putting the factor of 1=2 in front of the quadratic term

is a convention to simplify various formulas to be derived next. If we

take the derivative and set it to zero we obtain

f�x� � �1=2�ax2 � bx � c
d

dx
f�x� � ax � b � 0

x0 � �b=a

This last result for x0 is at least well de®ned provided a � 0. But if

we are interested in minimization, we require more: a > 0 is required

for a unique solution to the problem minx f�x�. Indeed, taking a sec-

ond derivative of f��� gives d2=dx2f�x� � a. The condition a > 0 is

usually stated in beginning calculus courses as: the function is concave

upward. This idea is generalized to the condition that the function is

strictly convex, which we de®ne next. Evaluating f�x� at the proposed

minimizer gives f 0 � f�x0� � ��1=2�b2=a� c.
Convex functions. Generalizing the simple notion of a function hav-

ing positive curvature (or being concave upward) to obtain existence

and uniqueness of the minimizer leads to the concept of a convex func-

tion, which is de®ned as follows (Rockafellar and Wets, 1998, p. 38).

De®nition 1.19 (Convex function). Let function f��� be de®ned on all

reals. Consider two points x;y and a scalar � that satisfy 0 � � � 1.

5We do not lose generality with this choice; if the problem of interest is instead

maximization, use the following identity to translate: maxx f�x� �minx �f�x�.
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1�� �

x �x � �1���y y

f�y�

�f�x�� �1���f�y�

f��x � �1���y�

f�x�

Figure 1.5: Convex function. The straight line connecting two points

on the function curve lies above the function; �f�x� �
�1���f�y� � f��x � �1���y� for all x;y.

The function f is convex if the following inequality holds for all x;y

and � 2 �0;1�
f ��x � �1���y� � �f�x�� �1���f�y�

Figure 1.5 shows a convex function. Notice that if you draw a straight

line connecting any two points on the function curve, if the function

is convex the straight line lies above the function. We say the function

f��� is strictly convex if the inequality is strict for all x � y and

� 2 �0;1�
f ��x � �1���y� < �f�x�� �1���f�y�

Notice that x and y are restricted to be nonequal and � is restricted to

lie in the open interval �0;1� in the de®nition of strict convexity (or no

function would be strictly convex).

That strict convexity is suf®cient for uniqueness of the minimizer is

established readily as follows. Assume that one has found a (possibly

nonunique) minimizer of f���, denoted x0, and consider another point

p � x0. We know that f�p� cannot be less than f�x0� or we contradict

optimality of x0. We wish to rule out f�p� � f�x0�, also, because

equality implies that the minimizer is not unique. If f��� is strictly

convex and f�p� � f�x0�, we have that

f��x0 � �1���p� < �f�x0�� �1���f�p� � f�x0�
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Figure 1.6: Contours of constant f�x� � xTAx; (a) A > 0 (or A <

0), ellipses; (b) A � 0 (or A � 0), straight lines; (c) A

inde®nite, hyperbolas. The coordinate axes are aligned

with the contours if and only if A is diagonal.

So for all z � �x0� �1���p with � 2 �0;1�, z � x0 and f�z� < f�x0�,

which also contradicts optimality of x0. Therefore f�x0� < f�p� for

all p � x0, and the minimizer is unique. Notice that the de®nition of

convexity does not require f��� to have even a ®rst derivative, let alone

a second derivative as required when using a curvature condition for

uniqueness. But if f��� is quadratic, then strict convexity is equivalent

to positive curvature as discussed in Exercise 1.72.

Vector argument. We next take real-valued vector x 2 Rn, and the

general real, scalar-valued, quadratic function is f�x� � �1=2�xTAx �
bTx � c with A 2 Rn�n, b 2 Rn, and c 2 R. Without loss of generality,

we can assume A is symmetric.6 We know that the eigenvalues of a

symmetric matrix are real (see Theorem 1.17); the following cases are

of interest and cover all possibilities for symmetric A: (a) A > 0 (or

6If A is not symmetric, show that replacing A with the symmetric eA � �1=2��A�AT �
does not change the function f���.



62 Linear Algebra

A < 0), (b) A � 0 (or A � 0), and (c) A inde®nite. Figure 1.6 shows

contours of the quadratic functions that these A generate for x 2 R2.

Since A is the parameter of interest here, we set b � 0, c � 0.7 The

positive cost contours are concentric ellipses for the case A > 0. The

contour for f � 0 is the origin, and minimizing f for A > 0 has the

origin as a unique minimizer. This problem corresponds to ®nding the

bottom of a bowl. If A < 0, contours remain ellipses, but the sign of

the contour value changes. The case A < 0 has the origin as a unique

maximizer. This problem corresponds to ®nding the top of amountain.

For the case A � 0, the positive contours are straight lines. The

line through the origin corresponds to f � 0. All points on this line

are minimizers for f��� in this case, and the minimizer is nonunique.

The quadratic function is convex but not strictly convex. The function

corresponds to a long valley. As before, if A � 0, contours remain

straight lines, but the sign of the contour value changes. For A � 0,

the maximizer exists, but is not unique. The function is now a ridge.

And some specialized techniques for numerically ®nding optima with

badly conditioned functions approaching this case are known as ªridge

regression.º

For inde®nite A, Figure 1.6 shows that the contours are hyperbolas.

The origin is termed a saddle point in this case, because the function re-

sembles a horse's saddle, or a mountain pass if one prefers to maintain

the topography metaphor. Note that f��� increases without bound in

the northeast and southwest directions, but decreases without bound

in the southeast and northwest directions. So neither a minimizer nor

a maximizer exists for the inde®nite case. But there is an important

class of problems for which the origin is the solution. These are the

minmax or maxmin problems. Consider the two problems

max
x1

min
x2

f�x� min
x2

max
x1

f�x� (1.23)

These kinds of problems are called noncooperative games, and players

one and two are optimizing over decision variables x1 and x2, respec-

tively. In this type of noncooperative problem, player one strives to

maximize function f while player two strives to minimize it. Nonco-

operative games arise in many ®elds, especially as models of economic

behavior. In fact, von Neumann and Morgenstern (1944) originally de-

veloped game theory for understanding economic behavior in addition

7Note that c merely shifts the function f��� up and down, and b merely shifts the

origin, so they are not important to the shape of the contours of the quadratic function.
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to other features of classical games such as bluf®ng in poker. These

kinds of problems also are useful in worst-cases analysis and design.

For example, the outer problem can represent a standard design op-

timization while the inner problem ®nds the worst-case scenario over

some set of uncertain model parameters.

Another important engineering application of noncooperative games

arises in the introduction of Lagrange multipliers and the Lagrangian

function when solving constrained optimization problems. For the

quadratic function shown in Figure 1.6 (c), Exercise 1.74 asks you to

establish that the origin is the unique solution to both problems in

(1.23). The solution to a noncooperative game is known as a Nash

equilibrium or Nash point in honor of the mathematician John Nash

who established some of the early fundamental results of game theory

(Nash, 1951).

Finally, to complete the vectorminimization problem, we restrict at-

tention to the case A > 0. Taking two derivatives in this case produces

f�x� � �1=2�xTAx � bTx � c
d

dx
f�x� � �1=2��Ax �ATx�� b � Ax � b

d2

dx2
f�x� � A

Setting df=dx � 0 and solving for x0, and then evaluating f�x0� gives

x0 � �A�1b f 0 � ��1=2�bTA�1b � c
These results for the scalar and vector cases are summarized in Table

1.1. Notice also in the last line of the table that one can reparameterize

the function f��� in terms of x0 and f 0, in place of b and c, which is

often useful.

Revisiting linear least squares. Consider the linear least-squares prob-

lem of Section 1.3.7

min
x
�1=2�

 eAx � eb2
where we have changed Ax � b to eAx � eb to not con¯ict with the no-

tation of this section. We see that least squares is the special case of a

quadratic function with the parameters

A � eAT eA b � � eAT eb c � �1=2�ebT eb
Obviously A is symmetric in the least-squares problem. We have al-

ready derived the fact that eAT eA > 0 if the columns of eA are independent



64 Linear Algebra

0

1

2

3

�3 �2 �1 0 1

f

x

�3 �2 �1
0

1
2

3 �3
�2
�1

0
1

2
3

0

10

20

30

x1

x2

f

Scalar Vector

f�x� �1=2�ax2 � bx � c �1=2�xTAx � bTx � c
d

dx
f ax � b Ax � b

d2

dx2
f a A

x0 �b=a �A�1b

f 0 ��1=2�b2=a� c ��1=2�bTA�1b � c

f�x� �1=2�a�x � x0�2 � f 0 �1=2��x � x0�TA�x � x0�� f 0

Table 1.1: Quadratic function of scalar and vector argument; a > 0,

A positive de®nite.

in the discussion of the SVD in Section 1.4.7. So independent columns

of eA correspond to case (a) in Figure 1.6. If the columns of eA are not

independent, then A � 0, and we are in case (b) and lose uniqueness

of the least-squares solution. See Exercise 1.64 for a discussion of this

case. It is not possible for a least-squares problem to be in case (c),

which is good, because we are posing a minimization problem in least

squares. So the solution to a least-squares problem always exists.
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1.5.3 Vec Operator and Kronecker Product of Matrices

We introduce two ®nal matrix operations that prove highly useful in

applications, but often are neglected in an introductory linear algebra

course. These are the vec operator and the Kronecker product of two

matrices.

The vec operator. For A 2 Rm�n, the vec operator is de®ned as the

restacking of thematrix by its columns into a single large column vector

A �

266664
A11 A12 � � � A1n

A21 A22 � � � A2n

. . .

Am1 Am2 � � � Amn

377775 vecA �

2666666666666666666666666666664

A11

A21

...

Am1

A12

A22

...

Am2

...

A1n

A2n

...

Amn

3777777777777777777777777777775
Note that vecA is a column vector in Rmn. If we denote the n column

vectors of A as ai, we can express the vec operator more compactly

using column partitioning as

A �
h
a1 a2 � � � an

i
vecA �

266664
a1
a2
...

an

377775
Matrix Kronecker product. For A 2 Rm�n and B 2 Rp�q, the Kro-

necker product of A and B, denoted A
 B, is de®ned as

A
 B �

266664
A11B A12B � � � A1nB

A21B A22B � � � A2nB
. . .

Am1B Am2B � � � AmnB

377775 (1.24)
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Note that the Kronecker product is de®ned for all matricesA and B, and

thematrices do not have to conform as in normal matrix multiplication.

By counting the number of rows and columns in the de®nition above,

we see that matrix A 
 B 2 Rmp�nq. Notice also that the vector outer

product, de®ned in Section 1.2.5, is a special case of this more general

matrix Kronecker product.

Some useful identities. We next establish four useful identities in-

volving the vec operator and Kronecker product.

vec�ABC� � �CT 
A�vecB (1.25)

�A
 B��C 
D� � �AC�
 �BD� A;C conform, B;D conform (1.26)

�A
 B�T � �AT 
 BT � (1.27)

�A
 B��1 � A�1 
 B�1 A and B invertible (1.28)

Establishing (1.25). Let A 2 Rm�n, B 2 Rn�p, and C 2 Rp�q. Let the
column partitions of matrices B and C be given by

B �
h
b1 b2 : : : bp

i
C �

h
c1 c2 : : : cq

i
We know from the rules of matrix multiplication that the jth column

of the product ABC � �AB�C is given by ABcj . So when we stack these

columns we obtain

vec�ABC� �

266664
ABc1
ABc2
...

ABcq

377775

Now we examine the right-hand side of (1.25). We have from the de®-

nitions of vec operator and Kronecker product

�CT 
A�vecB �

266664
c11A c21A � � � cp1A

c12A c22A � � � cp2A
. . .

c1qA c2qA � � � cpqA

377775
266664
b1
b2
...

bp

377775
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The jth row of this partitioned matrix multiplication can be rearranged

as follows

c1jAb1 � c2jAb2 � � � � � cpjAbp �
h
Ab1 Ab2 � � � Abp

i
266664
c1j
c2j
...

cpj

377775
� A

h
b1 b2 � � � bp

i
cj

� ABcj
Inserting this result into the previous equation gives

�CT 
A�vecB �

266664
ABc1
ABc2
...

ABcq

377775
which agrees with the expression for vec�ABC�.

Establishing (1.26). Here we let A 2 Rm�n, B 2 Rp�q, C 2 Rn�r ,
D 2 Rq�s so that A;C conform and B;D conform. Let c1; c2; : : : cr be

the column vectors of matrix C . We know from the rules of matrix

multiplication that the jth (block) column of the product �A
B��C
D�
is given by A
 B times the jth (block) column of C 
D, which is2664

A11B � � � A1nB
...

. . .
...

Am1B � � � AmnB

3775
2664
C1jD
...

CnjD

3775 �
2664
A11B � � � A1nB
...

. . .
...

Am1B � � � AmnB

3775
2664
C1j
...

Cnj

3775D
� �Acj 
 B�D
� �Acj�
 �BD�

Since this is the jth (block) column of �A
B��C
D�, the entire matrix

is

�A
 B��C 
D� �
h
�Ac1�
 �BD� �Ac2�
 �BD� � � � �Acr �
 �BD�

i
�
h
Ac1 Ac2 � � � Acr

i

 �BD�

� A
h
c1 c2 � � � cr

i

 �BD�

� �AC�
 �BD�

and the result is established.
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Establishing (1.27). Given A 2 Rm�n and B 2 Rp�q, from the de®ni-

tion of transpose and cross product we have that

�A
 B�T �

266664
A11B A12B � � � A1nB

A21B A22B � � � A2nB
. . .

Am1B Am2B � � � AmnB

377775
T

�

266664
A11BT A21BT � � � Am1BT

A12BT A22BT � � � Am2BT

. . .

A1nBT A2nBT � � � AmnBT

377775
� AT 
 BT

Establishing (1.28). Apply (1.26) to the following product and obtain

�A
 B��A�1 
 B�1� � �AA�1�
 �BB�1� � I 
 I � I

and therefore

�A
 B��1 � A�1 
 B�1

Eigenvalues, singular values, and rank of the Kronecker product.

When solving matrix equations, we will want to know about the rank

of the Kronecker product A
B. Since rank is closely tied to the singu-

lar values, and these are closely tied to the eigenvalues, the following

identities prove highly useful.

eig�A
 B� � eig�A�eig�B� A and B square (1.29)

��A
 B� � ��A���B� nonzero singular values (1.30)

rank�A
 B� � rank�A�rank�B� (1.31)

Given our previous identities, these three properties are readily estab-

lished. Let A and B be square of order m and n, respectively. Let

��; v� and ��;w� be eigenpairs of A and B, respectively. We have that

Av
Bw � ��v�
 ��w� � �����v
w�. Using (1.26) on Av
Bw then

gives

�A
 B��v 
w� � �����v 
w�
and we conclude that (nonzero)mn-vector �v
w� is an eigenvector of

A
B with product �� as the corresponding eigenvalue. This establishes
(1.29). For the nonzero singular values, recall that the squares of the

nonzero singular values of real, nonsquare matrix A are the nonzero
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eigenvalues of AAT (and ATA). We then have for ��A� and ��A� de-

noting nonzero singular and eigenvalues, respectively

� 2�A
 B� � ���A
 B��A
 B�T �
� ���A
 B��AT 
 BT ��
� ���AAT �
 �BBT ��
� ��AAT ���BBT �
� � 2�A�� 2�B�

which establishes (1.30). Since the number of nonzero singular values

of a matrix is equal to the rank of the matrix, we then also have (1.31).

Properties (1.25)±(1.31) are all that we require for the material in

this text, but the interested reader may wish to consult Magnus and

Neudecker (1999) for a more detailed discussion of Kronecker prod-

ucts.

Solving linear matrix equations. We shall ®nd the properties (1.25)±

(1.31) highly useful when dealing with complex maximum-likelihood

estimation problems in Chapter 4. But to provide here a small illustra-

tion of their utility, consider the following linear matrix equation for

the unknown matrix X

AXB � C
in which neither A nor B is invertible. The equations are linear in X, so

they should be solvable as some form of linear algebra problem. But

since we cannot operate with A�1 from the left, nor B�1 from the right,

it seems dif®cult to isolate X and solve for it. This is an example where

the linear equations are simply not packaged in a convenient form for

solving them. But if we apply the vec operator and use (1.25) we have

�BT 
A�vecX � vecC

Note that this is now a standard linear algebra problem for the unknown

vector vecX. We can examine the rank, and linear independence of the

rows and columns of BT 
 A, to determine the existence and unique-

ness of the solution vecX, and whether we should solve a least-squares

problem or minimum-norm problem. After solution, the vecX column

vector can then be restacked into its original matrix form X if desired.

Exercise 1.77 provides further discussion of solving AXB � C .
As a ®nal example, in Chapter 2 we will derive the matrix Lyapunov

equation, which tells us about the stability of a linear dynamic system,

ATS � SA � �Q
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in which matrices A and Q are given, and S is the unknown. One way

to think about solving the matrix Lyapunov equation is to apply the vec

operator to obtain�
�I 
AT �� �AT 
 I��vecS � �vecQ

and then solve this linear algebra problem for vecS. Although this

approach is useful for characterizing the solution, given the special

structure of the Lyapunov equation, more ef®cient numerical solution

methods are available and coded in standard software. See the function

lyap(A',Q) in Octave or MATLAB, for example. Exercise 1.78 asks you

to solve a numerical example using the Kronecker product approach

and compare your result to the lyap function.

1.6 Exercises

Exercise 1.1: Inner product and angle in R
2

a

b

�
�

�

a1 b1

a2

b2

Figure 1.7: Two vectors in R
2

and the angle between them.

Consider the two vectors a;b 2 R2

shown in Figure 1.7 and let � denote

the angle between them. Show the

usual inner product and norm formu-

las

�a; b� �
X
i

aibi kak �
q
�a;a�

satisfy the following relationship with

the angle

cos� � �a; b�

kakkbk
This relationship allows us to gener-

alize the concept of an angle between

vectors to any inner product space.

Exercise 1.2: Scaling and vector norm

Consider the vector x 2 R2, whose elements are the temperature (in K) and pressure

(in Pa) in a reactor. A typical value of x would be

"
300

1:0� 106

#
.

(a) Let y1 �
"

310

1:0� 106

#
and y2 �

"
300

1:2� 106

#
be two measurements of the state

of the reactor. Use the Euclidean norm to calculate the error
y � x for the

two values of y . Do you think that the calculated errors give a meaningful idea

of the difference between y1 and y2?
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(b) A problem with the Euclidean norm is that it takes no account of different scales

for different elements of a vector. Consider the following formula

kxkw �

vuuut nX
i�1

��xi��2wi

where xi is the ith component of the vector x. Show that this formula is a norm

if and only if wi > 0 for all i. This is known as a weighted norm, with weight

vector w.

(c) Propose a weight vector that is appropriate for the example in part (a). Justify

your choice.

Exercise 1.3: Linear independence

Verify that the following sets are LI.

(a) e1 � �0 1 0�T ; e2 � �2 0 1�T ; e3 � �1 1 1�T .

(b) e1 � �1� i 1� i 0�T ; e2 � �1� 2i 1� i 0�T ; e3 � �0 0 2�T .

Hint: Set �1e1 ��2e2 ��3e3 � 0, and show that the solution is �i � 0, i � 1;2;3.

Exercise 1.4: Gram-Schmidt procedure

Using Gram-Schmidt orthogonalization, obtain ON sets from the LI sets given in the

previous problem.

Exercise 1.5: Failure of Gram-Schmidt

The Gram-Schmidt process will fail if the initial set of vectors is not LI.

(a) Construct a set of three vectors in R3 that are not LI and apply Gram-Schmidt,

pinpointing where it fails.

(b) Similarly, in an n-dimensional space, no more than n LI vectors can be found.

Construct a set of four vectors in R3 and use Gram-Schmidt to show that if three

of the vectors are LI, then a fourth orthogonal vector cannot be found.

Exercise 1.6: Linear independence and expressing one vector as a linear
combination of others

We often hear that a set of vectors is linearly independent if none of the vectors in the

set can be expressed as a linear combination of the remaining vectors. Although the

statement is correct, as a de®nition of linear independence, this idea is a bit unwieldy

because we do not know a priori which vector(s) in a linearly dependent set is(are)

expressible as a linear combination of the others.

The following statement is a more precise variation on this theme. Given that the

vectors fxig; i � 1; : : : ; k; xi 2 Rn are linearly independent and the vectors fxi; ag are
linearly dependent, the vector a can be expressed as a linear combination of the xi.

Using the de®nition of linear independence provided in the text, prove this state-

ment.
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Exercise 1.7: Some properties of subspaces

Establish the following properties

(a) The zero element is an element of every subspace.

(b) The span of any set of j elements of Rn is a subspace (of the linear space Rn).

(c) Except for the zero subspace, a subspace cannot have a ®nite, largest element.

Hence, every subspace, except the zero subspace, is unbounded.

Exercise 1.8: Some subspaces in 2-D and 3-D

(a) Consider the line in R2

S �
(
y j y � �

"
1

1

#
; � 2 R

)
Draw a sketch of S. Show that S is a subspace.

(b) Next consider the shifted line

S0 �
(
y j y �

"
0

1

#
��

"
1

1

#
; � 2 R

)
Draw a sketch of S0. Show that S0 is not a subspace.

(c) Describe all of the subspaces of R3.

Exercise 1.9: Permutation matrices

(a) Given the matrix

P �

2641 0 0

0 0 1

0 1 0

375
show that PA interchanges the second and third rows of A for any 3�3 matrix.

What does AP do?

(b) A general permutation matrix involving p row exchanges can be written P �
PpPp�1 : : : P2P1 where Pi corresponds to a simple row exchange as above. Show

that P is orthogonal.

Exercise 1.10: Special matrices

Consider operations on vectors in R2.

(a) Construct a matrix operator A that multiplies the horizontal (x1) component of

a vector by 2, but leaves its vertical component (x2) unchanged.

(b) Construct a matrix operator B that rotates a vector counterclockwise by an angle

of 2�=3.

(c) Compute and draw ABx and BAx for x �
"
1

2

#
.

(d) Show that B3 � I. With drawings, show how this makes geometric sense.
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Exercise 1.11: Integral operators and matrices

Many problems can be posed with the use of integral operators. Consider the integral

operator K de®ned by its action on the function x�s� by the following equation:

K
�
x�s�

� � Z 1

0
k�t; s�x�s�ds

where k�t; s� is a known function called the kernel of the operator.

(a) Show that K is a linear operator.

(b) Read Section 2.4.1. Use the usual (i.e., unweighted) inner product on the interval

�0;1� and show that if k�t; s� � k�s; t�, then K is self adjoint.

(c) An integral can be approximated as a sum, so the above integral operator can

be approximated like this:

Ka fx�i�t�g �
NX
j�1
k�i�t; j�t�x�j�t��t; i � 1; N

where �t � 1=N. Show how this approximation can be rewritten as a standard

matrix-vector product. What is the matrix approximation to the integral opera-

tor?

Exercise 1.12: Projections and matrices

Given a unit vector n, use index notation (and the summation convention) to simplify

the following expressions:

(a) �nnT ��nnT �u for any vector u. Recalling that nnT is a projection operator,

what is the geometric interpretation of this result?

(b) �I � 2nnT �2. What is the geometric interpretation of this result?

Exercise 1.13: Use the source, Luke

Someone in your research group wrote a computer program that takes an n-vector
input, x 2 Rn and returns anm-vector output, y 2 Rm.

y � f�x�

All we know about the function f is that it is linear.

The code was compiled and now the source code has been lost; the author has

graduated and won't respond to our email. We need to create the source code for

function f so we can compile it for our newly purchased hardware, which no longer

runs the old compiled code. To help us accomplish this task, all we can do is execute

the function on the old hardware.

(a) How many function calls do you need to make before you can write the source

code for this function?

(b) What inputs do you choose, and how do you construct the linear function f from

the resulting outputs?
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(c) To make matters worse, your advisor has a hot new project idea that requires

you to write a program to evaluate the inverse of this linear function,

x � f�1�y�
and has asked you if this is possible. How do you respond? Give a complete

answer about the existence and uniqueness of x given y .

Exercise 1.14: The range and null space of a matrix are subspaces

Given A 2 Rm�n, show that the sets R�A� and N�A� satisfy the properties of a sub-

space, (1.1), and therefore R�A� and N�A� are subspaces.

Exercise 1.15: Null space of A is orthogonal to range of AT

Given A 2 Rm�n show that N�A� ? R�AT �.

Exercise 1.16: Rank of a dyad

What is the rank of the n�n dyad uvT ?

Exercise 1.17: Partitioned matrix inversion formula

(a) Let the matrix A be partitioned as

A �
"
B C
D E

#
in which B;C;D; E are suitably dimensioned matrices and B and E are square.

Derive a formula for A�1 in terms of B;C;D; E by block Gaussian elimination.

Check your answer with a math handbook.

(b) What if B�1 does not exist? What if E�1 does not exist? What if both B�1 and

E�1 do not exist?

Exercise 1.18: The four fundamental subspaces

Find bases for the four fundamental subspaces associated with the following matrices

A �
"
1 2

3 6

#
B �

"
0 0

0 0

#
C �

"
1 1 0 0

0 1 0 1

#

Exercise 1.19: Zero is orthogonal to many vectors

Prove that if

xTz � yTz for all z 2 R
n

then

x � y
or, equivalently, prove that if

uTv � 0 for all v 2 R
n

then

u � 0
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Figure 1.8: Experimental measurements of variable y versus x.

Exercise 1.20: Existence and uniqueness

Find matrices A for which the number of solutions to Ax � b is

(a) 0 or 1, depending on b.

(b) 1, independent of b.

(c) 0 or 1, depending on b.

(d) 1, independent of b.

Exercise 1.21: Fitting and over®tting functions with least squares

One of your friends has been spending endless hours in the laboratory collecting data

on some obscure process, and now wants to ®nd a function to describe the variable

y 's dependence on the independent variable, x.

x 0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.56 1.78 2.00

y 2.36 2.49 2.67 3.82 4.87 6.28 8.23 9.47 12.01 15.26

Not having a good theory to determine the form of this expression, your friend has

chosen a polynomial to ®t the data.

(a) Consider the polynomial model

y�x� � a0 � a1x � a2x2 � : : :� anxn

Express the normal equations for ®nding the coef®cients ai that minimize the

sum of squares of errors in y .
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(b) Using the x- and y-data shown above and plotted in Figure 1.8, solve the least-

squares problem and ®nd the a that minimize

� �
ndX
i�1

�
yi �

nX
j�0
ajx

j
i

�2
in whichnd is the number ofmeasurements andn is the order of the polynomial.

Do this calculation for all polynomials of order 0 � n � 9.

(c) For each n, also calculate the least-squares objective �n, and plot �n versus n.

(d) Plot the data along with your ®tted polynomial curves for each value of n. In

particular, plot the data and ®ts for n � 2 and n � 9 on one plot. Use the range

�0:25 � x � 2:25 to get an idea about how well the models extrapolate.

(e) Based on the values of �n and the appearance of your plots, what degree poly-

nomial would you choose to ®t these data? Why not choose n � 9 so that the

polynomial can pass through every point and � � 0?

Exercise 1.22: Least-squares estimation of activation energy

Assume you have measured a rate constant, k, at several different temperatures, T ,
and wish to ®nd the activation energy (divided by the gas constant), E=R, and the

preexponential factor, k0, in the Arrhenius model

k � k0e�E=RT (1.32)

The data are shown in Figure 1.9 and listed here.

T�K� 300 325 350 375 400 425 450 475 500

k 1.82 1.89 2.02 2.14 2.12 2.17 2.15 2.21 2.26

(a) Take logarithms of (1.32) and write a model that is linear in the parameters

ln�k0� and E=R. Summarize the data and model with the linear algebra problem

Ax � b
in which x contains the parameters of the least-squares problem

x �
"
ln�k0�
E=R

#
What are A and b for this problem?

(b) Find the least-squares ®t to the data. What are your least-squares estimates of

ln�k0� and E=R?

(c) Is your answer unique? How do you know?

(d) Plot the data and least-squares ®t in the original variables k versus T . Do you

have a good ®t to the data?
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1:8

2

2:2

2:4

300 350 400 450 500

k

T�K�

Figure 1.9: Measured rate constant at several temperatures.

Exercise 1.23: Existence and uniqueness of linear equations

Consider the following partitioned A matrix, A 2 Rm�n

A �
"
A1 0

0 0

#
in which A1 2 Rp�p is of rank p and p <min�m;n�.

(a) What are the dimensions of the three zero matrices?

(b) What is the rank of A?

(c) What is the dimension of the null space of A? Compute a basis for the null space

of A.

(d) Repeat for AT .

(e) For what b can you solve Ax � b?

(f) Is the solution for these b unique? If not, given one solution x1, such that

Ax1 � b, specify all solutions.

Exercise 1.24: Reaction rates from production rates

Consider the following set of reactions.

CO� 1

2
O2

-*)- CO2

H2 � 1

2
O2

-*)- H2O

CH4 � 2O2
-*)- CO2 � 2H2O

CH4 � 3

2
O2

-*)- CO� 2H2O
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(a) Given the species list, A �
h
CO O2 CO2 H2 H2O CH4

iT
write out the

stoichiometric matrix, � , for the reactions relating the four reaction rates to the

six production rates

R � �T r (1.33)

(b) How many of the reactions are linearly independent?

(c) In a laboratory experiment, youmeasured the production rates for all the species

and found

Rmeas �
h
�2 �2 3 2 0 �1

iT
Is there a set of reaction rates rex that satis®es (1.33) exactly? If not, how do you

know? If so, ®nd an rex that satis®es Rmeas � �T rex.

(d) If there is an rex, is it unique? If so, how do you know? If not, characterize all

solutions.

Exercise 1.25: Least-squares estimation

A colleague has modeled the same system as only the following three reactions

CO� 1

2
O2

-*)- CO2

H2 � 1

2
O2

-*)- H2O

CH4 � 2O2
-*)- CO2 � 2H2O

(a) How many of these reactions are linearly independent?

(b) In another laboratory experiment, you measured the production rates for all the

species and found

Rmeas �
h
1 �4:5 1 �2 6 �2:5

iT
Is there a set of reaction rates rex in this second model that satis®es (1.33) ex-

actly? If so, ®nd an rex that satis®es Rmeas � �T rex. If not, how do you know?

(c) If there is not an exact solution, ®nd the least-squares solution, rest. What is the

least-squares objective value?

(d) Is this solution unique? If so, how do you know? If not, characterize all solutions

that achieve this value of the objective function.

Exercise 1.26: Controllability

Consider a linear discrete time system governed by the difference equation

x�k� 1� � Ax�k�� Bu�k� (1.34)

in which x�k�, an n-vector, is the state of the system, and u�k�, an m-vector, is the

manipulatable input at time k. The goal of the controller is to choose a sequence of

inputs that force the state to follow some desirable trajectory.

(a) What are the dimensions of the A and B matrices?
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(b) Not all systems can be controlled. Consider the case in which B is the zero

matrix. Then the input has no effect on the state and we cannot control it. We

should redesign the system before trying to design a controller for it. This is an

example of an uncontrollable system.

A system is said to be controllable if n input values exist

u�0�;u�1�;u�2�; : : : ; u�n� 1�

that can move the system from any initial condition, x0, to any ®nal state x�n�.
By using (1.34), show that x�n� can be expressed as

x�n� � Anx0 �An�1Bu�0��An�2Bu�1�� � � � �ABu�n� 2�� Bu�n� 1�

Stack all of theu�k� on top of each other and rewrite this expression in partitioned-
matrix form,

x�n� � Anx0 �C

2666664
u�n� 1�
u�n� 2�

.

.

.

u�0�

3777775 (1.35)

What is the C matrix and what are its dimensions?

(c) What must be true of the rank of C for a system to be controllable, i.e., for there

to be a solution to (1.35) for every x�0� and x�n�?

(d) Consider the following two systemswith two states (n � 2) and one input (m � 1)

x�k� 1� �
"
1 0

2 1

#
x�k��

"
0

1

#
u�k�

x�k� 1� �
"
1 0

2 1

#
x�k��

"
1

0

#
u�k�

Notice that the input directly affects only one of the states in both of these

systems. Are either of these two systems controllable? If not, show which x�n�
cannot be reached with n input moves starting from x�0� � 0.

Exercise 1.27: A vector/matrix derivative

Consider the following derivative for A;C 2 Rm�n; x; b 2 Rn

C � d

dxT
�AxxTb�

Or expressed in component form

Cij �
@

@xj
�AxxTb�i i � 1; : : : ;m; j � 1; : : : ; n

Take A and b to be independent of x. Find an expression for this derivative (C) in
terms of A;x;b.
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Exercise 1.28: Rank equality with matrix products

Given arbitrary B 2 Rm�n, and full rank A 2 Rm�m and C 2 Rn�n, establish the

following two facts

rank�AB� � rank�B� rank�BC� � rank�B�

Use these to show

rank�ABC� � rank�B�

Exercise 1.29: More matrix products

Find examples of 2 by 2 matrices such that

(a) LU � UL,

(b) A2 � �I, with A a real matrix,

(c) B2 � 0, with no zeros in B,

(d) CD � �DC , not allowing CD � 0.

Exercise 1.30: Programming LU decomposition

Write a program to solve Ax � b using LU decomposition. It should be able to handle

matrices up to n � 10, read in A and b from data ®les, and write the solution x to a

®le. Using this program, solve the problem where

A �

26664
1 1 1 1

2 �2 �1 2

3 �1 2 2

1 �1 �1 1

37775 b �

26664
3

0

2

0

37775

Exercise 1.31: Normal equations

Write the linear system of equations whose solution x � �x1; x2�T minimizes

P�x� � 1

2
�x21 � 2x1x2 � 2x22�� x1 � x2

Find the solution x and the corresponding value of P�x�.

Exercise 1.32: Cholesky decomposition

A symmetric matrix A can be factorized into LDLT where L is lower triangular and D
is diagonal, i.e., only its diagonal elements are nonzero.

(a) Perform this factorization for the matrix264 2 �1 0

�1 2 �1
0 �1 2

375
(b) If all the diagonal elements of D are positive, then we can write D � S2, where

S is also diagonal, and the matrix A can be further factorized into ÃLÃLTÐthis is

called the Cholesky decomposition of A. Find ÃL for the matrix of part (a).
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Exercise 1.33: A singular matrix

For the system

A �
"
3 6

6 q

#
b �

"
1

4

#
(a) Find the value of q for which elimination fails (i.e., no solution to Ax � b exists).

If you are thoughtful, you won't need to perform the elimination to ®nd out.

(b) For this value of q what happens to the ®rst geometrical interpretation of the

problem (intersecting lines)?

(c) What happens to the second (superpositions of column vectors)?

(d) What value should replace 4 in b to make the problem solvable for this q?

Exercise 1.34: LU factorization of nonsquare matrices

(a) Find the LU factorization of

A �

2642 1

1 1

3 2

375
(b) If b � �1 p q�T , ®nd a necessary and suf®cient condition on p and q so that

Ax � b has a solution.

(c) Given values of p and q for which a solution exists, will the algorithm from

Section 1.3.2 solve it? If not, pinpoint the dif®culty.

(d) Find the LU factorization of AT .

(e) Use this factorization to ®nd two LI solutions of ATx � b, where b � �2 5�T .
Since there are fewer equations than unknowns in this case, there are in®nitely

many solutions, forming a line in R2. Are there any values of b for which this

problem has no solution?

Exercise 1.35: An inverse

Under what conditions on u and v does �I � auvT � � �I � auvT ��1? Here a is an

arbitrary nonzero scalar.

Exercise 1.36: LU decomposition

Write the ®rst step of the LU decomposition process of a matrix A as A0 � �I�auvT �A.
In other words, what are a, u, and v so that A021 � 0?

Exercise 1.37: Newton-Raphson

Write a program that uses the Newton-Raphson method to solve this pair of equations

y � �x � 1�2 � 0 �y � 4�2 � tanx � 0

Do not reduce the pair of equations to a single equation. With this program, ®nd at

least one solution.
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Exercise 1.38: The QR decomposition

In this exercise, we construct the QR decomposition introduced in Section 1.2.4. Con-

sider an m � n matrix A with columns ai. Observe that if A � BC , with B an m � n
matrix and C and n�n matrix, where bi are the columns of B, then we can write each

column of A as a linear combination of the columns of B, as follows

h
ai

i
A

�
h
b1 b2 � � � bn

i
B

2666664
c1i
c2i
.
.
.

cni

3777775
C

The ith column of A is a linear combination of all the columns of B, and the coef®cients

in the linear combination are the elements of the ith column of matrix C . This result
will be helpful in solving the following problem. Let A be an m � n matrix whose

columns ai are linearly independent (thus m � n). We know that using the Gram-

Schmidt procedure allows us to construct an ON set of vectors from the ai. De®ne a

matrix Q whose columns are these basis vectors, qi, where q
T
i qj � �ij .

(a) Express each ai in the basis formed by the qi. Hint: because the set of qi are
constructed from the set of ai by Gram-Schmidt, a1 has a component only in

the q1 direction, a2 has components only in the q1 and q2 directions, etc.

(b) Use the above result to write A � QR, i.e., ®nd a square matrix R such that each

column of A is written in terms of the columns of Q. You should ®nd that R is

upper triangular.

Exercise 1.39: Orthogonal subspace decomposition

Let S be an r � n dimensional subspace of Rn with a basis fa1; a2; : : : ; ar g. Consider
the subspace S?, the orthogonal complement to S.

(a) Prove that S? has dimension n � r . Do not use the fundamental theorem of

linear algebra in this proof because this result is used to prove the fundamental

theorem.

(b) Show that any vector x 2 Rn can be uniquely expressed as x � a � b in which

a 2 S and b 2 S?.

Exercise 1.40: The QR and thin QR decompositions

For A 2 Rm�n with independent columns we have used in the text what is sometimes

called the ªthinº QR with Q1 2 Rm�n and R1 2 Rn�n satisfying

A � Q1R1

It is possible to ª®ll outº Q1 by adding the remainingm�n columns that span Rm. In

this case A � QR and Q 2 Rm�m is orthonormal, and R 2 Rm�n. In the ªthinº QR, Q1

is the shape of A and R1 is square (of the smaller dimension n), and in the full QR, Q
is square (of the larger dimensionm) and R is the shape of A.

(a) Is the ªthinº QR unique?

(b) Show how to construct the QR from the thin QR. Is the full QR unique?
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Exercise 1.41: Uniqueness of solutions to least-squares problems

Prove the following proposition

Proposition 1.20 (Full rank of ATA). Given matrix A 2 Rm�n, the n � n matrix ATA
has full rank if and only if A has linearly independent columns.

Note that this proof requires our ®rst use of the fundamental theorem of linear

algebra. Since most undergraduate engineers have limited experience doing proofs, we

provide a few hints.

1. The ªif and only ifº statement requires proof of two statements: (i) ATA having

full rank implies A has linearly independent columns and (ii) A having linearly

independent columns implies ATA has full rank.

2. The statement that S implies T is logically equivalent to the statement that not

T implies not S. So one could prove this proposition by showing (ii) and then

showing: (i') A not having linearly independent columns implies that ATA is not

full rank.

3. The fundamental theorem of linear algebra is the starting point. It tells us

(among other things) that square matrix B has full rank if and only if B has

linearly independent rows and columns. Think about what that tells you about

the null space of B and BT . See also Figure 1.1.

Exercise 1.42: A useful decomposition

Let A 2 Cn�n, B 2 Cp�p , and X 2 Cn�p satisfy

AX � XB rank�X� � p
Show that A can be decomposed as

Q�AQ � T �
" p n�p

p T11 T12
n�p 0 T22

#
in which eig�T11� � eig�B�, and eig�T22� � eig�A� n eig�B�, i.e., the eigenvalues of T22
are the eigenvalues of A that are not eigenvalues of B. Also show that eig�B� � eig�A�.

Hint: use the QR decomposition of X.

Exercise 1.43: The Schur decomposition

Prove that the Schur decomposition has the properties stated in Theorem 1.16.

Hint: the result is obviously true for n � 1. Use induction and the result of Exercise

1.42.

Exercise 1.44: Norm and matrix rotation

Given the following A matrix

A �
"
0:46287 0:11526
0:53244 0:34359

#
invoking [u,s,v]=svd(A) in MATLAB or Octave produces

u = s = v =

-0.59540 -0.80343 0.78328 0.00000 -0.89798 -0.44004

-0.80343 0.59540 0.00000 0.12469 -0.44004 0.89798
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(a) What vector x of unit norm maximizes kAxk? How large is kAxk for this x?

(b) What vector x of unit norm minimizes kAxk? How large is kAxk for this x?

(c) What is the de®nition of kAk? What is the value of kAk for this A?

(d) Denote the columns of v by v1 and v2. Draw a sketch of the unit circle traced

by x as it travels from x � v1 to x � v2 and the corresponding curve traced by

Ax.

(e) Let's ®nd an A, if one exists, that rotates all x 2 R2 counterclockwise by �
radians. What do you choose for the singular values �1 and �2? Choose v1 � e1
and v2 � e2 for the V matrix in which ei, i � 1;2 is the ith unit vector. What

do you want u1 and u2 to be for this rotation by � radians? Form the product

USVT and determine the A matrix that performs this rotation.

Exercise 1.45: Linear difference equation model

Consider the following discrete-time model

x�k� 1� � Ax�k�
in which

A �
"
0:798 0:051
�0:715 1:088

#
x0 �

"
1

0

#
(a) Compute the eigenvalues and singular values of A. See the Octave or MATLAB

commands eig and svd. Are the magnitudes of the eigenvalues of A less than

one? Are the singular values less than one?

(b) What is the steady state of this system? Is the steady state asymptotically stable,

i.e., does x�k� converge to the steady state as k!1?

(c) Make a two-dimensional plot of the two components of x�k� (phase portrait) as
you increase k from k � 0 to k � 200, starting from the x�0� given above. Is

x�1� bigger than x�0�? Why or why not?

(d) When the largest magnitude eigenvalue of A is less than one but the largest

singular value of A is greater than one, what happens to the evolution of x�k�?

(e) Now plot the values of x for 50 points uniformly distributed on a unit circle and

the corresponding Ax for these points. For the SVD corresponding to Octave

and MATLAB convention

A � USV�
mark u1, u2, v1, v2, s1, and s2 on your plot. Figure 1.10 gives you an idea of the

appearance of the set of points for x and Ax to make sure you are on track.

Exercise 1.46: Is the SVD too good to be true?

Given A 2 Rm�n with rank�A� � r and the SVD of A � U�V�, if we partition the ®rst

r columns of U and V and call them U1 and V1 we have

A �
h
U1 U2

i"
�r 0

0 0

#"
V�1
V�2

#
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�1:5

�1

�0:5

0

0:5

1

1:5

�1:5 �1 �0:5 0 0:5 1 1:5

x

Ax

x2

x1

Figure 1.10: Plot of Ax as x moves around a unit circle.

and A � U1�rV�1 .
Then to solve (possibly in the least-squares sense) Ax � b we have

U1�rV
�
1 x � b

which motivates the pseudoinverse formula

A� � V1��1r U�1
and the ªsolutionº

x � A�b
If we form the residual for this ªsolutionº

r � Ax � b
� AA�b � b

� U1
Irz }| {

�r V
�
1 V1| {z }
Ir

�
�1
r U�1

| {z }
Im

b � b

� Imb � b
r � 0
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which seems to show that r � 0. We know that we cannot solve Ax � b for every

b and every A matrix, so something must have gone wrong. What is wrong with this

argument leading to r � 0?

Exercise 1.47: SVD and worst-case analysis

Consider the process depicted in Figure 1.11 in which u is a manipulatable input and

d is a disturbance. At steady state, the effects of these two variables combine at the

measurement y in a linear relationship

y � Gu�Dd
The steady-state goal of the control system is to minimize the effect of d at the mea-

surement y by adjusting u.
For this problem we have 3 inputs, u 2 R3, 2 disturbances, d 2 R2, and 2 mea-

surements, y 2 R2, and G and D are matrices of appropriate dimensions. We have the

following two singular value decompositions available

G �
h
U
i h
S 0

i"VT1
VT2

#
D �

h
X
i h
�

i h
ZT
i

U �
"
�0:75 �0:66
�0:66 0:75

#
S �

"
1:57 0:00
0:00 0:21

#
V1 �

264 �0:89 0:37
�0:45 �0:81
�0:085 0:46

375
X �

"
�0:98 �0:19
�0:19 0:98

#
� �

"
0:71 0:00
0:00 0:13

#
Z �

"
�0:94 �0:33
�0:33 0:94

#
(a) Can you exactly cancel the effect of d on y using u for all d? Why or why not?

(b) In terms of U; S; V1; X;�; Z , what input u minimizes the effect of d on y? In

other words, if you decide the answer is linear

u � Kd
What is K in terms of U; S; V1; X;�; Z? Give the symbolic and numerical results.

(c) What is the worst d of unit norm, i.e., what d requires the largest response in u?
What is the response u to this worst d?

Exercise 1.48: Worst-case disturbance

Consider the system depicted in Figure 1.11 in which we can manipulate an input u 2
R2 to cancel the effect of a disturbance d 2 R2 on an output y 2 R2 of interest. The

steady-state relationship between the variables is modeled as a linear relationship

y � Gu�Dd
and y;u;d are in deviation variables from the steady state at which the system was

linearized. Experimental tests on the system have produced the following model pa-

rameters

G �
"
1 1

0 1

#
D �

"
2:857 3:125
0:991 2:134

#
If we have measurements of the disturbance d available, we would like to ®nd the input

u that exactly cancels d's effect on y , and we would like to know ahead of time what

is the worst-case disturbance that can hit the system.
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G

D

u

d

y

Figure 1.11: Manipulated input u and disturbance d combine to af-

fect output y.

(a) Find the u that cancels d's effect on y .

(b) For d on the unit circle, plot the corresponding value of u.

(c) What d of norm one requires the largest control action u? What d of norm one

requires the smallest control action u? Give the exact values of dmax and dmin,

and the corresponding umax and umin.

(d) Assume the input is constrained to be in the box"
�1
�1

#
� u �

"
1

1

#
(1.36)

What is the size of the disturbance so that all disturbances less than this size

can be rejected by the input without violating these constraints? In other words

®nd the largest scalar � such that

if kdk � � then u satis®es (1.36)

Use your plot from the previous part to estimate �.

Exercise 1.49: Determinant, trace, and eigenvalues

Use the Schur decomposition of matrix A 2 Cn�n to prove the following facts

detA �
nY
i�1
�i (1.37)

trA �
nX
i�1
�i (1.38)

in which �i 2 eig�A�; i � 1;2; : : : ; n.
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Exercise 1.50: Repeated eigenvalues

The self-adjoint matrix

A �

2642 0 0

0 1 1

0 1 1

375
has a repeated eigenvalue. Find the eigenvalues of the system and show that despite

the repeated eigenvalue the system has a complete orthogonal set of eigenvectors.

Exercise 1.51: More repeated eigenvalues

The non-self-adjoint matrix

A �

26664
1 1 2 0

0 1 3 0

0 0 2 2

0 0 0 1

37775
also has repeated eigenvalues.

(a) Find the eigenvalues and eigenvectors (there are only two) of A.

(b) Denote the eigenvector corresponding to the repeated eigenvalue as v1 and the

other eigenvector as v4. The generalized eigenvectors v2 and v3 can be

found by solving

�A� �1I�v2 � v1
�A� �1I�v3 � v2

where �1 is the repeated eigenvalue. Show that fv1; : : : ; v4g is necessarily an LI

set.

(c) Determine the set, construct the transformation matrix M , and show that J �
M�1AM is indeed in Jordan form.

Exercise 1.52: Solution to a singular linear system

Consider a square matrix A that has a complete set of LI eigenvectors and a single zero

eigenvalue.

(a) Write the solution to Ax � 0 in terms of the eigenvectors of A.

(b) In the problem Ax � b, use the eigenvectors to determine necessary and suf®-

cient conditions on b for existence of a solution.

Exercise 1.53: Example of a singular problem

Consider the problem Ax � b, where

A �

2641 2 3

1 2 3

1 2 3

375
(a) Perform LU decomposition on this matrix. Give L and U .

(b) Find two linearly independent vectors in the null space of A.
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(c) Use the LU decomposition to ®nd a solution when

b �

26444
4

375
(d) This solution is not unique. Find another.

(e) Find the eigenvalues and eigenvectors of A. How are these related to your an-

swers to parts b and c above?

Exercise 1.54: Linearly independent eigenvectors

Show that if A has n distinct eigenvalues, its eigenvectors are linearly independent.

This result is required to ensure the existence of Q�1 in A � Q�Q�1 in (1.15).

Hint: set
Pn
i�1 �iqi � 0 and multiply by �A��1I��A��2I� � � � �A��n�1I� to establish

that �n � 0. With �n � 0 what can you do next to show that �n�1 � 0? Continue this

process.

Exercise 1.55: General results for eigenvalue problems

Prove the following statements:

(a) If A is nonsingular and has eigenvalues �i, the eigenvalues of A
�1 are 1=�i.

(b) Let S be amatrix whose columns form a set of linearly independent but nonorthog-

onal basis vectors: the ith column is the vector ui. Find a matrix S0 whose
columns u0j satisfy u

T
i u

0
j � �ij . A pair of basis sets whose vectors satisfy this

condition are said to be biorthogonal.

(c) Assume that A has a complete set of eigenvectors. Show that the eigenvectors

of A and AT are biorthogonal.

(d) Show that if the eigenvectors of A are orthogonal, then AAT � ATA. Such ma-

trices are called normal. (The converse is also true (Horn and Johnson, 1985).)

(e) Show that the eigenvalues of A � �AT are imaginary and that its eigenvectors

are orthogonal.

Exercise 1.56: Eigenvalues of a dyad

Let u and v be unit vectors in Rn, with uTv � 0. What are the eigenvalues and eigen-

vectors of uvT ?

Exercise 1.57: The power method for ®nding largest eigenvalues

Consider the matrix

A �

2640 0 1

0 0 1

1 1 1

375
(a) Let x0 � �1;0;0�T and consider the iteration procedure xi�1 � Axi. Perform

several steps of this procedure by hand and observe the result.
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(b) Can you understand what is happening here by writing x in the eigenvector

basis? In particular, show that for a self-adjoint matrix with distinct eigenvalues,

this iteration procedure yields the eigenvalue of largest absolute value and the

corresponding eigenvector.

(c) Write an Octave or MATLAB function to perform this process on a real symmetric

matrix, outputting the largest eigenvalue (to within a speci®ed tolerance) of A
and the corresponding eigenvector, scaled so that its largest component is 1.

Present results for a test case. This is the power method. It is much faster than

®nding all of the eigenvalues and can be generalized to other types of matrices.

Google's ªPageRankº algorithm is built around this method.

Exercise 1.58: Markov chain models

Imagine that there are three kinds of weather: sunny, rainy, and snowy. Thus a vector

w0 2 R3 de®nes today's weather: w0 � �1;0;0�T is sunny, w0 � �0;1;0�T is rainy, and

w0 � �0;0;1�T is snowy. Imagine that tomorrow's weather w1 is determined only by

today's and more generally, the weather on day n� 1 is determined by the weather on

day n. A probabilistic model for the weather then takes the form

wn�1 � Twn

where T is called a transition matrix and the elements of wn are the probabilities of

having a certain type of weather on that day. For example, ifw5 � �0:2;0:1;0:7�T , then
the probability of snow ®ve days from now is 70%. The sequence of probability vectors

on subsequent days, fw0;w1;w2; : : :g is called a Markov chain. Becausew is a vector

of probabilities, its elements must sum to one, i.e.,
P
i�1;3wn;i � 1 for all n.

(a) Given that
P
i�1;3wn;i � 1, what condition must the elements of T satisfy such

that
P
i�1;3wn�1;i is also 1?

(b) Assume that T is a constant matrix, i.e., it is independent of n. What conditions

of the eigenvalues of T must hold so that the Markov chain will reach a constant

state w1 as n!1? How is w1 related to the eigenvectors of T?

Exercise 1.59: Real Jordan form for a real matrix with complex conjugate
eigenvalues

For a 2 � 2 real matrix A with a complex conjugate pair of eigenvalues �1 � � � i!,

�2 � �1 with eigenvectors v1 and v2:

(a) Derive the result that v1 � v2.

(b) Write the general solution to Çx � Ax in terms of the real and imaginary parts of

v1 and sines and cosines, so that the only complex numbers in the solution are

the arbitrary constants.

(c) For the speci®c matrix

A �
"
�2 �2
2 1

#
show that the similarity transformation S�1AS, where the columns of S are the

real and imaginary parts of v1, has the form

S�1AS �
"
� �!
! �

#
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This result can be generalized, showing how a real matrix with complex eigen-

values can be put into Jordan form without introducing any imaginary numbers.

Exercise 1.60: Solving a boundary-value problem by eigenvalue decompo-
sition

Consider the reaction

A
k1
-*)-
k�1

B
k2
-*)-
k�2

C

occurring in a membrane. At steady state the appropriate reaction-diffusion equations

for this system are

DA
d2cA
dx2

� k1cA � k�1cB � 0

DB
d2cB
dx2

� k1cA � k�1cB � k2cB � k�2cC � 0

DC
d2cC
dx2

� k2cB � k�2cC � 0

where the ki; i � ��1;2� are rate constants and the Dj ; j � �A;B;C� are the species

diffusivities. The boundary conditions are

cA � 1 cB � cC � 0 at x � 1

dcA
dx

� dcB
dx

� dcC
dx

� 0 at x � 0

Convert this set of second-order equations into a set of ®rst-order differential equa-

tions. Write a MATLAB or Octave code to ®nd the solution to this problem in terms

of eigenvalues and eigenvectors of the relevant matrix for a given set of parameters.

Have the program plot the concentrations as functions of position. Show results for

parameter values DA � DB � DC � 20, k1 � k2 � 10, k�1 � k�2 � 0:1, and also for the

same rate constants but with the diffusivities set to 0:05.

Exercise 1.61: Null spaces of nonsquare matrices

Consider a nonsquarem�n matrix A. Show that ATA is symmetric positive semidef-

inite. If A were square we could determine its null space from the eigenvectors cor-

responding to zero eigenvalues. How can we determine the null space of a nonsquare

matrix A? What about the null space of AT ?

Exercise 1.62: Stability of an iteration

Consider the iteration procedure x�i� 1� � Ax�i�, where A is diagonalizable.

(a) What conditions must the eigenvalues of A satisfy so that x�i�! 0 as i!1?

(b) What conditions must the eigenvalues satisfy for this iteration to converge to a

nonzero steady state, i.e., so that x�i�! xs � 0 as i!1?

Exercise 1.63: Cayley-Hamilton theorem

Suppose that A is an n�n diagonalizable matrix with characteristic equation

det�A� �I� � �n � an�1�n�1 � : : :� a0 � 0
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(a) Show that

An � an�1An�1 � : : :� a0I � 0

This result shows that A satis®es its own characteristic equation; it is known as

the Cayley-Hamilton theorem.

(b) Let

A �
"
1 2

2 1

#
Use the theorem to express A2; A3, and A�1 as linear combinations of A and I.

Exercise 1.64: Solving the nonunique least-squares problem

We have established that the least-squares solution to Ax � b is unique if and only if

A has linearly independent columns. Let's treat the case in which the columns are not

linearly independent and the least-squares solution is not unique. Consider again the

SVD for real-valued A

A �
h
U1 U2

i"
� 0

0 0

#"
VT1
VT2

#

(a) Show that all solutions to the least-squares problem are given by

xls � V1��1UT1 b � V2� � 2 R
n�r

in which � is an arbitrary vector.

(b) Show that the unique, minimum-norm solution to the least-squares problem is

given by

x0ls � V1��1UT1 b
This minimum-norm solution is the one returned by many standard linear alge-

bra packages. For example, this is the solution returned by Octave and MATLAB

when invoking the shorthand command x = A n b.

Exercise 1.65: Propagating zeros in triangular matrices

When multiplying two partitioned (upper) triangular matrices, if the ®rst one has k
leading columns of zeros, and the second one has a 0p�p matrix on the second element

of the diagonal, show that the product is a triangular matrix with k�p leading columns

of zeros. In pictures

k
p
r

k p r2640 � �
0 T1 �
0 0 T2

375
k p r264T3 � �
0 0 �
0 0 T4

375 �
k p r2640 0 �
0 0 �
0 0 T5

375 k
p
r

in which Ti; i � 1; : : : ;4 are arbitrary triangular matrices, T5 is triangular, and � rep-

resents arbitrary (full) matrices. This result is useful in proving the Cayley-Hamilton

theorem in the next exercise.
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Exercise 1.66: Cayley-Hamilton theorem holds for all matrices

Revisit Exercise 1.63 and establish that all matrices A 2 Cn�n satisfy their charac-

teristic equation. We are removing the assumption that A is diagonalizable in the

Cayley-Hamilton theorem so that it holds also for defective matrices.

Hint: use the Schur form to represent A and the result of Exercise 1.65.

Exercise 1.67: Small matrix approximation

For x a scalar, consider the Taylor series for 1=�1� x�
1

1� x � 1� x � x2 � x3 � � � �
which converges for jxj < 1.

(a) Using this scalar Taylor series, establish the analogous series for matrix X 2
Rn�n

�I �X��1 � I �X �X2 �X3 � � � �
You may assume the eigenvalues of X are unique. For what matrix X does this

series converge?

(b) What is the corresponding series for

�R �X��1

in whichR 2 Rn�n is a full-rankmatrix. What conditions onX andR are required

for the series to converge?

Exercise 1.68: Matrix exponential, determinant and trace

Use the Schur decomposition of matrix A 2 Cn�n to prove the following fact

det eA � etr�A�

Exercise 1.69: Logarithm of a matrix

If A 2 Cn�n is nonsingular, there exists a B 2 Cn�n such that

A � eB

and B is known as the logarithm of A

B � lnA

If A is positive de®nite, B can be uniquely de®ned (the principal branch of the loga-

rithm).

Given this de®nition of the logarithm, if A 2 Cn�n is nonsingular, show that

detA � etr�lnA� (1.39)

Exercise 1.70: Some differential equations, sines, cosines, and exponentials

(a) Solve the following vector, second-order ordinary differential equation with the

given initial conditions for y 2 R2

d2y

dt2
�Ay � 0

A �
"
3 1

1 3

#
y�0� �

"
1

� 1
2

#
dy

dt
�0� �

"
0

0

#
Use the solution of the scalar version of this differential equation as your guide.
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(b) We can always reduce a high-order differential equation to a set of ®rst-order

differential equations. De®ne x � dy=dt and let

z �
"
x
y

#

and show that the above equation can be written as a single ®rst-order differen-

tial equation
dz

dt
� B z � 0

with z 2 R4. What are B and the appropriate initial conditions z�0�? What is

the solution to this problem?

(c) Plot, on a single graph, the trajectories of the two y components versus time for

the given initial conditions.

(d) Show that the result of (a) is the same as the result of (b), even though the

functions exp and cos are different.

Exercise 1.71: Bounding the matrix exponential

Given the bound for
eAt in (1.21), establish the validity of the bound in (1.22).

Hints: ®rst, for any k > 0 and � > 0, show that there exists a c > 0 such that for all

t � 0

ce�t � tk
Use this result to show that for any � > 0, N 2 Cn�n, there exists c > 0 such that for

all t � 0

ce�t �
n�1X
k�0

kNtkk
k!

Exercise 1.72: Strictly convex quadratic function and positive curvature

Consider the quadratic function

f�x� � �1=2�xTAx � bTx � c

(a) Show that f��� is strictly convex if and only if A > 0.

(b) For the quadratic function, show that if a minimizer of f��� exists, it is unique if
and only if A > 0. The text shows the ªifº part for any strictly convex function.

So you are required to show the ªonly ifº part with the additional restriction that

f��� is quadratic.

(c) Show that f��� is convex if and only if A � 0.

Exercise 1.73: Concave functions and maximization

A function f��� is de®ned to be (strictly) concave (concave downward) if �f��� is
(strictly) convex (Rockafellar and Wets, 1998, p. 39). Show that a solution to maxx f�x�
is unique if f��� is strictly concave.
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Exercise 1.74: Solutions to minmax and maxmin problems

Consider again the quadratic function f�x� � �1=2�xTAx and the two games given in

(1.23). Con®rm that Figure 1.6 (c) corresponds to the A matrix

A �
p
2

"
�1 1

1 1

#

(a) Show that x1 � x2 � 0 is the unique solution to both games in (1.23). Hint: with

the outer variable ®xed, solve the inner optimization problem and note that its

solution exists and is unique. Then substitute the solution for the inner problem,

solve the outer optimization problem, and note that its solution also exists and

is unique.

(b) Show that neither of the following problems has a solution

max
x2

min
x1
f�x� min

x1
max
x2
f�x�

in which we have interchanged the goals of the two players. So obviously the

goals of the players matter a great deal in the existence of solutions to the game.

Exercise 1.75: Games with nonunique solutions and different solution sets

Sketch the contours for f�x� � �1=2�xTAx with the following A matrix

A �
"
0 1

1 0

#

What are the eigenvalues of A?

Show that x1 � x2 � 0 is still a solution to both games in (1.23), but that it is not

unique. Find the complete solution sets for both games in (1.23). Establish that the

solution sets are not the same for the two games.

Exercise 1.76: Who plays ®rst?

When the solutions to all optimizations exist, show that

max
x2

min
x1
f�x1; x2� �min

x1
max
x2
f�x1; x2�

This inequality veri®es that the player who goes ®rst, i.e., the inner optimizer, has the

advantage in this noncooperative game. Note that the function f��� is arbitrary, so

long as the indicated optimizations all have solutions.

Exercise 1.77: Solving linear matrix equations

Consider the linear matrix equation

AXB � C (1.40)

in which A 2 Rm�n, X 2 Rn�p , B 2 Rp�q , and C 2 Rm�q . We consider A;B;C ®xed

matrices and X is the unknown matrix. The number of equations is the number of

elements in C . The number of unknowns is the number of elements of X. Taking the

vec of both sides gives

�BT 
A�vecX � vecC (1.41)

We wish to explore how to solve this equation for vecX.
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(a) For the solution to exist for all vecC , and be unique, we require that �BT 
 A�
has linearly independent rows and columns, i.e., it is square and full rank. Using

the rank result (1.31) show that this is equivalent to A and B being square and

full rank.

(b) For this case show that the solution

vecX � �BT 
A��1vecC
is equivalent to that obtained by multiplying (1.40) by A�1 on the left and B�1
on the right,

X � A�1CB�1

(c) If we have more equations than unknowns, we can solve (1.41) for vecX as a

least-squares problem. The least-squares solution is unique if and only if BT 
A
has linearly independent columns. Again, use the rank result to show that this

is equivalent to: (i) A has linearly independent columns, and (ii) B has linearly

independent rows.

(d) We know that A has linearly independent columns if and only if ATA has full

rank, and B has linearly independent rows if and only if BBT has full rank (see

Proposition 1.20 in Exercise 1.41). In this case, show that the least-squares so-

lution of (1.41)

vecXls � �BT 
A�yvecC
is equivalent to that obtained by multiplying (1.40) by Ay on the left and By on

the right,

Xls � AyCBy
The superscript y denotes the Moore-Penrose pseudoinverse discussed in Sec-

tion 1.3.7. Note that for a matrix (like A) with linearly independent columns,

the pseudoinverse is Ay � �ATA��1AT , but for a matrix (like B) with linearly

independent rows, the pseudoinverse is By � BT �BBT ��1. The matrices Ay and

By are also known as left and right inverses, respectively.

Exercise 1.78: Solving the matrix Lyapunov equation

Write a function S = yourlyap(A,Q) using the Kronecker product to solve the matrix

Lyapunov equation

AT S � SA � �Q
Test your function with some A with negative eigenvalues and positive de®nite Q by

comparing to the function lyap in Octave or MATLAB.
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2

Ordinary Differential Equations

2.1 Introduction

Differential equations arise in all areas of chemical engineering. In this

chapter we consider ordinary differential equations (ODEs), that is,

equations that have only one independent variable. For example, for re-

actions in a stirred-tank reactor the independent variable is time, while

in a simple steady-state model of a plug-¯ow reactor, the independent

variable is position along the reactor. Typically, ODEs appear in one of

two forms

dx

dt
� f�x; t�; x 2 Rn (2.1)

or

an�x�
dny

dxn
� an�1�x�d

n�1y
dxn�1

� � � �

� a1�x�dy
dx
� a0�x�y � g�x�; y 2 R (2.2)

We have intentionally written the two forms in different notation, as

the ®rst form typically (but not always) appears when the independent

variable is time, and the second form often appears when the indepen-

dent variable is spatial position. These two forms usually have different

boundary conditions. When t is the independent variable, we normally

know the conditions at t � 0 (e.g., initial reactant concentration) and

must solve for the behavior for all t > 0. This is called an initial-

value problem (IVP). In a transport problem, on the other hand, we

know the temperature, for example, at the boundaries and must ®nd it

in the interior. This is a boundary-value problem (BVP).

99
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2.2 First-Order Linear Systems

2.2.1 Superposition Principle for Linear Differential Equations

An arbitrary linear differential equation can be written

Lu � g

where L is a linear differential operator (e.g., L � d=dt � A, where
A is a matrix), u is the solution to be determined, and g is a known

function. Section 1.2 introduced the following general properties of

linear operators, which we now write in terms of L

L�u� v� � Lu� Lv
L��u� � ��Lu�

Leaving aside for the moment the issue of boundary conditions, the

following two superposition properties follow directly from linearity

1. Homogeneous problem. Let g � 0. Ifu1 andu2 are both solutions

to Lu � 0, then �u1 � �u2 is also a solution, for any scalars �

and �.

2. Inhomogeneous problem. Let u1 be a solution to Lu � g1 and

u2 be a solution to Lu � g2. Then �u1 � �u2 is a solution to

Lu � �g1 � �g2.

With regard to boundary conditions, linearity also implies the fol-

lowing.

3. Let u1 be a solution to Lu � g1 with boundary condition Bu � h1
on a particular boundary, where B is an appropriate operator, e.g.,

a constant for a Dirichlet boundary condition, a ®rst derivative

d=dx for a Neumann boundary condition, or a combination B �
 � � d=dx for a Robin boundary condition. Let u2 solve Lu �
g2 with boundary condition Bu � h2. Then �u1 � �u2 satis®es

Lu � �g1 � �g2 with boundary condition Bu � �h1 � �h2.

These simple results are very powerful and will be implicitly and ex-

plicitly used throughout the book, as they allow complex solutions to

be constructed as sums (or integrals) of simple ones.
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2.2.2 Homogeneous Linear Systems with Constant Coef®cientsÐ

General Results for the Initial-Value Problem

Consider (2.1), where t denotes time. The function f is often called a

vector field; for each point x in the phase space or state space

of the system, f�x� de®nes a vector giving the rate of change of x at

that point. The system is called autonomous if f is not an explicit

function of t. The trajectory x�t� traces out a curve in the state space,

starting from the initial condition x�0� � x0.
The most general linear ®rst-order system can be written

dx

dt
� A�t�x � g�t�; x 2 Rn (2.3)

In the present section we further narrow the focus and consider only

the linear, autonomous, homogeneous system

Çx � Ax x 2 Rn A 2 Rn�n (2.4)

where A is a constant matrix. Note that many dynamics problems are

posed as second-order problems: if x is a position variable then New-

ton's second law takes the form Èx � F�x�. Letting u1 � x;u2 � Çx, we

recover a ®rst-order system

Çu1 � u2

Çu2 � F�u1�

More generally, a single high-order differential equation can always be

written as a system of ®rst-order equations.

Unless A is diagonal, all of the individual scalar equations in the

system (2.4) are coupled. The only practical way to ®nd a solution to

the system is to try to decouple it. But we already know how to do

thisÐwe use the eigenvector decomposition A � MJM�1, where J is

the Jordan form for A (Section 1.4). Letting y � M�1x be the solution

vector in the eigenvector coordinate system, we write

Çy � Jy

IfA can be completely diagonalized, then J � � � diag��1; �2; : : : ; �n�

and the equations in the y coordinates are completely decoupled. The

solution is

yi�t� � e�itci
or

y � e�tc
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where c is a vector of arbitrary constants. For an initial-value problem

where x�0� is a known vector x0, c � y�0� � M�1x0. Recall from

Section 1.5 that the matrix e�t is called the matrix exponential of �.

It is de®ned for a general matrix A as

eAt � I �At � 1

2!
A2t � 1

3!
A3t � � � �

and we also show in Section 1.5 that the solution to (2.4) with initial

condition x�0� � x0 is given by x�t� � eAtx0.
For the diagonal matrix �, e�t is simply a diagonal matrix with en-

tries e�it . Since yi�t� � e�itci, we see that the eigenvalues of A deter-

mine the growth or decay rates �i and the eigenvectors (columns of

M) determine the directions vi along which this growth or decay oc-

curs. Converting back to the original coordinates, we have the general

solution

x�t� � Me�tc �
X
i

cie
�itvi

where vi is the eigenvector corresponding to �i. This expression shows

explicitly that the solution when A has a complete LI set of eigenvec-

tors is a simple combination of exponential growth and decay in the

directions de®ned by the eigenvectors.

An important general consequence of this result is that an initial

condition x0 that lies on the line de®ned by the kth eigenvector leads

to ci � ��ik and thus to a solution x�t� � �e�ktvk. This solution

will never leave the line de®ned by the eigenvector vk. This line is

thus an invariant subspace for the dynamics: an initial condition

that starts in an invariant subspace never leaves it. Similarly, each pair

of eigenvectors de®nes a plane that is invariant, each triple de®nes a

three-dimensional space that is invariant and so on.

A particularly relevant special case of an invariant plane arises when

A has a complex conjugate pair of eigenvalues ��i! with correspond-

ing eigenvectors v and v ; see Exercise 1.59. A solution with initial

conditions in this subspace has the form

x�t� � c1e�tei!tv � c2e�te�i!tv

If the initial conditions are real, then c2 � c1 (to cancel out the imagi-

nary parts of the two terms in this equation). Equivalently, we can write

that

x�t� � 2Re
�
c1e

�tei!tv
�
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where Re denotes the real part of an expression. Now writing c1 �
cr � ici, v � vr � ivi and ei!t � cos!t � i sin!t, this can be written

in real form as

x�t� � e�t�cr cos!t � ci sin!t�vr � e�t�ci cos!t � cr sin!t�vi

Thus for real initial conditions, the invariant subspace corresponding

to a pair of complex conjugate eigenvalues is the plane spanned by vr
and vi.

If A cannot be diagonalized the situation is not as simple, but is

still not really very complicated. We still have that Çy � Jy , but J
is triangular rather than diagonal. Triangular systems have one-way

coupling, so we can solve from the bottom up, back substituting as we

go. To illustrate, we consider the case

J �
"
� 1

0 �

#

We can solve the equation Çy2 � �y ®rst and then back substitute,

getting an inhomogeneous problem for y1. The inhomogeneous term

prevents the behavior from being purely exponential, and the general

solution becomes (after converting back to the original coordinates)

x�t� � c1e�tv1 � c2e�t�v2 � tv1� (2.5)

where v1 is the eigenvector corresponding to � and v2 is the general-

ized eigenvector; compare with Example 1.14. The line de®ned by the

eigenvector v1 is an invariant subspace, as is the plane de®ned by v1
and v2. However, the line de®ned by the generalized eigenvector v2 is

not invariant.

Note the te�t term that appears in (2.5). In initial-value problems,

this term allows solutions to grow initially even when all of the eigenval-

ues have negative real parts. As t ! 1, though, the exponential factor
dominates. Thus even when A is defective, its eigenvalues determine

the long-time dynamics and, in particular, the stability. The issue of

stability is addressed at length in Section 2.5; for the present we note

that the steady state x � 0 of (2.4) is asymptotically stableÐinitial

conditions approach it as t ! 1 if and only if all the eigenvalues of A

have negative real parts.

To summarize, the above results show that every homogeneous

constant-coef®cient problem Çx � Ax can be rewritten as Çy � Jy ,
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where J has a block diagonal structure exempli®ed by the following

template

J �

266666666666664

�1 0 : : :

0 �2 0 : : :

: : : 0 � �! 0 : : :

: : : 0 � ! 0 : : :

: : : 0 �5 1 0 : : :

: : : 0 �5 0 : : :

: : : 0 �7 0

: : : 0 �8

377777777777775
The dynamics corresponding to each block are decoupled from those

of all the others and the associated eigenvectors de®ne invariant sub-

spaces; the dynamics in each invariant subspace are decoupled from

those in all the others.

2.2.3 Qualitative Dynamics of Planar Systems

In a general n-dimensional system, there is a large range of possible

combinations of eigenvalues, real and complex, with positive or neg-

ative real parts. For n � 2, a simple and general classi®cation of the

possible dynamics is possible. Such systems are called planar, be-

cause all of the dynamics occur on a simple plane (sometimes called

the phase plane) de®ned by two eigenvectors (or an eigenvector and

generalized eigenvector, if A is defective). Writing

Çx � Ax �
"
a b

c d

#
x

the characteristic equation for A is

�2 � �a� d��� �ad� bc� � 0

Notice that a � d � trA and ad � bc � detA, which we call T and D,

respectively. Recall that T � �1��2 and D � �1�2. In two dimensions,

the eigenvalues are determined only by the trace and determinant of

the matrix. When Re��1� < 0 and Re��2� < 0, any initial condition de-

cays exponentially to the originÐthe origin is asymptotically stable.

These conditions are equivalent to T < 0;D > 0.

Figure 2.1 shows the dynamical regimes that are possible for the pla-

nar system as characterized by T and D; asymptotically stable steady-

state solutions occupy the second quadrant, excluding the axes. Each
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regime on Figure 2.1 shows a small plot of the dynamics on the phase

plane in that regime; the axes correspond to the eigenvectors (or real

and imaginary parts of the eigenvectors in the case of complex con-

jugates) and trajectories x�t� on this plane are shown with time as

the parameter. The arrows on the trajectories indicate the direction of

time. An important curve on this diagram is T 2 � 4D � 0, where the

two eigenvalues are equal. This parabola is also the boundary between

oscillatory solutions (spirals on the phase plane) and exponential ones

(nodes); a spiral arises from a complex conjugate pair of eigenvalues

while a node arises from the case of two real eigenvalues with the same

sign. In the lower half of the ®gure, D < 0, the eigenvalues are real and

with opposite signs. The steady states in this regime are called sad-

dle points, because they have one stable direction and one unstable.

Figure 2.2 shows the dynamic behavior that occurs on the boundaries

between the different regions. Trajectories on the boundary between

stable and unstable spirals, i.e. where T � 0;D > 0, are purely oscilla-

tory. On the phase plane they take the form of closed ellipses called

centers whose size is determined by the initial condition.

2.2.4 Laplace Transform Methods for Solving the Inhomogeneous

Constant-Coef®cient Problem

Inhomogeneous constant-coef®cient systems also can be decoupled by

transformation into Jordan form: Çx � Ax � g�t� becomes Çy � Jy �
h�t�, where h�t� � M�1g�t�. Accordingly, once we understand how

to solve the scalar inhomogeneous problem, we will have learned what

we need to know to address the vector case. A powerful approach to

solving inhomogeneous problems relies on the Laplace transform.

De®nition

Consider functions of time f�t� that vanish for t < 0. If there exists a

real constant c > 0 such that f�t�e�ct ! 0 suf®ciently fast as t !1, we
can de®ne the Laplace transform of f�t�, denoted f�s�, for all complex-

valued s such that Re�s� � c

L�f �t�� �
Z1
0
e�stf�t�dt Re�s� � c (2.6)

� f�s�
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trace

determinant

�
1 � �

2
±or± (tra

ce)
2 = 4

det

� de®nite� de®nite

inde®nite inde®nite

Re��� < 0 Re��� > 0

� < 0 � > 0

�1 < 0 and �2 > 0

stable spiral

�

unstable spiral

�

stable node

�

�
�

�

unstable node

�

�
�

�

unstable saddle

�
� �

�
�
� �

�

Figure 2.1: Dynamical regimes for the planar system dx=dt � Ax,

A 2 R
2�2 parametrized in the determinant and trace of

A; see also Strang (1986, Fig. 6.7).

The inverse formula is given by

L�1�f �s�� � 1

2�i

Z c�i1
c�i1

est f�s�ds t � 0 (2.7)

� f�t�

Properties

1. The Laplace transform operator is linear. For every scalar �;�

and functions f�t�; g�t�, the following holds

L ��f�t�� �g�t�	 � �f�s�� �g�s�
The inverse transform is also linear

L�1
n
�f�s�� �g�s�

o
� �f�t�� �g�t�
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trace

determinant

node or star

� � �i!

�1 � �2 > 0�1 � �2 < 0

or or

�1 � 0 �2 < 0 �1 � 0 �2 > 0

neutral center

�
�

stable node

��
� �

stable star

�
�

�
�

unstable node

�

�

�

�

unstable star

�
�
�
�

Figure 2.2: Dynamical behavior on the region boundaries for the pla-

nar system dx=dt � Ax, A 2 R
2�2; see also Strang

(1986, Fig. 6.10).

2. Transform of derivatives

L
�
df�t�

dt

�
� sf �s�� f�0�

L
 
d2f�t�

dt2

!
� s2f�s�� sf �0�� f 0�0�

L
�
dnf�t�

dtn

�
� snf�s�� sn�1f�0�� sn�2f 0�0�� � � �

� sf �n�2��0�� f �n�1��0�

3. Transform of integral

L
 Z t

0
f�t0�dt0

!
� 1

s
f �s�
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4. Derivative of transform with respect to s

L�tnf�t�� � ��1�nd
nf�s�

dsn

5. Time delay and s delay

L�f �t � a�H�t � a�� � e�asf�s�
L�eatf�t�� � f�s � a�

where the Heaviside or unit step function is de®ned as

H�t� �
8<:0 t < 0

1 0 < t

6. Laplace convolution theorem

L
 Z t

0
f�t0�g�t � t0�dt0

!
� f�s�g�s�

L
 Z t

0
f�t � t0�g�t0�dt0

!
� f�s�g�s�

7. Final value theorem

lim
s!0
sf �s� � lim

t!1
f�t�

if and only if sf �s� is bounded for all Re�s� � 0

8. Initial-value theorem

lim
s!1 sf �s� � lim

t!0�
f�t�

We can readily compute the Laplace transform of many simple f�t�

by using the de®nition and performing the integral. In this fashion we

can construct Table 2.1 of Laplace transform pairs. Such tables prove

useful in solving differential equations. We next solve a few examples

using the Laplace transform.
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f�t� f �s�

��t� 1

1
1

s

t
1

s2

tn � 1 < n
��n� 1�

sn�1

cos!t
s

s2 �!2

sin!t
!

s2 �!2

sinh!t
!

s2 �!2

cosh!t
s

s2 �!2

eat
1

s � a
teat

1

�s � a�2
eat cos!t

s � a
�s � a�2 �!2

eat sin!t
!

�s � a�2 �!2

Table 2.1: Small table of Laplace transform pairs. A more extensive

table is found in Appendix A.

�Ky

m

F�t�

y

Figure 2.3: Particle of massm at position y experiences spring force

�Ky and applied force F�t�.
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Example 2.1: Particle motion

Consider the motion of a particle of massm connected to a spring with

spring constant K and experiencing an applied force F�t� as depicted

in Figure 2.3.

Let y denote the displacement from the origin andmodel the spring

as applying force Fs � �Ky . Newton's equation of motion for this

system is then

m
d2y

dt2
� F �Ky

We require two boundary conditions for this second-order differential

equation. If we assume the particle is initially at rest at the origin, then

the boundary conditions are both speci®ed at t � 0 and these initial

conditions are

y�0� � 0
dy

dt
�0� � 0

If we divide by the mass of the particle we can express the model as

d2y

dt2
� k2y � f
y�t� � 0 t � 0

dy�t�

dt
� 0 t � 0

in which k2 � K=m and f � F=m. Take the Laplace transform of

the model and ®nd the position of the particle versus time y�t�, for

arbitrary applied force f�t�.

Solution

Taking the Laplace transform of the equation of motion and substitut-

ing in the two initial conditions gives

s2y�s�� sy�0��y 0�0�� k2y�s� � f�s�
s2y�s�� k2y�s� � f�s�

Solving this equation for y�s� gives

y�s� � f�s�

s2 � k2
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We see the transform is the product of two functions of s. The inverse

of each of these is available

L�1�f �s�� � f�t� L�1
�

1

s2 � k2
�
� 1

k
sinkt

The ®rst follows by the de®nition of f�s� and the second follows from

Table 2.1. Using the convolution theorem then gives

y�t� � 1

k

Z t
0
f�t0� sink�t � t0�dt0

and we have the complete solution. We see that the particle position

is a convolution integral of the applied force with the sine function.

The reader may wish to check that this solution indeed satis®es the

differential equation and both initial conditions as claimed. �

Example 2.2: A forced ®rst-order differential equation

Consider the ®rst-order differential equation with forcing term

dx

dt
� ax � bu�t�

x�0� � x0
Use the Laplace transform to ®nd x�t� for any forcing u�t�.

Solution

Taking the Laplace transform, substituting the initial condition, and

solving for x�s�, give

sx�s�� x0 � ax�s�� bu�s�

x�s� � x0
s � a � b

u�s�

s � a
We can invert the ®rst term directly using Table 2.1, and the second

term using the table and the convolution theorem giving

x�t� � x0eat � b
Z t
0
ea�t�t

0�u�t0�dt0

We see the effect of the initial condition x0 and the forcing term u�t�.

If a < 0 so the system is asymptotically stable, the effect of the initial

condition decays exponentially with time. The forcing term affects the

solution through the convolution of u with the time-shifted exponen-

tial. �
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Example 2.3: Sets of coupled ®rst-order differential equations

Consider next the inhomogeneous constant coef®cient system (2.3),

with g�t� � Bu�t�
dx

dt
� Ax � Bu�t�

x�0� � x0
in which x 2 Rn, u 2 Rm, A 2 Rn�n, B 2 Rn�m. In systems and control

applications, x is known as the state vector and u is the manipulated

variable vector. Use Laplace transforms to ®nd x�t� for this problem.

Solution

Again taking the Laplace transform, substituting the initial condition,

and solving for x�s� gives

sx�s�� x0 � Ax�s�� Bu�s�
�sI �A�x�s� � x0 � Bu�s�

x�s� � �sI �A��1x0 � �sI �A��1Bu�s�

We next require the matrix version of the Laplace transform pair

f�t� f �s�

eat a 2 R 1

s � a
eAt A 2 Rn�n �sI �A��1

which can be checked by applying the de®nition of the Laplace trans-

form. Using this result and the convolution theorem gives

x�t� � eAtx0 �
Z t
0
eA�t�t

0�Bu�t0�dt0

Notice we cannot move the constant matrix B outside the integral as we

did in the scalar case because the indices in the matrix multiplications

must conform as shown below

x�t�| {z }
n�1

� eAt|{z}
n�n

x0|{z}
n�1

�
Z t
0
eA�t�t

0�| {z }
n�n

B|{z}
n�m

u�t0�| {z }
m�1

dt0

�
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2.2.5 Delta Function

The delta function, also known as the Dirac delta function (Dirac,

1958, pp. 58-61) or the unit impulse, is an idealization of a narrow and

tall ªspike.º Two examples of such functions are

g��x� � 1p
4��

e�x
2=4� (2.8)

g��x� � �

� ��2 � x2�
(2.9)

where � > 0. Setting x � 0 and then taking the limit � ! 0 shows that

lim�!0 g��0� ! 1, while setting x � x0 � 0 and taking the same limit

shows that for any nonzero x0, lim�!0 g��x0� � 0. These functions

become in®nitely high and in®nitely narrow. Furthermore, they both

have unit area Z1
�1
g��x� dx � 1

A set of functions depending on a parameter and obeying the above

properties is called a delta family. The delta function ��x� is the

limiting case of a delta family as � ! 0. It has in®nite height, zero

width, and unit area. It is most properly thought of as a generalized

function or distribution; the mathematical theory of these objects

is described in Stakgold (1998).

Operationally, the key feature of the delta function is that when

integrated against a ªnormalº function f�x� the delta function extracts

the value of f at the x value where the delta function has its singularityZ1
�1
f�x���x� dx � lim

�!0

Z1
�1
f�x�g��x� dx � f�0� (2.10)

The delta function also can be viewed as the generalized derivative of

the discontinuous unit step or Heaviside function H�x�

��x� � dH�x�
dx

Also note that the interval of integration in (2.10) does not have to be

��1;1�. The integral over any interval containing the point of singu-

larity for the delta function produces the value of f�x� at the point of

singularity. For exampleZ a��
a��

f�x���x � a�dx � f�a� for all � > 0 for all a 2 R



114 Ordinary Differential Equations

Finally, by changing the variable of integration we can show that the

delta function is an even function

���x� � ��x�

Derivatives of the Delta Function

Doublet. An interesting property of the delta function is that it is

also differentiable. The ®rst derivative is termed the doublet or dipole,

usually denoted �0�x�

�0�x� � d��x�
dx

Sometimes we see the dot notation Ç��x� to denote the doublet instead

of �0�x�. If we perform integration by parts on the integralZ1
�1
f�x��0�x�dx

we ®nd that the doublet selects the negative of the ®rst derivative of f

evaluated at the location of the doublet's singularityZ1
�1
f�x��0�x�dx � �f 0�0� (2.11)

Note the sign in this equation. We also ®nd by changing the variable of

integration that, unlike the delta function, or singlet, which is an even

function, the doublet is odd

�0�x� � ��0��x�

Higher-order derivatives. Repeated integration by parts produces the

following higher-order formulas for triplets, quadruplets, etc.Z1
�1
f�x���n��x�dx � ��1�nf �n��0� n � 0

As with the singlet and doublet, we can change the variable of inte-

gration and shift the location of the singularity to obtain the general

formulaZ1
�1
f�x���n��x � a�dx � ��1�nf �n��a� n � 0 a 2 R

Finally we can use the de®nition of the Laplace transform to take the

transform of the delta function and its derivatives to obtain the trans-

form pairs listed in Table 2.2.
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f�t� f �s�

H�t�
1

s

��t� 1

�0�t� s

�00�t� s2

��n��t� sn

Table 2.2: Laplace transform pairs involving � and its derivatives.

2.3 Linear Equations with Variable Coef®cients

2.3.1 Introduction

In many chemical engineering applications, equations like this one are

encountered

x2d
2y

dx2
� xdy

dx
� �x2 � �2�y � 0 (2.12)

This is called Bessel's equation of order � , and arises in the study of

diffusion andwave propagation via the Laplacian operator in cylindrical

coordinates. Since the coef®cients in front of the derivative terms are

not constant, the exponential functions that solved constant-coef®cient

problems does not work here. Typically, variable-coef®cient problems

must be solved by power series methods or by numerical methods, as

they have no simple closed-form solution. We focus here on second-

order equations, as they arise most commonly in applications.

2.3.2 The Cauchy-Euler Equation

The Cauchy-Euler equation, also called the equidimensional equa-

tion, has a simple exact solution that illustrates many important fea-

tures of variable-coef®cient problems and arises during the solution of

many problems. The second-order Cauchy-Euler equation has the form

a0x
2y 00 � a1xy 0 � a2y � 0 (2.13)

where y 0 � dy=dx. Its de®ning feature is that the term containing the

nth derivative is multiplied by the nth power of x. Because of this,



116 Ordinary Differential Equations

guessing that the form of the solution is y � x� yields the quadratic

equation a0����1��a1��a2 � 0. If this equation has distinct roots

�1 and �2, then each root leads to a solution and thus the general

solution is found

y � c1x�1 � c2x�2 (2.14)

For example, let a0 � 1; a1 � 1; a2 � �9, yielding the equation �2�9 �
0, which has solutions � � �3. Thus the equation has two solutions

of the form y � x�: the general solution is y � c1x3 � c2x�3. Notice
that this solution can blow up at x � 0; this singular behavior does not

arise in constant-coef®cient (linear) problems, but is frequently found

in variable-coef®cient and nonlinear problems.

In the case of a repeated root, the general solution does not have

the form given above. Instead, the technique of reduction of order,

also called variation of parameters, can be used. In this technique,

given one solution to a second-order linear problem y1�x�, the second

can be found in the form y2�x� � A�x�y1�x�. For example, let a0 �
1; a1 � �1; a2 � 1, yielding the repeated root � � 1. Thus y1 � x, and
y2 � A�x�x, which, upon substitution into the differential equation,

yields

A00x3 � 2A0x2 �A0x2 �Ax �Ax � 0

which simpli®es to

A00x �A0 � 0

Letting A0 � w leads to a simple ®rst-order equation for w

w0x �w � 0

so that w � c=x and thus A � c lnx � d, where c and d are arbitrary

constants. Thus the general solution for this problem can be written

y�x� � c1x � c2x lnx � x�c1 � c2 lnx�

It can be shown in general that (second-order) Cauchy-Euler equations

with repeated roots have the general solution

y�x� � x��c1 � c2 lnx� (2.15)

2.3.3 Series Solutions and the Method of Frobenius

A general linear second-order problem can be written

p�x�y 00 � q�x�y 0 � r�x�y � 0 (2.16)
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or

y 00 � q�x�
p�x�

y 0 � r�x�
p�x�

y � 0 (2.17)

If
q�x�
p�x� and

r�x�
p�x� are analytic, i.e., they have a convergent Taylor se-

ries expansion, at some point x � a, then a is an ordinary point.

Otherwise, x � a is a singular point.

If x � a is an ordinary point, there exist solutions in the form of

power series

y�x� �
1X
n�0
cn�x � a�n (2.18)

Two such solutions can be found, thus yielding the general solution.

Letting � be the distance between a and the nearest singular point of

the differential equation, which might be at a complex rather than a

real value of x, the series converge1 for jx � aj < �. Accordingly � is

called the radius of convergence of the series. The exception to this

is when a series solution truncates after a ®nite number of terms, i.e.,

cM � 0 for M > M0; in this case the sum is always ®nite for ®nite x.

Example 2.4: Power series solution for a constant-coef®cient equa-

tion

Let p�x� � 1, q�x� � 0 and r�x� � k2, resulting in the equation

y 00 � k2y � 0

Solve this by power series expansion.

Solution

We seek a solution by expanding around the ordinary point a � 0. For

this simple example, every point is an ordinary point. Inserting the

solution form, (2.18), into this equation yields

1X
n�2
n�n� 1�cnx

n�2 � k2
1X
n�0
cnx

n � 0

The two sums can be combined if we can make their lower limits the

same and the powers of x the same in each sum. To do so we set

n �m� 2 in the ®rst series and n �m in the second, obtaining

1X
m�0

h
�m� 2��m� 1�cm�2 � k2cm

i
xm � 0

1A full understanding of convergence of power series requires knowledge of func-

tions of complex variables, see, e.g., Ablowitz and Fokas (2003).
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For arbitrary x, this can only hold if the term inside the square brackets

is zero for allm, requiring that

cn�2 � �cnk2
�n� 2��n� 1�

(where we have now reverted to using n as the index). Leaving c0 and

c1 arbitrary, we ®nd that

c2 � �c0k
2

2!

c3 � �c1k
2

3!

c4 � �c2k
2

4 � 3 � c0k
4

4!

c5 � �c3k
2

5 � 4 � c1k
4

5!
...

Absorbing a factor of 1=k into c1 (recall that it is arbitrary), the series

solution becomes

y�x� � c0
 
1� k

2x2

2!
� k

4x4

4!
� : : :

!
� c1

 
kx � k

3x3

3!
� k

5x5

5!
� : : :

!

Note that this has two arbitrary constants c0 and c1, so it is the gen-

eral solution. The two in®nite series can be recognized as the Taylor

expansions of two familiar functions, and we can thus rewrite the gen-

eral solution as

y�x� � c0 coskx � c1 sinkx
�

If p�x�! 0 at some point x � a, the situation is more complex. We

seta � 0 fromnowon for convenience. Now q�x�=p�x� and r�x�=p�x�

are not analytic andx � 0 is called a singular point. Ifx �q�x�=p�x��

and x2 �r�x�=p�x�� are analytic, i.e., the singularity in p�x� is not

very strong, then the point is a regular singular point. Observe

that x � 0 is a regular singular point for the Cauchy-Euler equation. In

fact, by multiplying (2.17) by x2 and Taylor-expanding the coef®cients,

one can see that when the conditions for a regular singular point are

satis®ed, this general case reduces precisely to a Cauchy-Euler equation
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asx ! 0. This observationmotivates themethod of Frobenius, which

seeks solutions of the form

y�x� � x�
1X
n�0
cnx

n (2.19)

The power series has the same convergence properties as described

above for ordinary points.

Example 2.5: Frobenius solution for Bessel's equation of order zero

Bessel's equation (2.12) with � � 0 is

xy 00 �y 0 � xy � 0 (2.20)

Here x � 0 is a regular singular point. Solve by the method of Frobe-

nius.

Solution

Observe that this equation can be written x2y 00�xy 0��0�x2�y � 0 so

the corresponding Cauchy-Euler equation is thus x2y 00�xy 0�0y � 0.

Seeking a solution y � x� yields the repeated root � � 0 and thus a

general solution y�x� � c1 � c2 lnx. As we will see, this structure is

re¯ected in the form of the solution to Bessel's equation.

Inserting the Frobenius solution form, (2.19) into (2.20) yields that

1X
n�0
�n����n���1�cnxn���1�

1X
n�0
�n���cnxn���1�

1X
n�0
cnx

n���1 � 0

To simplify this series, set n �m� 2 in the ®rst two sums andm � n
in the third. Then set all the ms back to n. This yields a summation

starting at n � �2, which is ®ne as long as we make c�2 � c�1 � 0. The

formula becomes

1X
n��2

h
�n��� 2�2cn�2 � cn

i
xn���1 � 0

Since x can vary, the equality can only hold if the terms in the brackets

are all zero. This is the recursion formula for the coef®cients cn. The

®rst term (n � �2) picks out the Cauchy-Euler behavior and is called the
indicial equation. Since c�2 � 0, it reduces to �n���2�2 � �2 � 0.

As we anticipated above with the corresponding Cauchy-Euler equation,
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this has the repeated root � � 0. The general recursion relation for the

coef®cients reads

cn�2 � � cn
�n� 2�2

Since c�1 � 0, all the coef®cients with n odd are zero. Therefore, only

one of the two solutions to the problem has the form of (2.19), again,

in parallel with the Cauchy-Euler analysis. With some rearrangements,

this solution becomes

y1�x� �
1X
n�0

��1�n
�n!�2

�
x

2

�2n
This function has the special symbol J0�x� and is called the ªBessel

function of the ®rst kind and order zero.º For general � , the solutions

are denoted J��x�. A second solution can be found for this problem

by variation of parameters; see Exercise 2.31. It is not of Frobenius

form, having a logarithmic singularity as x ! 0 (again as anticipated

from the solution to the corresponding Cauchy-Euler equation). It is

called Y0�x� and is the ªBessel function of the second kind and order

zero.º Singular solutions for general � are denoted Y��x�. The general

solution is

y�x� � c1J0�x�� c2Y0�x� (2.21)

�

See Table 2.3 for a graph of functions J0 and Y0. Note that for com-

parison purposes, the table also shows the solution for the radial part

of r2y �y � 0 in rectangular, cylindrical, and spherical coordinates.

In the previous example, the indicial equation yielded a single re-

peated root for � and one solution of Frobenius form. Other cases are

possible. Here are the possibilities and their consequences.

1. If the indicial roots are equal, only one Frobenius solution is ob-

tained. This is what occurred in the above example.

2. If the roots differ by a noninteger constant, then each root leads

to a solution and the general solution is obtained.

3. If the roots differ by an integer then the (algebraically) larger root

leads to a Frobenius solution and either

(a) the smaller root also leads to a Frobenius solution and the

general solution is obtained, or
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Rectangular Cylindrical Spherical

Coordinates Coordinates Coordinates

d2y

dx2
�y � 0

1

r

d

dr
�r
dy

dr
��y � 0

1

r2
d

dr
�r2

dy

dr
��y � 0

�
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0

1

0 2 4 6 8 10 12 14

cosx
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0

1
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J0�r�

-1

0
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cos r

r
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0

1
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sinx

-1

0

1

0 2 4 6 8 10 12 14

Y0�r�
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0

1

0 2 4 6 8 10 12 14

sin r

r

� 0
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ex

0
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4
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8
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0 1 2 3

I0�r�

0

2

4

6

8

10

0 1 2 3

er

r

0

1

0 1 2 3

e�x

0

1

0 1 2 3

K0�r�

0

1

0 1 2 3

e�r

r

Table 2.3: The linear differential equations arising from the radial

part ofr2y�y � 0 in rectangular, cylindrical, and spher-

ical coordinates. Bessel functions (J0; Y0) and modi®ed

Bessel functions (I0; K0) are two linearly independent so-

lutions in cylindrical coordinates for the plus and minus

signs, respectively. The solutions in spherical coordinates

are called spherical Bessel functions.
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(b) the smaller root does not lead to a second solution of Frobe-

nius form. A second solution can be found by reduction

of order and have a logarithmic singularity just as in the

Cauchy-Euler case.

2.4 Function Spaces and Differential Operators

2.4.1 Functions as Vectors

One of the main tasks of mathematical modeling is the exact or approx-

imate representation of functions. Here we extend the ideas of vectors

and bases into the regime where each vector is a function, so the space

the vectors live in is a Function Space.

In the ®nite-dimensional space Cn, the usual inner product of vec-

tors u and v is simply the n-dimensional version of the dot product

�u;v� �
nX
i�1
uivi

For functions u�x� and v�x� in a domain a � x � b, a natural analog

to this relation is

�u�x�; v�x�� �
Z b
a
u�x�v�x� dx

This is the usual inner product for functions de®ned on the interval

�a; b�. From this inner product, we can obtain a norm

ku�x�k �
q
�u;u� �

"Z b
a
u�x�u�x� dx

#1=2
Another inner product, which plays an important role shortly, is given

by the formula

�u�x�; v�x��w �
Z b
a
u�x�v�x�w�x� dx

where w�x� is a so-called weight function and must be positive in

�a; b�. Finally, with these de®nitions, a bounded function is one that

satis®es Z b
a
ju�x�j2w�x� dx � kuk2w <1
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With these de®nitions in hand, we can de®ne an important function

space. The set of functionsu�x� that satisfy �u;u� � kuk <1with the

usual inner product (w � 1) is the Lebesgue space L2�a; b�. If we had

used a nonunit weight function w�x� in the inner product, we would

have L2;w�a; b�. Lebesgue spaces are examples of Hilbert spaces. A

Hilbert space is essentially identical to a space of vectors with in®nitely

many components, so that all of our intuition about directions, lengths

and angles carries over from two dimensions into an in®nite number of

dimensions!

Basis Sets and Fourier Series

In a ®nite-dimensional space, any vector can be represented in an or-

thonormal basis fe1; e2; : : : ; eng as

u �
nX
i�1
�u; ei�ei

The same is true in a Hilbert space, except that each basis vector is now

a function �i�x� and the sum is in®nite2, e.g.,

u�x� �
1X
i�1
�u�x�;�i�x���i�x�

Two of the most important basis sets for L2 are the trigonometric func-

tions and the Legendre polynomials.

Consider the space L2���;��, i.e., the Lebesgue space de®ned as

above, except on the interval3 from �� to � . The functions

eikx � coskx � i sinkx; k � �1; : : : ;�2;�1;0;1;2; : : : ;1

are in this space. In addition, they are orthogonal and can be normal-

ized

�eikx; eilx� � 2��kl �k�x� � eikxp
2�

A natural question, then, is whether this set can be used as a basis for

L2���;��. Speci®cally, we examine the proposition that every function

in L2���;�� can be represented as

f�x� �
1X

k��1
ck
eikxp
2�

(2.22)

2Depending on the speci®c situation, the sum's lower limit might be 0;1; or �1.
3The interval �0;2�� might also be used.
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This is the trigonometric Fourier Series representation of f�x�. The

ck are the Fourier coefficients and are given by the standard formula

for expansion of a vector in an orthonormal basis

ck � �f ;�k� � 1p
2�

Z �
��
f�x�e�ikxdx (2.23)

The equality (2.22) cannot possibly hold at every point x for every

function f�x� 2 L2���;��, simply because trigonometric functions

are continuous and smooth, and functions in L2���;�� are allowed

to have discontinuities. Distance in L2���;�� is not measured point-

wise, however, but rather via the L2 norm. To address the issue of

the distance between a function and its Fourier series representation,

consider the ®nite trigonometric series expansion

pK�x� �
KX

k��K
gk
eikxp
2�

and de®ne the residual or approximation error to be the difference

r�x� � f�x� �PK
k��K gk�k�x�. We can now ask the question: given

integer K what coef®cients gk minimize the L2 norm of the residual?

Using the de®nition of norm and the orthogonality of the�k, we obtain

krk2 � �f �
X
k

gk�k; f �
X
j

gj�j�

� �f ; f ��
X
k

�f ;�k�gk �
X
k

gk��k; f ��
X
k

gkgk

Note that
��gk � �f ;�k�

��2 � gkgk�gk��k; f ���f ;�k�gk�
���f ;�k�

��2.
Summing this result and substituting into the previous expression gives

krk2 �
f2 �X

k

jgk � �f ;�k�j2 � j�f ;�k�j2

By inspection, the minimizer is achieved by gk � �f ;�k�; k 2 ��K;K�
so gk � ck de®ned in (2.23), and we see that the Fourier coef®cients

minimize the L2 norm of the residual, and the norm of the minimal

residual satis®es

kr0k2 �
f2 �X

k

jckj2 (2.24)

Because the ck do not depend on the number of terms, K, if we decide to

increase the order of the approximation, we do not need to recalculate

the lower-order coef®cients.
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Now consider the truncated Fourier series fK�x� �
PK
k��K ckeikx .

The question of convergence of this series to the function f is nontriv-

ial; we state without proof that for functions in L2���;��f�x�� fK�x�2 ! 0 as K !1

The rate of convergence of fK to f depends on the behavior of the

Fourier coef®cients ck as jkj ! 1. A simple analysis sheds light on this

behavior. Consider functions f�x� 2 L2��;�� whose jth derivatives

f �j� exist in ���;�� for all (positive) j but which may have discontinu-

ities at the boundaries. Integrating (2.23) by parts yields

p
2�ck �

Z �
��
f�x�e�ikx dx

� �1
ik
�f ���� f����� ��1�k � 1

ik

Z �
��
f 0�x�e�ikx dx (2.25)

Since �f ���� f����� is independent of k, the ®rst term in this expres-

sion clearly decays as k�1 as k ! 1. To characterize the second term,

we observe that it can be written as

1

ik
�f 0�x�; eikx�

The Cauchy-Schwartz inequality (1.3) can now be applied, giving����f 0�x�; eikx���� � f 0�x�eikx � f 0�x�p2�
By the conditions imposed on f�x� above, f 0�x� is in L2���;��; thus
this inner product is ®nite and bounded from above by a constant in-

dependent of k. Therefore ck decays at least as fast as k�1 as k ! 1.
This dependence can written as ck � O�k�1�: ªck is order k�1.º4 Before

continuing, we note as an aside that this analysis has just established

the Riemann-Lebesgue lemma: For functions f�x� 2 L2���;��,

lim
k!1

Z �
��
f�x�e�ikx dx � 0

If, additionally, f��� � f����, then the ®rst term in (2.25) van-

ishes and we can repeat the integration by parts procedure and Cauchy-

Schwartz argument on the remaining integral to conclude that ck �
O�k�2�. If f �j���� � f �j����� for all j (i.e. f�x� and all its derivatives

4Notation for asymptotic relationships between expressions is described in more

detail in Section 2.6.
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are smooth and periodic), this process can be repeated ad in®nitum,

and we can conclude that the Fourier coef®cients ck decay faster than

any ®nite power of k�1. This is called exponential or spectral conver-

gence. Alternately, if the ®rstm�2 derivatives, but not the �m�1�th,

are continuous at the boundaries, then afterm iterations, the boundary

terms in the integration by parts process will no longer vanish, yielding

that

jckj � C�k�k�m (2.26)

where C�k� � O�1�. Above we saw this directly for the case m � 1,

where the zeroth derivative (i.e. the function value itself) is discontin-

uous. This result can be generalized to the case of functions that are

continuous and smooth at the boundaries but have discontinuities in

the interior. For further discussion of the convergence of Fourier series

see Gasquet and Witomski (1999); and Canuto, Hussaini, Quarteroni,

and Zang (2006). We now turn to some examples of rapidly and slowly

converging Fourier series representations.

Figure 2.4 shows truncated Fourier series approximations to the

function f�x� � exp
� � 8

� x
�

�2�
with several values of K. Although

this function is not exactly periodic, its function values and derivatives

at x � �� are extremely small, so convergence is rapid.

If f�x� is discontinuous or f���� � f���, then ck decays as k�1

and convergence is very slow. Themost obvious characteristic of Fourier

series representations of discontinuous functions is the Gibbs phe-

nomenon, the rapid oscillation of the truncated series fK in the vicinity

of the discontinuity.

Example 2.6: Fourier series of a nonperiodic function and the Gibbs

phenomenon

What is the Fourier series expansion of f�x� � x?

Solution

Application of (2.25) yields that

ckp
2�

�
8<:0 k � 0
��1�k
k i k � 0

Observe that c�k � ck (see Exercise 2.5), so we can write the Fourier

series as

fK�x� � c0 � 2p
2�

KX
k�1
�Re�ck� coskx � Im�ck� sinkx�



2.4 Function Spaces and Differential Operators 127

�0:2

0

0:2

0:4

0:6

0:8

1

�4 �3 �2 �1 0 1 2 3 4

fK�x�

x

exact
K � 2
K � 5
K � 10

Figure 2.4: Function f�x� � exp
� � 8

� x
�

�2�
and truncated trigono-

metric Fourier series approximations with K � 2;5;10.

The approximations with K � 5 and K � 10 are visually

indistinguishable from the exact function.

which in the present case reduces to

fK�x� �
KX
k�1

�2��1�k
k

sinkx

This series contains only sines, not cosines, re¯ecting the fact that the

function f�x� � x is odd. Figure 2.5 shows the approximation for

K � 5;10; and 50, which exhibits Gibbs phenomenon as expected for a

nonperiodic function.

The plot remains essentially the same if the discontinuity is in the

interior rather than on the boundary. For example, the function

f�x� �
8<:x �� �� � x < 0

x �� 0 � x < �

is periodic (along with all its derivatives) but has a discontinuity at the

origin. The Fourier series of this function is the same as that for the
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Figure 2.5: Truncated trigonometric Fourier series approximation to

f�x� � x, using K � 5;10;50. The wiggles get ®ner as

K increases.

previous, except shifted by �

fK�x� �
KX
k�1

�2��1�k
k

sink�x ��� �
KX
k�1

�2
k

sinkx

For trigonometric Fourier series, Gibbs phenomenon occurs whether

the discontinuity occurs on the boundary or in the interior of the do-

main. �

Implicitly, the trigonometric basis assumes that the function is pe-

riodic, with the period being the length of the interval. This is why the

Gibbs phenomenon occurs if the boundary values of the function are

not the same. Another basis that does not make this implicit assump-

tion is given by the so-called Legendre polynomials. This basis can

be constructed by performing Gram-Schmidt orthogonalization on the

set f1; x;x2; x3; : : :g. The ®rst several of these polynomials, now in the
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space L2��1;1�, the usual setting for polynomial basis functions, are

P0�x� � 1 (2.27)

P1�x� � x (2.28)

P2�x� � �3x2 � 1�=2 (2.29)

Pj�1�x� � 2j � 1

j � 1
xPj�x�� j

j � 1
Pj�1�x� (2.30)

and the Legendre-Fourier series representation of a function is

f�x� �
1X
i�0

�f �x�; Pi�x��

�Pi�x�; Pi�x��
Pi�x�

Note that the sum starts with the index i � 0, which is conventional for

polynomial bases.

As written, this basis is not orthonormal; instead each polynomial

has been scaled so that its value is 1 at x � 1. The function f�x� � x
can be represented exactly, since P1�x� � x. Convergence for Fourier

series based on Legendre polynomials is analogous to that for trigono-

metric functions; in particular, spectral convergence is found for func-

tions that have in®nitely many derivatives, whether they are periodic or

not. We refer the interested reader to Canuto et al. (2006) for detailed

analysis.

Figure 2.6 shows Legendre-Fourier series approximations to the func-

tion f�x� � exp
�� 8x2

�
truncated at n� 1 terms, i.e., including poly-

nomials up to degree n. As with the trigonometric Fourier series ap-

proximation of this function, convergence is rapid. Figure 2.7 shows

Legendre-Fourier Series approximations to the unit step function f�x� �
H�x�; because this function is discontinuous, the Legendre-Fourier se-

ries also displays Gibbs phenomenon.

The trigonometric and Legendre basis sets are very important, but

there are many others that also are important and widely seen in appli-

cations. The following section introduces an entire class of equations,

each of whose members generates a basis set.

2.4.2 Self-Adjoint Differential Operators and Sturm-Liouville Equa-

tions

When we studied linear algebra, we learned that self-adjoint matrix

operators in Rn have special properties, namely that their eigenvalues
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Figure 2.6: Function f�x� � exp
� � 8x2

�
and truncated Legendre-

Fourier series approximations with n � 2;5;10.

are real and their eigenvectors form an orthogonal basis for Rn. Self-

adjoint differential operators also generate basis vectors (functions).

Recall the de®nition of the adjoint L� of an operator L

�Lu;v� � �u; L�v�

Let us apply this de®nition to the operator L � d=dx in the interval

�0;1� and the usual, i.e., uniformly weighted, inner product

�Lu;v� �
Z 1

0
u0�x�v�x�dx

� u�1�v�1��u�0�v�0��
Z 1

0
u�x�v0�x�dx

Since L is here a ®rst derivative, any differential equation involving it

requires speci®cation of one boundary condition. As an example, we

require that u�0� � 0. Now the boundary term at x � 0 vanishes. Now

observe that if we require that v�1� � 0, the boundary term at x � 1
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Figure 2.7: Function f�x� � H�x� and truncated Legendre-Fourier

series approximations with n � 10;50;100.

also vanishes, leaving the result

�Lu;v� � �
Z 1

0
u�x�v0�x�dx

� �u; L�v�

where L� � �d=dx. Therefore, if L isd=dx, operating on functions that
vanish at x � 0, then from the above equation, L� � �d=dx, operating
on functions that vanish at x � 1. The ®rst derivative operator is not

self-adjoint.

If, however, we let L � d2=dx2 and require that u�0� � u�1� � 0,

then the same procedure (but using integration by parts twice) shows

that L� is also d2=dx2 operating on the same domain. The second-

derivative operator, therefore, with appropriate boundary conditions,

is self-adjoint. More generally, consider a class of second-order differ-

ential operators called Sturm-Liouville operators. These operators
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have the general form

Lu � 1

w�x�

�
d

dx

�
p�x�

du

dx

�
� r�x�u

�
(2.31)

in the domain a < x < b, with homogeneous boundary conditions

�u�a�� �u0�a� � 0; u�b�� �u0�b� � 0

To avoid the possibility of singular points, p�x�must be positive in the

domain. Furthermore, take the inner product to be

�u;v�w �
Z b
a
u�x�v�x�w�x� dx

The function w�x� here is the same as in (2.31). For this integral to be

a proper inner product, we must require that w�x� > 0 in the domain.

We now show that Sturm-Liouville operators are self-adjoint. Re-

peated integration by parts yields

�Lu;v�w �
Z b
a

1

w�x�

�
d

dx

�
p�x�

du

dx

�
� r�x�u

�
v w dx (2.32)

� p�b� �u0�b�v�b��u�b�v0�b��
� p�a� �u0�a�v�a��u�a�v0�a��
�
Z b
a
u

1

w�x�

�
d

dx

�
p�x�

dv

dx

�
� r�x�v

�
w dx (2.33)

If the boundary terms vanish, then this expression satis®es the self-

adjointness condition �Lu;v� � �u; Lv�. This is the case if the above

boundary conditions apply on both u and v . The restriction on the

boundary conditions can be relaxed if p�x� vanishes at one or both

boundaries, in which case only boundedness of the function and its

derivative is required at that boundary. The latter case is called a sin-

gular Sturm-Liouville operator, because it has a singular point at the

boundary or boundaries where p vanishes. Finally, the boundary terms

also vanish if p�a� � p�b� and periodic boundary conditions are

imposed: u�a� � u�b�;u0�a� � u0�b� and likewise for v .

Next consider the eigenvalue problem associated with the Sturm-

Liouville operator5

Lu� �u � 0

5This is the conventional form for writing differential eigenvalue problems. Unfor-

tunately, it is different from the convention for algebraic problems.
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As with all self-adjoint operators, the eigenvalues � are real and the

eigenvectorsÐnow called eigenfunctions because they are elements of

a function spaceÐare orthogonal with respect to the inner product

weighted by w�x�. Furthermore, and very importantly, there are an

in®nite number of eigenfunctions and they form a complete basis for

L2;w�a; b�. We next consider three Sturm-Liouville operators that pro-

duce some famous eigenfunctions that are popular choices for use as

basis functions.

Example 2.7: Generating trigonometric basis functions

Consider the operator L � d2=dx2, with boundary conditions u�0� �
u�l� � 0. The eigenvalue problem for this operator is

u00 � �u � 0 (2.34)

What are the eigenvalues and eigenfunctions?

Solution

This equation has the general solution

u�x� � c1 sin
p
�x � c2 cos

p
�x

We have thus taken � � 0: a negative value of � would lead to a gen-

eral solution consisting of growing and decaying exponentials, which

cannot satisfy homogeneous boundary conditions on both boundaries,

as can be easily checked. The boundary condition u�0� � 0 requires

that c2 � 0. Setting c1 � 0 leaves only the trivial solution u � 0, so to

satisfy the remaining boundary condition, we require that

sin
p
�l � 0

This is the characteristic equation for this eigenvalue problem; it has

in®nitely many roots � � n2�2=l2 for n � 1;2;3; : : : ;1: The case n � 0

does not result in an eigenvalue since sin0 � 0. Thus the eigenfunc-

tions are

un�x� � sin
n�x

l

with �um; un� � l
2�mn. The result that Sturm-Liouville eigenfunctions

form a basis for functions in L2�0; l� implies that we can write any

function in that space as a Fourier series

f�x� �
1X
n�1
cn�x� sin

n�x

l
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where

cn �
�
f�x�; sin n�x

l

�
�
sin n�x

l ; sin
n�x
l

� � 2

l

�
f�x�; sin

n�x

l

�
This is the Fourier Sine series of f�x�.

Now consider the same operator but with periodic boundary con-

ditions u�0� � u�l�;u0�0� � u0�l�. The boundary terms in (2.33) also

vanish in this case, because here p�a� � p�b� � 1. Now the solution to

(2.34) is

u � exp i
p
�x

which satis®es the periodicity requirement if � �
�
2n�
l

�2
for any in-

teger n. Thus the eigenfunctions of d2=dx2 with periodic boundary

conditions in �0; l� are

un � exp i
2n�x

l

Taking l � 2� , we recover the ®rst set of basis functions we considered

in Section 2.4.1. �

Example 2.8: Bessel's equation revisited

The operator

Lu � 1

x

d

dx

�
x
d

dx

�
arises in many differential equations originating in problems in polar

coordinates, e.g., diffusion in a cylinder. It has Sturm-Liouville form

with w � p � x, r � 0. The eigenvalue problem for this operator can

be written

u00 � 1

x
u0 � �u � 0

or, multiplying through by x2, as

x2u00 � xu0 � �x2u � 0

What are its eigenfunctions and eigenvalues?

Solution

This is a variable-coef®cient problem with a regular singular point at

x � 0, so we can seek solutions by the method of Frobenius. Alter-

nately, in the present case we can make the substitution z � x
p
�, thus

rewriting the equation as

z2
d2u

dz2
� zdu

dz
� z2u � 0
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which is in fact Bessel's equation of order zero. We already found that

this equation has the general solution u�z� � c1J0�z� � c2Y0�z�, or,
reverting to the original independent variable,

u�x� � c1J0�
p
�x�� c2Y0�

p
�x�

To complete the speci®cation of the eigenvalue problem requires choos-

ing the domain and imposing speci®c boundary conditions. Consider

the domain 0 < x < l. We require that u�0� be bounded; this is all that

is required, since p�0� � 0 and u�l� � 0. Boundedness requires that

c2 � 0, because Y0 diverges logarithmically at the origin. Satisfaction

of u�l� � 0 requires that

J0�
p
�l� � 0

The top center plot of Table 2.3 shows J0�x�; the positions of its zeros

determine the eigenvalues �. The ®rst several of these are at approxi-

mately x � 2:4;5:5;8:7;11:8; : : : and are tabulated in many places, in-

cluding Abramowitz and Stegun (1970). Thus �1 � �2:4=l�2, etc. The
functions

un�x� � J0�
p
�nx�

form an orthogonal basis for L2;w�0; l�. Referring again to Table 2.3,

u1 is the function J0 scaled so that its ®rst zero is at x � l, u2 is the

same function, but scaled so that its second zero is at x � l, etc.
Other boundary conditions could be chosen. For example, one could

requireu�a� � 0; u�b� � 0. In this case the eigenfunctions involve both

J0 and Y0, and the eigenfunctions and eigenvalues are determined by

the solution to the coupled nonlinear equations

J0�
p
�a�� c2Y0�

p
�a� � 0

J0�
p
�b�� c2Y0�

p
�b� � 0

Since c1 is arbitrary, it has been set to unity for convenience. Here c2
and � are the unknowns. Solution of these highly nonlinear equations

is nontrivial. �

Example 2.9: Legendre's differential equation and Legendre polyno-

mials

Consider the Sturm-Liouville eigenvalue problem with p�x� � 1 � x2,

w�x� � 1, r�x� � 0 in the domain �1 < x < 1�
1� x2

�
u00 � 2xu0 � �u � 0
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It has regular singular points at x � �1 while the origin is an ordi-

nary point. Because p�x� � 0 at x � �1, only boundedness at these

points is required of the eigenfunctions. What are the eigenvalues and

eigenfunctions?

Solution

Seeking a series solution around x � 0 reveals that, if � � l�l� 1� with

l � 0 an integer, then one of the solutions is a Legendre polynomial

of degree l (Exercise 2.35) and using the method of Frobenius one can

learn that the other has logarithmic singularities at x � �1. Otherwise,
because the radius of convergence of a power series solution is given by

the distance to the nearest singular point(Ablowitz and Fokas, 2003),

there is no solution that is bounded at both x � 1 and x � �1. There-
fore, the eigenvalues of (2.9) are � � l�l � 1� with l � 0;1;2; : : : and

the corresponding eigenfunctions are the Legendre polynomials Pl�x�.

Legendre polynomials are the simplest of a broad class of orthogonal

polynomials that come from Sturm-Liouville eigenvalue problems and

are orthogonal with respect to various weighted inner products. Some

examples are given in the exercises. �

2.4.3 Existence and Uniqueness of Solutions

Homogeneous Boundary Conditions

Consider the nonhomogeneous second-order differential equation with

the homogeneous boundary conditions

Lu � f
B1u � 0 B2u � 0 (2.35)

De®ne the null space of the operator

N�L� � fu j Lu � 0; B1u � 0; B2u � 0g

and the null space of the adjoint operator

N�L�� � fv j L�v � 0; B�1 v � 0; B�2 v � 0g

then the following theorem characterizes existence and uniqueness of

solutions to (2.35) (Stakgold, 1998, p. 210±211).

Theorem 2.10 (Alternative theorem). For the boundary-value problem

in (2.35), we have the following two alternatives.
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(a) EitherÐ

N�L� contains only the zero function in which case N�L�� contains only
the zero function and (2.35) has exactly one solution for every f .

(b) OrÐ

N�L� contains n linearly independent functions, in which case N�L��
contains n linearly independent functions

N�L� � fu1; u2; : : : ; ung N�L�� � fv1; v2; : : : ; vng

and (2.35) has a solution if and only if

�f ; vk� � 0; k � 1;2; : : : ; n

and the general solution is

u�x� � up�x��
nX
k�1
�kuk�x�

in which up�x� is any particular solution and �k are arbitrary scalars.

Next we present two heat-conduction problems that display the two

alternatives.

Example 2.11: Steady-state temperature pro®le with ®xed end tem-

peratures

Apply the alternative theorem to the steady-state heat-conduction prob-

lemwith heat generation Ãf�x� and speci®ed end-temperature boundary

conditions

�kd
2T�x�

dx2
� Ãf�x�

T�x� � T0 x � 0

T�x� � T1 x � 1

What can you conclude about existence and uniqueness of the steady-

state temperature pro®le?

Solution

First it is convenient to make the boundary conditions homogeneous

by de®ning

u�x� � T�x�� T0�1� x�� T1x
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and dividing by the thermal conductivity to give

Lu � f
B1u � 0 B2u � 0

in which f � � Ãf=k and

L � d2

dx2
B1u � u�0� B2u � u�1�

Next we compute N�L�. Setting Lu � 0 gives

u�x� � ax � b

Applying the boundary conditions gives

B1u � u�0� � b � 0 B2u � u�1� � a � 0

andwe see thatu � 0 is the only element ofN�L�. We can therefore con-

clude that N�L�� also contains only the zero element, and the steady-

state temperature pro®le exists and is unique for any heat-removal rate

f . �

Example 2.11 illustrates the ®rst alternative in Theorem 2.10. The

following example illustrates the second alternative.

Example 2.12: Steady-state temperature pro®le with insulated ends

Replace the ®xed-temperature boundary conditions in Example 2.11

with insulated-end boundary conditions. What can you conclude about

existence and uniqueness of the steady-state temperature pro®le for

these boundary conditions? What is the physical interpretation of the

existence condition. Why is the solution not unique?

Solution

The boundary conditions for insulated ends are

Tx�x� � 0 x � 0

Tx�x� � 0 x � 1

and since the boundary conditions already are homogeneous, we have

LT � f
B1T � 0 B2T � 0
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in which f � � Ãf=k and

L � d2

dx2
B1T � Tx�0� B2T � Tx�1�

Next we compute N�L�. Setting LT � 0 gives

T�x� � ax � b

as before. Applying the boundary conditions gives

B1T � Tx�0� � a � 0 B2T � Tx�1� � a � 0

and now we have that T�x� � b is in N�L�. With these boundary con-

ditions L has a one-dimensional null space consisting of the constant

function. Normalizing this element gives f1g as the basis function for

N�L� and the one-dimensional nullspace

N�L� � � � 1 � 2 R

Since the problem is self-adjoint, N�L�� is identical to N�L�. Applying
the alternative theorem, we conclude that a steady-state temperature

exists only if

�f ;1� �
Z 1

0
f�x�dx � 0

and the general solution is

T�x� � Tp�x���

where Tp is any particular solution. Since f corresponds to a rate of

heat removal (or addition when f < 0) to the domain, the restriction on

f provides the physically intuitive fact that if the ends are insulated,

just as much heat must be removed from the domain as is added for a

steady-state temperature to exist. For f satisfying this restriction, the

general solution indicates that a constant can be added to any steady-

state solution to provide another steady-state solution. �

Nonhomogeneous Boundary Conditions

Next consider the nonhomogeneous second-order problem foru�x� on

x 2 �a; b� with the nonhomogeneous boundary conditions

Lu � f
B1u � 1 B2u � 2 (2.36)
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The null spaces of the operator and the adjoint are de®ned as in the

case with homogeneous boundary conditions

N�L� � fu j Lu � 0; B1u � 0; B2u � 0g

N�L�� � fv j L�v � 0; B�1 v � 0; B�2 v � 0g
When we de®ne the adjoint operator, we perform integration by parts

�Lu;v�� �u; L�v� � J�u;v�
��b
a

From the integration by parts, we have that J�u;v� is linear in both

u�x� and v�x� and involves lower-order derivatives of u;v evaluated

at the two ends of the interval. Setting J�u;v�
��b
a to zero is what deter-

mines the adjoint boundary functionals

J�u;v�
��b
a � 0

8u such that B1u � 0; B2u � 0

8v such that B�1 v � 0; B�2 v � 0

To ®nd the solvability condition for the nonhomogeneous boundary

conditions, we take the difference

�Lu;vk�� �u; L�vk� � J�u;vk�
��b
a

in which vk is any element of the null space of the adjoint and u is the

solution to (2.36). Then, because Lu � f and L�vk � 0, we have

�f ; vk� � J�u;vk�
��b
a (2.37)

Evaluating J�u;vk� for u satisfying B1u � 1 and B2u � 2, and vk
satisfying B�1 vk � 0, B�2 vk � 0, gives the solvability conditions for

the nonhomogeneous problem. The next example and Exercise 2.40

derive the solvability conditions for problems with nonhomogeneous

boundary conditions.

Example 2.13: Steady-state temperature pro®le with ®xed ¯ux

Consider again Example 2.12, but replace the insulated ends with ®xed,

nonzero ¯uxes at the ends

Tx�x� � 1 x � 0

Tx�x� � 2 x � 1

For what f does the solution exist?
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Solution

This fully nonhomogeneous problem can be written as

LT � f
B1T � 1 B2T � 2

in which f � � Ãf=k and

L � d2

dx2
B1T � Tx�0� B2T � Tx�1�

The null space N�L� is unchanged, so the constant function f1g is a

basis function and

N�L� � � � 1 � 2 R
The problem was shown to be self-adjoint so N�L�� is one dimensional

and vk�x� � 1. Next we compute J�u;v� for this problem. Integration

by parts gives

�Lu;v�� �u; L�v� � J�u;v�
��1
0

� v�1�ux�1�� v�0�ux�0�� vx�1�u�1�� vx�0�u�0�
For T satisfying the boundary conditions and vk in N�L��, we have

B1T � Tx�0� � 1 B2T � Tx�1� � 2

B�1 v1 �
dv1
dx

�0� � 0 B�2 v1 �
dv1
dx

�1� � 0

Substituting these into J gives

J�T ; v1�
��1
0 � v1�1�| {z }

1

Tx�1�| {z }
2

�v1�0�| {z }
1

Tx�0�| {z }
1

� dv1
dx

�1�| {z }
0

T�1�� dv1
dx

�0�| {z }
0

T�0�

� 2 � 1
Substituting this into the solvability condition, (2.37), gives

�f ;1� �
Z 1

0
f�x�dx � 2 � 1

and the general solution remains

T�x� � Tp�x���
The restriction on f now stipulates that the net heat generation must

exactly balance the heat removed through the two ends. Again, for f

satisfying this restriction, a constant can be added to any steady-state

solution to provide another steady-state solution. �
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��t�

0� 0



0� 0

t

t

f �t�

u�t�

du�t�

dt

Ãf�t� � f�t�� ��t�

Figure 2.8: Solution to the initial-value problem with nonhomoge-

neous boundary conditions; top ®gure shows u�t� with

step introduced at t � 0, and bottom ®gure shows re-

sulting du=dt with impulse at t � 0.

Nonhomogeneous Boundary Conditions Revisited

We can use the delta function and its derivatives introduced in Section

2.2.5 to streamline the treatment of the nonhomogeneous case. Basi-

cally we replace the nonhomogeneous boundary conditions with homo-

geneous ones, but then compensate for this change by adding appro-

priate impulsive terms to the forcing term of the differential equation.

In this way, we have to recall only how to solve problems with homoge-

neous boundary conditions, and we can use Theorem 2.10 to analyze

existence and uniqueness even when a problem has nonhomogeneous

boundary conditions.

It is perhaps easiest to introduce the approach with an example.

Let's say we are interested in solving the ®rst-order nonhomogeneous

differential equation, with forcing term f�t�, and nonhomogeneous
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boundary (initial) condition

du

dt
� f�t�

u�0� �   � 0

The solution is sketched in Figure 2.8. Imagine instead that we solve

the problem with the homogeneous boundary conditionu�0�� � 0, and

we push the boundary at t � 0 slightly to the left of zero. Now we wish

to make the solution jump to value u�0� �  just after time 0� so

that it agrees with the solution to the problem with nonhomogeneous

boundary condition at t � 0. This idea is also sketched in Figure 2.8.

To make u�t� jump discontinuously by amount  at t � 0, we require

du=dt to have an impulse of strength  at t � 0, which is ��t�. Since

du=dt � f�t�, we introduce a modi®ed forcing term Ãf and choose it

to be

Ãf�t� � f�t�� ��t�

We conjecture that solving the problem with this modi®ed forcing term
Ãf and homogeneous boundary condition should give us the solution to

the problem with the original f and nonhomogeneous boundary con-

dition. Let's check this conjecture. By inspection, the solution to the

differential equation is obtained by integration

du

dt
� Ãf�t�

du � Ãf�t�dt

u�t�
��t
0� �

Z t
0�

Ãf���d�

u�t��u�0�� �
Z t
0�

Ãf���d�

u�t� �
Z t
0�

Ãf���d�

Note that this solution satis®es the homogeneous boundary condition

u�0�� � 0 as desired. Now we substitute the de®nition of Ãf to obtain
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the solution of the original problem

u�t� �
Z t
0�

�
f���� �����d�

�
Z t
0�
f���d� �

Z t
0�
����d�

� 
Z t
0�
����d� �

Z t
0
f���d�

u�t� �  �
Z t
0
f���d� t � 0

By inspection, the last equation is indeed the solution to the original

problemwith forcing term f and nonhomogeneous boundary condition

u�0� � .
We can generalize this approach to cover any nonhomogeneity in the

boundary conditions by adding appropriate impulsive forcing terms to

the original problem's differential equation. We revisit Example 2.13

to illustrate this technique.

Example 2.14: Fixed ¯ux revisited

Rederive the existence and uniqueness conditions for Example 2.13 us-

ing the alternative theorem, which applies only to homogeneous prob-

lems.

Solution

We replace the nonhomogeneous boundary conditions of Example 2.13

with the homogeneous version

B1T � Tx�0�� � 0

B2T � Tx�1�� � 0

In this example we require that Tx jump from zero to value 1 at the

left boundary, x � 0. That requires an impulse to be added to f so

that Txx sees an impulse and Tx sees a jump at x � 0. We also require

for Tx to jump from value 2 to zero as x passes through x � 1 at the

right boundary. We add �2��x � 1� to f to cause Tx to jump by this

amount. The modi®ed Ãf is therefore6

Ãf�x� � f�x�� 1��x�� 2��x � 1�

6Note that if we had nonhomogeneous boundary conditions on T rather than Tx , we
would required Tx to have an impulse and Txx to have a doublet, and we would add

1�0�x�� 2�0�x � 1� to f .
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Next we apply the alternative theorem. We have already computed

the null space of L for this problem. It is N�L� � 1. The problem is

self-adjoint so this is also N�L��. The solvability condition applied to
Ãf gives

0 � � Ãf ;1�

�
Z 1�

0�
Ãf�x�dx

�
Z 1�

0�

�
f�x�� 1��x�� 2��x � 1�

�
dx

0 �
Z 1

0
f�x�dx � 1 � 2

The last equation implies the solution exists for f satisfyingZ 1

0
f�x�dx � 2 � 1

and the general solution remains

T�x� � Tp�x��� �

We see that we have reached the same solvability condition found

in Example 2.13. By introducing Ãf and using homogeneous boundary

conditions, we avoid the additional complication of introducing and

evaluating J�u;v� as explained in Section 2.4.3. Evaluating J�u;v� is

about the same work as determining the appropriate Ãf . But using delta

functions expands the applicability of Theorem 2.10, and allows this

one theorem to cover both homogeneous and nonhomogeneous bound-

ary condition cases, which is not an insigni®cant bene®t.

Example 2.15: Nonhomogeneous boundary-value problem and the

Green's function

The following second-order nonhomogeneous boundary-value problem

arises in solving the transient wave equation for propagation of sound.

We wish to solve the following BVP for u�x�, x 2 �0;1�

Lu � f
B1u � 0 B2u � 0
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in which the second-order differential operator is Lu � d2u=dx2 �
k2u, and the two boundary functionals are B1u � u�0�, B2u � u�1�.
The constant k is real and the function f�x� is an arbitrary forcing

function.

(a) Take the Laplace transform of the BVP with the x variable playing

the role of time. Note that the values of u�0� and ux�0� show up

in the transform. Evaluate u�0� and leave ux�0� as an unknown

constant.

(b) Invert the transform to obtain u�x�.

(c) Solve for ux�0� using the solution in the previous part and the

other boundary condition. Plug the expression for ux�0� back

into your solution to obtain the complete solution to the problem.

(d) Next express the solution as

u�x� �
Z 1

0
G�x; ��f���d�

The functionG�x; �� is known as the Green's function for the non-

homogeneous problem.7 Write out the Green's function G�x; ��

for this problem.

(e) Establish that the Green's function G�x; �� is symmetric for this

boundary-value problem, i.e., G�x; �� � G��;x�.
Hint: you may ®nd the hyperbolic difference formula useful:

sinh�a� b� � sinha coshb � cosha sinhb.

Solution

(a) Taking the Laplace transform of the differential equation gives

s2u�s�� su�0��ux�0�� k2u�s� � f
�s2 � k2�u�s� � f �ux�0�

u�s� � f

s2 � k2 �
ux�0�

s2 � k2
7The Green's function concept is explored in greater detail in Chapter 3, Section

3.3.5.
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(b) Using the transform pair

L�1
�

1

s2 � k2
�
� 1

k
sinhkx

and the convolution theorem gives

u�x� � 1

k

Z x
0
sinh�k�x � ���f ���d� � ux�0�

k
sinhkx

(c) Evaluating the solution at x � 1 and solving for the unknown

ux�0� gives

0 � u�1�

� 1

k

Z 1

0
sinh�k�1� ���f ���d� � ux�0�

k
sinhk

ux�0� � �1
sinhk

Z 1

0
sinh�k�1� ���f ���d�

Substituting ux�0� into the previous solution gives

u�x� � 1

k

Z x

0
sinh�k�x � ���f ���d� � sinhkx

k sinhk

Z 1

0
sinh�k�1� ���f ���d�

(d) Combining these two integrals into one gives

u�x� �
Z 1

0
G�x; ��f���d�

with

G�x; �� �

8>>><>>>:
1

k
sinh�k�x � ���� sinhkx

k sinhk
sinh�k�1� ��� � < x

�sinhkx sinhk�1� ��
k sinhk

� > x

(e) We work on the ®rst part of G�x; �� using the sinh difference

formula

sinh�a� b� � sinha coshb � cosha sinhb

We have for � < x that

G�x; �� � 1

k
sinh�k�x � ���� sinhkx

k sinhk
sinh�k�1� ���

� 1

k sinhk

�
sinhk sinh�k�x � ���� sinhkx sinh�k�1� ����
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Using the sinh difference formula on the term in parentheses

gives

sinhk sinh�k�x � ���� sinhkx sinh�k�1� ��� �
sinhk�sinhkx coshk� � coshkx sinhk���

sinhkx�sinhk coshk� � coshk sinhk��

Canceling the coshk� terms gives

sinhk sinh�k�x � ���� sinhkx sinh�k�1� ��� �
� sinhk coshkx sinhk� � sinhkx coshk sinhk�

Factoring out the sinhk� term and using the difference formula

again gives

sinhk sinh�k�x � ���� sinhkx sinh�k�1� ���
� sinhk�

�
sinhkx coshk� coshk sinhk

�
� sinhk� sinh�kx � k�
� � sinhk� sinh�k�1� x��

Substituting this result into the equation for G�x; �� gives

G�x; �� �

8>>><>>>:
�sinhk� sinh�k�1� x��

k sinhk
� < x

�sinhkx sinhk�1� ��
k sinhk

� > x

and we have established that G�x; �� � G��;x�; the Green's func-
tion for this operator is symmetric, a consequence of the self-

adjointness of L in this case. �

2.5 Lyapunov Functions and Stability

2.5.1 Types of Stability

Consider a system model of interest to be an autonomous initial-value

problem
dx

dt
� f�x� x�0� � x0 (2.38)

We are interested in the behavior of solutions to this system. Since

the solution depends on the initial condition, we denote by ��t;x� the
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�

�

�

�

0

x�t�

x�t�

Asymptotic StabilityStability

Figure 2.9: Solution behavior; stability (left) and asymptotic stability

(right).

solution to the initial-value problem at time t � 0, which has value x at

time t � 0. So the solution to the initial-value problem above is given

by ��t;x0�; t � 0. But we are also interested in the solution as we vary

the initial value x. Steady-state solutions to the model, if any exist,

satisfy

f�xs� � 0

We can always shift a steady state of interest to the origin by de®ning

a new coordinate, ex � x � xs , and ef�ex� � f�ex � xs� so that

dex
dt
� dx
dt
� f�x� � f�ex � xs�

dex
dt
� ef�ex� ef�0� � 0

So we assume without loss of generality that xs � 0, i.e., the origin is

the steady state of interest. Unlike a linear system, when dealing with

a nonlinear system, stability depends on the solution of interest, and

we may have some solutions that are stable, while others are unstable.

For a given linear system, the stability of all solutions are identical, and

to re¯ect this special situation, we often refer to stability of the system,

rather than stability of a solution.

There are several aspects to stability, and we de®ne these next. The

®rst most basic characteristic of interest is whether a small perturba-

tion to x away from the steady-state solution results in a small subse-

quent deviation for all future times. The general term stability is com-

monly reserved for this most basic notion; we use the more precise
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term Lyapunov stability or stable in the sense of Lyapunov if we need

to ensure that there is no confusion. The de®nition is as follows.

De®nition 2.16 ((Lyapunov) Stability). The origin is (Lyapunov) stable

if for every � > 0, there exists � > 0 such that kxk � � implies��t;x� � � for all t � 0.

The stability concept is illustrated on the left side of Figure 2.9. A

solution that is not stable is termed unstable. The next characteristic

of interest is whether small perturbations to the initial state die away

as time increases. The idea here is whether the origin attracts solutions

starting nearby.

De®nition 2.17 (Attractivity). The origin is attractive if there exists � >

0 such that kxk � � implies that

lim
t!1

��t;x� � 0

Asymptotic stability is then the combination of these two proper-

ties.

De®nition 2.18 (Asymptotic stability). The origin is asymptotically sta-

ble if it is (i) stable and (ii) attractive.

The right side of Figure 2.9 shows a representative solution tra-

jectory when the origin is asymptotically stable.8 One might wonder

why Lyapunov stability is a requirement of asymptotic stability, or even

whether the origin can be attractive, and not Lyapunov stable. The an-

swer is yes, the origin in a nonlinear system may be globally attrac-

tive and still not Lyapunov stable. The problem with these systems is

that there exist starting points, arbitrarily close to the origin, for which

the resulting trajectories become large before they asymptotically ap-

proach zero as time tends to in®nity. Because we cannot bound how

large the solution transient becomes by constraining the size of its ini-

tial value, we classify the origin as unstable.9 Note that the systemmust

8Asymptotic stability is probably the most common notion of stability that people

have in mind, and sometimes it is referred to simply as stability. Of course, this usage

may cause confusion because now the term stability is being used in two ways: as

Lyapunov stability and as asymptotic stability; and one is stronger than the other.
9One is obviously free to de®ne words as one pleases, but de®ning asymptotic sta-

bility in this way precludes a possible solution behavior that is not expected of ªniceº

or ªstableº solutions. Regardless of terminology, the important point is to be aware

that solutions can be globally attractive and not Lyapunov stable.
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be nonlinear for a solution to be attractive and unstable. For linear sys-

tems, attractivity and asymptotic stability are identical; see Exercise

2.60.

A stronger form of asymptotic stability known as exponential sta-

bility is often useful, especially when dealing with linear dynamics. It

is de®ned as follows.

De®nition 2.19 (Exponential stability). The origin is exponentially sta-

ble if there exists � > 0 such that kxk � � implies that there exist

c; � > 0 for which��t;x� � c kxk e��t for all t � 0

We leave it as an exercise for the reader to show that the de®nition

of exponential stability implies also Lyapunov stability.

2.5.2 Lyapunov Functions

Now we consider a scalar function of x, denoted V�x�, whose char-

acteristics are going to enable us to analyze the stability of the origin

without requiring us to ®rst solve completely the model Çx � f�x�. The
motivation for this class of functions is the role that mechanical en-

ergy plays in a mechanical system. Consider mechanical energy to be

the sum of kinetic and potential energies, T and K, and let total energy

be the sum of mechanical energy and internal energy

E � U � EM EM � T �K

If we start an isolatedmechanical system, such as the particle on a track

depicted in Figure 2.10, at some system temperature with some initial

kinetic and potential energies, and monitor the mechanical energy with

time, we observe that although the total energy E is conserved, the

mechanical energy EM steadily drops as some of that form of energy is

converted into heat by friction.10 The temperature of the system slowly

increases due to the conversion of energy into heat, and the internal

energy U of the system increases to maintain the total energy constant.

If we de®ne the height of the track at its lowest point as h � 0, we then

have EM � �1=2�mv2 �mgh, and since h � 0,m > 0, and v2 � 0, we

have that EM � 0. The mechanical energy is therefore a scalar function

satisfying

EM � 0 ÇEM � 0

10This conversion of mechanical energy into heat is what causes the system's entropy

to increase.



152 Ordinary Differential Equations

h � 0

v

m

g

Figure 2.10: A simple mechanical system with total energy E, inter-

nal energy U , kinetic energy T � �1=2�mv2, and po-

tential energy K � mgh. The mechanical energy is

EM � T �K, and the total energy is E � EM �U .

Because EM decreases with time and is bounded below by zero, we

expect that its only possible steady state is EM � 0, and EM � 0 implies

both v � 0 and h � 0. So by analyzing the energy function EM in this

fashion, we conclude that the marble at rest at the bottom of the track

is an asymptotically stable steady state, and we do not have to solve

the complicated equations of motion of the system to deduce this fact.

Wewish to generalize this concept, and the key idea is to de®neV�x�

to be a nonnegative scalar function V : Rn ! R�0, with a negative time

derivative ÇV�x�t�� � 0. To compute the time derivative of V�x�t��, we

apply the chain rule giving11

ÇV�x� �
�
@V

@x

�T dx
dt

ÇV�x� �
�
@V

@x

�T
f�x� (2.39)

This generalization of mechanical energy is the concept of a Lyapunov

function for the system Çx � f�x�. A precise de®nition is as follows.

De®nition 2.20 (Lyapunov function). Consider a compact (closed and

bounded) set D � Rn containing the origin in its interior and let func-

11See Appendix A for various notations for derivatives with respect to vectors. Some

readers may be more familiar with this equation in the form ÇV�x� � rV � Çx or ÇV�x� �
�rV�T Çx or ÇV�x� � @V

@xi
Çxi.
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tion V : Rn ! R�0 be continuously differentiable and satisfy12

V�0� � 0 and V�x� > 0 for x 2 D n 0 (2.40)

ÇV�x� � 0 for x 2 D (2.41)

Then V��� is a Lyapunov function for the system Çx � f�x�.
The big payoff for having a Lyapunov function for a system is the im-

mediate stability analysis that it provides. We present next a few repre-

sentative theorems stating these results. Wemainly followKhalil (2002)

in the following presentation, and the interested reader may wish to

consult that reference for further results on Lyapunov functions and

stability theory. We require two fundamental results from real analysis

to prove the Lyapunov stability theorems. The ®rst concerns a nonin-

creasing function of time that is bounded below, which is a property

we shall establish for V�x�t�� considered as a function of time. One

of the fundamental results from real analysis is that such a function

converges as time tends to in®nity (Bartle and Sherbert, 2000, Theo-

rems 3.3.2 and 4.3.11). The second result is that a continuous function

de®ned on a compact (closed and bounded) set achieves its minimum

and maximum values on the set. For scalar functions, i.e., f : R! R�0,
this ªextreme-valueº or ªmaximum-minimumº theorem is a fundamen-

tal result in real analysis (Bartle and Sherbert, 2000, p. 130), and is

often associated with Weierstrass or Bolzano. The result also holds for

multivariate functions like the Lyapunov function V : Rn ! R�0, which
we require here, and is a highly useful tool in optimization theory (Man-

gasarian, 1994, p. 198) (Polak, 1997, Corollary 5.1.25) (Rockafellar and

Wets, 1998, p. 11) (Rawlings, Mayne, and Diehl, 2020, Proposition A.7).

Theorem 2.21 (Lyapunov stability). Let V��� be a Lyapunov function

for the system Çx � f�x�. Then the origin is (Lyapunov) stable.

Proof. Given � > 0 choose r 2 �0; �� such that

Br � fx 2 Rn j kxk � rg � D
The symbol Br denotes a ball of radius r . Such an r > 0 exists since

D contains the origin in its interior. The sets D and Br are depicted in

Figure 2.11. De®ne � by

� � min
x2D;kxk�r

V�x�

12For two sets A and B, the notation A n B is de®ned to be the elements of A that

are not elements of B, or, equivalently, the elements of A remaining after removing the

elements of B.
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D

B�

V�

Br

Figure 2.11: The origin and sets D, Br , V� (shaded), and B�.

Note that � is well de®ned because it is the minimization of a contin-

uous function on a compact set, and � > 0 because of (2.40). Choose

� 2 �0; �� and consider the sublevel set

V� � fx j V�x� � �g
Note that, as shown in Figure 2.11, sublevel sets do not need to be

connected. Regardless, we can readily establish that V� is contained in

the interior of Br as follows. A point p not in the interior of Br hasp � r and therefore satis®es V�p� � � due to �'s de®nition, and is

therefore not in the set V� since � < �. Notice also that any solution

starting in V� remains in V� for all t � 0, which follows from (2.41)

since ÇV�x�t�� � 0 implies that V�x�t�� � V�x�0�� � � for all t � 0.

A set with this property is called an invariant set, or sometimes a

positive invariant set, to indicate that the set is invariant for time

running in the positive direction. Next notice that V� contains the origin

in its interior since � > 0. Therefore we can choose � > 0 such that the

ball B� is contained in V�. Therefore, if we choose initial x 2 B�, we
have for all t � 0

kxk � � =) x 2 V� =)
��t;x� 2 V� =) ��t;x� 2 Br =)

��t;x� � �
and Lyapunov stability is established. �

Theorem 2.22 (Asymptotic stability). Let V��� be a Lyapunov function

for the system Çx � f�x�. Moreover, let V��� satisfy
ÇV�x� < 0 for x 2 D n 0 (2.42)

Then the origin is asymptotically stable.



2.5 Lyapunov Functions and Stability 155

Proof. We conclude that the origin is stable from the previous theorem.

So to prove asymptotic stability we need to show only that the origin

is attractive. Since V��� is continuous and vanishes only at zero, it is

suf®cient to establish that V���t;x�� goes to zero as t ! 1 for all x

satisfying kxk � �. We choose � as in the proof of Lyapunov stability so

B� � D. Since ÇV�x�t�� � 0 for all x�t�, V�x�t�� is a nonincreasing func-

tion of time, and it is bounded below by zero. Therefore it converges.

We need to show that it converges to zero. Assume the contrary, that

V�x�t�� converges to some c > 0, and we establish a contradiction.

Consider the level set Vc � fx j V�x� � cg. This level set does not con-
tain the origin, so we can choose d > 0 such that maxkxk�d V�x� < c.
Since V�x�t�� is nonincreasing and approaches c as t ! 1, we have

that x�t� is outside Bd for all t � 0. Next de®ne  as

 � � max
d�kxk��

ÇV�x�

Note that  is well de®ned because ÇV�x� is continuous due to (2.39)

and the fact that @V�x�=@x and f�x� are continuous. We know  > 0

due to (2.42). Therefore

V�x�t�� � V�x�0���
Z t
0

ÇV�x����d� � V�x�0��� t

The right-hand side becomes negative for ®nite t for any x�0� 2 B�,
which contradicts nonnegativity of V���, and we conclude c � 0 and

V�x�t��! 0, and hence x�t�! 0, as t !1. �

Under the stronger assumption of Theorem 2.22, i.e., (2.42), estab-

lishing continuity of the solution ��t;x� in t for all t � 0 and all x

in a level set V� contained in B� also implies that the level set V� is

connected. This follows because every point x 2 V� is then connected

to the origin by a continuous curve ��t;x� that remains in the positive

invariant set V� for all t � 0.

Next we consider a further strengthening of the properties of the

Lyapunov function to ensure exponential stability. We have the follow-

ing result.

Theorem 2.23 (Exponential stability). Let V��� be a Lyapunov function

for the system Çx � f�x�. Moreover, let V��� satisfy for all x 2 D
akxk� � V�x� � b kxk� (2.43)

ÇV�x� � �c kxk� (2.44)

for some a;b; c;� > 0. Then the origin is exponentially stable.



156 Ordinary Differential Equations

Proof. Consider an arbitrary r > 0 and de®ne function ���� by ��r� �
maxkxk�r V�x�. We have that ���� is positive de®nite and ��0� � 0.

Now choose r > 0 small enough so that V��r� � D. Such an r ex-

ists since V��� is continuous and V�0� � 0. We know that trajectories

starting in V� remain in V� and hence D, so the inequalities stated in

the theorem hold for solutions ��t;x� for all t � 0 and x 2 V�. The
upper-bounding inequality on V��� implies that kxk� � V�x�=b, which
combined with the bound on the time derivative of V�x�t�� gives

ÇV � � c
b
V

Notice that the scalar time function v�t� � V�x�t�� satis®es the ODE

Çv � ��c=b�v and therefore v�t� � v�0�e��c=b�t . Translating this

statement back to V��� gives V���t;x�� � V�x�e��c=b�t for all t �
0 and x 2 V�. Using the lower-bounding inequality for V��� gives��t;x�� � V�x�=a e��c=b�t . Using the upper-bounding inequality

again gives for all x 2 V� and all t � 0

��t;x� � �b
a

�1=�
kxk e��c=�b���t

We can choose � > 0 such that the ball B� is contained in V� as shown

in Figure 2.11. We then have that for all kxk � ���t;x� � c kxk e��t for all t � 0

in which c � �b=a�1=� > 0 and � � c=�b�� > 0, and exponential

stability of the origin is established. �

2.5.3 Application to Linear Systems

Lyapunov function analysis of stability can of course be applied to lin-

ear systems, but this is mainly for illustrative purposes. We have many

ways to analyze stability of linear systems because we have the ana-

lytical solution available. The true value of Lyapunov functions lies in

analysis of nonlinear systems, for which we have few general purpose

alternatives. To build up some expertise in using Lyapunov functions,

we consider again the linear continuous time differential equation

dx

dt
� Ax x�0� � x0 (2.45)

in which x 2 Rn and A 2 Rn�n. We have already discussed in Sec-

tion 2.2.2 the stability of this system and shown that x�t� � 0 is an
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asymptotically stable steady state if and only if Re�eig�A�� < 0, i.e,

all eigenvalues of A have strictly negative real parts. Let's see how we

construct a Lyapunov function for this system. Consider as a candidate

Lyapunov function

V�x� � xTSx
in which S 2 Rn�n is positive de®nite, denoted S > 0. With this choice

we have that V : Rn ! R�0, which is the ®rst requirement, i.e., V�0� � 0

and V�x� > 0 for x � 0. We wish to evaluate the evolution of V�x�t��

with time as x evolves according to (2.45). Taking the time derivative

of V gives

d

dt
V�x�t�� � d

dt
xTSx

� dx
T

dt
Sx � xTS dx

dt

� xTATSx � xTSAx
d

dt
V�x�t�� � xT �ATS � SA�x

and the initial condition is V�0� � xT0 Sx0. One means to ensure that

V�x�t�� is decreasing with timewhenx � 0 is to enforce that thematrix

ATS�SA is negative de®nite. We choose some positive de®nite matrix

Q > 0 and attempt to ®nd a positive de®nite S that satis®es

ATS � SA � �Q (2.46)

so that
d

dt
V � �xTQx

Equation (2.46) is known as the matrix Lyapunov equation. It says that

given aQ > 0, if we can ®nd a positive de®nite solution S > 0 of (2.46),

then V�x� � xTSx is a Lyapunov function for linear system (2.45), and

the steady-state solution x � 0 is asymptotically (in fact, exponentially)

stable. This requirement can be shown to be also necessary for the sys-

tem to be asymptotically (exponentially) stable, which we verify shortly.

We seem to have exactly characterized the stability of the linear system

(2.45) without any reference to the eigenvalues of matrix A. Of course,

since the condition on the eigenvalues as well as the condition on the

matrix Lyapunov equation are both necessary and suf®cient conditions

for asymptotic stability, they must be equivalent. Indeed, we have the

following result stating this equivalence.
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Theorem 2.24 (Lyapunov function for linear systems). The following

statements are equivalent (Sontag, 1998, p. 231).

(a) A is asymptotically stable, i.e., Re�eig�A�� < 0.

(b) For each Q 2 Rn�n, there is a unique solution S of the matrix Lya-

punov equation

ATS � SA � �Q
and if Q > 0 then S > 0.

(c) There is some S > 0 such that ATS � SA < 0.

(d) There is some S > 0 such that V�x� � xTSx is a Lyapunov function

for the system Çx � Ax.

Exercise 2.62 asks you to establish the equivalence of (a) and (b).

2.5.4 Discrete Time Systems

Next we consider discrete time systems modeled by

x�k� 1� � f�x�k�� x�0� � x0

in which the sample time k is an integer k � 0;1;2; : : :. To streamline

the presentation we assume throughout that f��� is continuous on its

domain of de®nition. Steady states are now given by solutions to the

equation xs � f�xs�, and we again assume without loss of generality

that f�0� � 0 so that the origin is a steady state of the discrete time

model. Discrete timemodels arise when time is discretized, as in digital

control systems for chemical plants. But discrete time models also

arise when representing the behavior of an iterative algorithm, such as

the Newton-Raphson method for solving nonlinear algebraic equations

discussed in Chapter 1. In these cases, the integer k represents the

algorithm iteration number rather than time. We compress notation by

de®ning the superscript � operator to denote the variable at the next

sample time (or iteration), giving

x� � f�x� x�0� � x0 (2.47)

Notice that this notation also emphasizes the similarity with the con-

tinuous time model Çx � f�x� in (2.38). We again denote solutions to

(2.47) by ��k;x� with k � 0 that start at state x at k � 0. The discrete

time de®nitions of stability, attractivity, and asymptotic stability of the

origin are then identical to their continuous time counterparts given in
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De®nitions 2.16, 2.17, and 2.18, respectively, with integer k � 0 replac-

ing real-valued time t � 0. In discrete time, the de®nition of exponential

stability is modi®ed slightly to the following.

De®nition 2.25 (Exponential stability (discrete time)). The origin is ex-

ponentially stable if there exists � > 0 such that kxk � � implies that

there exist c > 0, � 2 �0;1� for which��k;x� � c kxk�k for all k � 0

We see that �k with � < 1 is the characteristic rate of solution decay

for exponentially stable discrete time systems.

Lyapunov functions. The main difference in constructing Lyapunov

functions for discrete time systems compared to those for continuous

time systems is that we compare the value of V at two successive sam-

ple times, i.e., V�x�k � 1�� � V�x�k��. If this change is negative, then

we have the analogous behavior in discrete time that we have when ÇV is

negative in continuous time, i.e., V�x�k�� is decreasing when evaluated

along the solution x�k�. We de®ne the �V notation

�V�x� � V�f�x��� V�x� � V�x��� V�x�

to denote the change in V starting at state x and proceeding to suc-

cessor state x� � f�x�. Another signi®cant change is that we do not

require differentiability of the Lyapunov function V��� in discrete time

since we do not require the chain rule to compute the time derivative.

We do require continuity of V��� at the origin, however. For consistency
with the earlier continuous time results, we assume here that V��� is
continuous everywhere on its domain of de®nition.13 The de®nition of

the (continuous) Lyapunov function for discrete time is as follows.

De®nition 2.26 (Lyapunov function (discrete time)). Consider a com-

pact (closed and bounded) set D � Rn containing the origin in its inte-

rior and let V : Rn ! R�0 be continuous on D and satisfy

V�0� � 0 and V�x� > 0 for x 2 D n 0 (2.48)

�V�x� � 0 for x 2 D (2.49)

Then V��� is a Lyapunov function for the system x� � f�x�.
13For those needing discontinuous V��� for discrete time systems, see Rawlings et al.

(2020, Appendix B) for the required extension.
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Notice that �V�x� also is continuous on its domain of de®nition

since both V��� and f��� are assumed continuous.

Theorem 2.27 (Lyapunov stability (discrete time)). Let V��� be a Lya-

punov function for the system x� � f�x�. Then the origin is (Lyapunov)

stable.

Theorem 2.28 (Asymptotic stability (discrete time)). Let V��� be a Lya-

punov function for the system x� � f�x�. Moreover, let V��� satisfy
�V�x� < 0 for x 2 D n 0 (2.50)

Then the origin is asymptotically stable.

Theorem 2.29 (Exponential stability (discrete time)). Let V��� be a Lya-

punov function for the system x� � f�x�. Moreover, let V��� satisfy for

all x 2 D
akxk� � V�x� � b kxk� (2.51)

�V�x� � �c kxk� (2.52)

for some a;b; c;� > 0. Then the origin is exponentially stable.

The proofs of Theorems 2.27, 2.28, and 2.29 are essentially iden-

tical to their continuous time counterparts, Theorems 2.21, 2.22, and

2.23, respectively, with integer k replacing real t and the difference �V

replacing the derivative ÇV . An essential difference between continu-

ous and discrete time cases is that the solution of the continuous time

model ��t;x� is continuous in t, and the solution of the discrete time

model ��k;x� has no continuity with index k since k takes on discrete

values. Notice that in the proofs of the continuous time results, we did

not follow the common practice of appealing to continuity of��t;x� in

t, so the supplied arguments are valid for both continuous and discrete

cases.

Linear systems. The time-invariant discrete time linear model is

x� � Ax x�0� � x0
and in analogy with the continuous time development, we try to ®nd a

Lyapunov function of the form V�x� � xTSx for some positive de®nite

matrix S > 0. Computing the change in the Lyapunov function at state

x gives

�V�x� � V�x��� V�x� � �Ax�TS�Ax�� xTSx
� xT �ATSA� S�x
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Choosing a positive de®nite Q > 0, if we can ®nd S > 0 that satis®es

ATSA� S � �Q (2.53)

then we have succeeded in ®nding a V��� with the desired properties:

V�x� � xTSx � 0 and �V�x� � �xTQx � 0 for all x. Equation

(2.53) is known as the discretematrix Lyapunov equation. Exercise 2.63

asks you to state the discrete time version of Theorem 2.24, listing the

connections between the solution of the discrete Lyapunov equation

and the eigenvalues ofA. These connections often come in handy when

analyzing the stability of discrete linear systems.

2.6 Asymptotic Analysis and Perturbation Methods

2.6.1 Introduction

Typical mathematical models have a number of explicit parameters.

Often we are interested in how the solution to a problem depends on a

certain parameter. Asymptotic analysis is the branch of applied math-

ematics that deals with the construction of precise approximate solu-

tions to problems in asymptotic cases, i.e., when a parameter of the

problem is large or small. In chemical engineering problems, small pa-

rameters often arise as ratios of time or length scales. Important lim-

iting cases arise for example in the limits of large or small Reynolds,

PÂeclet, or DamkÈohler numbers. In many cases, an analytical solution

can be found, even if the problem is nonlinear. In others, the scaling

behavior of the solution (e.g., the correct exponent for the power-law

dependence of one quantity on another) can be found without even

solving the problem. In still others, the asymptotic analysis yields an

equation that must be solved numerically, but is much less complicated

than the original model. The goal here is to provide a background on

the basic concepts and techniques of asymptotic analysis, beginning

with some notation and basic ideas about series approximations.

2.6.2 Series Approximations: Convergence, Asymptoticness, Uni-

formity

As this section deals extensively with how one function approximates

another, we begin by introducing symbols that describe degrees of iden-

ti®cation between different functions.
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a � b a is equal to b

a � b a is asymptotically equal to b (in some given/implied limit)

a � b a is approximately equal to b (in any useful sense)

a/ b a is proportional to b

It is important to note that � implies a limit process, while � does

not. In this section we will be careful to use the symbol ª�º in the

precise manner de®ned here, though one must be aware that it often

means different things in different contexts (and different parts of this

book). Closely related to these symbols are order symbols, which

provide a qualitative description of the relationships between functions

in limiting cases. Consider a function f��� whose behavior we wish to

describe relative to another function (a gauge function) ����. The

order symbols ªOº, ªoº and ªordº describe the relationships

f��� � O������ as � ! 0 if lim
�!0

f���

����
<1

f��� � o������ as � ! 0 if lim
�!0

f���

����
� 0

f��� � ord������ as � ! 0 if f��� � O������ but not o������

In the latter case, f is said to be strictly order �. Often, authors write

ªf��� � ����º to mean ªf��� � O������º, though the latter only implies

equality to within a multiplicative constant as � ! 0, while as de®ned

here the former implies equality.

Asymptotic approximations take the form of series, the most famil-

iar of which is the truncated Taylor series approximation that forms

the basis of many engineering approximations. An in®nite series

f�x� �
1X
n�0
fn�x�

converges at a particular value of x if and only if, for every � > 0,

there exists N0 such that������
NX

n�M
fn�x�

������ < � for all M;N > N0

In contrast, an asymptotic series

f��� �
NX
n�0
fn���
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satis®es

lim
�!0

f����PM
n�0 fn���

fM���
� 0 for each M � N

In words, the remainder is much smaller than the last term kept. This

property is the source of the usefulness of asymptotic series. If this

property is satis®ed, we write

f��� �
NX
n�0
fn��� as � ! 0

In general, we do not care whether the series converges if we letN !1.
Often it does not. The important point is that the ®nite sumÐoften the

®rst term or twoÐprovides a useful approximation to a function for

small �. This is in stark contrast to convergent in®nite series, which,

although they converge, often require a large number of terms to be

evaluated to obtain a reasonably accurate approximation.

We typically construct asymptotic series in this form

f��� �
X
n

an�n��� (2.54)

where

�0���� �1���� �2���� �� �
for small �. We also require that �n�1��� � o��n���� as � ! 0. In prac-

tice, the �s are not generally known a priori, but must be determined as

part of the solution procedure to satisfy the requirement that the coef-

®cients an be ord�1�. This procedure is best illustrated by example as

we do in several instances below. In principle, we can construct a se-

ries approximation with N as large as we like, as long as the an remain

ord�1� and �N�1���� �N��� at the value of � of interest. However, the

most common application of asymptotic analysis is to the construction

of a one- or two-term approximation that captures the most important

behavior as � ! 0.

As an example of the difference between convergent and asymptotic

series, we look at the error function erf �z�, written here as

erf �x� � 1� 2p
�

Z1
x
e�t

2

dt

By Taylor expanding the integrand around the origin and integrating

term by term, a power series convergent for all x can be constructed
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for this function

erf �x� � 2p
�

1X
0

��1�nx2n�1

�2n� 1�n!

Although convergent, this expression may require many terms for rea-

sonable accuracy to be obtained, especially when x is large. One could

try setting w � 1=x and Taylor expanding e�1=w
2
around w � 0. This

leads to immediate dif®culty because

lim
w!0

dn

dwn
e�1=w

2 � 0

for all n; the Taylor expansion is identically zero! This dif®culty arises

because e�x
2
decays to zero faster than any negative power of x as

x !1.
On the other hand, for x� 1, an asymptotic series for the function

may be constructed by repeated integration by parts (a common trick

for the asymptotic approximation of integrals). This approximation is

erf �x� � 1� 2p
�

Z1
x
e�t

2

dt

� 1� 2p
�

�Z1
x

�1
2t
de�t

2

�
� 1� 2p

�

 
e�x

2

2x
�
Z1
x

1

2t2
e�t

2

dt

!

� 1� 2p
�

 
e�x

2

2x
�
Z1
x

�1
4t3

de�t
2

!

� 1� 2p
�

 
e�x

2

2x
� e

�x2

4x3
�
Z1
x

3

4t4
e�t

2

dt

!

erf �x� � 1� e
�x2

x
p
�

�
1� 1

2x2
� 1 � 3
�2x2�2

�O�x�6�
�

If continued inde®nitely, this series would diverge. The truncated se-

ries, however, is useful. In particular, the ªleading orderº term 1� e�x
2

x
p
� ,

the expression that includes the ®rst correction for ®nite but large x,

precisely indicates the behavior of erf �x� for large values ofx. Further-

more, the truncated series can be used to provide accurate numerical

values and is the basis of modern algorithms for doing so (Cody, 1969).

Now consider a function f of � and some other parameter or vari-

able, x

f�x; �� �
X
an�n���
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If the approximation is asymptotic as � ! 0 for each ®xed x, then we

say it is pointwise asymptotic. Now consider the particular case

f�x; �� � �1���� �2��� � 1� �=px

This is pointwise asymptotic, but for ®xed �, the second term blows up

as x ! 0. So obviously, it cannot remain much smaller than the ®rst

term, which is our requirement for asymptoticness. The approximation

is not uniformly valid. Put another way

lim
�!0

lim
x!0

�=
p
x � lim

x!0
lim
�!0
�=
p
x

To be precise, a function u�x; �� converges uniformly to u�x;0� on

the interval x 2 �0; a�, if, given E > 0, there is a D > 0 such that

ju�x; ���u�x;0�j < E; for � < D and all x 2 �0; a�

Nonuniformity is a feature ofmany practical singular perturbation prob-

lems. A major challenge of asymptotic analysis is the construction of

uniformly valid approximations. We shall see a number of tech-

niques for doing this. They all have a general structure that looks like

this

f�x; �� �
X
an�x; ���n���

2.6.3 Scaling, and Regular and Singular Perturbations

Before proceeding to discuss perturbationmethods for differential equa-

tions, we introduce some important concepts in the context of algebraic

equations. First, consider the quadratic equation

x2 � �x � 1 � 0; �� 1 (2.55)

If � � 0; x � �1. We would like to characterize how these solutions are

perturbed when 0 < � � 1. To to so, we posit a solution of the form

(2.54)

x��� � �0x0 � �1���x1 � �2���x2 � o��2� (2.56)

where xi � ord�1� (independent of �) and the functional forms of �1���

and �2��� remain to be determined. Substituting into the quadratic and

neglecting the small o��2� terms yields

��0x0��1���x1��2���x2�2����0x0��1���x1��2���x2��1 � 0 (2.57)
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At � � 0, the solution is x � x0 � �1. So we let �0 � 1 and for the

moment consider the root x0 � 1. Now (2.57) becomes

��2�1x1��1�x1��21x2
1�2�2x2��2�x2�2�1�2x1x2��22x2

2 � 0 (2.58)

Observe that all but the ®rst two terms are o��� or o��1�. Neglecting

these, we would ®nd that

�� 2�1x1 � 0 (2.59)

Since x1 is independent of �, we set �1 � �, in which case x1 � �1
2 .

Now (2.58) becomes

��
2

4
� 2�2x2 � �22x2

2 � 0 (2.60)

Now, since �22 � o��2�, we neglect the term containing it to get

��
2

4
� 2�2x2 � 0 (2.61)

for which there is a solution if �2��� � �2 and x2 � 1
8 . Thus we have

constructed an asymptotic approximation

x � 1� 1

2
�� 1

8
�2 � o��2� (2.62)

Observe that to determine �1��� and �2���, we have found a dominant

balance: a self-consistent choice of �k���, where it is comparable in

size to the largest term not containing a �k and where all the terms

containing �ks and �s are smaller as � ! 0.

To ®nd how the second root x0 � �1 depends on �, we use the

lessons learned in the previous paragraph to streamline the solution

process. That analysis suggests that �k��� � �k so we seek a solution

x � �1� �x1 � �2x2 �O��3�
which upon substitution into (2.55) yields

��� 2�x1 � �2x1 � �2x2
1 � 2�2x2 �O��3� � 0

Since by assumption the xk are independent of �, this expression can

only hold in general if it holds power by power in �. We have already

zeroed out the �0 term by setting x0 � �1. The �1 and �2 terms yield

�1 : �2x1 � 1 � 0

�2 : �2x2 � x2
1 � x1 � 0
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There is one-way coupling between these equations: the equation for

xk depends on xl with l < k. The solutions to these are x1 � �1
2 and

x2 � �1
8 , so the second root is

x � �1� 1

2
�� 1

8
�2 �O��3� (2.63)

In the limit � ! 0 both solutions (2.62) and (2.63) reduce to the solutions

when � � 0. Cases such as this are called regular perturbation

problems.

The situation is much more interesting when � � 0 is qualitatively

different from � � 1. Cases like this are called singular perturba-

tion problems. Consider the equation

�x2 � x � 1 � 0 (2.64)

When � � 0, this has the unique exact solution x � 1, while for any

� � 0, it has two solutions. This problem is singular because the

small parameter multiplies the highest power in the equation ± when

the parameter is zero the polynomial becomes lower degree so it has

one fewer root. To analyze this problem, we de®ne a scaled variable

X � x=� where � � �0 and

X � x0 � �1
�0
x1 � �2

�0
x2 � ord�1�

Thus � measures the size of x as � ! 0. Substitution into (2.64) yields

��2X2 � �X � 1 � 0

Now we examine the possibility of ®nding a dominant balance between

different terms with various guesses for �. If we let � � 1, then the

second and third of these terms balance as � ! 0 while the ®rst is

small. This scaling gives the root x � 1 � O���. If we let � � o�1�
then the ®rst and second terms are small, while the third term is still

ord�1�. There is no balance of terms for this scaling. On the other hand

if we let � � ��1 then we can get the ®rst and second terms to balance.

Applying this scaling yields

X2 �X � � � 0

which clearly has the solution X � 1 � O��� or x � 1
� � O�1�. As

� ! 0 the root goes off to in®nity. Although the ®rst term in (2.64)

contains the small parameter, it can multiply a large number so that
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the term overall is not small. This characteristic is typical of singular

perturbation problems.

A more subtle singular perturbation problem is

�1� ��x2 � 2x � 1 � 0 (2.65)

When � � 0 this has double root x � 1. When � < 0 there are no real

solution whereas when � > 0 there are two. Clearly �0 � 0, x0 � 1 so

we seek a solution

x � 1� �1x1 � �2x2 � o��2�

Substitution into (2.65) gives

�21x
2
1 � 2�1�2x1x2 � �22x2

2 � �� 2��1x1 � ��21x2
1 � 2��2x2 � : : : � 0

Since 1 � �1 � �2, we can conclude that �21x
2
1 and � are the largest

(dominant) terms. These balance if �21 � O���. Thus we set �1 � �1=2,
which implies that x1 � �1. So the solutions are

x � 1� �1=2 �O��2� (2.66)

As an exercise, ®nd that �2 � � and that the solutions to (2.65) can be

written as an asymptotic series in powers of �1=2.

2.6.4 Regular Perturbation Analysis of an ODE

One attractive feature of perturbation methods is their capacity to pro-

vide analytical, albeit approximate solutions to complex problems. For

regular perturbation problems, the approach is rather straightforward.

As an illustration we consider the problem of second-order reaction

occurring in a spherical catalyst pellet, which we can model at steady

state by

0 � 1

r 2
d

dr
r 2
dc

dr
�Da c2 (2.67)

with c � 1 at r � 1 and c bounded at the origin. If D;R; k; and cB
are the diffusivity, particle radius, rate constant, and dimensional sur-

face concentration respectively, then Da � kcBR2=D is the DamkÈohler

number. The problem is nonlinear, so a simple analytical solution is

unavailable. An approximate solution for Da� 1 can be constructed,

however, using a regular perturbation approach.
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Let � � Da. We seek a solution of the form c�r� � c0 � �c1 � �2c2 �
O��3�. Substituting into (2.67) and equating like powers yields

�0 : 0 � 1

r 2
d

dr
r 2
dc0
dr
; c0�1� � 1

�1 : 0 � 1

r 2
d

dr
r 2
dc1
dr

� c20 ; c1�1� � 0

�2 : 0 � 1

r 2
d

dr
r 2
dc2
dr

� 2c1c0; c2�1� � 0

Observe that the solution at each order has the same operator but dif-

ferent ªforcingº from the solution at lower order. This structure is

typical of regular perturbation problems. The solution at �0 is trivial:

c0 � 1 for all r . At �1, we have

0 � 1

r 2
d

dr
r 2
dc1
dr

� 1; c1�1� � 0

The solution to this equation is c1 �
�
r 2 � 1

�
=6. The solution to the

�2 problem is left to Exercise 2.66. Although this problem is nonlinear,

the regular perturbationmethod provides a simple approximate closed-

form solution.

2.6.5 Matched Asymptotic Expansions

The regular perturbation approach above provided an approximate so-

lution for Da � 1. We can also pursue a perturbation solution in the

opposite limit, Da� 1. Now letting � � Da�1 we have

0 � � 1

r 2
d

dr
r 2
dc

dr
� c2 (2.68)

If we naively seek a regular perturbation solution c � c0 � �c1 �O��2�,
the leading-order equation will be

0 � c20
This has solution c0 � 0, which satis®es the boundedness condition

at r � 0 and makes physical sense for the interior of the domain be-

cause when Da � 1, reaction is fast compared to diffusion so we ex-

pect the concentration in the particle to be very small. On the other

hand, this solution cannot be complete, as it cannot satisfy the bound-

ary condition c � 1 at r � 1. The inability of the solution to satisfy

the boundary condition arises from the fact that the small parameter
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� multiplies the highest derivative in the equation. It is thus absent

from the leading-order problem, so the arbitrary constants required to

satisfy the boundary conditions are not available.

The resolution to this issue lies in proper scaling. Although � is

small, it multiplies a second derivative. If the gradient of the solution

is large in some region, then the product of the small parameter and

large gradient may result in a term that is not small. In the present case,

we can use physical intuition to guess where the gradients are large. At

high Da the reaction occurs rapidly, so we expect the concentration to

be small in most of the catalyst particle. Near r � 1, however, reactant

is diffusing in from the surroundings and indeed right at r � 1 the

concentration must be unity. Thus we de®ne a new spatial variable

� � �1� r�=���� where � is a length scale that is yet to be determined.

Applying this change of variable to (2.68) yields

0 � �

�2

2

�1� ���2
d

d�
�1� ���2 dc

d�
� c2 (2.69)

The ®rst term contains ���2. If we take� � �1=2 then this term is ord�1�

as � ! 0 and can balance the term c2 to yield a nontrivial solution.

This scaling implies that near r � 1 the steepness of the concentration

gradient scales as ��1 � ��1=2. Proceeding with this scaling, (2.69)

becomes

0 � 1

�1� �1=2��2
d

d�
�1� �1=2��2 dc

d�
� c2 (2.70)

Now we seek a perturbation solution of this rescaled problem: c��� �
c0 � �1=2c1 �O���. The choice of �1=2 comes from the observation that

the Taylor expansion of
�
1� �1=2���2 � 1 � 2�1=2� �O���. This gives

the leading-order problem

0 � d
2c0
d�2

� c20 (2.71)

Although this equation is nonlinear, it has a special form that facilitates

solution.14 Let w � c0 where 0 denotes d=d�. Now we can write

w0 � c20 � �
@H

@c0
c00 � w �

@H

@w

with

H � 1

2
w2 � 1

3
c30

14If we had considered ®rst-order kinetics instead, the solution would be simple.
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As constructed, this system has the special property that

dH

d�
� @H
@w
w0 � @H

@c0
c00 �

@H

@w

�
� @H
@c0

�
� @H
@c0

@H

@w
� 0

Therefore, curves of H � 1
2c

02 � 1
3c

3
0 � K, where K is a constant, are

solutions. As � becomes large, i.e., at positions much larger than a

distance �1=2 from the interface, we expect the concentration and its

gradient to go to zero, we take K � 0, so

c00 � �
s

2

3
c3=20

The negative sign must be chosen so that c0 decays with increasing �.

This equation can be integrated and the boundary condition c0�� �
0� � 1 applied to yield

c0��� �
�
1�

s
1

6
�

��2
In terms of the original variables this becomes

c0�r� �
�
1�

s
1

6�
�1� r�

��2
(2.72)

This decays to zero once 1 � r is larger than O��1=2�. Thus the con-

centration changes rapidly in a boundary layer with thickness of

O��1=2� that is located near the catalyst particle surface. Outside this

thin boundary layer, in the interior of the particle, the concentration is

very small, going to zero as � ! 0. One can carry this analysis to higher

order terms. For example, the ®rst effects of the particle shape on the

result appear at O��1=2� but it should be clear that the primary struc-

ture of the solution behavior has been captured by this leading-order

solution.

This example is a simple instance of a singular perturbationmethod.

The solution c0 � 0 that we obtained before rescaling is called the

outer solution. It is valid away from the boundary r � 1. The so-

lution (2.72) that we obtained after rescaling is called the inner solu-

tion. In this simple example the inner solution decays to zero, auto-

matically matching the outer solution. In general, the outer solution is

not simply a constant, and a matching condition must be imposed

to properly connect the two solutions to one another. This process is

the origin of the term matched asymptotic expansions.
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Matching can be accomplished with a number of different proce-

dures. We describe here a simple approach that works for many prob-

lems. More sophisticated and general approaches are described in

Hinch (1991). In the simple approach, we denote the outer solution

with terms up to �P as uP�x� and the inner solution as UP��� where x

and � � x=� are the outer and inner variables, respectively. The simple

matching procedure just requires that at each order n � 0;1; : : : ;N

lim
x!0

un�x� � lim
�!1

Un��� (2.73)

In words, the inner limit of the outer solution equals the outer limit of

the inner solution. In the above case, taking the outer variable x as 1�r
and the inner variable � as �, this expression is satis®ed trivially. In

general, neither the inner nor the outer solution is valid throughout the

entire domain, but the matching procedure provides a means to con-

struct a uniformly valid solution. This so-called composite solution

is given by

unc�x� � un�x��Un���� lim
�!1

Un��� (2.74)

The last term avoids double counting of the overlapping parts of the

two solutions. These ideas are illustrated in the following example.

Example 2.30: Matched asymptotic expansion analysis of the reac-

tion equilibrium assumption

Consider the following reactions

A
k1
-*)-
k�1

B; B
k2
-! C

in which rate constants k1; k�1 are much larger than the rate constant

k2, so the ®rst reaction equilibrates quickly. In a batch system where

cA; cB ; and cC are the concentrations, the governing equations are

dcA
dt

� �k1cA � k�1cB
dcB
dt

� k1cA � k�1cB � k2cB
dcC
dt

� k2cB

The reaction equilibrium assumption takes cA and cB to be in equilib-

rium so that cB � KcA where K � k1=k�1. Further assume that k�1
is the largest rate constant. Initial concentrations in the reactor are

cA�0� � cA0; cB�0� � cC�0� � 0.
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(a) Find a proper nondimensionalization so that a systematic pertur-

bation expansion can be performed.

(b) Use matched asymptotic expansions to show that the reaction

equilibrium approximation corresponds to the leading-order outer

solution of the kinetic equations. Also ®nd the equations for the

O��1� terms in the outer solution.

(c) Find the leading-order inner solution for the dynamics on the fast

time scale 1=k�1, match the inner and outer solutions, and ®nd a

composite solution that is uniformly valid for all time.

Solution

(a) Letu � cAcA�0�; v � cB=cA�0�;w � cC=cA�0�, sou�0� � 1; v�0� �
w�0� � 0. De®ne a scaled ªslowº time variable ts � k2t so that

an O�1� change in t1 corresponds to a time interval of O�1=k2�,

and de®ne the small parameter � � k2=k�1. In these variables,

the rate equations are

du

dts
� �K

�
u� 1

�
v

dv

dts
� K
�
u� 1

�
v �w

dw

dts
� v

Since cC is determined completely by cB we do not include its

evolution in the following development.

(b) Multiplying the dimensionless equations by � yields

�
du

dts
� �Ku� v �

dv

dts
� Ku� v � �v

Assuming a power series form, the outer solution is obtained by

letting

u�ts� � u0�ts�� �u1�ts��O��2�
v�ts� � v0�ts�� �v1�ts��O��2�
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Substituting and considering only the terms of O��0� yields

Ku0 � v0
for both of these equations. This is the reaction equilibrium as-

sumption in dimensionless form. Although physically reasonable,

observe that this assumption is not consistent with the initial con-

ditionsu�0� � 1; v�0� � 0. Similarly, because the time derivatives

are multiplied by �, they do not appear in the leading-order outer

problem, so we do not have differential equations whose solu-

tions include the arbitrary constants that are determined by the

initial conditions. Keeping this issue in mind, we collect O��1�

terms to yield

du0

dts
� �Ku1 � v1 dv0

dts
� Ku1 � v1 � v0

Although this equation is valid, it is not yet useful because we do

not know the values of u0 and v0. To obtain these we consider

the inner solution.

(c) The problem with the outer solution can be traced to the loss of

the time-derivative terms. Recognizing that the derivatives can be

large at short times because k1 and k�1 and much larger than k2,

we de®ne a new fast time scale tf � k�1t � ts=�. Now tf changes

an O�1� amount in a dimensional time of about 1=k�1. Rewriting
the equations with this new time scaling yields

du

dtf
� �Ku� v dv

dtf
� Ku� v � �v

Now we seek an inner solution

u�tf � � U0�tf �� �U1�tf ��O��2�
v�tf � � V0�tf �� �V1�tf ��O��2�

Substituting and extracting the O��0� terms yields

dU0

dtf
� �KU0 � V0 dV

dtf
� KU0 � V0

with initial condition U0�0� � 1; V0�0� � 0. This coupled pair of

equations could be solved, for example, by Laplace transforms or
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by rewriting as a system dx=dtf � Ax and diagonalizingA, but in

this case we can use the observation that dU0=dtf �dV0=dtf � 0

so U0 � V0 � 1 to just solve for U0

dU0

dtf
� �KU0 � 1�U0

which has solution

U0 � e��1�K�tf � 1

1�K
�
1� e��1�K�tf

�
Using this, we obtain

V0 � 1�U0 � K

1�K
�
1� e��1�K�tf

�
By analogy with the reaction-diffusion example above, this inner

solution corresponds to a boundary layer in time, rather than

space.

With inner and outer solutions in hand, we can use (2.73) to match

them. The ªouter limitº of the inner solution is

lim
tf!1

U0 � 1

1�K lim
tf!1

V0 � K

1�K
which satis®es the equilibrium assumption Ku � v . The inner

limit of the outer solution is simply u0�0�, v0�0� and using the

previous result yields

u0�0� � 1

1�K v0�0� � K

1�K
Now we have initial conditions for the outer solution. Adding the

two differential equations at O��1� and differentiating the alge-

braic equation (reaction equilibrium result) at O��0� give

du0

dts
� dv0
dts

� �v0 �Kdu0

dts
� dv0
dts

� 0

Solving these two equations for the two time derivatives gives

du0

dts
� � K

1�Ku0
dv0
dts

� � K

1�Kv0

Solving these with their respective initial (matching) conditions

u0�0� � 1; v0�0� � 0 gives the full leading-order outer solution

u0 � 1

1�Ke
� K

1�K ts v0 � K

1�Ke
� K

1�K ts
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Figure 2.12: Leading-order inner U0, outer u0, and composite solu-

tions u0c , for Example 2.30 with � � 0:2; K � 1; and

k2 � 1.

or, reverting to dimensional form

cA�t� � 1

1�Ke
� K

1�K k2t cB�t� � K

1�Ke
� K

1�K k2t

This is precisely the solution that would be obtained via uncritical

application of the reaction equilibrium approximation. Now we

see this approximation in more precise terms.

Finally, we construct a uniformly valid composite solution via

(2.74). To leading order in dimensional variables

cA�t�

cA0
� 1

1�Ke
� K

1�K k2t �
�
1� 1

1�K
�
e��1�K�k2t=�

cB�t�

cA0
� K

1�K
�
e�

K
1�K k2t � e��1�K�k2t=�

�
Figure 2.12 shows the leading-order inner, outer and composite

solutions for u�t� � cA�t�=cA0 for � � 0:2; K � 1 and k2 � 1. �
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2.6.6 Method of Multiple Scales

The method of matched asymptotic expansions deals with problems

in which different time or length scales dominate in distinct regions

of the solution domain. In many problems, however, processes occur

concurrently on disparate scales, a situation that requires a different

approach, themethod of multiple scales. Problems amenable to this

approach include dynamical systems with multiple natural frequencies

or decay times15, nonlinear systems with widely separated timescales

and problems of propagation (wavelike or diffusive) in inhomogeneous

media.

As an introduction to this approach, we consider a weakly damped

oscillator modeled by the linear equation

Èx � �Çx �!2x � 0; x�0� � 1; Çx�0� � 0

On physical grounds, we expect two time scales to act simultaneously

in this problem: harmonic oscillation, with natural period 2�=! (as-

sumed to be ord�1�), and the exponential decay, with time scale of

ord���. If we proceed naively, looking for a regular perturbation solu-

tion x�t� � x0�t�� �x1�t��O��2�, we ®nd that

Èx0 �!2x0 � 0; x0�0� � 1; Çx0�0� � 0

Èx1 �!2x1 � �Çx0; x1�0� � Çx1�0� � 0

with solution

x�t� � cos!t � �
�

1

2!
sin!t � 1

2
t cos!t

�
The equation at O��� has the same differential operator as does the

zeroth order problem, but has a resonant forcing term Çx0 � cos!t that

leads to the t cos!t secular term in the solution. When t � ord�1=��,

this term destroys the asymptoticness of the expansion; the approx-

imation is not uniformly valid, failing at large times. The method of

multiple scales avoids this nonuniformity by explicitly recognizing the

existence of two time scales in the problem, by letting t0 � t; t1 � �t
and looking for a solution of the form x�t0; t1; ��. Now

dx

dt
� @x
@t0
� � @x
@t1

15For extensive application of the method in this context, see: Nayfeh and Mook

(1979).
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and we look for a solution of the form

x�t0; t1; �� � x0�t0; t1�� �x1�t0; t1�

De®ning D0 � @=@t0 and D1 � @=@t1, the leading-order equation be-

comes a partial differential equation

D2
0x0 �!2x0 � 0; x0�0� � 1;D0x0�0� � 0

This has the solution x0 � A�t1� cos!t0, where A�0� � 1, but is as yet

otherwise undetermined. At the next order, we have

D2
0x1 �!2x1 � 2D1A�t1�! sin!t0 �A�t1�! sin!t0

x1�0� � 0 D0x1�0� � 0

Again, a resonant forcing term is present on the right-hand side. Un-

less this is zero, a secular term again shows up in the equation and

the approximation will not be asymptotic. However, we now have the

possibility of eliminating this term. Notice that if

dA

dt1
� �1

2
A

the resonant term vanishes. This equation is called the solvability

condition or secularity condition or integrability condition. It is an

amplitude equation, determining the evolution of the amplitude of the

solution over the slow time scale t1. From the leading-order result, we

have that A�0� � 1, so A � exp��1
2t1�. At leading order, the solution

is therefore

x0 � e�
1
2
�t cos!t

This is the type of solution we expect intuitively: a very slowly decaying

harmonic oscillation. A couple ®nal comments on this example: the

solution x1 is identically zero, but another resonance term shows up

in the equation for x2. This nonuniformity does not show up until

t � ord�1=�2�, by which time the amplitude has nearly decayed to zero,

but if desired, it could be eliminated by including a ªsuperslowº scale

t2 � �2t. This time scale arises because the damping causes a very

small (O��2�) change in the frequency of oscillation.

This simple example illustrates the procedure and resulting struc-

ture. The recurring theme is the existence of a secularity condition,

whose satisfaction requires the solution of an amplitude equation. This

amplitude equation determines the evolution of the system at its largest
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scale. If the underlying problem is linear, so is the amplitude equation;

a nonlinear equation leads to a nonlinear amplitude equation. The fol-

lowing example illustrates this.

Example 2.31: Oscillatory dynamics of a nonlinear system

From Section 2.2.2, we have a complete understanding of the linear

system Çx � Ax. When A has complex conjugate eigenvalues � � � �
i!, the origin is a stable or unstable spiral depending on the sign of

� . When j� j � j!j, the growth or decay of solutions occurs on a

time scale much longer than the period of oscillation. In this situation,

the method of multiple scales can be used to show very generally the

dynamics of the nonlinear system Çx � Ax�N�x�, whereN�x� contains
no linear part. In this example we apply the method of multiple scales

to the system of equations

dx

dt
�
"
�� �!
! ��

#
x �

"
x2
1 � x1x2 � x3

1

x2
1x2

#

where � � ��, with �� 1, while � and ! are ord�1�. The steady state

x � 0 of this system is very weakly stable or unstable, depending on

the sign of �. Since the problem is nonlinear, ®nding the proper scaling

of x is an important part of the solution procedure. The oscillatory

nature of the linearized equation suggests that a solution can be found

in terms of amplitude kxk and phase �.

Solution

Although we consider here a speci®c form for the nonlinearity, the

multiple-scales solution will lead to equations for r and � whose gen-

eral structure is both extremely simple and extremely general. The time

scaling of this problem is similar to that of the linear example above,

so we consider a multiple-scales expansion with t0 � t; t1 � �t. The

scale t0 re¯ects the time scale of the oscillation, while the scale t1 re-

¯ects the scale for growth or decay of the amplitude of the solution. To

determine the proper scaling of the solution amplitude, we let x � �X,
where X � ord�1� as � ! 0. Now the equation becomes

�D0X � ��D1X � �
"
0 �!
! 0

#
X � ��

"
� 0

0 �

#
X

� �2N2�X;X�� �3N3�X;X;X�
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whereN2�X;X� andN3�X;X;X� are the quadratic and cubic terms writ-

ten in a form convenient for perturbation expansions. For general vec-

tors u � �u1; u2�T ; v � �v1; v2�T ;w � �w1;w2�T , the nonlinear terms

for this problem are

N2�u;v� �
"
u1u1 �u1v2

0

#
N3�u;v;w� �

"
u1v1w1

u1v1w2

#

Any polynomial nonlinearity can be written as a sum of terms with this

structure.

If we tentatively let � � � and X � X0 � �X1 �O��2� then the prob-

lems at O��0� and O��1� become, respectively,

D0X0 �
"
0 �!
! 0

#
X0 � 0

and

D0X1 �
"
0 �!
! 0

#
X1 �

"
� 0

0 �

#
X0 �D1X0 �N2�X0�

The solution at O��0� is

X0�t0; t1� � r�t1�
"
cos�!t0 ���t1��
sin�!t0 ���t1��

#

Turning to the O��� equation, the term N2�X0; X0� does not lead to

resonance because it is quadratic and thus contains no terms with fre-

quency !. The solvability condition for this choice of scaling is thus

D1X0 �
"
� 0

0 �

#
X0

This equation is linear, leading to exponential growth on the time scale

t1 when � > 0 and eventually violating the scaling assumption x �
O���. Thus the choice � � � is not self consistent.

We need a different guess for �. The term N2 does not lead to res-

onance at leading order, but the term N3 can. For example sin3!t0 �
�3 sin!t0 � sin3!t0�=4. A balance between the linear term, which is

O���� and this cubic term, which is O��3� would imply that � � �1=2.
Thus we seek a solution of the form x � �1=2�X0 � �1=2X1 � �X2 �
O��3=2��. With this scaling the O��0� problem and its solution remain

the same as above, while the O��1=2� equation becomes

LX1 � N2�X0; X0�
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where

L � D0 �
"
0 �!
! 0

#
As noted above, N2�X0; X0� contains no resonant terms. A particular

solution can be found

X1�t0; t1� � r�t1�
2

!

24 1
3 �cos2� � sin2��

1
2

�
1� 1

3 �cos2� � sin2��
�35

where � �!t0 ���t1�. Observe that X1 has frequency 2!.

The leading-order amplitude and phase, r�t1� and ��t1�, have not

yet been determined, so we turn to the equation at O���, which deter-

mines X2

LX2 � N2�X0; X1��N2�X1; X0��N3�X0; X0; X0��
"
� 0

0 �

#
X0 �D1X0

For brevity, we denote the right-hand side as R. Resonance will occur

if it has terms of the form �sin!t0;� cos!t0�T or �cos!t0; sin!t0�T ,

which in general it does. To obtain the solvability conditions, we thus

require that R be orthogonal to these termsZ 2�=!

0
RT

"
sin!t0
� cos!t0

#
dt0 �

Z 2�=!

0
RT

"
cos!t0
sin!t0

#
dt0 � 0

Omitting the detailed calculation, which involves elementary but exten-

sive trigonometric manipulations, we ®nd that

dr

dt1
� �r � ar 3

d�

dt1
� br 2

where for the nonlinearity given here

a � 4!� 1

8!
b � 5

24!

This is a remarkably general result. These simple differential equa-

tions govern the leading-order behavior for small � and their form

is completely insensitive to the nature of the nonlinearityÐthe entire

structure of N2 and N3 is distilled into the constants a and b. Further-

more, even for a more general nonlinearity containing higher powers,
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only the quadratic and cubic terms contribute. For example, a quartic

term does not appear until O��2� and thus does not contribute to R.

Because of its generality, it is known as the normal or canonical form

for this class of nonlinear problems16.

The equation for the oscillation amplitude r is the most important.

It has steady-state solutions r � 0 and r � p��=a. Including the

scaling � � �1=2, the latter solution becomes kxk � p���=a. Therefore
real nontrivial solutions exist if ��=a < 0. We return to this example

and related ones in a more general context in Section 2.7.5.

�

2.7 Qualitative Dynamics of Nonlinear Initial-Value Prob-

lems

2.7.1 Introduction

The dynamics of nonlinear differential equations can be extremely com-

plex. In this section we introduce a number of the issues that arise in

these systems. Questions that we address include

• How do nonlinear systems differ from linear ones?

• What general qualitative (geometrical) structure can be found in

nonlinear systems?

• What kinds of steady-state and time-dependent behaviors are typ-

ical?

• How do solutions change as parameters change?

2.7.2 Invariant Subspaces and Manifolds

We begin with an introduction to the geometry of differential equations,

by describing invariantmanifolds, regions of phase space in which solu-

tions to an equation remain for all time. We shall see that these regions

organize the dynamics of initial-value problems. For linear constant-

coef®cient systems, thinking of the solution to Çx � Ax in terms of the

eigenvectors leads toward a geometric view of solutions to differential

equations. An important point to notice is this: a point lying on a line

16Guckenheimer and Holmes (1983) give a general formula for construction of the

normal form, including explicit formulas for a and b, derived using a rigorous and

elegant method of nonlinear coordinate transformations.
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de®ned by one of the eigenvectors vi of A never leaves this line and

never has left. These lines are invariant under the solution operator

eAt . Recall from Section 2.2.2 that if x�0� � cvi, then

x�t� � eAtcvi � ce�itvi 8t

Thus we call the line de®ned by vi an invariant subspace of the phase

space. The most important invariant subspaces of a linear system are

de®ned as follows. Let u1; : : : ; uns be the (possibly generalized) eigen-

vectors whose eigenvalues have negative real parts; v1; : : : ; vnu be those

whose eigenvalues have positive real parts andw1; : : : ;wnc those whose

eigenvalues have zero real parts. Now we can de®ne three invariant

subspaces

Es � spanfu1; : : : unsg stable subspace

Eu � spanfv1; : : : vnug unstable subspace

Ec � spanfw1; : : :wncg center subspace

An initial condition in Es will remain in Es and eventually decay to

zero, one in Eu will remain in Eu and grow exponentially with time,

and one in Ec will remain in Ec , staying the same magnitude or growing

with at most a polynomial time dependence. Figure 2.13 shows some

examples of these invariant subspaces in linear systems. In general,

a system with eigenvalues with zero real parts is not robust: a small

change in the system, e.g., the parameters, moves the eigenvalues off

the imaginary axis and the invariant subspace Ec vanishes. A system

like this, for which an arbitrarily small change in the system changes

the qualitative behavior, is said to be structurally unstable. In

contrast, if all the eigenvalues have nonzero real parts, no qualitative

change occurs if the system is changed slightly. Such a system is said

to be structurally stable. Similarly, if a system linearized around

a steady state has no eigenvalues with zero real parts, the steady state

is said to be hyperbolic. Otherwise it is nonhyperbolic.

So what happens when we allow nonlinearity to creep in? Consider a

nonlinear system in the vicinity of a steady state xs . Letting z � x�xs ,
we can write the system Çx � f�x� as

Çzi � @fi
@zj

�����
z�0
zj � 1

2

@2fi
@zj@zk

�����
z�0
zjzk �O�kzk3�

or

Çz � Jz �N2�z; z��O�kzk3�
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(b)

E
s

(a)

u�1�

E
c

w�1�

E
u

u�1�

u�2�

v�1�E
s

Figure 2.13: Examples of invariant subspaces for linear systems:

(a) �1 � �1; �2 � 0; (b) �1;2 � �1� i; �3 � 1.

where Jij � @fi=@xj
���
z�0 is the Jacobian of f�xs� andN2�z; z� contains

all terms that are quadratic in z. Since Jz � O�z� andN2�z; z� � O�z2�,
the leading-order behavior for small z is determined by the linearized

system, as long as all the eigenvalues of J have nonzero real parts, i.e.,

the steady state xs is hyperbolic. The rigorous and general statement

of this fact is called the Hartman-Grobman theorem (Guckenheimer

and Holmes, 1983). If there is an eigenvalue with zero real part, then

the linearized problem gives that

d

dt
kzk2 � 0

for some values of z, in which case the quadratic termN2�z; z� appears

at leading order.

Restricting ourselves to the usual situation, when xs is hyperbolic,

we now generalize the ideas of the stable and unstable subspaces to

the nonlinear case. We de®ne the stable and unstable manifolds17

of xs as follows:

• The stable manifold W s�xs� is the set of points that tend to xs as

t ! �1.
• The unstable manifoldWu�xs� is the set of points that tend to xs
as t ! �1.

These have the same dimensionsns andnu as the subspaces Es and

Eu of the linearized system, and are tangent to them at x � xs . The

17A manifold for our purposes is simply a curve or surface. We use the term because

W s and Wu are not generally linear subspaces of Rn, while Es and Eu are.
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Figure 2.14: Invariant subspaces of the linearized system (a) and in-

variant manifolds of the nonlinear system (b).

relationship between them is shown in Figure 2.14. Convince yourself

that the de®nitions of W s and Wu are equivalent to those given above

for Es and Eu for a hyperbolic linear system.

For many interesting situations, a steady state of interest is stable;

there is no unstable manifold. Recall, however, that in the linear case

each individual eigendirection de®nes an invariant manifold so Es con-

tains within it further invariant subspaces. This fact gives us a tool

for understanding the approach to a steady state and possibly for con-

structing simpli®ed models of the dynamics near a steady state. As

an example, consider the following pair of differential equations, with

�� 1

�Çx1 � f1�x1; x2�
Çx2 � f2�x1; x2�

Let �x1; x2�T � �0;0� be a stable steady state. Furthermore, assume

that we have written the equation in coordinates where

L �
"
���1 0

0 �1

#

Thus the eigenvalues are ���1 and �1, with corresponding eigenvec-

tors uf � �1;0�T and us � �0;1�T . The ªsº and ªfº stand for ªslowº and

ªfastº respectively, because the dynamics in the us direction occur on

an O�1� time scale, while those in the uf direction occur on an O���

time scale. We can thus de®ne a ªslowº subspace Ess and a fast sub-

space Esf , with nonlinear extensions W ss and W sf . Initial conditions
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(suf®ciently close to the origin) approach W ss in a time of O��� so af-

ter this transient all the dynamics are along the slow manifold W ss . To

leading order in �,W ss is de®ned by the equation f1�x1; x2� � 0. This is

the result we would get by just setting � to zero above and can be found

as an outer solution in a matched asymptotic expansions analysis.

Close to the origin, this equation can be rewritten x1 � h�x2�, so
we can reduce the pair of equations to a single equation

Çx2 � f2�h�x2�; x2�

What we have just done is a form of the quasi-steady-state approxima-

tion used in all areas of chemical engineering analysis. It illustrates a

very important and general property of initial-value problems: beyond

initial transients, solutions often evolve on a subspace or manifold that

has many fewer dimensions than the entire phase space. This fact is

both conceptually and computationally important. It means that the

behavior of large systems can often be understood by only consider-

ing a few dimensions, and also that computations might be performed

with many fewer degrees of freedom than formally required.

2.7.3 Some Special Nonlinear Systems

Gradient Systems

Imagine a small particle suspended in a viscous ¯uid, andmoving under

the in¯uence of a force that can be written as the gradient of a scalar

potential function U�x�. This situation is described by

Çx � �rU (2.75)

In general, systems of this form are called gradient systems. Recall

that the vector rU is always normal to surfaces of constant U so tra-

jectories of this type of system are always moving ªdownhillº on the

ªenergy landscapeº de®ned by U . In other words, the potential U is a

Lyapunov function for (2.75). The only steady states of gradient sys-

tems are sources, saddle points, and sinks (can you show this?). A

two-dimensional example is shown in Figure 2.15. Some more insight

into the behavior of a gradient system is gained by asking how the ªpo-

tential energyº of a trajectory evolves with time. The rate of change of

U on a trajectory is

dU�x�t��

dt
� @U
@xi

dxi
dt

� � @U
@xi

@U

@xi
� �krUk2 � 0
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Figure 2.15: Contours of an energy function V�x1; x2� or H�x1; x2�.

Black arrows denote directions of motion on the energy

surface for a gradient system, while gray ones denote

motion for a Hamiltonian system; V�x1; x2� � 0:2x2
1 �

2cos��=2�x � 10x2
2 .

with equality only at steady states, where rU � 0. So whatever the

trajectory of the vector equation for Çx, it satis®es this scalar equation

showing that the rate of change of potential energy is the square of the

gradient of the potential. Trajectories roll downhill until they reach a

minimum in U . In a high-dimensional problem, the potential surface

can be very complex, with many minima, and saddle points where there

are many ªdownhillº directions for the system to choose from.

Hamiltonian Systems

Consider again the landscape of Figure 2.15. Call the energy functionH

rather than V . Now imagine a dynamical system where trajectories are

not normal to H, but are tangent to them. So we modify the gradient
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system by rotating rH by �=2 to get

Çx �
"
0 �1
1 0

#
rH �

26664
� @H
@x2

@H

@x1

37775 (2.76)

By the same exercise we performed above for U along trajectories, we

can show that for (2.76), trajectories satisfy

dH�x; t�

dt
� 0

so the energy functionH is conserved on trajectories that follow (2.76).

The above situation is a special case of a very general and important

class of equations. Consider a system of particles, e.g., molecules. For

each particle, there is a number of coordinates (typically three) that

describes the position of the particle, and for each coordinate there is

an associated momentum. We denote the full set of coordinates as q

and the momenta as p. The total (kinetic plus potential) energy H of

the system is a function of the positions and momenta and is called

the Hamiltonian. In the absence of friction (always true at the atomic

level), the sum of kinetic and potential energy is conserved, so

dH

dt
� @H
@pi

dpi
dt
� @H
@qi

dqi
dt
� 0

In general, this holds only if

Çqi � @H
@pi

Çpi � � @H
@qi

These equations are called Hamilton's equations. A system whose

dynamics are described by a model of this form is said to be Hamilto-

nian (Goldstein, 1980).

In addition to the property that H is constant along trajectories,

Hamiltonian systems have another important attribute: phase space

volume is conserved along trajectories. In other words, a ªblobº of

initial conditionsmay deform and rotate with time, but it cannot shrink.

We can see this by looking at the divergence18 in phase space of the

18See Section 3.2.
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vector ®eld for a Hamiltonian system

r � f �
�
@

@qi

@

@pi

�266664
@H

@pi

� @H
@qi

377775 � 0

This result is known as Liouville's theorem. In general vector ®elds

with r � f � 0 are said to be conservative; if r � f < 0 the system is

dissipative.19 What is r � f for a gradient system?

An important class of conservative vector ®elds is the velocity ®elds

of incompressible ¯ows. In two dimensions, equations for motion of

a ¯uid element are Hamiltonian, with the Hamiltonian function being

simply the stream function. A three-dimensional incompressible ¯ow

®eld, although conservative, cannot generally be Hamiltonian. Why

not?

Single Degree-of-Freedom Hamiltonian Systems

A mechanical system with only one degree of freedom, such as a par-

ticle moving along a line or a pendulum restricted to swing in a single

plane, illustrates some of the important features of nonlinear differen-

tial equations. In this case p and q are scalars. Often the Hamiltonian

can be written in this simple form

H�p;q� � 1

2
p2 � V�q�

Along any trajectory, H is constant, so we can solve for the momentum

in terms of the position

p � �
q
2�H � V�q��

Trajectories in phase space are thus symmetric across p � 0. Further-

more, this formula can be used to construct the energy landscape, the

curves ofH � constant on the �q;p� plane. From Hamilton's equations

and the expression for p, we can see that steady states occur when

H � V�q� and @V=@q � 0. For the pendulum, V�q� � �� cosq, where
� is a constant; the energy landscape and phase-plane trajectories are

shown in Figure 2.16 for � � 2. Note in particular the trajectories

19Grmela and ÈOttinger (1997) have developed a formalism for continuum models of

materials, in which the vector ®eld is simply a sum of a Hamiltonian part and a gradient

part.
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that round the ªhillº or ªvalleys,º connecting two saddle points. These

special trajectories are called heteroclinic orbits. Denoting the two

steady states involved as P and Q, the heteroclinic orbit is part of both

the unstable manifold of P and the stable manifold of Q. If the po-

tential energy is changed to V�q� � �1
2q

2 � 1
4q

4, the landscape and

trajectories are as shown in Figure 2.17. Now we have two trajectories

connecting a saddle point to itself, called homoclinic orbits. The

homoclinic orbit is part of both the unstable and stable manifold of

the steady state. Homoclinic and heteroclinic orbits are examples of

global features of a dynamical system, because their existence cannot

be deduced by only looking at behavior in a small neighborhood of a

particular point. Hamiltonian systems are not structurally stable; phys-

ically we can understand this by noting that any dissipation of energy

leads to ªdownhillº motion on the energy landscape and the special

properties that H � constant on trajectories and r � f � 0 are lost.

Similarly, homoclinic and heteroclinic orbits are not structurally sta-

ble features, but they remain important for general systems because

they can arise at particular points in parameter space, called global

bifurcations (Guckenheimer and Holmes, 1983).

2.7.4 Long-Time Behavior and Attractors

A question of signi®cant practical interest when studying a mathemat-

ical model of a process is: what happens to the dynamics after a long

time, i.e., as t !1? In one- or two-dimensional phase spaces, the pos-

sibilities are quite limited and we describe them essentially completely.

In three or more dimensions, very complex behavior is possible and we

shall only touch on the topic.

One Dimension

If x is a scalar, then the autonomous equation

Çx � f�x�

can always be written in gradient system form

Çx � �dV
dx

where V�x� �
R
f�x0� dx0. All initial conditions must end up at a

steady state, or roll downhill forever toward �1.
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Figure 2.16: Energy landscape for a pendulum; H � 1

2
p2 � � cosq;

� � 2.

Two DimensionsÐPlanar Systems

Not every two-dimensional vector ®eld can be written as the gradi-

ent of a potential, so two-dimensional (or planar20) systems are not

quite as restricted as one-dimensional ones. Nevertheless, they are

still fairly constrained by the topology of the plane. Let us write a two-

dimensional system as

Çx1 � f1�x1; x2� Çx2 � f2�x1; x2�

where �x1; x2�T 2 R2. The steady states of this system are simply the

intersections of the curves f1�x1; x2� � 0 and f2�x1; x2� � 0. Near

these steady states, the behavior is described by the linearizations, if

20Not all two-dimensional systems are planar. For example, consider a system whose

trajectories are restricted to the surface of a torus, i.e., a doughnut with a hole. This

surface cannot be mapped onto an unbounded plane. We discuss this case when con-

sidering three-dimensional systems. On the other hand, it turns out that the surface of

a sphere can be mapped onto a plane, but the mapping is singular. Another nontrivial

two-dimensional surface is a MÈobius strip.
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the eigenvalues have nonzero real parts. In addition to steady states,

we know that closed trajectories (oscillations) can arise, as we saw in

the Hamiltonian examples described previously. Can anything else hap-

pen as t ! 1? Can, for example, a periodic orbit have a ®gure-eight

shape? The answer to this is no; for trajectories in phase space to cross

would require two values of the vector ®eld �f1; f2�T for the same point

�x1; x2�T , which cannot occur. This prohibition on trajectories crossing

applies in any number of dimensions, but in two dimensions it severely

constrains the possible behavior. One very important consequence of

the constraint is the PoincarÂe-Bendixson Theorem

Theorem 2.32 (PoincarÂe-Bendixson). If D is a closed region of R2 and

a solution �x1�t�; x2�t��T 2 D for all t > t0, then the solution either is a

closed path, approaches a closed path as t ! 1, or approaches a ®xed

point (steady state).

As an application of this theorem, consider the system

Çx � x �y � x�x2 � 2y2�

Çy � x �y �y�x2 �y2�
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Transforming to polar coordinates gives

Ç� � 1� 1

2
r 2 sin2 � sin2�

Çr � r�1� r 2�1� 1

4
sin2 2���

From this form of the equations we see that the origin is the only steady

state and that it is unstable. So where do the trajectories go? Note that

Çr < 0 for all r > 1 so the trajectories must be bounded. Furthermore,

Çr � 0 for all � on the circle r � r1 � 2=
p
5 and Çr � 0 on the circle

r � r2 � 1. So all trajectories entering this annulus (let us call it D)

never leave it. This region is the area between the two gray circles on

Figure 2.18. Since Ç� > 0 throughout D, there can be no steady states in

this region. The PoincarÂe-Bendixson theorem thus requires that there

be at least one closed path (periodic orbit) in this region. Numerical

integration reveals that for this problem there is one asymptotically

stable periodic orbit, which is also known as a limit cycle. Part of

a trajectory that starts near the origin, as well as the limit cycle it ap-

proaches, are shown in Figure 2.18.

At this point we have seen two types of behavior that trajectories

may tend to as t !1: a steady state and a limit cycle. These are simple

examples of attractors. A good working de®nition of an attractor is

the following.

An attractor A of a dynamical system is a set of points that

is invariant under time evolution of the system, and that is

the ultimate destination as t ! 1 of all initial conditions

that begin suf®ciently near it, i.e., in a neighborhood U .21

For planar systems, the PoincarÂe-Bendixson theorem dictates that the

only attractors are steady states and limit cycles. Note that the two-

dimensional Hamiltonian systems discussed above also have periodic

orbits; these are not attractors because an initial condition close to one

such orbit does not approach it as t ! 1. The fact that trajectories of
Hamiltonian systems lie on constant energy surfaces precludes them

from having attractors.

Three Dimensions

Trajectories in the three-dimensional phase space R3 are much less

topologically constrained than are those in one or two dimensions.

21See, for example, Guckenheimer and Holmes (1983) for a discussion of various def-

initions of attractors and the dif®culties in developing a satisfactory general de®nition.
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Figure 2.18: A limit cycle (thick dashed curve) and a trajectory (thin

solid curve) approaching it. The region D is bounded

by the two gray curves.

There is no three-dimensional analog of the PoincarÂe-Bendixson the-

orem and thus no restriction that all attractors be either steady states

or periodic orbits. We look ®rst at a simple, geometrically de®ned ex-

ample. Consider a torus (a donut-shaped surface) ¯oating in three di-

mensions and assume that all trajectories asymptotically approach the

surface of the torus, so that we only need consider what happens on

the torus itself. Further assume that there are no steady states on the

torus. Now any point on the torus can be represented by two angu-

lar positions, � 2 �0;2�� and � 2 �0;2��, so we can represent the

phase space by a squareÐany trajectory that leaves one side of the

square reenters on the opposite side. Consider a very simple evolution
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of these variables
Ç� � p Ç� � q

where p and q are constants. Eliminating time and integrating we ®nd

an explicit solution for the trajectories: � � p
q �� � �0� � �0, where

��0;�0� is the value of ��;�� at a chosen value of t. Now since �

and � are in �0;2��, the trajectory will return to ��0;�0� if � � �0 �
2�m when � � �0 � 2�n, where m and n are (as yet unspeci®ed)

integers. This requires that qm � pn, which can only hold if p=q �
m=n for some pair of integersm and n. That is, p=qmust be a rational

number; this situation is a form of resonance. Otherwise, the trajectory

will never repeat and will eventually pass through every point on the

torus! Such an orbit is called quasiperiodic, because ��t� and ��t�

are individually time periodic, but the pair ���t�;��t�� is not. Figure

2.19 shows trajectories for the cases p=q � 9=7 (left) and p=q � p2
(right). The qualitative distinction should be clear. From this example

we see a new type of dynamical behavior, the quasiperiodic orbit.

Finally, we present one example of an even more complex type of

attractor that can occur in phase spaces of dimension 3 or higher. Con-

sider the system

Çx � �y � z
Çy � x � ay
Çz � b � z�x � c�

known as the RÈossler system. If a � b � 0:2, c � 1, the system

displays a limit cycle, as shown in Figure 2.20. If c � 5:7, however,

the system has the attractor shown in Figure 2.21. This attractor is

neither periodic nor quasiperiodic; in fact, nearby initial conditions will

not follow similar paths but will eventually diverge from one another.

This property is known as sensitivity to initial conditions and

is characteristic of chaotic dynamics. Loosely speaking, an attractor

on which the dynamics are chaotic is called a strange attractor

(Guckenheimer and Holmes, 1983; Strogatz, 1994).

2.7.5 The Fundamental Local Bifurcations of Steady States

We now have seen a variety of possible behaviors for nonlinear dy-

namical systems: steady states, periodic orbits, quasiperiodic orbits,

strange attractors, heteroclinic orbits, homoclinic orbits. . . . Our focus

now shifts to understanding the ways in which the qualitative behav-

ior of a system changes as we change parameters. This branch of the
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Figure 2.19: Periodic (left) and quasiperiodic (right) orbits on the sur-

face of a torus. The orbit on the right eventually passes

through every point in the domain.

theory of differential equations is called bifurcation theory(Iooss

and Joseph, 1990).

We begin the discussion just by thinking generally about the steady

states of

Çx � f�x;��
where we now explicitly indicated the dependence of the vector ®eld f

on the parameter �. For de®niteness, assume that derivatives of f of all

orders exist. Let xs��� be a steady state, i.e., f�xs���;�� � 0. We can

determine from the linearization of f at xs whether this steady state is

hyperbolic. If it is, then we know, from the Hartman-Grobman theorem,

that a small change in � does not change the qualitative behavior near

xs . Thus our attention focuses on behavior near values of � where xs
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Figure 2.20: A limit cycle for the RÈossler system, a � b � 0:2, c � 1.
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is not hyperbolicÐwhere the linearization has eigenvalues with zero

real part. This is where qualitative changes in the local behavior near

xs can occur.22 We denote a value �0 where xs is not hyperbolic as a

bifurcation point.

It will be productive to begin our examination of bifurcations with

one-dimensional systems: x 2 R1; � 2 R1. We shall see later how this

discussion generalizes to higher-dimensional systems. Without loss of

generality, we can specify that the bifurcation point is at �0 � 0 and

de®ne a new dependent variable y � x � xs��0�. Taylor expanding

about y � 0; � � 0 and using the facts that f � fx � 0 give

Çy � f�� � 1

2

�
fxxy

2 � 2fx��y � f���2
�
�

1

6

�
fxxxy

3 � 3fxx�y
2� � 3fx��y�

2 � f����3
�
� � � � (2.77)

Here the subscript denotes partial derivative, f� � �@f=@��
��
��0;y�0,

etc. We now examine the structure of solutions to this in the most

important cases.

Saddle-Node Bifurcation

We begin with the most general case: the partial derivatives of f (other

than fx) involved in the leading-order behavior are nonzero at the bifur-

cation point. This gives the generic bifurcation behavior; the behavior

that arises in the absence of special conditions on f . For small � and

y , the dominant balance in (2.77) is

Çy � f�� � 1

2
fxxy

2 (2.78)

This has steady states

y � �
s
�2f��
fxx

(To see this, check that when y � O�p�� the terms in (2.77) that we

neglected to get (2.78) are small compared to the ones that we kept.)

Therefore, depending on the sign of f�=fxx , there are two real solutions

for � > 0 and none for � < 0 or vice versa. The point � � 0 is thus

quite special in that on one side of it there are no steady states near

y � 0 and on the other there are two. This type of bifurcation point

22If the system has a special structure, like a Hamiltonian, then additional conditions

must be satis®ed for bifurcation to occur.
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Figure 2.22: Bifurcation diagram for the saddle-node bifurcation. Ev-

ery bifurcation of this type looks like this modulo a ver-

tical and/or horizontal re¯ection across y � 0; � � 0.

The branch of stable solutions is the solid curve, the

unstable branch is dashed.

is called variously a limit point, turning point, or saddle-node

bifurcation point. It arises when the conditions fx � 0; f� � 0; fxx � 0

are satis®ed. By rescaling, we can write the normal form for this

bifurcation as

Çy � � �y2 (2.79)

Now the steady states are simply y � �p�; the positive root is stable
and the negative unstable. When � � 0, there is a single (repeated) root,

which is stable from the right but not the left, and when � < 0 there

is no steady state, although trajectories that pass close to y � 0 move

very slowly through that region. The time spent in the interval ��1;1�
is �p�� . The bifurcation diagram associated with the saddle-node

bifurcation is shown in Figure 2.22. It summarizes the position and

stability of the steady states as � changes.

Transcritical Bifurcation

In the above scenario, steady states exist only on one side or the other of

the bifurcation point. What type of bifurcation do we expect to see if we

know, on physical grounds, for example, that solutions exist on both
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sides of the bifurcation point? To capture this situation, we impose

the additional condition that f� � 0 at the bifurcation point. Now we

®nd that y � O��� and the leading-order equation for the dynamics

becomes

Çy � 1

2

�
fxxy

2 � 2fx��y � f���2
�

This has steady states

y � 1

fxx

�
�fx� �

q
f 2
x� � fxxf��

�
�

So the steady states are (locally) lines in the �y; �� space, which cross

at �y; �� � �0;0�. Since steady states persist on both sides of the bi-

furcation point, this scenario is called transcritical bifurcation. It

arises when the conditions fx � 0; f� � 0; fx� � 0; fxx � 0 are satis-

®ed. We can make the presentation simpler without loss of generality

by setting f�� � 0 and rescaling, which gives us the normal form for

the transcritical bifurcation

Çy � y�� � ay�; a � �1 (2.80)

We can show that the steady state y � 0 is stable when � < 0 and

unstable when � > 0, and the nontrivial steady state y � ��=a has the

opposite stability characteristics. The solutions are sometimes said to

ªexchange stabilityº at the bifurcation point. The bifurcation diagram

for the transcritical bifurcation is shown for a < 0 in Figure 2.23.

Pitchfork Bifurcation

Many physical problems have some symmetry that constrains the type

of bifurcation that can occur. For example, for problems with a re¯ec-

tion symmetry, a one-dimensional model may satisfy the condition

f�x � xs ;�� � �f���x � xs�;��
for all values of �. With y � x � xs we have that f�y ;�� � �f��y ;��
so y � 0 is always a solution and f is odd with respect to y � 0.

Therefore, at a bifurcation point y � 0; � � 0 we have that 0 � f �
fxx � fxxxx � : : : and 0 � f� � f�� � f��� � : : :. Our Taylor expansion
thus becomes

Çy � fx��y � 1

6
fxxxy

3

with y � O��1=2�. Rescaling, we ®nd the normal form

Çy � y�� � ay2�; a � �1 (2.81)
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Figure 2.23: Bifurcation diagram for the transcritical bifurcation. Ev-

ery bifurcation of this type looks like this modulo a ver-

tical and/or horizontal re¯ection across y � 0; � � 0.

The stable branch is solid, and the unstable branch is

dashed.

This has steady states y � 0; y � �p��=a. The steady states and

stability for this bifurcation are shown in Figure 2.24. For obvious rea-

sons, this scenario is called pitchfork bifurcation. It arises when

the conditions fx � 0; f �y ;�� � �f��y ;��; fx� � 0; fxx � 0; fxxx � 0

are satis®ed. If a � �1, then the nontrivial steady-state branch exists

only for � > 0 and is stable; this case is said to be supercritical. If

a � �1, the nontrivial branch exists for � < 0 and is unstable; this is

the subcritical case. Note that in the latter case, the linearly stable

trivial branch will not be approached by initial conditions with mag-

nitude
��y�0��� > p��=a; so although small perturbations from the

steady state y � 0 decay, larger ones grow.

Hopf Bifurcation

In all of the above scenarios, solutions either monotonically approach

a steady state or go off to 1 (or more precisely, to where higher-order

terms in the Taylor expansion are important). We now consider the

case where we expect oscillatory behavior, i.e., where the linearized

version of the problem has complex conjugate eigenvalues � � � � i!.

Obviously, we must move from one- to two-dimensional systems for
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Figure 2.24: Bifurcation diagrams for the pitchfork bifurcation. Top:

supercritical bifurcation, a � �1. Bottom: subcritical

bifurcation, a � 1. The stable branches are solid, the

unstable are dashed.

this behavior to occur. As above, we expect a bifurcation when the

steady state is nonhyperbolic, so � � 0 and the eigenvalues of J are

purely imaginary. In this instance, the steady-state solution persists on

both sides of the bifurcation point, as long as ! � 0 when � is small.

We let � � �� with � � O�1� and write the model as

Çx �
"
�� �!
! ��

#
x �N2�x;x��N3�x;x;x��O�jxj4�

The behavior of the linearized system is characterized by oscillation

on a time scale of !�1 (which we assume remains ®nite as � ! 0), and

slow growth or decay on an O���1� scale. In Example 2.31, we used the

method of multiple scales to show that for small �, balancing the linear
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growth terms with the nonlinearity requires that x � O��1=2�, as in the

pitchfork and saddle-node cases above, and that the solution has the

form

x�t� � �1=2r�t�
"
cos�!t ���t��
sin�!t ���t��

#
where the amplitude r and phase � of the solution are given by

Çr � ��r � a�r 3 (2.82)

Ç� � b�r 2 (2.83)

The constants a and b are functions of the nonlinearity and of! (Guck-

enheimer and Holmes, 1983; Iooss and Joseph, 1990). These equations

comprise the normal form for the so-called Hopf bifurcation, the

generic bifurcation connecting steady states (r � 0) to periodic orbits

(r � 0). Notice that the equation for r is identical in form to that for

the pitchfork bifurcation. So if a < 0, we have a supercritical Hopf

bifurcation, a transition with increasing � from a stable steady state to

a stable limit cycle whose amplitude is �1=2r � p���=a. For the sub-

critical case a > 0 there is a periodic solution, but it exists for � < 0

and is unstable. Turning to the phase equation, we see that on the limit

cycle, � � ���bt=a, so the frequency of the solution is !� b��=a. It
changes linearly as � increases from zero, with a rate determined by

b=a.

2.8 Numerical Solutions of Initial-Value Problems

We have seen that for linear constant-coef®cient problems, a complete

theory exists and the general solution can be found in terms of eigenval-

ues and eigenvectors. For systems of order greater than four, however,

there is no general, exact way to ®nd the eigenvalues. So even in the

most well-understood case, numerical approximations must be intro-

duced to ®nd actual solutions. The situation is worse in general, be-

cause no simple quantitative theory exists for nonlinear systems. Most

of them need to be treated numerically right from the start. Therefore

it is important to understand how numerical solutions of ODEs are con-

structed. Here we consider initial-value problems (IVPs). We focus on

the solution of a single ®rst-order equation, because the generalization

to a system is usually apparent. The equation

Çx � f�x; t�



204 Ordinary Differential Equations

can be formally integrated from a time t to a future time t��t to read

x�t ��t� � x�t��
Z t��t
t

f�x�t0�; t0�dt0 (2.84)

The central issue in the numerical solution of IVPs is the approximate

evaluation of the integral on the right-hand side of this equation. With

a good approximation and a small enough time step �t, the above for-

mula can be applied repeatedly for as long a time interval as we like,

i.e., x��t� is obtained from x�0�, x�2�t� is obtained from x��t�, etc.

We use the shorthand notation x�k� � x�k�t�.

2.8.1 Euler Methods: Accuracy and Stability

The three key issues in the numerical solution of IVPs are simplicity,

accuracy, and stability. We introduce each of these issues in turn,

in the context of the so-called Euler methods.

The simplest formula to approximate the integral in (2.84) is the

rectangle rule. This can be evaluated at either t or t ��t, giving these

two approximations for x�t ��t�

x�k�1� � x�k� ��tf �x�k�; t�k�� (2.85)

x�k�1� � x�k� ��tf �x�k�1�; t�k�1�� (2.86)

The ®rst of these approximations is the explicit or forward Euler

scheme, and the second is the implicit or backward Euler scheme.

The explicit Euler scheme is the simplest integration scheme that can be

obtained. It simply requires one evaluation of f at each time step. The

implicit scheme is not as simple, requiring the solution to an algebraic

equation (or system of equations) at each step. Both of these schemes

are examples of single-step schemes, as they involve quantities at the

beginning and end of only one time step.

To examine the accuracy of the forward Euler method, we introduce

the local truncation error �. This is the error incurred in a single

time step given a known solution x�k�, and is de®ned by

� � x
�k�1�
exact � x�k�1�approximate

�t

For forward Euler, this expression becomes

� �
x�k�1�exact �

�
x�k� ��tf �x�k�; t�k��

�
�t

(2.87)
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We estimate the exact solution by Taylor expanding and using the fact

that Çx�k� � f�x�k�; t�k��:

x�k�1�exact � x�k� � Çx�k��t � 1

2
Èx�k��t2 �O��t3�

� x�k� � f�x�k�; t�k���t � 1

2
Èx�k��t2 �O��t3�

(For the present analysis it suf®ces to keep the O��t2� terms, but in
general higher order terms may need to be retained.) Plugging back
into (2.87) yields

� �
x�k� � f�x�k�; t�k���t � 1

2
Èx�k��t2 �

�
x�k� ��tf �x�k�; t�k��

�
�O��t3�

�t

Observe that the ®rst two terms in the Taylor expansion of x�k�1�exact

cancel out the terms from the forward Euler step to yield

� � 1

2
Èx�k��t �O��t2�

Thus � scales as �t1 as �t ! 0. The implicit Euler method obeys the

same scaling. Thus the Euler methods are said to be ª®rst-order accu-

rate.º Since the explicit method is simpler, is there any reason to use

the implicit method? The answer is yes and arises when we look at the

third issue mentioned above, stability.

Consider a single linear equation Çx � �x, so f�x; t� � �x. If

Re��� < 0, then x�t� ! 0 as t ! 1: It is not asking too much that

a numerical approximation maintain the same property. The Euler ap-

proximations for this special case are

x�k�1� � x�k� � ��tx�k�

x�k�1� � x�k� � ��tx�k�1�

For the explicit Euler scheme, the iteration formula can be written in

the general form x�k�1� � Gx�k�, where in the present case G � �1 �
��t�. We call G the growth factor or amplification factor for

the approximation. By applying this equation recursively from k �
0, we see that x�k� � Gkx�0�, so if jGj > 1, then x�k� ! 1 as k !
1. Conversely, if jGj < 1, then x�k� ! 0 as k ! 0. Thus there is

a numerical stability criterion: jGj < 1. This is equivalent to

G2
R�G2

I < 1, where subscripts R and I denote real and imaginary parts,

respectively. For explicit Euler, GR � 1 � �R�t;GI � �I�t, yielding
stability when

�1� �R�t�2 � ��I�t�2 < 1
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On a plane with axes �R�t and �I�t, this region is the interior of a circle

centered at �R�t � �1; �I�t � 0. If�t is chosen to be within this circle,

the time-integration process is numerically stable; otherwise it is not.

If � is real, instability occurs if � > 0; this is as it should be, because

the exact solution also blows up. But it also happens if � < 0 but �t <

�2=�, which leads to G < �1. This is pathological, because the exact

solution decays. This situation is known as numerical instability.

A numerically unstable solution is not a faithful approximation of the

true behavior of the system.

For a system of equations Çx � Ax, numerical stability is obtained

only if the time step satis®es the jGj < 1 criterion for all of the eigen-

values �i. Observe that for systems with purely imaginary eigenvalues,

i.e., purely oscillatory solutions, the explicit Euler method is never nu-

merically stable.

Now consider the same analysis for the implicit Euler scheme. We

can again write x�k�1� � Gx�k�, but now G � �1� ��t��1. Therefore

jGj2 � GG �
�
1� 2�R�t � j�j2�t2

��1
< 1

whenever �R < 0. That is, if the exact solution decays, so does the

approximation. The stability of this method is independent of �t, so it

is said to be absolutely stable or A-stable.

Figure 2.25 shows plots of x�t� for the case � � �1 starting from

initial condition x0 � 1 using explicit and implicit Euler methods with

�t � 2:1, along with the exact solution x�t� � e�t . The implicit Euler

solution is not particularly accurate because the time step is not small

relative to the natural time scale of the system (�min �j1=�Rj ; j1=�Ij�),
while the explicit Euler solution displays numerical instability.

2.8.2 Stability, Accuracy, and Stiff Systems

Say we have a differential equation model whose shortest time scale

of interest is tint . Obviously, we cannot choose a time step �t that is

greater than tint , or our approximate solution will jump right over the

interesting behavior. So accuracy requires that �t < tint . But if we

use an explicit method, stability requires a time step smaller than tmin,

which is the smallest time scale of the entire problem. For example,

in a kinetics problem, this might be the reaction time for a free-radical

intermediate whose kinetics are so fast that its concentration always

remains near equilibrium. Problems where tmin � tint are said to be
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Figure 2.25: Approximate solutions to Çx � �x using explicit and

implicit Euler methods with �t � 2:1, along with the

exact solution x�t� � e�t.

stiff. Implicit methods are always used to solve such problems, as

explicit methods require unreasonably small time steps.

In general, for the problem

Çx � Ax

we can write a single-step scheme as

x�k�1� � Gx�k�

For example, consider the system

Çx � Ax �
"
�3 1

0 �100

#
x

The matrix A has eigenvalues -3 and -100, so its characteristic time

scales are 1=3 and 1=100. In fact x2�t� � e�100t , so it is negligible after

only a very short time. The explicit Eulermethodmust capture this time
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scale to remain stable. Speci®cally, G � I��tA, whose eigenvalues are
1 � 3�t and 1 � 100�t, giving a stability limit �t < 2=100. If implicit

Euler is used instead,G � �I��tA��1x�k�, whose eigenvalues are 1=�1�
3�t� and 1=�1 � 100�t�, which are both always less than one. Again,

the implicit Euler method is always stable.

2.8.3 Higher-Order Methods

The Euler methods are simple to implement and convenient for intro-

ducing the concepts of simplicity, accuracy, and stability, but they are

not necessarily the most ef®cient for solving real problems. For ex-

ample, if an implicit method is required, the Adams-Moulton second-

order formula (AM2) is much preferable. This formula uses the trape-

zoid rule rather than the rectangle rule to evaluate the integral and

therefore has second-order accuracy. The accuracy of IVP methods

is usually given by a number p, the exponent in the expression � �
O��tp�. Therefore, the Euler methods have p � 1 and AM2 has p � 2.

The formula for this method is

x�k�1� � x�k� � �t

2

�
f�x�k�1�; t�k�1��� f�x�k�; t�k��

�
Like the backward Euler method, this formula requires the solution

of an algebraic equation for x�k�1� at each time step. Also like the

backward Euler method, it is A-stable. It is preferable to the back-

ward Euler method because it has higher accuracy, the same stability,

and requires no more work. AM2 is widely used for stiff problems.

Adams-Moulton formulas of arbitrary order are available. The third-

order formula, for example, uses f �k�1�, f �k�, f �k�1�, and f �k�2� (where
f �k� � f�x�k�; t�k��), to estimate the integral in (2.84) by polynomial ap-

proximation. These methods are not A-stable, however, and since they

are expensive, are rarely used (except in the context described later in

this section).

The second-order Adams-Bashforth (AB2) method is an explicit

method that also uses the trapezoid rule, but it extrapolates to the point

f �k�1�, using current and past values of f . AB2 approximates f �k�1� by
f �k� ��t

�
�f �k� � f �k�1��=�t

�
(linear extrapolation), so it is a two-step

scheme. Using this approximation in the trapezoid rule formula above

yields

x�k�1� � x�k� � �t

2

�
3f �k� � f �k�1�

�
The price that is paid for higher accuracy without more work is a sta-

bility limit that is twice as restrictive as the forward Euler limit, e.g.,
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for real � the stability limit is ��t < �1 instead of �2. This stricter

limit arises from the extrapolation that Adams-Bashforth uses, as seen

in Figure 2.26. Adams-Bashforth formulas of arbitrary order also are

available. The third-order formula, for example, uses f �k�, f �k�1�, and
f �k�2�.

Stability can be improved by combining an explicit method for ªpre-

dictingº x�k�1� with an implicit method for ªcorrectingº it. Such ap-

proaches are called predictor-corrector methods. Often the order

of the predictor is chosen to be one less than that of the corrector. We

denote APCn as the n � 1 order predictor combined with the n-order

corrector. For example, APC3 has the following steps:

1. A predicted value of the solution at the next time step is denoted

by x��� and computed by the AB2 formula

x��� � x�k� � �t

2

�
3f �k� � f �k�1�

�
2. This value is now corrected, using the implicit third-order Adams-

Moulton formula

x�k�1� � x�k� � �t

12

�
5f ��� � 8f �k� � f �k�1�

�
where f ��� � f�x���; t�k�1��

APC3 displays third-order accuracy with only one more function eval-

uation than explicit Euler and comparable stability. Figure 2.27 shows

the stability regions for the APC2, APC3, and APC4 methods. If ��t for

each eigenvalue of the Jacobian of f �k� is within the region, the method

is stable. If the solutions are expected to be very smooth and function

evaluations are expensive, the APC methods are very economical, be-

cause of their high-order accuracy with only two function evaluations

per time step.

Adams predictor-corrector methods are multistepmethods because

they use information from prior time steps. Runge-Kutta (RK) meth-

ods also have higher-degree accuracy than Euler, but are one-stepmeth-

ods, a useful feature in situations where one may want to change the

time-step during the course of the integration. The simplest of these,

RK2, uses the trapezoid rule to obtain second-order accuracy, extrap-

olating to f �k�1� using a simple forward Euler step: f �k�1� � f �k� �
�tf �k�. Letting

k1 � f
�
x�k�; t�k�

�
k2 � f

�
x�k� ��tk1; t ��t

�
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Figure 2.26: Stability regions for Adams-Bashforthmethods; Çx � �x;

see also Canuto et al. (2006, Fig. D.1).

the trapezoid rule formula becomes

x�k�1� � x�k� � �t

2
�k1 � k2�

RK2 is in fact identical to APC2 (because a ®rst-order Adams-Bashforth

formula is simply an explicit Euler step), but RK4, the fourth-order

Runge-Kutta formula, has a larger stability limit than the corresponding

APC4 method; see Figure 2.28. The RK4 formula is

x�k�1� � x�k� � �t

6
�k1 � 2k2 � 2k3 � k4�

in which

k1 � f
�
x�k�; t�k�

�
k2 � f

�
x�k� � 1

2
�tk1; t

�k� � 1

2
�t
�

k3 � f
�
x�k� � 1

2
�tk2; t

�k� � 1

2
�t
�

k4 � f
�
x�k� ��tk3; t�k� ��t

�
If f were independent of x, this would reduce to the Simpson's rule

formula. RK4 requires four function evaluations. Because they have
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ods; Çx � �x; APCn uses �n � 1�st-order predictor and

nth-order corrector; see also Canuto et al. (1988, Fig.

4.7).

better stability properties than APC formulas, Runge-Kutta methods

are generally preferable for nonstiff problems unless evaluation of f is

expensive. If f is stiff, AM2 is the method of choice.

2.9 Numerical Solutions of Boundary-Value Problems

2.9.1 The Method of Weighted Residuals

There are basically two ways to make a continuous problem, like an

ODE, discrete. One is to choose a ®nite number of points (values of

the independent variable) and ®nd an approximate solution at those

points. This is what we did to solve initial-value problems (IVPs). We

picked a point a distance �t from the current time step, and used var-

ious approximate integration techniques to ®nd the solution at that

point. This is a natural approach for IVPs, because the solution at each

time depends only on the solution at the immediately previous time.
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Figure 2.28: Stability regions for Runge-Kutta methods; Çx � �x; see

also Canuto et al. (2006, Fig. D.2).

The situation with boundary-value problems (BVPs) is different. In this

case, the solution at any point is coupled to the solution at all other

points in the interval because the boundary conditions are imposed

at both ends of the interval (think of a diffusion problem). So if the

solution at a point changes, so does the solution at the neighboring

points. A natural way to take this fact into account is to approximate

the solution as the sum of a ®nite number of functions, i.e., to choose a

set of functions over the interval and represent the solution as a linear

combination of those functions. A general and systematic approach

to this approximation process is given by the Method of Weighted

Residuals (MWR).

Consider the linear ODE

Lu � f�x� x 2 �a; b�

We choose a set of trial functions f�i�x�g in which to represent the



2.9 Numerical Solutions of Boundary-Value Problems 213

solution u�x� and let un�x� be the approximate solution

un�x� �
nX
j�1
cj�j�x�

For the moment we require that the solution u�x� and the trial func-

tions satisfy homogeneous boundary conditions, though it is easy to

relax this requirement. As n!1, we expect un to approach the exact

solution. For ®nite n, we expect a ®nite error, or residual, R, which we

de®ne pointwise as

R � Lun � f
Obviously, if un � u, then Lun � f , the equation is solved and R � 0.

In any case, we want R to be as small as possible. In what sense do we

want R to be small? We choose a second set of functions, the weight

functions or test functions f i�x�g, and require that

�R; i� � 0; i � 1;2; : : : ; n (2.88)

This condition is equivalent to requiring that the residual be orthogonal

to all of the test functions, with respect to the chosen inner product.

We expect that an approximate solution un�x� that satis®es these con-

ditions will converge to the exact solution as n!1 because a function

that is orthogonal to in®nitely many basis functions must be zero. Us-

ing the expressions for R and un, the condition becomes

nX
j�1
�L�j�x�; i�x��cj � �f �x�; i�x��; i � 1;2; : : : ; n

Setting

Aij � �L�j�x�; i�x�� (2.89)

and

bi � �f �x�; i�x�� (2.90)

results in the linear algebraic system Aijcj � bi. We know, of course,

how to solve this. Once we have done so, we have the coef®cients cj in

the series for un and therefore we have our solution.

As yet, the trial and test functions have been left unspeci®ed. We

already have introduced several examples of trial functions and shall

shortly see another. As for test functions, there are two common

choices, which lead to two types of formulations:
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1. Galerkin:  i�x� � �i�x�. If the trial functions are orthogonal,

this approach simply forces the ®rstn terms in the representation

of R in the trial function basis to vanish.

2. Collocation:  i�x� � ��x � xi�, where fxig; i � 1;2; : : : ; n is a

set of collocation points. Since �R; ��x � xi�� � R�xi�, the
collocation method simply requires the residual to be zero at the

chosen set of points.

We introduce a number of speci®c MWR implementations using the

model problem

y 00 �y � x � 1 y�0� � �1 y�1� � 1 (2.91)

Since the boundary conditions are not homogeneous, let u � y��2x�
1�. Now u�0� � u�1� � 0 and the equation becomes

u00 �u � �x (2.92)

Galerkin Method

Finite element Galerkin method. In this method, the trial functions

are low-order piecewise polynomials localized to small subsets of the

domain, known as the elements, and are zero elsewhere. Consider the

space L2�0;1� and the set of functions �i�x� where

�0�x� �
8<:1�

x
h ; 0 � x � x1

0; otherwise

�j�x� �

8>>><>>>:
1� j � x

h ; xj�1 � x � xj
1� j � x

h ; xj � x � xj�1
0; otherwise

j � 1; N � 1

�N�x� �
8<:1�N �

x
h ; xN�1 � x � xN

0; otherwise

with xj � jh and h � 1=N. These functions are called ªhatº functions

and are shown in Fig. 2.29 for N � 2. Observe that �j�x� and �j�1
are nonzero in overlapping regionsÐthese regions are the ªelementsº

to which the name of the method alludes. These functions are not

orthogonal. Attractive features of this set are that the functions are

spatially localized (important for multidimensional problems in com-

plicated domains) and simple, and that the coef®cients cj are the actual

values of the (approximate) solution at the points xj : cj � un�xj�.



2.9 Numerical Solutions of Boundary-Value Problems 215

0

0:5

1

0 0:5 1

�0�x� �1�x� �2�x�

x

2h

Figure 2.29: Hat functions for N � 2.

For (2.92), the boundary conditions u�0� � u�1� � 0 obviate the

use of �0 and �N in the basis, since they do not satisfy the boundary

conditions. In the Galerkin approach,  i�x� � �i�x�, so the weighted

residual conditions become

�R; i� �
nX
j�1

Z 1

0
��00j ��j��idx cj �

Z 1

0
�x�idx � 0; i � 1;2; : : : ; n

where n � N � 1. Thus

Aij �
Z 1

0
��00j ��j��idx

� �0j�i

���1
0
�
Z 1

0
���0j�0i ��j�i�dx

�

8>>><>>>:
� 2
h � 2h

3 ; i � j
1
h � h

6 ; j � i� 1

0; otherwise

and

bi �
Z 1

0
�x�idx � �ih2

Note that integrating by parts is unnecessary if we are willing to deal

with the delta function nature of �00 for the hat functions. Now we

have a linear algebra problem Aijcj � bi, which can be solved by LU

decomposition, for example. For this particular choice of basis, A has a
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Figure 2.30: Approximate solutions to (2.92) using the ®nite ele-

ment method with hat functions for N � 6 and N � 12.

The exact solution also is shown.

special structure: only the diagonal elements and those just above and

below the diagonal are nonzero. Such a matrix is called tridiagonal

and can be LU decomposed quickly, i.e., inO�n� operations, since most

of its entries are already zero. In general, an n�nmatrix that only has

� n nonzero elements is said to be sparse. Because the trial functions

in this case are piecewise linear, the L2 norm of the error kun �uk2
decays rather slowly as n increases: kun �uk2 � O� 1

n2 � as n ! 1.
Themaximum (L1) error decays evenmore slowly: kun �uk1 � O� 1

n1 �

as n ! 1 (Hughes, 2000; Strang and Fix, 2008). Figure 2.30 shows

®nite element solutions for this problem, as well as the exact solution

u�x� � �x � csc�1� sinx.

The ®nite element method bears some similarities to finite differ-

encemethods, which instead of expanding solutions in basis functions,

considers function values at distinct grid points in a domain and re-

places derivatives by difference formulas (Press, Teukolsky, Vetterling,
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and Flannery, 1992). For example, u0�x� can be approximated as

u0f �xj� �
u�xj�1��u�xj�

h
�O�h� (2.93)

or

u0b�xj� �
u�xj��u�xj�1�

h
�O�h� (2.94)

where xj and h are de®ned as above. These two equations are known

as forward and backward difference formulas, respectively. The

central difference formula for the ®rst derivative is given by

u0c�xj� �
u�xj� 1

2
��u�xj� 1

2
�

h
�O�h2� (2.95)

These formulas are easily veri®ed by Taylor expansion. Applying this

formula twice gives the central difference formula for the second deriva-

tive

u00c �xj� �
u�xj�1�� 2u�xj��u�xj�1�

h2
�O�h2� (2.96)

Using this formula to approximate the second derivative in (2.92) yields

the following set of equations

u�xj�1�� 2u�xj��u�xj�1�
h2

�u�xj� � �jh; j � 1;2; : : : ; n

with u�x0� � u�xn�1� � 0. For comparison, writing the ®nite element

formulation above in the same format gives

u�xj�1�� 2u�xj��u�xj�1�
h2

� 4u�xj�1��u�xj�� 4u�xj�1�
6

� �jh j � 1;2; : : : ; n

Observe that the term corresponding to the second derivative is iden-

tical in the two cases, as is the right-hand side. In many situations,

®nite difference and ®nite element formulations lead to similar sets of

discretized equations. A great advantage of the ®nite element method,

however, is its ¯exibility in dealing with multidimensional problems in

complex geometries, as one does not need to developmultidimensional

analogues of the difference formulas.

Fourier-Galerkin method and eigenfunction expansion. Here, in-

stead of the hat functions, we use the sine functions as trial and test

functions, i.e., �j�x� � sin j�x; we seek a solution in the form of a
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truncated Fourier sine series. In the present case these trial functions

are eigenfunctions of L. Choosing the trial functions to be the eigen-

functions of the linear operator is called eigenfunction expansion

and in this situation the matrix A de®ned by (2.89) becomes diagonal.

For the example

Aij �
Z 1

0
��00j ��j��idx � �j

2�2 � 1

2
�ij

bi �
Z 1

0
�x�idx � ��1�

i�1

i�

The diagonal nature of A makes the solution procedure for c simple

once the above integrals have been performed

cj � 2��1�j�1
�1� j2�2�j�

Because cj � j�3 for large j, the L2 error scales as 1=n3. This error

is smaller than for the ®nite element method, but not as small as it

could be, because the solution to the problem is not a smooth periodic

function, as the use of the Fourier basis implicitly assumes.

Legendre-Galerkin method. The trigonometric functions used in the

previous example were the eigenfunctions of a regular Sturm-Liouville

problem. What happens if we instead use the eigenfunctions of a sin-

gular Sturm-Liouville problem, for example the Legendre polynomials?

Our example problem is set in the domain �0;1�, while the natural do-

main for Legendre polynomials is ��1;1�, so we change coordinates,

letting z � 2x � 1, which gives the new equation

4
d2u

dz2
�u � �1

2
�z � 1�; u��1� � u�1� � 0

We let �j�z� � Pj�1�z�, so

un�z� �
n�1X
j�0
cj�1Pj�z�

The Legendre polynomials do not satisfy the boundary conditions, so

we need to use a slightly modi®ed approach, called the Galerkin tau

method:

1. Impose the weighted residual conditions only for i � 1;2; : : : ; n�2
�R;�i� � 0; i � 1; : : : ; n� 2

This gives n� 2 equation for the n unknowns cj .
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2. Supplement these equations with the expressions for the bound-

ary conditions on un

un��1� � 0 =)
n�1X
j�0
Pj��1�cj�1 � 0

un�1� � 0 =)
n�1X
j�0
Pj�1�cj�1 � 0

Now the ®rst n � 2 rows of A and b contain the weighted residual

equations, and the last two rows the equations needed to satisfy the

boundary conditions.

To construct the equations resulting from the weighted residual

conditions, the following properties of Legendre polynomials are rele-

vantZ 1

�1
Pn�x�Pm�x� dx � 2

2n� 1
�mn

P 0j�x� �
j�1X

k�0;j�k even

�2k� 1�Pk�x�

P 00j �x� �
j�1X

k�0;j�k odd

1

2
�2k� 1��j � k��j � k� 1�Pk�x�

These can be derived from (2.27)±(2.30).dz For the sample problem,
these results can be used to yield

Ai�1;j�1 � 4

Z 1

�1

� j�1X
k�0

j�k odd

1

2
�2k� 1��j � k��j � k� 1�Pk�z�� Pj�z�

�
Pi�z� dz

� 4

j�1X
k�0

j�k odd

1

2
�2k� 1��j � k��j � k� 1�

2

2k� 1
�ik � 2

2i� 1
�ij

for i � 0; n� 3, j � 0; n� 1 and

bi�1 �
Z 1

�1
�1
2
�z � 1�Pi�z� dz

�
Z 1

�1
�1
2
�P0�z�� P1�z��Pi�z� dz

� ��i0 � 1

3
�i1
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Figure 2.31: Dependence of
��c�j��� on j for the Legendre-Galerkin

approximation of (2.92) with n � 10.

for i � 0; n� 3. The expressions for the boundary conditions lead to

An�1;j�1 � ��1�j An;j�1 � 1 bn�1 � 0 bn � 0

We do not plot the comparison between approximate and exact so-

lutions for this case, because even for n � 5, the two are visually in-

distinguishable. Rather, Figure 2.31 shows jcjj versus j for n � 10.

For j � 4, the plot is nearly a straight line on a semilog plot, indicat-

ing that cj decays exponentially with j. This exponential or spectral

convergence is characteristic of MWR methods that use trial functions

chosen to be eigenfunctions of a singular Sturm-Liouville problem (Got-

tlieb and Orszag, 1977). For this reason these methods are often called

spectral methods. The rapid convergence re¯ects the fact that the

Galerkin approximation yields a solution very close to the truncated

Fourier series of the solution in the trial function basis. The very high

accuracy of spectral methods does come at a costÐthe matrix A is not

sparse so it cannot generally be factorized in O�N� operations.

Collocation Method

Galerkin methods require evaluation of many integrals of products of

trial functions. This fact is particularly cumbersome in nonlinear prob-

lems. In the collocation method, the integrals of (2.88) are simpli®ed
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greatly by the fact that the test functions are delta functions. Another

attractive feature of the collocation approach is that the solution can be

directly represented by its values at the collocation points, rather than

as coef®cients in a series. To illustrate the structure of a collocation

formulation, consider the trial function set f�1�x�;�2�x�;�3�x�g and
three collocation points x1; x2; x3. The approximate solution is thus

un�x� � c1�1�x� � c2�2�x� � c3�3�x�. The coef®cients c1 � c3 are

uniquely determined if the values of un are known at three points, as

we can see by writing in matrix form the equations for the values of un
at the collocation points264�1�x1� �2�x1� �3�x1�

�1�x2� �2�x2� �3�x2�

�1�x3� �2�x3� �3�x3�

375
264c1c2
c3

375 �
264un�x1�un�x2�

un�x3�

375
This equation can bewritten Sc � U , where S is the (invertible) transfor-
mation that relates the coef®cient vector c, with the vector of solution

values at the collocation points U

c �
h
c1 c2 c3

iT
U �

h
un�x1� un�x2� un�x3�

iT
We also can write the equations for dun=dx at the collocation points264�

0
1�x1� �02�x1� �03�x1�
�01�x2� �02�x2� �03�x2�
�01�x3� �02�x3� �03�x3�

375
264c1c2
c3

375 �
264u

0
n�x1�

u0n�x2�
u0n�x3�

375
or Sdc � U 0. Using the fact that c � S�1U , we can write U 0 � SdS�1U
or U 0 � DnU , where Dn � SdS�1 is called the collocation differen-

tiation matrix. With this formula, we can compute the derivative of

the function un (evaluated at the collocation points) directly from the

function values at the collocation points. All of the information about

what basis functions have been used is absorbed into the operator Dn.

Similarly, the second derivative matrix is simply D2
n. Note that within

the space of functions that are spanned by the set of trial functions,

the differentiation is exact. For example, if we use a polynomial ba-

sis, the derivative of any quadratic function is evaluated exactly by the

collocation differentiation operator constructed above.

The choice of collocation points depends on the basis functions and

is based on the following idea. A weighted integral (inner product) of

functions

�u;v�w �
Z b
a
u�x�v�x�w�x� dx
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can be approximated as a sum

�u;v�w �
nX
j�0
u�xj�v�xj�wj (2.97)

where wj � w�xj� in general. It can be shown that for certain choices

of u�x� and v�x�, the points xj and weights wj can be chosen so that

(2.97) is exact. These points are the ideal choice for collocation points.

For example, let u and v be periodic functions that can be written

as truncated Fourier series

u�x� �
n=2�1X
k��n=2

Ãuke
ikx; v�x� �

n=2�1X
k��n=2

Ãvke
ikx

in the domain 0 < x < 2� . Equation (2.97), modi®ed to exclude the

term j � n, which is redundant due to periodicity, yields the exact

integral if xj � 2�j=n and wj � 2�=n. Similarly, if u and v are poly-

nomials of degree � n, (2.97) can be made exact using the Gaussian

integration formulas. Canuto et al. (2006) provide a detailed dis-

cussion.

Chebyshev collocation. Chebyshev polynomials are a particularly pop-

ular choice as trial functions for the collocation method. These func-

tions are the solutions to the Sturm-Liouville equation

�1� x2�
d2y

dx2
� xdy

dx
� �2y � 0 (2.98)

When � is an integer, this equation always has a polynomial solution

called a Chebyshev polynomial (of the ®rst kind) T��x�; see Exercise

2.36. These polynomials form an orthogonal basis in the domain �1 <
x < 1 with the weight functionw�x� � �1� x2

��1=2
and have the form

T0�x� � 1

T1�x� � x
T��1 � 2xT��x�� T��1�x�

As with Legendre polynomials, Chebyshev polynomials also arise from

Gram-Schmidt orthogonalization of the set f1; x;x2; : : :g, but now us-

ing the weighted inner product. A particularly important property of

Chebyshev's equation is that when using the coordinate transformation

x � cos�, it reduces to
d2y

d�2
� �2y � 0
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and the Chebyshev polynomials become

T���� � cos ����

in the domain �� < � < � . In this domain, the optimal collocation

points are uniformly spaced, which in the original domain �1 < x < 1

results in the points

xj � cos
�j

n
; j � 0; : : : ; n

These points are very closely spaced near x � �1, making Chebyshev

collocation an attractive approach for problems in which sharp gra-

dients near boundaries are expected. The differentiation operator is

given by

Dn;lj �

8>>>>>><>>>>>>:

cl
cj

��1�l�j
xl�xj ; l � j
�xj

2�1�x2
j �
; 1 � l � j � n� 1

2n2�1
6 ; l � j � 0

�2n2�1
6 ; l � j � n

where cj � 1� �j0 � �jn.
Aswith the Legendre-Galerkinmethod, the natural setting for Cheby-

shev collocation is the domain ��1;1�. For our example problem, (2.92)

transformed into this domain, the equations of the Chebyshev colloca-

tion approximation are

4�D2
n�ijUj �Uj � �

1

2
�zi � 1�; i � 1; : : : ; n� 1

This gives n�1 equations; the additional two equations come from the

boundary conditions: U0 � Un � 0. This is a set ofn�1 algebraic equa-
tions in n � 1 unknowns and can be solved in the usual way. Because

it uses orthogonal polynomials as trial functions, the Chebyshev collo-

cation method also achieves the exponential convergence illustrated in

the Legendre-Galerkin example.

2.10 Exercises

Exercise 2.1: A linear constant coef®cient problem

Find the general solution to

Çx � Ax
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where

A �

264�1 �1 0

1 �1 �1
0 0 2

375
Express it so that only the arbitrary constants are (possibly) complex. You should be

able to solve the problem without explicitly performing any similarity transformations,

i.e., you should not need to invert any matrices.

Exercise 2.2: Phase plane dynamics of a linear problem

Find the general solution to

Çx � Ax
where

A �
"
19 �14
14 �16

#
Sketch the dynamics on the phase plane in the original coordinate system, being careful

to show the invariant directions and the stability along those directions.

Exercise 2.3: Members of function spaces

Determine which of the following functions are in the linear space spanned by the set

f1; cos2x; sin2xg.
(a) cos2 x

(b) cosx�cosx � sinx�

(c) 1� sin2 x

(d) 1� cosx

Hint: remember to look at the basic trigonometric identities.

Exercise 2.4: Weighted inner products and approximation of singular func-
tions

Consider the function f�t� � 1=t in the interval �0;1�.

(a) Show that f�t� is not in L2�0;1�, but that it is in the Hilbert space L2;w�0;1�,
where the inner product is given by

�x;y�w �
Z 1

0
x�t�y�t�w�t�dt and w�t� � t2

(b) From the set f1; t; t2; t3; t4g, construct a set of ON basis functions for L2;w�0;1�.
These are the ®rst ®ve Jacobi polynomials (Abramowitz and Stegun, 1970).

(c) Find a ®ve-term approximation to 1=t with this inner product and basis. Plot

the exact function and ®ve-term approximation. Compute the error between the

exact and approximate solutions using the inner product above to de®ne a norm.

This type of inner product is sometimes used in problems where the solution

is known to show a singularity. As your analysis will show, polynomials can be

used to get a fairly good approximation except very near the singularity.
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Hint: this problem is a good excuse to begin using a symbolic manipulation program

likeMathematica. The calculations are not hard, but they are tedious and that is exactly

the kind of problem Mathematica is good at.

Exercise 2.5: Fourier series of a real function

For a real function f�x� with Fourier series representation
P1
k��1 ckeikx , show that

the Fourier coef®cients satisfy ck � c�k.

Exercise 2.6: Fourier series of a sawtooth function

Consider the ªsawtoothº function in the domain 0 < x � 2�

f�x� �
8<:x if x < �

2� � x if x � �

Find the Fourier coef®cients ck for this function using the basis functions eikx . Show
that they decay as 1=k2 as jkj ! 1.

Exercise 2.7: Fourier series of a square wave

Repeat the above exercise, but for the ªsquare waveº function

f�x� �
8<:1 if x < �

�1 if x � �
Avoid redoing all of the integrals by using the fact that this function is simply the

derivative of the sawtooth (so its Fourier series is the derivative of that of the sawtooth).

Show speci®cally that the Fourier coef®cients decay as 1=k as jkj ! 1. Use Octave or
MATLAB to plot the 10-term approximation to this function, i.e., �10 � k � 10.

Exercise 2.8: Basis functions of the ®nite element method

Consider the hat functions described in Section 2.9.1.

(a) For N � 2, ®nd the inner products ��k�x�;�l�x��; k � 0; : : : ;N; l � 0; : : : ;N. Is
the set orthogonal?

(b) Approximate (in L2�0;1�) the function f�x� � 1� x�1� x� in terms of the hat

functions with N � 2. That is, ®nd and solve a linear system for the coef®cients

ci in the expression f�x� �P2
i�0 ci�i�x�.

Hint: use symmetry to save time evaluating integrals.

Exercise 2.9: Bessel's inequality and Parseval's theorem

Consider a function f�x�, represented in a (complete) orthonormal basis as a general-

ized Fourier series: f�x� �P1
i�0 ci�i�x�, with ci � �f �x�;�i�x��.

(a) Show that the Fourier coef®cients satisfy for any K,
PK
i�0

��ci��2 � f2. This

result is known as Bessel's inequality.

(b) Since the series converges to f�x� as K !1, show that

1X
i�0

��ci��2 � f2
This result is known as Parseval's equality or Parseval's theorem.
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Figure 2.32: Triangle wave on �0;1�.

Exercise 2.10: Fourier series of a triangle wave

Consider the Fourier sine series approximation for the triangle wave depicted in Fig-

ure 2.32.

fM�x� �
MX
n�1

an sin�n�x� x 2 �0;1�

(a) Find the coef®cients an, n � 1;2; : : :. To save time you may ®nd the following

integral formulas usefulZ
�mx � b� sin�n�x�dx � �mx � b

n�
cos�n�x�� m

�n��2
sin�n�x�Z 1

0
sin�n�x� sin�m�x�dx � 1

2
�nm; n;m � 1;2; : : :

(b) Plot the function fM�x� forM � 5;10;50 with parameter a � 0:1 to demonstrate

convergence to f�x�. How many terms are required to obtain good accuracy?

Exercise 2.11: Differentiating integrals

Use the Leibniz rule for differentiating integrals to solve the following two problems.

(a) Check that the solution to the differential equation

dy

dt
� p�t�y � q�t�

with initial condition y�0� � y0 is

y�t� � e�
R t
0 p�t

0�dt0
"Z t

0
q�t00�e

R t00
0 p���d�dt00 �y0

#
Remember to show the solution satis®es both the differential equation and initial

condition.

(b) Derive a Leibniz rule for differentiating the double integral

f�t� �
Z b�t�
a�t�

Z d�t;p�
c�t;p�

h�t;p; s�dsdp

Your answer should not contain the derivatives of any integrals.
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Exercise 2.12: Convolution theorem

(a) Use the de®nition of the Laplace transform to derive the convolution theorem

L
�Z t

0
f�t0�g�t � t0�dt0

�
� f�s�g�s�

(b) Use the de®nition of the inverse Laplace transform to derive the convolution

theorem going in the other direction

L�1�f�s�g�s�	 � Z t
0
f�t0�g�t � t0�dt0

Which direction do you prefer and why?

Exercise 2.13: Final-value and initial-value theorems

Two useful theorems are the ®nal and initial-value theorems

lim
t!1

f�t� � lim
s!0

sf �s�

if and only if sf �s� <1 for all s such that Re�s� � 0

otherwise lim
t!1

f�t� does not exist

and

lim
t!0�

f�t� � lim
s!1 sf �s�

(a) The conditions on sf �s� for the ®nal-value theorem are crucial. For the functions

below, state which satisfy the conditions and give their ®nal values.

1.
1

s

2.
1

s2

3.
1

s�s � a� Re�a� > 0

4.
1

s�s � a� Re�a� > 0

(b) What are the initial values, f�0��?

(c) Invert each of the transforms to get f�t� and check your results.

Exercise 2.14: Network of four isomerization reactions

Consider the set of reversible, ®rst-order reactions

A
k1
-*)-
k�1
B

k2
-*)-
k�2
C

k3
-*)-
k�3
D

k4
-*)-
k�4
E

taking place in a well-mixed, batch reactor. The reactions are all elementary reactions

with corresponding ®rst-order rate expressions. Let the concentration of the species

be arranged in a column vector

c �
h
cA cB cC cD cE

iT
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(a) Write the mass balance for the well-mixed, batch reactor of constant volume

dc

dt
� Kc

What is K for this problem?

(b) What is the solution of this mass balance for initial condition c�0� � c0? What

calculation do you do to ®nd out if this solution is stable?

(c) Determine the rank of matrix K. Hint: focus on the rows of K. Justify your

answer. From the fundamental theorem of linear algebra, what is the dimension

of the null space of K?

(d) What is the condition for a steady-state solution of the model? Is the steady

state unique? Why or why not?

Exercise 2.15: Network of ®rst-order chemical reactions

Consider the generalization of Exercise 2.14 to the following set of n reversible, ®rst-

order reactions

A1

k1
-*)-
k�1
A2

k2
-*)-
k�2
A3

k3
-*)-
k�3
� � �

kn�1
-*)-

k��n�1�
An

taking place in a well-mixed, batch reactor. The reaction rate for the ith reaction is

ri � kiAi � k�iAi�1
Let the concentration of the species be arranged in a column vector

c �
h
cA1

cA2
� � � cAn

iT
(a) Write the mass balance for the well-mixed, batch reactor of constant volume

dc

dt
� � � �

(b) What is the solution of this mass balance for initial condition c�0� � c0?

(c) What is the steady-state solution of the model? Is the steady state unique? Why

or why not?

(d) What calculation would you do to decide if the steady state is stable?

Exercise 2.16: Using the inverse Laplace transform formula

Establish property 4 of the Laplace transform pair given in Section 2.2.4, which states

for n � 1

df�s�

ds
� �L�tf �t��

This formula proves useful in Exercise 3.19.



2.10 Exercises 229

Exercise 2.17: ODE review

Solve the following ODEs: unless boundary conditions are given, ®nd the general solu-

tion:

(a) y0 � ex�2y (separable)

(b) Çy � y2; y�0� � 1 (separable)

(c) �y � 2x�dy � �2y � x�dx � 0 (exact)

(d) �x2 �y2�dy � 2xydx (integrating factor)

(e) xdy � �y � ex�dx � 0 (integrating factor)

Exercise 2.18: General solution to a ®rst-order linear system of ODEs

Find the general solution to Çy � Jy , where

J �

264� 1 0

0 � 1

0 0 �

375

Exercise 2.19: A linear systemÐdynamics on the phase plane

Consider the system

Çx �
"
�1 1

1 �1

#
x � h�t�

(a) Find the general solution to the homogeneous problem, i.e., with h�t� � 0. Char-

acterize its stability.

(b) Sketch the qualitative behavior of solutions on the x1 � x2 plane. Where does

this system ®t on Figs. 2.1-2.2?

(c) Now solve the inhomogeneous problem with h�t� � �1;1�T and characterize its

stability.

Exercise 2.20: Dynamics of a freely rotating rigid body

Consider the system of equations

I1 Ç!1 �!2!3�I2 � I3�
I2 Ç!2 �!3!1�I3 � I1�
I3 Ç!3 �!1!2�I1 � I2�

with I1 > I2 > I3 > 0. This set of equations describes the motion of a rigid body freely

rotating in space. The Is are the moments of inertia of the body relative to each of the

principal axes of the body and the !s are the angular velocities with respect to those

axes.

(a) If! � �!1;!2;!3� is a steady state of this system, ®nd the linearized equation

for deviations Ã! � � Ã!1; Ã!2; Ã!3� from the steady state.

(b) Find three steady states of the system that satisfy I21!
2
1 � I22!2

2 � I23!2
3 � 1.

Which are linearly stable?
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(c) Sketch, in the � Ã!1; Ã!2; Ã!3� phase space, the qualitative behavior of trajectories
that begin near each of the steady states, using the linearized equations as your

guide.

(d) Your results can be tested experimentally. The principal axes of a book are, in

order of decreasing moment of inertia, the axis passing through the front and

back covers, the right and left sides, and the top and bottom. Experimentally

assess the stability of free rotation of a book with respect to these three axes.

(You have to do something to keep the covers from ¯ying open while the book

spins.) Do the theory and experiment agree?

Exercise 2.21: Duf®ng's equation

Duffing's Equation describes the dynamics of an undamped beam

Èx � �x � x3 � 0

where x is proportional to the displacement of the middle of the beam. When � > 0

the beam buckles: the ªunbuckledº state x � Çx � 0, is unstable.

(a) The two nontrivial steady states are x � �p�; Çx � 0. Find the eigenvalues of the

linearizations around those states.

(b) In this model there is no friction so the total energy (kinetic plus elastic) is

conserved. The total energy is given by

H � Çx2

2
� �x

2

2
� x

4

4

A given initial condition will have a speci®ed value ofH, and the resulting trajec-

tory must have the same value of H for all time, so a trajectory in phase space is

a curve of constant H. Show that the trajectories near the two nontrivial steady

states are closed curves and thus that the linearized equations give the correct

qualitative behavior in this case.

Exercise 2.22: Predator-prey model

The following model describes a ªpredator-preyº system: species 1 eats the grass and

species 2 eats species 1

Çx1 � x1�1� x1 � �x2�
Çx2 � x2��x1 � 1�

In this model, � > 0 and � > 1, and x1 and x2 represent the sizes of the prey and

predator populations.

(a) There are three steady states to this model. Find them.

(b) Find the linear stability of each of the steady states. Since this is a 2-dimensional

system, the trace and determinant criterion can be used.

(c) Draw the phase-plane behavior near each of these steady states.
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ÇQ
�R

R

qr � 0

T � T0

Figure 2.33: Annulus with heat generation in the solid.

Exercise 2.23: Cell in shear ¯ow

The following differential equation arises from a model of a cell moving in a shear ¯ow

Ç� � �A� cos2�

where � is the orientation angle of the cell with respect to the ¯ow direction and A is

a parameter that is determined by the geometry and mechanics of the cell (Keller and

Skalak, 1982).

(a) For A � 0, there are four steady states in the domain 0 < � � 2� . Find them

and determine which ones are linearly stable.

(b) Draw the trajectories in phase space for A � 0, along with the steady states.

Here phase space is simply the line, and since � is periodic can alternately be

considered to be just a circle with unit radius.

(c) For A larger than a certain value, this equation has no steady-state solutions.

What is that value? What do the phase-space dynamics look like, i.e., draw a

picture, when A exceeds that critical value?

Exercise 2.24: Steady-state heat conduction in an annulus

Consider the steady-state conduction of heat in a solid annular region shown in Fig-

ure 2.33. There is uniform heat generation in the solid. The heat-generation rate is

given by
ÇQ � S0�1���T � T0��

in which � is a dimensional constant. The inner wall of the annulus is insulated and

the outer wall is at constant temperature T0. The material has thermal conductivity k.

(a) Write the steady-state heat equation with the source term.

(b) De®ne dimensionless variables

� � r
R

� � k�T � T0�
S0R2

�2 � �S0R
2

k

Show that the model reduces to

1

�

d

d�

 
�
d�

d�

!
� �2� � �1
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with boundary conditions

� � 0 � � 1

d�

d�
� 0 � � �

(c) What is the complementary function?

(d) By inspection, what is a particular solution?

(e) Using the two boundary conditions, specify the two unknowns in the comple-

mentary function.

(f) Plot ���� for the following values

� � 0:8 � � �1;3;5;7;7:5�

Exercise 2.25: Existence of a positive steady-state temperature pro®le

Consider Exercise 2.24 again.

(a) Plot and compare the solution ���� if you set � � 0:8 and � � 7:5;8:0;8:5;10?
What happens as you increase � in this problem?

(b) Look again at how you solve for the constants c1; c2. What are you assuming for

this solution to exist?

(c) For � values ranging from 0 to 0:99, ®nd and plot the critical value of � such

that the solution for c1; c2 does not exist. If you exceed this critical value of �,
what do you think happens in the transient heat-conduction problem?

Exercise 2.26: Flow through a porous medium in a tube

Brinkman's modi®cation of Darcy's law for ¯ow in porous media is

�rP �
�
�

�

�
v� �r2v � 0

For axial ¯ow in a tube containing a porous medium this becomes

1

r

d

dr

�
r
dvz
dr

�
� vz
�
� ��P

�L

in which
� � permeability of the porous medium

� � viscosity of the ¯uid

�P � pressure difference + gravity driving force

vz � z-component of the ªsuper®cial velocityº v

R � radius of tube

L � length of tube

Reasonable boundary conditions are vz�R� � 0 and vz�0� <1.
(a) Introduce a dimensionless velocity and radius

� � vz�L

�PR2 � � r
R

and rewrite the differential equation and the boundary conditions in terms of

the dimensionless variables. Howmany dimensionless parameters does the new

differential equation contain?
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(b) Obtain a particular solution of the differential equation obtained in (a) by inspec-

tion.

(c) Obtain the solution of the homogeneous equation; it should contain two con-

stants. One constant can be immediately evaluated from the boundary condition

at � � 0. Why?

(d) Evaluate the remaining constant using the boundary condition at � � 1. Write

the full solution ���� to the differential equation. Plot ���� for permeability

�=R2 � 0:01;0:1;0:3;1:0. Also include on this plot the velocity pro®le for Hagen-
Poiseuille ¯ow.

(e) Evaluate the average dimensionless velocity h�i and show that

h�i �
R 1
0 �����d�R 1

0 �d�

� �

R2

241� 2
p
�

R

I1
�
Rp
�

�
I0
�
Rp
�

�
35

Plot h�i versus �=R2 with a log scale for the x-axis for 10�4 � �=R2 � 102.

(f) Show that in the limit of small permeability, �, the result in (e) simpli®es to

h�i � �
R2 (which is exactly the result from Darcy's law).

(g) Show that in the limit as � ! 1, h�i � 1
8 (which is exactly the result for ¯ow in

an empty tube).

Exercise 2.27: Laguerre's equation

The ODE

xy00 � �1� x�y0 � �y � 0

where � is a constant, is called Laguerre's equation. It arises in determining the wave

function for the electrons of a hydrogen atomÐthe orbitals that you learn about in

quantum mechanics (and thus the structure of the periodic table) emerge in part from

the solutions to this equation.

(a) Show that x � 0 is a regular singular point.

(b) Determine the roots of the indicial equation and one solution to this problem

(for x > 0) using the method of Frobenius.

(c) Show that when � is a positive integer, this solution reduces to a polynomial.

These polynomials are called the Laguerre polynomials.

Exercise 2.28: Hermite's equation

Hermite's differential equation is

u00 � 2xu0 � 2ku � 0

Among other places, it arises in the solution of SchrÈodinger's equation for a particle in

a potential well.
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(a) Write Hermite's equation as Lu��u � 0, where � � 2k and L takes the standard

form of a Sturm-Liouville operator, Lu � 1
w�x�

�
d
dx

�
p�x�dudx

�
� r�x�u

�
, with

w�x� � e�x2
. What are p�x� and r�x�?

(b) Consider the inner product

�a; b�w � lim
`!1

Z `
�`
a�x�b�x�w�x�dx

where w�x� is as given above. What boundary conditions must we impose in

the limit ` !1 so that L is self-adjoint, i.e., so that �Lu;v�w � �u; Lv�w?

(c) The point x � 0 is an ordinary point for this equation. Find the general solution

by series expansion around this point. Show that if k is an integer, one solution

to the equation is a polynomial. These polynomials are known as the Hermite

polynomials.

Exercise 2.29: Series solution

Find the general solution to the differential equation

�x2 � x�u00 � xu0 �u � 0

Start by seeking a solution of Frobenius form, expanding around x � 0.

Exercise 2.30: Another series solution

Find the general solution to

5x2y00 � xy0 � �x3 � 1�y � 0

Expand around x � 0 and keep up to quartic terms.

Exercise 2.31: Bessel's equation: singular solution

The Bessel equation of order zero is

x2y00 � xy0 � x2y � 0

and the associated Cauchy-Euler equation is

x2y00 � xy0 � 0

(a) Find the general solution to this Cauchy-Euler equation.

(b) Motivated by this result, seek a second solution to the Bessel equation, of the

form y2�x� � J0�x� lnx � g�x�, where g�x� has a power series solution. It will
be convenient to note that g is even and write it as g�x� �P1

n�0 cn
�
x
2

�2n
. Find

the ®rst two terms in the power series for g.

Exercise 2.32: Sturm-Liouville problem with mixed boundary condition

Consider the Sturm-Liouville eigenvalue problem

u00 � �u � 0; u�0� � 0; u�1��u0�1� � 0

Find the eigenfunctions of this problem and the nonlinear algebraic equation that deter-

mines the eigenvalues �. (This equation cannot be solved analytically.) Draw a sketch

that indicates that there will be an in®nite number of these eigenvalues, and use your

sketch to propose an approximation for the eigenvalues that is valid in the situation

�� 1.



2.10 Exercises 235

Exercise 2.33: A higher-order variable coef®cient problem

Find the general solution to the third-order equation

x3y000 � 3x2y00 � 3xy0 � 0

Exercise 2.34: A fourth-order variable coef®cient ODE

The following differential equation arises in the analysis of time-dependent ¯ow of a

polymeric liquid �
x2D2 � x2 � 2� 2xD

��
D2 � 2iD � 3

�
y � 0

where D � d
dx : This equation has solutions of Frobenius form. Find the roots of the

indicial equation.

Exercise 2.35: Legendre's equation

Legendre's equation is

�1� x2�y00 � 2xy0 � l�l� 1�y � 0

The point x � 0 is an ordinary point for this equation; seek a series solution, expanding

around this point. Find the two solutions that make up the general solution. These will

have the form

y1�x� � 1� l�l� 1�

2!
x2 � �l� 2�l�l� 1��l� 3�

4!
x4 � � � �

y2�x� � x � �l� 1��l� 2�

3!
x3 � �l� 3��l� 1��l� 2��l� 4�

5!
x5 � � � �

By examining the recursion relation, show that for every integer l, one of these series
will truncate, becoming a polynomial. These are the Legendre polynomials.

Exercise 2.36: Chebyshev's equation

Chebyshev's equation is

�1� x2�u00 � xu0 � �2u � 0

Its solutions are important in the approximation of functions and in numerical solution

methods for boundary-value problems.

(a) Put this in the form of a Sturm-Liouville problem Lu � �u � 0 in the domain

��1;1�, with � � �2;w�x� � �1 � x2��1=2. What boundary conditions must u
and u0 satisfy at x � �1 for self-adjointness to hold?

(b) By expanding in a power series about x � 0, obtain two LI solutions of this

equation. Show that when � is a nonnegative integer, one of these is always a

polynomial of degree � . Because these satisfy a Sturm-Liouville problem, these

polynomials form an orthogonal basis for L2;w��1;1�, withw�x� � �1�x2��1=2.

(c) The points x � �1 are regular singular points for this equation. As a ®rst step

toward ®nding the behavior of the solution near these points, ®nd the roots of

the indicial equation for a solution in Frobenius form expanded around x � 1.
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Exercise 2.37: Laplace's equation as second-order, variable coef®cient ODEs

Express the radial part of Laplace's equation r2y � y � 0 in the form a2�x�y00 �
a1�x�y0 � a0�x�y � 0.

(a) What are a0; a1; a2 for one-dimensional rectangular coordinates, cylindrical co-

ordinates, and spherical coordinates?

(b) What are two linearly independent solutions for each coordinate system?

Exercise 2.38: How many solutions?

Consider the second-order differential equation

d2u

dx2
� 0 0 < x < 1

(a) Howmany linearly independent solutions exist for the single boundary condition

u�0� � u�1�

(b) How many linearly independent solutions exist for the two boundary conditions

u�0� � 0 u�1� � 0

(c) How many linearly independent solutions exist for the two boundary conditions

du

dx
�0� � 0

du

dx
�1� � 0

(d) What can you conclude about the dimension of the null space of this second-

order differential operator and the number of boundary conditions?

Exercise 2.39: Heat conduction with equal temperatures at the ends

Consider the differential equation for steady-state heat conduction with heat genera-

tion, f�x�, in a one-dimensional slab

d2T

dx2
� f ; 0 < x < 1

Suppose we set up the problem with a temperature controller that keeps the ends of

the body at the same temperature.

(a) Identify the appropriate differential operator, L, and associated boundary func-

tional B1, so this problem can be written as

LT � f
B1T � 0 (2.99)

(b) Notice that we do not have enough boundary conditions to expect to be able to

solve (2.99) uniquely. De®ne the adjoint operator and adjoint boundary func-

tionals so that

�Lu;v� � �u; L�v�
for every admissible u�x� and v�x�. Notice that since you are missing a bound-

ary condition onu�x�, you will require three boundary conditions onv�x�. What

are L�; B�1 ; B
�
2 ; B

�
3 ?
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(c) What are the null spaces of L and L� with their associated boundary conditions?

For which f can (2.99) be solved? Is the solution unique? If not, what is the form

of all solutions?

(d) Solve (2.99) using any method at your disposal. Laplace transforms would work,

for example. Check your solution by substituting into the differential equa-

tion and boundary condition. Does your solution agree with the existence and

uniqueness result you determined previously?

(e) What is the Green's function for this problem, i.e., identify the function g ap-

pearing in the T�x� solution as

T�x� �
Z 1

0
g�x; ��f ���d� � terms not involving f

Exercise 2.40: Solvability conditions and set of solutions for a second-order
operator

Consider the second-order differential operator and two boundary conditions

Lu � �d
2u

dx2
�u �� < x < �

B1u � u����u����

B2u � du
dx
���� du

dx
����

(a) Find the adjoint operator and boundary conditions, L�, B�1 , and B
�
2 .

(b) Find the null spaces N�L� and N�L��.

(c) For what f can you solve the nonhomogeneous problem

Lu � f�x�
B1�u� � 1 B2�u� � 2

answer: �f ; sinx� � �1 �f ; cosx� � 2

(d) For f satisfying this solvability condition, what is the set of all solutions?

answer: u�x� � �
Z x
��
f��� sin�x���d��a cosx�b sinx a;b 2 R

Exercise 2.41: Steady-state temperature pro®le

Solve the steady-state heat-conduction problems in Examples 2.11 and 2.12 using Laplace

transforms.

Txx � f Txx � f
T�0� � T0 Tx�0� � 0

T�1� � T1 Tx�1� � 0
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Exercise 2.42: Heat-transfer boundary conditions

Consider the one-dimensional steady-state heat-conduction problem

�kd
2T�x�

dx2
� Ãf�x�

d2T

dx2
� f f � � Ãf=k

Consider Newton's law of cooling boundary conditions

h0�Te0 � T�0�� � �kTx�0�
h1�T�1�� Te1� � �kTx�1�

in which h0, h1 are the heat-transfer coef®cients at the two ends, and Te0, Te1 are the

temperatures providing the heat-transfer driving forces at the two ends.

(a) Write this problem as

DT � f
B1T � 1 B2T � 2

What are D, B1 and B2, and 1 and 2?

(b) Solve for the steady-state temperature pro®le.

(c) For what f�x� does the solution exist? For these f�x�, is the solution unique?

Exercise 2.43: Orthogonality of Sturm-Liouville eigenfunctions

Show that two eigenfunctions u1 and u2 of a Sturm-Liouville problem �pu0�0 � ru �
�wu � 0 are orthogonal if the inner product weighted with w is used. Consider only

zero boundary conditions u�a� � u�b� � 0. Multiply the equation for u1 (setting

� � �1) by u2; multiply the equation for u2 (setting � � �2 � �1) by u1; subtract and

integrate over the interval. Use the boundary conditions and integration by parts to

prove orthogonality.

Exercise 2.44: The convection-diffusion operator

For problems with convection and diffusion, an important differential operator is

Lu � �d
2u

dx2
� Pe

du

dx

with boundary condition u�0� � u�1� � 0. Pe is the Peclet number, measuring the

relative importance of convection and diffusion.

(a) Find the adjoint of this operator, ®rst with an inner product with a constant

weight functionw�x� � 1, and thenwith theweight functionw�x� � exp��Pe x�.

(b) Solve the eigenvalue problem Lu� �u � 0 for arbitrary Pe.

Hint: since the equation has constant coef®cients, express the solution asu�x� �
ei�x and ®nd �. Plot the ®rst ®ve eigenfunctions for Pe � 5.
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Exercise 2.45: Testing a CSTR operating condition for stability23

The reaction

A
k
-! B r � kcA � k0e�E=T cA

is carried out in a CSTR. The mass and energy balances are given by

dcA
dt

� cAf � cA
�

� kcA
dT

dt
� Tf � T

�
� �HR

� ÃCP
kcA

Find the three steady states corresponding to the conditions in the following table,

where � � VR=Qf . Determine whether each of these three steady states is stable or

unstable.

Parameter Value Units

E 7550 K

Tf 298 K

cAf 3 kmol/m3

�HR �2:09� 108 J/kmol

k0 4:48� 106 1/s

ÃCP 4:19� 103 J/(kg K)

� 103 kg/m3

VR 18� 10�3 m3

Qf 60� 10�6 m3/s

Exercise 2.46: Choosing an ODE solver

You are given the task of modeling the dynamics of a chemical reactor in which a large

number of reactions are occurring. The rate constants for the reactions vary between

1s�1 and 107s�1. Will you base your code on a fourth-order Runge-Kutta scheme, an

explicit Euler scheme, or an Adams-Moulton scheme? Why?

Exercise 2.47: Numerical stability criterion for RK2

Derive the numerical stability criterion for integrating the single equation Çx � �x with

the second-order Runge-Kutta method. Allow � to be complex.

Exercise 2.48: Dynamics of a nonlinear problem

Consider the pair of ODEs

Çy1 � �1�y1�� 10y2
1y2

Çy2 � �0:05y2
1y2

with initial conditions y1�0� � 0:2; y2�0� � 1.

(a) Find the Jacobian of the RHS at t � 0. Show, using the eigenvalues of the Jaco-

bian, that the you expect the problem to be stiff.

23See also Exercise 6.7 in Rawlings and Ekerdt (2020).
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(b) Write a computer program to use the Adams-Moulton second-order method to

solve the initial-value problem. Integrate the equations out to t � 20 and plot

the solutions. Can you ®nd any stability limit on the time step?

(c) Write a second-order Runge-Kutta program and attempt to use it for the above

problem. What time step do you have to use to get a stable result?

(d) Modify your RK code to use variable time steps. Use the criterion that �t <
tmin=5. Estimate tmin from the values of y=Çy at each time step.

Exercise 2.49: Solutions of difference equations

When examining the numerical stability of integration schemes, as well as in many

other situations, we run across the linear constant-coef®cient difference equation

aMy
�n�M� � aM � 1y�n�M�1� � : : :� a0y�n� � 0: (2.100)

For example, y�n� could be the value of y at the nth time step of some process.

(a) Show that this equation can be written in vector form

x�n�1� � Gx�n� (2.101)

What are x and G in terms of the y and a coef®cients?

(b) Given the initial condition x�0�, ®nd the solution to this equation (i.e., x�n� in
terms of n and x�0�) in the situation where G has distinct eigenvalues �.

(c) Repeat for the case where

G �
"
� 1

0 �

#

(d) What is the general criterion for asymptotic stability of the steady state x � 0 ?

Exercise 2.50: Numerical integration for undamped oscillations

Second-order initial-value problems Èu � f�u� are important for many applications.

For the speci®c case f�u� � �q2u do the following:

(a) Find the exact general solution.

(b) By letting Çu � v convert the equation to a pair of ®rst-order equations and show

that the forward Euler method is always unstable for integrating these.

(c) Consider the following numerical integration formula

u�n�1� � 2u�n� �u�n�1� � ��t�2f�u�n��
For f�u� � �q2u ®nd a quadratic equation for the growth factor G for this

method, i.e., look for solutions of the formu�n�1� � Gu�n�. Up towhat threshold
�q�t�2 are the numerical solutions stable?

(d) By expanding all terms in Taylor series around time step n, ®nd the local trun-

cation error p of this formula (the ®rst power of �t that does not cancel).
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Exercise 2.51: The velocity Verlet algorithm of molecular dynamics simu-
lation

The velocity Verlet algorithm is very commonly used to perform numerical time

integration for molecular dynamics simulations. Consider the numerical stability prob-

lem for a very simple case

Çx � v Çv � ax
where a 2 R.

(a) What property must a satisfy so that the true solution x � 0; v � 0 is stable?

(b) For this problem, the velocity Verlet algorithm becomes

x�n�1� � x�n� � v�n��t � 1

2
ax�n��t2

v�n�1� � v�n� � 1

2
�ax�n� � ax�n�1���t

Put this expression in the form

z�n�1� � Gz�n�

where z � �x;v�T .

(c) Find the criteria that a�t2 must satisfy for numerical stability of the algorithm.

Exercise 2.52: Stability of predictor-corrector methods

Denote the general (up to fourth-order) predictor-corrector formulas for the differential

equation Çx � ax by

x��� � x�n� �w
�
p1x

�n� � p2x�n�1� � p3x�n�2� � p4x�n�3�
�

x�n�1� � x�n� �w
�
c1x

��� � c2x�n� � c3x�n�1� � c4x�n�2�
�

in whichw � a�t. The coef®cient vectors of the ®rst four Adams-Bashforth predictors

and Adams-Moulton correctors are as follows

pf1g � �1;0;0;0� cf1g � �1;0;0;0�
pf2g � �1=2��3;�1;0;0� cf2g � �1=2��1;1;0;0�
pf3g � �1=12��23;�16;10;0� cf3g � �1=12��5;8;�1;0�
pf4g � �1=24��55;�59;37;�9� cf4g � �1=24��9;19;�5;1�

Show that combining the two steps gives

x�n�1� � x�n��1�wc1 �w�c1wp1 � c2��� x�n�1��w�c1wp2 � c3���
x�n�2�

�
w�c1wp3 � c4�

�� x�n�3��wc1wp4�
Let z�n� � �x�n�; x�n�1�; x�n�2�; x�n�3��, and ®nd matrix G such that

z�n�1� � G�w�z�n�

The eigenvalues of G�w� then determine the stability of the method.
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Figure 2.34: Stability regions for Adams predictor-corrector meth-

ods; Çx � �x; APCn' uses nth-order predictor and nth-

order corrector.

Exercise 2.53: Stability boundary of predictor-corrector methods

Given G�w� from the previous exercise, to map out the boundary of the stability re-

gion, consider ! � ei� for 0 � � � 2� , so ! has unit magnitude, and solve the single

algebraic equation det�G�w� �!I� � 0 for the complex value w as a function of pa-

rameter �. The stability boundary of the APC method then comprises these values of

w. That is how Figure 2.27 was prepared, for example.

Now consider the class of predictor-corrector methods that use the same order in

the predictor and corrector. Recall the methods in Figure 2.27 used a predictor with

order one less than the corrector. Find the stability boundaries for ®rst-order through

fourth-order methods. Compare your calculated results to Figure 2.34. Contrast the

stability results displayed in Figures 2.27 and 2.34. From a stability standpoint, which

class of methods do you prefer and why?

Hints:

You will need to increase the � interval to �0;4�� to close the stability boundary. Why

do you suppose this increased interval is required? Consider mapping out the square

root function on the unit circle using � 2 �0;2��. Does this boundary close?
You will need to clip off some unstable regions made by loops in the boundary to

match Figure 2.34.
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Exercise 2.54: Airy's equation

The eigenvalue problem

y00 � �x � ��y � 0

arises in optics, quantummechanics, and hydrodynamics, and is known as Airy's equa-

tion.

(a) If only an estimate of the smallest (magnitude) eigenvalue � is needed, a one-term
Galerkin approximation can be useful. In quantum mechanics, where eigenval-

ues have the interpretation of energy levels, this approach is a version of the

ground state approximation. Use a one-term Galerkin approximation using a

sine function basis,�j � sin j�x, to estimate the ®rst eigenvalue of Airy's equa-

tion with boundary conditions y�0� � y�1� � 0. That is let y�x� � c1 sin�x.

(b) Repeat with a two-term Galerkin approximation, y�x� � c1 sin�x� c2 sin2�x.

(c) Use the ®nite element method with hat functions to construct an algebraic prob-

lem for the Airy equation: it will have the structure Au� �Bu � 0. The matrix

B will be invertible so this form can be converted to a standard algebraic eigen-

value problem. Find the approximate eigenvalues and eigenfunctions using six

hat functions and again with 12.

Exercise 2.55: Applying Galerkin and collocation methods

Solve the problem

x2y00 � xy0 � x2y � x2; y0�0� � 0; y�1� � 0

using

(a) The Legendre-Galerkin method.

(b) The Chebyshev collocationmethod. Recall that the Chebyshev collocation points

are numbered from right to left, i.e., x0 � 1 and xN � �1.

Exercise 2.56: Modeling a tubular reactor: convection, diffusion, and reac-
tion

The equation

2u0 � u00 � 1; u��1� � 0; u0�1� � 0

models the temperature pro®le in a tubular reactor in which an exothermic reaction

occurs.

(a) Find the exact solution.

(b) Use the Galerkin tau method to construct an approximate solution. Use the

Legendre polynomial basis set: �0�x� � 1;�1�x� � x;�2�x� � �3x2 � 1�=2.
Sketch the solution and look at u0�0� and u�1� to compare the approximate and

exact solutions.

Exercise 2.57: Converting a differential operator to an algebraic operator

Solve the eigenvalue problem

x2y00 � xy0 � x2�y � 0; y0�0� � y�1� � 0
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using the Legendre-Galerkin method. You should be able to reduce this problem to a

linear algebra problem of the form Ac � �Bc � 0. Note that because of the boundary

conditions, B will be singular, but A will not. How many basis functions do you need

to compute the ®rst three eigenvalues to four-digit accuracy? Plot the ®rst four eigen-

functions. This is the eigenvalue problem for Bessel's equation of order zero. In the

chapter, we showed that the eigenvalues of this problem are related to the roots of the

Bessel function J0.

Exercise 2.58: An eigenvalue problem with ®nite elements

Solve the above problem again, using the ®nite elementmethodwith the ªhat functionsº

described in Section 2.9.1. Study how the approximation converges as the number of

node points N increases. Also look at the computation time as a function of N.

Exercise 2.59: Chebyshev collocation for a nonlinear problem

Using the Chebyshev collocation technique, write an Octave orMATLAB program to solve

the boundary-value problem (a steady-state reaction-diffusion problem)

�T 00 � T � T3 � 0; T ��1� � T�1� � 0

for � � 0:05. Use the initial guess T � 1 to ®nd a nontrivial solution. Study how the

approximation converges as the number of collocation points N � 1 increases. Also

look at the computation time as a function of N.

Exercise 2.60: Attractivity and asymptotic stability for linear systems

Show that asymptotic stability and attractivity are identical for linear systems, Çx � Ax,
and both are equivalent to the condition that Re�eig�A�� < 0.

Exercise 2.61: Stability and asymptotic stability for linear systems

(a) Consider the linear system

dx

dt
�
"
0 1

0 0

#
x

Is this system asymptotically stable? Why or why not?

(b) Is the system (Lyapunov) stable or unstable? Prove it.

(c) Generalize this example and provide a checkable condition to test for (Lyapunov)

stability of all linear systems, Çx � Ax.

(d) Given this result, characterize the class of linear systems that are stable but not

asymptotically stable.

Exercise 2.62: Lyapunov equation and linear systems

Establish the equivalence of (a) and (b) in Theorem 2.24.

Exercise 2.63: Discrete time Lyapunov function for linear systems

State the discrete time version of Theorem 2.24. Show that (a) and (b) are equivalent in

the discrete time version.
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Exercise 2.64: Nonsymmetric matrices and de®nition of positive de®nite

For real, square matrix S, consider rede®ning S > 0 to mean that xT Sx > 0 for all x 2
Rn � 0. We are removing the usual requirement that S is symmetric in the de®nition

of positive de®nite in Section 1.4.4.

(a) De®ne the matrix B � �S � ST �=2. Show that B is symmetric and xTBx � xT Sx
for all x 2 Rn. Therefore S > 0 (new de®nition) if and only if B is positive

de®nite (standard de®nition).

(b) What happens to the connection between this new de®nition of S > 0 and the

eigenvalues of S? Consider statement 1. from Section 1.4.4

S > 0 if and only if � > 0; � 2 eig�S�

Does this statement remain valid? If so prove it. If not, provide a counterexam-

ple.

Exercise 2.65: Stabilities of a linear system

Consider the linear, time-invariant system Çx � Ax. Characterize the class ofAmatrices

for which the systems exhibit the following forms of stability.

(a) Stable (in the sense of Lyapunov).

(b) Attractive.

(c) Asymptotically stable.

(d) Exponentially stable.

(e) Which of these forms of stability are equivalent for the linear, time-invariant

system?

Exercise 2.66: Extending a regular perturbation solution to higher order

For the regular perturbation solution of (2.67) presented in Section 2.6.4, compute the

next term in the series, c2�r�.

Exercise 2.67: QSSA as the outer solution in a two-time-scale singular per-
turbation

Consider the following simple reactionmechanism taking place in awell-mixed, constant-

volume, batch reactor

A
k1
-! B

k2
-! C

and assume k2 � k1 so B is a low-concentration species for which we wish to examine

the QSSA.

(a) Solve A's material balance and show

cAs � cA0e�k1t
Apply the usual QSSA approach, set RB � 0, and show that

cBs � k1
k2
cAs � cA0 k1

k2
e�k1t

The concentration of C is always available if desired from the total species bal-

ance

cCs�t� � cA�0�� cB�0�� cC�0�� cAs�t�� cBs�t�
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(b) The B species has two-time-scale behavior. On the fast time scale, it changes

rapidly from initial concentration cB0 to the quasi-steady-state value for which

RB � 0. Divide B's material balance by k2, de®ne the fast time-scale time as

� � k2t, and obtain for B's material balance

dcB
d�

� �k1cA � cB � � 1

k2

We wish to ®nd an asymptotic solution for small �. We try a series expansion in

powers of � for the inner solution (fast time scale)

cBi � Y0 � �Y1 � �2Y2 � � � �
The initial condition, CBi � CB0, must be valid for all �, which gives for the initial

conditions of the Yn

Y0�0� � cB0 Yn�0� � 0; n � 1;2; : : :

Substitute the series expansion into B's material balance, collect like powers of

� and show the following differential equations govern the Yn

�0 :
dY0
d�

� �Y0

�1 :
dY1
d�

� k1cA � Y1

�n :
dYn
d�

� �Yn n � 2

(c) Solve these differential equations and show

Y0 � cB0e��

Y1 � cA0 k1
k1=k2 � 1

�
e�� � e�k1�=k2

�
Yn � 0 n � 2

Because Yn vanishes for n � 2, show you obtain the exact solution for the B

concentration for all � by using the ®rst two terms.

(d) Next we analyze B's large-time-scale behavior, also called the outer solution.

Divide B's material balance by k2 again but do not rescale time and obtain

�
dcB
dt

� �k1cA � cB

Expand cB again in a power series of �

cBo � B0 � �B1 � �2B2 � � � �
Substitute the power series into the material balance and collect like powers of

� to obtain the following equations

�0 : B0 � 0

�1 :
dB0
dt

� k1cA � B1

�n :
dBn
dt

� �Bn�1 n � 1
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Solve these equations and show

B0 � 0

B1 � k1cA
Bn � kn1 cA n � 2

So we see the zero-order outer solution is CB0 � 0, which is appropriate for a

QSSA species, but a rather rough approximation.

(e) Show that the classic QSSA analysis is the ®rst-order outer solution.

(f) To obtain a uniform solution valid for both short and long times, we add the

inner and outer solution and subtract any common terms. Plot the uniform

zeroth-order and ®rst-order solutions for the following parameter values

cA0 � 1 cB0 � 1=2 k1 � 1 k2 � 10

Compare to the exact solution and the ®rst-order outer solution (QSSA solution).

(g) Show that the in®nite-order uniform solution is also the exact solution.

Exercise 2.68: QSSA and matching conditions in singular perturbation

Consider again Exercise 2.67 with a slightly more complex reaction mechanism

A
k1
-*)-
k�1

B
k2
-! C

and assume that either k�1 � k1 or k2 � k1 (or both) so B is again a low-concentration

species for which we wish to examine the QSSA. Notice that either k�1 or k2 may be

large with respect to the other without invalidating the QSSA assumption for B. Only if

k�1 � k1 � k2 is the reaction equilibrium assumption also valid for this mechanism.

(a) Apply the QSSA on species B and show

cAs �
�
cA0 � cB0 1

1�K2

�
e
� k1K2

1�K2 t

cBs � 1

k�1
k1

1�K2

�
cA0 � cB0 1

1�K2

�
e
� k1K2

1�K2 t

in which K2 � k2=k�1.

(b) With this mechanism, both the A and B species have two-time-scale behavior, so

we use a series expansion for both cA and cB . Let the inner solution be given by

cAi � X0 � �X1 � �2X2 � � � �
cBi � Y0 � �Y1 � �2Y2 � � � �

in which the small parameter � is the inverse of the largest rate constant in the

mechanism. In the following we assume k�1 is largest and � � 1=k�1. De®ne

K2 � k2=k�1 and we assume that K2 is order unity or smaller. If K2 were large,
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we should have chosen � � 1=k2 as the small parameter. Collect terms of like

power of � and show

�0 :
dX0
d�

� Y0 dY0
d�

� ��1�K2�Y0

�1 :
dX1
d�

� �k1X0 � Y1 dY1
d�

� k1X0 � �1�K2�Y1

�n :
dXn
d�

� �k1Xn�1 � Yn dYn
d�

� k1Xn�1 � �1�K2�Yn n � 1

What are the initial conditions for the Xn and Yn variables?

(c) Solve these for the zero-order inner solution and show

X0 � cA0 � cB0 1

1�K2
�
1� e��1�K2��

�
Y0 � cB0e��1�K2��

(d) Next we construct the outer solution valid for large times. Postulate a series

expansion of the form

cAo � A0 � �A1 � �2A2 � � � �
cBo � B0 � �B1 � �2B2 � � � �

Substitute these into the A and B material balances and show

�0 : B0 � 0 �1�K2�B0 � 0

�1 :
dA0

dt
� �k1A0 � B1 dB0

dt
� k1A0 � �1�K2�B1

�n :
dAn�1
dt

� �k1An � Bn dBn�1
dt

� k1An�1 � �1�K2�Bn n � 1

(e) Solve these and show for zero order

A0 � A0�0�e
� k1K2

1�K2 t B0 � 0

Again we see that to zero order, the B concentration is zero after a short time.

Note also that, unlike in Exercise 2.67, we require an initial condition for the

outer solution An differential equations. We obtain the missing initial condition

by matching with the inner solution as follows

lim
�!1X0��� � lim

t!0
A0�t�

In other words, the long-time solution (steady state) on the fast time scale is the

short-time solution (initial condition) on the slow time scale. Using thismatching

condition show

A0�0� � cA0 � cB0 1

1�K2
(f) Find also the ®rst-order solution, B1, and show that the QSSA solution corre-

sponds to the zero-order outer solution for cA and the ®rst-order outer solution

for cB .
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Exercise 2.69: Michaelis-Menten kinetics as QSSA

Consider the enzyme kinetics

E� S
k1
-*)-
k�1

ES

ES
k2
-! P� E

in which the free enzyme E binds with substrate S to form bound substrate ES in the

®rst reaction, and the bound substrate is converted to product P and releases free en-

zyme in the second reaction. This mechanism has become known as Michaelis-Menten

kinetics (Michaelis andMenten, 1913), but it was proposed earlier by Henri (1901). If the

rates of these two reactions are such that either the free or bound enzyme is present in

small concentration, the mechanism is a candidate for model reduction with the QSSA.

Assume k1 � k�1; k2 so E is present in small concentration. Apply the QSSA and

show that the slow time scale model reduces to a ®rst-order, irreversible decomposition

of S to P

S -! P r

(a) For a well-stirred batch reactor, show the total enzyme concentration satis®es

cE�t�� cES�t� � cE�0�� cES�0�

(b) Find an expression for the QSS concentration of E. What is the corresponding

concentration of ES?

(c) Show the rate expression for the reduced model's single reaction is

r � kcS
1�KcS

k � k2KE0 K � k1
k�1 � k2

E0 � cE�0�� cES�0� (2.102)

which depends solely on the substrate concentration. The inverse of the con-

stant K is known as the Michaelis constant. The production rates of reactant S

and product P in the reduced model are then simply

RS � �r RP � r
Notice we have reduced the number of reactions from two to one; we have re-

duced the number of rate constants from three �k1; k�1; k2� to two �k;K�.

(d) Plot the concentrations versus time for the full model and QSSA model for the

following values of the rate constants and initial conditions.

k1 � 5 k�1 � 1 k2 � 10

cE�0� � 1 cES�0� � 0 cS�0� � 50 cP �0� � 0

Exercise 2.70: Michaelis-Menten kinetics as reaction equilibrium

Consider again the enzyme kinetics given in Exercise 2.69.

E� S
k1
-*)-
k�1

ES

ES
k2
-! P� E

Now assume the rate constants satisfy k1; k�1 � k2 so that the ®rst reaction is at

equilibrium on the time scale of the second reaction.



250 Ordinary Differential Equations

(a) Find the equilibrium concentrations of E and ES

(b) Show the production rate of P is given by

RP �
ekcS

1�K1cS
ek � k2K1E0 K1 � k1=k�1 (2.103)

in which K1 is the equilibrium constant for the ®rst reaction. Notice this form

is identical to the production rate of P given in the QSSA approach. For this rea-

son, these two assumptions for reducing enzyme kinetics are often mistakenly

labeled as the same approach.

It is interesting to note that in their original work in 1913, Michaelis and Menten

proposed the reaction equilibrium approximation to describe enzyme kinetics, in

which the second step is slow compared to the ®rst step (Michaelis and Menten,

1913). Michaelis and Menten credit Henri with proposing this mechanism to

explain the experimental observations that (i) production rate of P increases lin-

early with substrate at low substrate concentration and (ii) production rate of P is

independent of substrate concentration at high substrate concentration (Henri,

1901).

The QSSA analysis of enzyme kinetics was introduced by Briggs and Haldane

in 1925, in which the enzyme concentration is assumed small compared to the

substrate (Briggs and Haldane, 1925). Since that time, the QSSA approach has

become the more popular explanation of the observed dependence of substrate

in the production rate of product RP in 2.102 and 2.103 (Nelson and Cox, 2000).

The reader should be aware that either approximation may be appropriate de-

pending on the values of the rate constants and initial conditions. Although both

reduced models give the same form for the production rate of P, they are often

quite different in other respects. Finally, for some values of rate constants, in

particular k�1 � k1 � k2, both the QSS assumption and the reaction equilib-

rium assumption apply.

(c) Show that the slow-time-scale reduced model for the reaction equilibrium as-

sumption can be summarized by two irreversible reactions

ES -! E� S er1
S -! P er2

with the following rate expressions

er1 � � K1cE
1�K1�cE � cS�

� ekcS
1�K1cS

! ek � k2K1E0
er2 � ekcS

1�K1cS
K1 � k1=k�1

Notice here we have not reduced the number of reactions; we still have two

reactions, but as before we have reduced the number of rate constants from

three (k1; k�1; k2) to two (ek;K1). The ®rst rate expression here depends on cS
and cE rather than only cS as in the previous QSSA reduction. Therefore the

production rates of E, ES, and S depend on cE as well as cS . Only the production
rate of P (RP � er2) loses the cE dependence.
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(d) Plot the concentrations versus time for the full model and reaction equilibrium

model for the following values of the rate constants and initial conditions.

k1 � 0:5 k�1 � 1 k2 � 0:5

cE�0� � 20 cES�0� � 10 cS�0� � 50 cP �0� � 0

Recall that you must modify the initial conditions for the slow-time-scale model

by equilibrating the ®rst reaction from these starting values.

Exercise 2.71: Asymptotic expansion of an integral

Find an asymptotic expansion of the integral

f�x� �
Z1
x
t�1ex�tdt

for large positive values of x. Use repeated integration by parts. Show that the approx-

imation is asymptotic as x !1.

Exercise 2.72: Asymptotic series are not always power series

Find the leading-order approximations to the two solutions of

xe�x � �
for � � 1. Seek solutions of the form x � ����X, ®nd two dominant balances: one

where ����� 1 and one where ����� 1.

Exercise 2.73: Perturbed eigenvalue problems

Consider the eigenvalue problem

Ax � �B�x� � �x
where A is an n�nmatrix and B�x� and x are n-vectors. Assume that A and B are real
and the eigenvalues of A are distinct. If the � � 0 problem has an eigenvalue �0 with a

corresponding eigenvector v0, ®nd the leading-order corrections to the eigenvalue and

eigenvector. Hint: review the existence and uniqueness theory for linear equations.

Exercise 2.74: Multiple-scales analysis of a problem with a pitchfork bifur-
cation

Consider the system of equations

Çx � �x � �1=2y2

Çy � ��y � �1=2xy
Assume that x and y are both ord�1�. (They have already been scaled by �1=2.) Perform
a multiple-scales expansion, letting t0 � t; t1 � �1=2t; t2 � �t. Show that the solvability

conditions require that

@y0
@t0

� @y0
@t1

� 0

dy0
dt2

� �y0 �y3
0

when t0 � 1. What are the steady-state solutions of the amplitude equation for y0?
Sketch the steady states as � varies between �1 and �1.
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Exercise 2.75: Degenerate pitchfork bifurcation

Consider the one-dimensional system

Çx � f�x;��
where f�x;�� � �f��x;�� and fxxx � 0 at x � 0. Although this equation has

the correct symmetry to display a pitchfork bifurcation, (2.81) does not hold because

fxxx � 0.

(a) Derive the correct normal form in this case and draw the corresponding bifur-

cation diagram(s).

(b) Now let fxxx be nonzero, but very small. How are the above bifurcation dia-

grams modi®ed?

Exercise 2.76: Multiple scales to determine stability of a time-periodic so-
lution

Consider the stability of a periodic orbit of a nonlinear system. Let xp�t� � xp�t � T�
be a time-periodic solution of the differential equation

Çx � f�x�
Now let x � xp�t�� �z�t�; �� 1.

(a) Show that the linearized equation for z takes the form

Çz � A�t�z
where A�t� � A�t � T� is a matrix operator with time-periodic coef®cients.

(b) The damped Mathieu equation is a particular case of a linear equation with

time-periodic coef®cients. It is (written as a single second-order equation)

Èx � ��Çx � �!2 � � cos2t�x � 0

Letting ! � 1;0 < � � 1; � � ord�1� > 0, use the multiple-scales method to

determine the stability of the point z � 0. Show that z � 0 is stable when � >
1=2. (Although this equation can be put in the form Çz � A�t�z, it is easier to work
withwhen kept in second-order form.) Use time scales t0 � t; t1 � �t and assume

a solution of the form x�t0; t1� � A�t1� cos t0�B�t1� sin t0��x1�t0; t1��O��2�.

Exercise 2.77: Oscillator with slowly varying frequency

Use the multiple-scales approach with t1 � t; t2 � t=� to ®nd the leading-order general

solution to the problem of an oscillator with slowly varying frequency

�2
d2y

dt2
� �!�t��2 y � 0

Assume that!�t� > 0 in the domain of interest. Show that a leading-order solution of

the form y0 � r�t1� exp��i!�t1�t2� will not work, but that a solution of the slightly

more general form y0 � r�t1� exp��i��1��t1�� will. You will see from the multiple-

scales result that the quantity r2! is independent of t1, to leading order: it is a so-

called adiabatic invariant.
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Exercise 2.78: Multiple-scales solution to a nonlinear oscillator problem

Use the method of multiple scales to ®nd a leading-order solution to the nonlinear

oscillation problem

Èx � ��x2 � 1�Çx � x � 0; x�0� � 1; Çx�0� � 0

Use time scales t0 � t; t1 � �t.

Exercise 2.79: Synchronization of oscillators

Huygens was the ®rst to observe that two oscillators (mechanical clocks in his case)

whose natural frequencies!1 and!2 are close but not identical can be synchronized

(ªphase lockedº) if they are coupled to one another. Such synchronization has since

been observed in a diverse range of applications, including coupled chemical reactors.

A simple model for a pair of coupled oscillators is

Ç�1 �!1 �K1 sin��2 � �1�
Ç�2 �!2 �K2 sin��1 � �2�

where �1 and �2 are the phase variables for the two oscillators. Thus these equations

describe trajectories on a torus. Synchronization occurs when the phase difference

� � �2��1 attains a stable steady-state value. Analyze the dynamics of� to determine

the range of parameters in which the oscillators are synchronized. Draw the bifurcation

diagram. Draw what happens on the torus as the system passes from the synchronized

to the unsynchronized state.
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3

Vector Calculus and Partial Differential

Equations

3.1 Vector and Tensor Algebra

3.1.1 Introduction

Many of the partial differential equations (PDEs) that we encounter as

chemical and biological engineers arise from ®eld equations such as the

Navier-Stokes equations of ¯uid dynamics or the SchrÈodinger equation

of quantum mechanics. These equations govern quantities (velocity,

wave function) that vary with position in three-dimensional physical

space. In general, such a quantity is known as a field. Therefore, this

chapter begins with a discussion of the properties of vectors and re-

lated objects (tensors) in physical space. In general, a tensor is an

object that has an intrinsic geometric de®nition, independent of coor-

dinate system. It may be a velocity vector, a dot product between two

vectors (a scalar) or, as we shall see, even a linear operator.

3.1.2 Vectors in Three Physical Dimensions

In this chapter, we consider only vectors in three-dimensional physical

space and following convention in the physics and engineering litera-

ture, represent these vectors using bold type. We begin with a brief

review of vectors, tensors and their algebra. For now, let us consider

only a Cartesian basis for the space, with position independent, or-

thonormal basis vectors e1;e2;e3. Any vector u can be represented as

u � P3
i�1uiei, or, using the summation convention, uiei. In Carte-

sian tensor notation, we streamline the notation even further, denot-

ing the vector as ui. The unsummed index i on ui indicates that u is a
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vector. The length of a vector is kuk �
qP3

i�1u
2
i �
p
uiui: The degree

of alignment between two vectors is determined by the dot product

u � v � uTv �
3X
i�1

3X
j�1
uivj�ei � ej� � uivi � kukkvk cos�

Using some elementary geometry, it can be shown that

u � v � 1

2

�
kuk2 � kvk2 � kv � uk2

�
This result shows that u �v can be expressed without referring to a co-

ordinate system, but only to the lengths of vectors. Therefore, the dot

product is independent of coordinate system; it is a geometric invari-

ant. Recall that the inner product of Chapter 1 is the generalization of

the dot product.

In Chapter 1 we also introduced the outer product between two vec-

tors, also called the direct product or dyadic product. The outer

product between vectors u and v is the dyad1 uv. A dyad is a second-

order tensor: a quantity that incorporates information regarding two

directions. (A vector, which has one magnitude and one direction, is a

®rst-order tensor). A dyad can act as a linear operator

�uv� �w � u�v �w�

Similarly,

w � �uv� � �w � u�v
Note that uv � vu. Based on this de®nition, we can write uv out,

including basis vectors

uv �
3X
i�1

3X
j�1
uivjeiej

In Cartesian tensor notation, uv is denoted as uivj (the presence of

the basis vectors ei and ej is implied by the presence of the two sub-

scripts). When a dyad operates on something, the rightmost index (and

basis vector) is involved. An example of a useful dyad is the projection

operator ÃuÃu, where Ãu is a unit vector. The product �ÃuÃu� � v is the

component of the vector v in the Ãu direction. You can check this by

applying the de®nition of the outer product.

1As noted in Chapter 1, sometimes the dyad uv is denoted by uvT or u
 v:
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A general second-order tensor � can be written as a linear combina-

tion of the basis dyads eiej

� �
3X
i�1

3X
j�1
�ijeiej

In Cartesian tensor notation, the summations and base vectors are im-

plied and we can denote the tensor by its component matrix �ij . The

dot product u � � � v between a second-order tensor and a vector is

another vector: ui � �ijvj . Similarly, u � v � � is, in Cartesian coordi-

nates: ui � vj�ji. The second-order identity tensor is denoted � and

satis®es the property � � a � a � � � a for all a. In Cartesian coor-

dinates, the ij component of � is simply the Kronecker delta �ij , or

equivalently � � e1e1 � e2e2 � e3e3.
Also important is the cross product, u � v. Recall that, while the

dot product is a scalar, the cross product is a vector, with magnitude

kukkvk sin� and direction orthogonal to both u and v and deter-

mined by the ªright-hand rule.º The cross product is not commutative:

u � v � �v � u. Because of the invocation of the right-hand rule in

its de®nition, the cross product is strictly speaking a pseudovector,

because its de®nition is affected by the handedness of the coordinate

system in which it is computed.

It is useful to view the cross product as a matrix-vector multiplica-

tion. Using the Cartesian components

u� v �

0B@ 0 �u3 u2

u3 0 �u1

�u2 u1 0

1CA
0B@v1v2
v3

1CA
We can write the cross product more compactly if we introduce the

following operator, called the Levi-Civita symbol

�ijk �

8>>><>>>:
1; ijk � 123;231 or 312

�1; ijk � 132;321 or 213

0; i � j; i � k or j � k

This is the Cartesian coordinate representation of the alternating

unit tensor or permutation tensor �. As with the cross-product

itself, �ijk is not actually a tensor, but rather a pseudotensor, because

its de®nition is based on the use of right-handed Cartesian coordinates.

Now the operator �u�� can bewritten �ijkuj . This quantity has two free



260 Vector Calculus and Partial Differential Equations

indices, so it is a second-order pseudotensor. Finally, we can write the

cross product as

�u� v�i � �ijkujvk
A useful identity involving �ijk is

�ijk�klm � �il�jm � �im�jl

which arises in the computation of double cross products such as a�
�b � c�. Since the Kronecker delta is not handedness dependent, the

double cross product between three vectors is a true vector.

3.2 Vector Calculus: Differential Operators and Integral

Theorems

3.2.1 Divergence, Gradient, and Curl

Consider a vector that is a function of position, v�x�, a vector field.

Physically, this vector ®eld could be a ¯uid velocity (mass ¯ux) or an

electric current (charge ¯ux), for example. An important physical con-

sideration is the total ¯ow into or out of a closed region. We denote

this region as V , its boundary surface as S and the outward unit nor-

mal vector to S as n, as illustrated in Figure 3.1. The volume of V is

Vol�V� �
R
V dV . If v is a ¯ux of some quantity, then n � v dS is the

amount of that quantity crossing the boundary element dS per unit

time and thus
1

Vol

Z
S
n � v dS

is the amount of that quantity leaving V , per unit volume. Now let the

region be centered at a position x0 and let V shrink to zero around that

point. The divergence of v at point x0 is de®ned by

div v � lim
Vol!0

1

Vol

Z
S
n � v dS (3.1)

Thus the divergence of v measures the amount per unit volume that

leaves the point x0. This de®nition is independent of coordinates, so

the divergence is a tensor.

For a scalar ®eld��x� there is an analogous quantity, the gradient

of �, de®ned by

grad � � lim
Vol!0

1

Vol

Z
S
n�dS (3.2)
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n
V

x0

S

Figure 3.1: Volume V shrinking to zero size around a point x0.

Given a unit vector s, the quantity s �grad � is the derivative of v along

the s direction, i.e., the directional derivative. The gradient of � is

a vector whose direction shows the direction of the maximum change

in � and whose magnitude is the magnitude of that change.

The ®nal important operation, the curl, measures the rotation of a

vector ®eld v at a point. It is de®ned by

curl v � lim
Vol!0

1

Vol

Z
S
n� v dS (3.3)

Because of the cross product involved in its de®nition, the curl is a

pseudovector.

The above de®nitions of div, grad, and curl are independent of co-

ordinate system and illustrate the concepts underlying them, but to

actually work with these operators we need coordinate systems. All

three of the above operations can be expressed in terms of the gra-

dient operator, r, also called ªnablaº or ªdel.º It is also sometimes

denoted
@

@x

In Cartesian coordinates, it is given by

r �
3X
i�1

ei
@

@xi

or in Cartesian tensor notation

r � ei @
@xi

or simply @
@xi

. The presence of the basis vector ei is implied by the

unrepeated index i. The divergence, gradient, and curl operators are
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then given by

div v �r � v � @vi
@xi

grad � �r� � @�
@xi

curl v �r� v � �ijk @vk
@xj

Another extremely important operator is the Laplacian operator div

grad, given by

div grad �r �r � @2

@xi@xi

The most common notation for the Laplacian operator is r2. Unfortu-

nately, this notation is somewhat misleading, implying that the opera-

tor is grad grad rather than div grad. Some literature uses the symbol

� for the operator. We follow engineering convention and use r2.

3.2.2 The Gradient Operator in Non-Cartesian Coordinates

In many applications, Cartesian coordinates are not the most practical

for solving a problem.2 We are familiar with cylindrical and spherical

coordinate systems, but there are many others, including bipolar and

parabolic systems. We consider here only orthogonal coordinate sys-

tems; the basis vectors may change from point to point, but at each

point they are mutually orthogonal. We denote an arbitrary set of or-

thogonal coordinates by u1; u2; u3 and the (orthonormal) base vectors

by eu1 ;eu2 ;eu3 . The most important distinction between Cartesian and

other coordinate systems is the actual distance traversed in moving

from one coordinate line to another. For example, in Cartesian coordi-

nates �x1; x2; x3� � �x;y; z�, the distance between the coordinate lines

y � 1 and y � 2, keeping x and z ®xed, is always 1. But in cylindrical

coordinates, �u1; u2; u3� � �r ; �; z�, the distance traveled going from

� � 1 to � � 2 (at constant r and z) depends on r ! This dependence is

quanti®ed in the scale factors for a coordinate system, de®ned by

hi �

vuut�@x1
@ui

�2
�
�
@x2
@ui

�2
�
�
@x3
@ui

�2
2Appendix A of Bird, Stewart, and Lightfoot (2002) contains a great deal of useful

information about this topic. Tensor analysis is not restricted to orthogonal coordi-

nate systems; if you want to learn about tensor analysis in general coordinates, some

good references are Aris (1962); Block (1978); Simmonds (1994); Bird, Armstrong, and

Hassager (1987).
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This quantity determines the distance traversed in moving along the ui
coordinate curve. For example, in cylindrical coordinates, it is easy to

compute that h1 � 1; h2 � r ;h3 � 1. The distance covered in moving

from � to � � d� is h2d� � rd�. If we let gi � 1
hi
eui (scale the basis

vector by the scale factor), then we can write the basis vectors in terms

of the Cartesian basis

gi �
1

h2i

3X
j�1

@xj
@ui

ej

Note that despite the notation, the number hi is not a component of

a vector but rather is a property of the particular coordinate system

under consideration.

For any orthogonal coordinate system, we can now write the gradi-

ent operator as

r � gi
@

@ui
(summation implied). In general, the gi depend on position. The im-

portance of this fact becomes clear when we consider operators like

the Laplacian

r �r � gi
@

@ui
� gj

@

@uj

� �ij 1

hihj

@2

@ui@uj
�
 
gi �

@gj
@ui

!
@

@uj

The second term in this expression does not appear in Cartesian coor-

dinates, where the base vectors are independent of position. In terms

of the scale factors, the derivative of a basis vector with respect to

position can be written as follows

@gj
@uk

� � 1

hj
gj
@hj
@uk

� 1

hj

0@gkhkhj @hk@uj
� �jk

3X
i�1

gi
@hj
@ui

1A
Summation is not implied, as

@gj
@uk

is not a component of a tensor.

Example 3.1: Gradient (del) and Laplacian operators in polar (cylin-

drical) coordinates

(a) Without referring to Cartesian coordinates at all, derive a formula

for the gradient (del) operator in polar coordinates shown in Fig-

ure 3.2 so that one obtains for the differential of a scalar function

�

d� �r� � dx
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�

er

dx

drer

rd�e�

x � rer

e�

Figure 3.2: Polar coordinates �r ; �� and unit vectors er and e�.

in which dx is the differential of the position vector in polar co-

ordinates.

(b) Using this formula for r, derive the formula for the Laplacian in

polar coordinates.

(c) Finally check these two results by relating them to Cartesian co-

ordinates using the hi and gi formulas given previously.

Solution

(a) As shown in Figure 3.2 we have for the differential of position

dx � drer � rd�e�

From the de®nition of partial derivative, we have the formula for

the total differential of an arbitrary function ��r ; ��

d� � @�
@r
dr � @�

@�
d�

We substitute r� � era1 � e�a2 and solve for a1; a2, the two

vector components of r�

d� �r� � dx
@�

@r
dr � @�

@�
d� � �era1 � e�a2� � �drer � rd�e��

@�

@r
dr � @�

@�
d� � a1dr � a2rd�



3.2 Differential Operators and Integral Theorems 265

Comparing the two sides, we have

a1 � @�
@r

a2 � 1

r

@�

@�

which gives for r in polar coordinates

r� � er @�
@r
� e� 1

r

@�

@�

r � er @
@r
� e� 1

r

@

@�
(3.4)

(b) Next we use the de®nition of the Laplacian to obtain

r2 �r �r �
�
er
@

@r
� e� 1

r

@

@�

�
�
�
er
@

@r
� e� 1

r

@

@�

�
Taking the derivatives, and noting the dot product er � e� � 0

because the unit vectors are orthogonal, gives

r2 � er �
�
@er
@r

@

@r
� er @

2

@r 2
� 1

r

@e�
@r

@

@�

�
�

1

r
e� �

�
@er
@�

@

@r
� e� 1

r

@2

@�2
� 1

r

@e�
@�

@

@�

�
Now we require the derivatives of the unit vectors with respect to

�r ; ��. As shown in Figure 3.2 these are given by (see also Exercise

3.2)

@er
@r

� 0
@e�
@r

� 0
@er
@�

� e� @e�
@�

� �er (3.5)

Substituting these derivatives into the previous result and collect-

ing the nonzero terms gives

r2 � @2

@r 2
� 1

r

@

@r
� 1

r 2
@2

@�2

Note that we can combine the ®rst two terms for an equivalent

form

r2 � 1

r

@

@r

�
r
@

@r

�
� 1

r 2
@2

@�2
(3.6)

(c) The partial derivatives of the coordinates are

@x

@r
� cos�

@y

@r
� sin�

@x

@�
� �r sin� @y

@�
� r cos�
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Substituting into the previously given formulas for h and g gives

h1 � 1 h2 � r

g1 � cos�ex � sin�ey g2 �
1

r 2
�� r sin�ex � r cos�ey�

g1 � er g2 �
1

r
e�

We then have

r � er @
@r
� 1

r
e�
@

@�

which agrees with (3.4).

For the Laplacian, we require the derivatives of g1;g2

@g1

@r
� 0

@g1

@�
� e� @g2

@r
� � 1

r 2
e�

@g2

@�
� �1

r
er

The formula for the Laplacian then gives

r2 � 1

h21

@2

@r 2
� 1

h22

@2

@�2
� g1 �

�
@g1

@r

@

@r
� @g2

@r

@

@�

�
�

g2 �
�
@g1

@�

@

@r
� @g2

@�

@

@�

�
The g1 term vanishes upon substituting the various derivatives,

and the g2 term produces the additional term �1=r�@=@r giving

r2 � @2

@r 2
� 1

r 2
@2

@�2
� 1

r

@

@r

� 1

r

@

@r

�
r
@

@r

�
� 1

r 2
@2

@�2

which agrees with (3.6). �

Table 3.1 collects expressions for the gradient and Laplacian oper-

ators in Cartesian, cylindrical, and spherical coordinate systems. The

convention used for the angles � and � in spherical coordinates are

shown in Figure 3.3.
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�

�

r

er

e�

e�

Figure 3.3: The orthonormal unit vectors in spherical coordinates.

Cartesian r � ex
@

@x
� ey @

@y
� ez @

@z

r2 � @2

@x2
� @2

@y2
� @2

@z2

Cylindrical r � er
@

@r
� e� 1

r

@

@�
� ez @

@z

r2 � 1

r

@

@r

�
r
@

@r

�
� 1

r 2

@2

@�2
� @2

@z2

Spherical r � er
@

@r
� e� 1

r

@

@�
� e� 1

r sin�

@

@�

r2 � 1

r 2

@

@r

�
r 2 @

@r

�
� 1

r 2 sin�

@

@�

�
sin�

@

@�

�
� 1

r 2 sin2 �

@2

@�2

Table 3.1: Gradient and Laplacian operators in Cartesian, cylindrical,

and spherical coordinates.
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0 a

b

n2 � ex

n3 � � sin�ex � cos�ey

S3
S2

S1 n1 � �ey

�

V

ex

ey

Figure 3.4: Right triangle V with sides S1; S2; S3 and outward nor-

mals n1;n2;n3. On the hypotenuse S3 we have that

x � �3 cos� and y � �3 sin� with �3 as distance along

S3.

3.2.3 The Divergence Theorem

The divergence theorem concerns the integral of the divergence of a

vector ®eld v�x� in a region V . It is central to many aspects of the

derivation and solution of partial differential equations. For example,

many partial differential equations arise from conservation laws. These

are often most easily stated in integral form, i.e., as conservation of

some quantity over a ®nite volume of space. It is often useful, however,

to have representations of the same laws that apply at each point in the

volume and the divergence theorem plays a key role in development of

these.

A standard form of the divergence thereom isZ
V
r � v d
 �

Z
S
n � v d�

in which V is an arbitrary volume element with bounding surface S.

Note that this result equates the integral of the divergence of the vec-

tor ®eld over the volume with the integral of the outward ¯ux of the

vector ®eld over the bounding surface. It is a remarkable result with

far-reaching consequences, so we would like to understand why this

equation holds and how to derive it.

We start off in two dimensions where region V is an area element,

and S becomes the bounding circumference of the area element. For

example, consider the right triangle depicted in Figure 3.4. We show

that the divergence theorem holds for this region by an explicit cal-

culation. This will turn out to be the only calculation that we have to
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do to establish the divergence theorem for quite general regions. In

rectangular coordinates we have thatZ
V
r � v d
 �

ZZ
V

�
@

@x
vx � @

@y
vy

�
dxdy

�
Z b
0

Z a
Tx�y�

@

@x
vx dxdy �

Z a
0

Z Ty �x�
0

@

@y
vy dydx

Notice that the key ®rst step is to use different orders of integration in

the two double integrals to undo the differentiation of the divergence

operator for each term in the sum. Since 0 < � < �=2 (or we do not

have a triangle), we also know that on S3, y � x tan� :� Ty�x� and x �
y= tan� :� Tx�y�, so Ty�x� and Tx�y� are well de®ned. Performing

the inner intergrals and rearranging the terms giveZ
V
r � v d
 �

Z b
0
vx�a;y� dy �

Z a
0
vy�x;0� dx�Z b

0
vx�Tx�y�;y� dy �

Z a
0
vy�x; Ty�x�� dx (3.7)

As shown in Figure 3.4 we have that on S1, n1 � �ey and on S2, n2 � ex .
So we can express the ®rst two integrals in the right side (3.7)Z b

0
vx�a;y� dy �

Z a
0
vy�x;0� dx �

Z
S2
n2 � v d�2 �

Z
S1
n1 � v d�1

Finally, we change the variable of integration in the last two integrals

of (3.7) using x � �3 cos�;y � �3 sin� on S3. So on S3 changing from

x and y to �3, we have thatZ b
0
vx�Tx�y�;y� dy �

Z pa2�b2

0
vx��3 cos�;�3 sin�� sin� d�3Z a

0
vy�x; Ty�x�� dx �

Z pa2�b2

0
vy��3 cos�;�3 sin�� cos� d�3

Noting that since the tangent vector for S3 is t3 � cos�ex � sin�ey ,

the outward unit normal vector and its inner product with v for �x;y�

on S3 are

n3 � � sin�ex � cos�ey n3 � v � �vx sin� � vy cos�
(note that n3 � t3 � 0). Substituting the results from the change of

integration variables then gives

�
Z b
0
vx�Tx�y�;y� dy �

Z a
0
vy�x; Ty�x�� dx �

Z
S3
n3 � v d�3
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n1

S1

V2

V1

n2

S2

Figure 3.5: Left: Decomposing an arbitrary triangle into the sum of

two right triangles. Right: Decomposing a polygon into

a sum of triangles.

Collecting the previous integrals and substituting into (3.7) then give

Z
V
r � v d
 �

Z
S1

n1 � v d�1 �
Z
S2

n2 � v d�2 �
Z
S3

n3 � v d�3 �
Z
S
n � v d�

and we have established the divergence theorem for an arbitrary right

triangle. Note that the normal vector is not de®ned at the three corners

of the triangle, but the surface integral remains well de®ned because

an integral is unaffected by the value of the integrand at a countable

set of points in the interval of integration.

The next key step in the development is to understand what hap-
pens when we add two objects sharing a common boundary segment.
Consider decomposing an aribtrary triangle into a sum of two right
trangles as shown on the left side of Figure 3.5. We have established
the divergence theorem for both V1 and V2, so we have that

Z
V
r � v d
 �

Z
V1

r � v d
 �
Z
V2

r � v d
 �
Z
S1

n � v d� �
Z
S2

n � v d�

Notice that the two surface integrals contain the same line segment.

But in the integrals over S1 and S2, the outward normals on this shared

line segment have opposite sign, and n1 � �n2. So the two integrals

on this common segment cancel and we have the integral over only the

outer boundary, S, establishing the divergence theoremZ
V
r � v d
 �

Z
S
n � v d�

for any triangle.
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P1

P2

P3

Figure 3.6: The circle as a limit of polygons Pn; n � 1;2;3; : : :.

Generalizations. Next we can decompose any polygon (or more gen-

erally an n-polytope in n dimensions) into a sum of triangles, illus-

trated on the right side of Figure 3.5. Again, the integrals over the

common interior line segments cancel and the divergence theorem ap-

plies to any polygon. Further generalizing, we can take limits of poly-

gons and extend the divergence theorem also to objects with curved

boundaries, such as circles, ellipses, and boundaries with cusps. One

can even take limits in which the limiting object is fractal, and with a

suitable de®nition of the surface integral establish the divergence the-

orem for fractal objects where the normal vector is nowhere de®ned on

the boundary (Harrison, 1999). See Exercise 3.55 for an example using

the Koch snow¯ake, one of the earliest fractal objects to be described.

Finally, nothing restricts the development to the two-dimensional

plane as illustrated here, and the divergence theorem holds also in n-

dimensions for any n. In one dimension it reduces to the fundamen-

tal theorem of integral calculus:
R b
a

df
dx dx � f�b� � f�a�. As

mentioned earlier, the divergence theorem arises most often in stan-

dard 3-dimensional physical space as a key step in deriving conser-

vation laws (mass, momemtum, energy) in continuum transport prob-

lems.

Example 3.2: Divergence theorem on the circle

Show the divergence theorem applies when V is a circle of radius R.

First use the established result for polygons and take a sequence of

polygons approaching the circle. Next choose a better coordinate sys-

tem for a circle and establish the divergence theorem by direct calcu-

lation.
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Solution

Note in Figure 3.6 that the sequence of polygons Pn converges to the

circle V as n!1, and the divergence applies to each element Pn so it

applies in the limit to V . Next, consider polar coordinates, and we have

established in (3.4) and Exercise 3.3

r � er @
@r
� e� 1

r

@

@�
r � v � 1

r

@

@r
�rvr �� 1

r

@v�
@�

By direct integration we have thatZ
V
r � v d
 �

Z 2�

0

Z R
0

�
1

r

@

@r
�rvr �� 1

r

@v�
@�

�
r drd�

�
Z 2�

0
Rvr �R; �� d� �

Z R
0
�v��r ;2��� v��r ;0�� dr

�
Z 2�

0
Rvr �R; �� d� �

Z 2�

0
n � v�R; �� R d�

�
Z
S
n � v d�

and the result is established. �

In Cartesian tensor notation, the divergence theorem isZ
V

@vi
@xi

dV �
Z
S
nivi dS

By replacing the vector vi by a scalar � or by a second-order tensor �ij
in this expression, the related results can be found (now expressed in

boldface notation) Z
V
r� dV �

Z
S
n� dS (3.8)Z

V
r � � dV �

Z
S
n � � dS (3.9)

Multidimensional Leibniz's rule. Another important related result

is the multidimensional version of Leibniz's rule. Consider the time

derivative of an integral over a volume that is moving with time, e.g., a

¯uid element in a velocity ®eld. If a point on the boundary is moving

with a velocity q�x; t�, then Leibniz's rule states that

d

dt

Z
V�t�

m�x; t�dV �
Z
V

@m

@t
dV �

Z
S
mn � qdS
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n

q

V�t ��t�

V�t�

S�t�

Figure 3.7: Volume element V�t� with moving boundary S�t� having

velocity q.

The second term in this formula appears only if the volume is moving

or changing shape with time and represents the net amount that is

swept into V because of the motion of its boundaries.

A derivation of Leibniz's rule can be constructed as follows. We as-

sume enough smoothness so that all derivatives of interest exist. Con-

sider the volume element V�t� in Figure 3.7. We consider the volume

integral at a time t ��t with �t small. We have two changes to track:

the functionm�x; t� changes with time, and the volume element V�t�

changes with time due to the velocity of its surface, q. Keeping up to

®rst-order terms, the change inm�x; t� is straightforward

m�x; t ��t� �m�x; t�� @

@t
m�x; t� �t

To compute the change in the volume integral we haveZ
V�t��t�

m�x; t�d
 �
Z
V�t�

m�x; t�d
 �
Z
S�t�
mn � qd��t

Note that n � qd��t evaluated in a surface element on S gives to ®rst

order the local increase (or decrease) in volume V due to the motion

of the bounding surface. This local change is integrated over the en-

tire surface to obtain the total change in the volume integral due to a

small (normal) displacement in the bounding surface S�t�. Note that

we need to project the velocity onto the surface normal to calculate the

volume change, i.e., the component of q tangent to the surface does not

change the size of V , but simply allows rotation of the volume element.
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Assembling the terms we have

Z
V�t��t�

m�x; t ��t� d
 �
Z
V�t�

�
m�x; t�� @

@t
m�x; t��t

�
d
�Z

S�t�

�
m�x; t�� @

@t
m�x; t��t

�
n � q d��t

Expanding the integrals and rearranging terms gives

1

�t

�Z
V�t��t�

m�x; t ��t� d
 �
Z
V�t�

m�x; t� d


�
�Z

V�t�

@m

@t
d
 �

Z
S�t�

�
m�x; t�� @

@t
m�x; t��t

�
n � q d�

and taking the limit �t ! 0 produces the multidimensional Leibniz's

rule
d

dt

Z
V�t�

m�x; t� d
 �
Z
V�t�

@m

@t
d
 �

Z
S�t�
mn � q d�

Example 3.3: The divergence theorem and conservation laws

Conservation laws can be written for many quantities. Important exam-

ples include mass, energy, chemical species, and probability. Consider

a quantity A that satis®es a conservation law in some arbitrary region

of space V with boundary S and outward unit normal n. The density

(amount per unit volume) of A is �A and the ¯ux (amount per unit area

per unit time) is FA. We allow for the possibility that A is created or

destroyed within the volume, with rate RA having units of amount of A

per unit volume per unit time. If A is a chemical species, then RA is a

volumetric reaction rate of production of A. The conservation law for

A can thus be written for the domain V as follows

d

dt

Z
V
�A dV � �

Z
S
n � FA dS �

Z
V
RA dV (3.10)

The left-hand side is the rate of accumulation of A in the domain. The

®rst term on the right-hand side is the net rate of entry ofA into the do-

main across its boundary and the ®nal term is the net rate of production

of A via sources or sinks of A within the domain. Use the divergence

theorem to write a conservation statement for A that is valid at every

point in the domain.
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Solution

The divergence theorem allows the lone surface integral to be recast as

a volume integral Z
S
n � FA dS �

Z
V
r � FA dV

Furthermore, because V is time independent

d

dt

Z
V
�A dV �

Z
V

@�A
@t

dV

Substituting these two equations into (3.10) yieldsZ
V

@�A
@t

dV � �
Z
V
r � FA dV �

Z
V
RA dV

Since all terms in this equation are volume integrals, they can be com-

bined Z
V

�
@�A
@t
�r � FA � RA

�
dV

Because the volume V is arbitrary, the only way that this equation can

be satis®ed in general is if the integrand vanishes at every point within

V . That is
@�A
@t

� �r � FA � RA (3.11)

This is the general pointwise statement of the conservation law for A.

To be more speci®c, let A be a chemical species. Its molar density,

or concentration, will be denoted cA. Chemical species are transported

by molecular diffusion and ¯ow; if the species is dilute the ¯ux of A

can be written FA � cAv �DArcA, where v is the velocity ®eld for the

¯uid in which A is dissolved, and DA is the diffusivity of the species.

Now (3.11) becomes

@cA
@t
� �r � �cAv��DAr2cA � RA (3.12)

This is a partial differential equation for spatial and temporal distribu-

tion of a chemical species. If U and L are characteristic scales for the

¯uid velocity v and domain size, respectively, then the relative impor-

tance of convection and diffusion is estimated by the Peclet number

Pe � UL=DA. �
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3.2.4 Further Integral Relations and Adjoints of Multidimensional

Differential Operators

Green's identities are special cases of the divergence theorem that

are useful for working with integrals over quantities involving differ-

ential operators other than the divergence. Green's ®rst identity is the

divergence theorem for the case where v is replaced by urv , where u

and v are now scalarsZ
V
�ru �rv �ur2v�dV �

Z
S
urv � ndS (3.13)

Green's second identity comes writing Green's ®rst identity with u and

v exchanged and subtracting this expression fromGreen's ®rst identity

as written aboveZ
V
�ur2v � vr2u�dV �

Z
S
�urv � vru� � ndS (3.14)

Finally, Green's formula comes from replacing v in the original ex-

pression by uv where u is a scalar and v a vectorZ
V
�ru � v �ur � v�dV �

Z
S
uv � ndS (3.15)

In one dimension, Green's formula reduces to the expression for inte-

gration by parts.

The above theorems all deal with the divergence and its closest rel-

atives, the gradient and the Laplacian. The ®nal results are instead for

the curl. In two dimensions, r� v reduces to �
@vy
@x � @vx

@y �e3. Green's

theorem shows how the integral of this over an area A can be reduced

to an integral over the (closed) boundary curve CZ
A

 
@vy
@x

� @vx
@y

!
dA �

Z
C
�vx dx � vy dy�

The proof of this result closely follows what we did above with the

divergence theorem. Stokes's theorem is more general, applying to

any bounded orientable (ªtwo-sidedº) curved surfaceA ¯oating in three

dimensions, with boundary curve CZ
A
n � �r� v�dA �

Z
C
v � t dC

Here t is the unit vector tangent to the boundary C , pointing in the

direction in which the integration around C is being performed. The
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orientability condition precludes surfaces like a MÈobius strip. The vec-

tor n is a unit normal vector to the surface A. Since the surface does

not enclose a three-dimensional volume, however, inward and outward

are unde®ned, the direction of n cannot be de®ned as it has been in

earlier theorems. Here n is determined from the right-hand rule, based

on the direction of the integration path for C . For example, if S were a

region on a sheet of paper, then n would point upward out of the paper

if the integration path around C is counterclockwise.

One important application of the above results is in the determina-

tion of the adjoints to div, grad, and curl. First, we de®ne the relevant

inner products. Let

�u;v� �
Z
V
uv dV

if u and v are (real) scalars, and

�u;v� �
Z
V
u � v dV

if they are vectors. In our earlier discussion of adjoints, we used in-

tegration by parts to help us compute them; in multiple dimensions,

Green's formula and identities are the appropriate replacements. For

example, using Green's formula, (3.15), we can easily ®nd that, with

u�S� � 0 (Dirichlet boundary conditions)

�ru;v� � ��u;r � v�

Thus the adjoint of grad (with Dirichlet boundary conditions) is �div.
Similarly, rearranging Green's second identity we ®nd that

�r2u;v� � �
Z
S
�urv � vru� � ndS � �u;r2v�

If we impose the same boundary conditions on u and v , then urv �
vru on the boundary. Thus the boundary term vanishes, leaving

�r2u;v� � �u;r2v�

Therefore, the Laplacian operator is always self-adjoint. This fact has

important implications for the solution of partial differential equations

that involve the Laplacian.
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3.3 Linear PDEs: Properties and Solution Techniques

3.3.1 Classi®cation and Canonical Forms for Second-Order Partial

Differential Equations

Many general properties of partial differential equations can be intro-

duced with this second-order equation in two dimensions

auxx � 2buxy � cuyy � f�x;y;u;ux; uy� (3.16)

where x;y 2 R and ux � @u
@x etc. For the moment x and y are not nec-

essarily position variablesÐthey are simply the independent variables

for the problem. The coef®cients a, b, and c are real and constant,

though the latter restriction can be relaxed. Now consider the question

of whether there exists a change of independent variables

� � �xx � �yy
� � �xx � �yy

that can simplify the left-hand side of this equation. Here �x; �y ; �x ,

and �y are constants and �x�y � �y�x must be nonzero for the coor-

dinate transformation to be invertible. Applying the chain rule yields

that �
a�2x � 2b�x�y � c�2y

�
u����

a�x�x � b��x�y � �y�x�� c�y�y
�
u����

a�2x � 2b�x�y � c�2y
�
u�� � g��; �;u;u� ; u�� (3.17)

If b2 � ac > 0, then (3.16) is said to be hyperbolic3. In this case,

we can ®nd real constants �x; �y ; �x; �y such that the coef®cients mul-

tiplying u�� and u�� in (3.17) vanish, leaving the simpler differential

equation

u�� � g (3.18)

This is the canonical, or simplest, form for a hyperbolic partial dif-

ferential equation. Lines � � constant and � � constant are called

characteristics for the equation. The wave equation

utt � c2uxx � 0 (3.19)

3The nomenclature introduced in this section arises from an analogy with conic

sections de®ned by the equation ax2 � 2bxy � cy2 � dx � ey � f � 0. If they exist,

real solutions to this equation are hyperbolas, ellipses, or parabolas, depending on

whether b2 � ac is positive, negative, or zero.
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has this form, with � � x � ct, � � x � ct. We present the general

solution to this equation in Section 3.3.6.

If b2�ac < 0, then (3.16) is elliptic. No real coef®cients �x; �y ; �x ,

and �y exist that will make the coef®cients of u�� and u�� vanish.

Instead, one ®nds complex conjugate characteristics � � �R � i�I , � �
�R � i�I . All is not lost, however. Using �0 � �R and �0 � �I as new

coordinates, the coef®cient of u�0�0 can be made to vanish, leading to

the canonical form

u�0�0 �u�0�0 � g (3.20)

The left-hand side of this equation is the two-dimensional Laplacian

operator. At steady state, (3.12) above reduces to this form in two

spatial dimensions. If g is only a function of x and y , this equation

is called the Poisson equation. If g � 0, it is called the Laplace

equation.

The borderline case b2 � ac � 0 leads to the parabolic equation

u�� � g (3.21)

The standard example of a parabolic equation is the transient species

conservation equation, (3.12) in one spatial dimension, which we can

write

ut � vux � Duxx � RA
The SchrÈodinger equation is also parabolic. Elliptic and parabolic equa-

tions are treated extensively in the sections below.

The classi®cation of partial differential equations into these cate-

gories plays an important role in the mathematical theory of existence

of solutions for given boundary conditions. Fortunately, the physical

settings commonly encountered by engineers generally lead to well-

posed mathematical problems for which we do not need to worry about

these more abstract issues. Therefore we now proceed to the presen-

tation of classical solution approaches, many of which are insensitive

to the type of equation encountered.

3.3.2 Separation of Variables and Eigenfunction Expansion with

Equations involving r2

The technique of separation of variables is perhaps the most famil-

iar classical technique for solving linear partial differential equations.

It arises in problems in transport, electrostatics, quantum mechanics,
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and many other applications. The technique is based on the superposi-

tion property of linear problems (Section 2.2.1) as well as the following

several assumptions:

1. A solution u�x1; x2; x3; : : :� to a PDE with independent variables

xi can be written u � X�x1�Y�x2�Z�x3� � � � .
2. The boundaries of the domain are coordinate surfaces and the

boundary conditions for the PDE can also be written in the above

form.

3. A distinct ODE can be derived from the original PDE for each func-

tion X;Y ;Z; : : :.

4. Using superposition, a solution satisfying the boundary condi-

tions can be constructed from an in®nite series of solutions to

these ODEs. This condition implies that separation of variables

is primarily useful for equations involving self-adjoint partial dif-

ferential operators such as the Laplacian, in which case eigen-

functions of various Sturm-Liouville problems provide bases for

representing the solutions. Consider a problem with three in-

dependent variables and two of them, say x2 and x3, lead to

Sturm-Liouville problems with eigenfunctions Yk�x2� and Zl�x3�,

k � 0;1;2; : : : ; l � 0;1;2; : : :. The basis functions for the x2 � x3
direction are thus Yk�x2�Zl�x3�. The solutions to the problem in

the inhomogeneous direction are then coef®cients in the series

and the total solution has this form

u�x1; x2; x3� �
1X
k�1

1X
l�1
Xkl�x1� fYk�x2�Zl�x3�g

We illustrate the method with several examples.

Example 3.4: Steady-state temperature distribution in a circular cylin-

der

Consider a circular cylinder with unit radius and an imposed tempera-

ture pro®le us��� on its surface. The steady-state temperature pro®le

u�r ; �� is a solution to Laplace's equation

r2u � 0 (3.22)

in polar coordinates

1

r

@

@r
r
@u

@r
� 1

r 2
@2u

@�2
� 0
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with u bounded at the origin and satisfying u�1; �� � us���. As de-

scribed above, seek a solution u�r ; �� � R�r�����.

Solution

Plugging into the equation and simplifying yields

r

R

�
rR0

�0 � ��00
�

where R0 � dR=dr and �0 � d�=d�. Notice that the LHS of the equa-

tion is a function of r only and the RHS a function of �. The only way

for the two sides to be equal is for them both to equal a constant, c.

This observation gives us a pair of ODEs

r
�
rR0

�0 � cR � 0 (3.23)

�
00 � c� � 0 (3.24)

The constant c is as yet unspeci®ed.

Equation (3.23) satis®es periodic boundary conditions���� � ����
2��;�0��� � �0�� � 2��; it is a Sturm-Liouville eigenvalue problem

with eigenvalue c. This has solutions �k��� � eik� for all integers k

with the corresponding eigenvalue c � k2. So in fact we have found

not a single solution, but a family of solutions; a basis for functions in

the � direction.

Now consider the equation for R�r�, setting c � k2. A little manip-

ulation puts the equation in this form

r 2R00 � rR0 � k2R � 0

This is a Cauchy-Euler equation, with k as a parameter and solutions

Rk � Akrk�Bkr�k. To satisfy the boundedness condition at r � 0, only

the solution with a positive exponent must remain, so Rk � akr jkj.
Since every integer k gives a solution, we can use the superposition

principle to write

u�r ; �� �
1X

k��1
akr

jkjeik�

This is a Fourier series, using the Sturm-Liouville eigenfunctions �k���

as basis functions. The coef®cients ak come from the boundary condi-

tion. At r � 1,

u�1; �� �
1X

k��1
ake

ik� � us���
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We can extract the coef®cients ak from this formula by using the or-

thogonality of the Sturm-Liouville basis functions: take inner products

(in �) of both sides with the basis function eil�� 1X
k��1

ake
ik�; eil�

�
�
�
us���; e

il�
�

Letting ck � �us���; eil��=2� , this process simply gives us that ak � ck.
That is, the (known) Fourier coef®cients of the boundary temperature

determine the Fourier coef®cients in the cylinder, so

u�r ; �� �
1X

k��1
ckr

jkjeik� �

Example 3.5: Transient diffusion in a slab

The transient diffusion of heat or a chemical species in one direction

is governed by the transient diffusion equation, also called the heat

equation
@u

@t
� D@

2u

@x2
(3.25)

Consider the initial and boundary conditions u�x;0� � 0, u�0; t� � 0,

u�`; t � 0� � u`, i.e., the initial concentration in the domain 0 < x < `

is zero and at t � 0 the right end of the domain is exposed to a known

concentrationu � u`. Seek a separation of variables solutionu�x; t� �
X�x�T�t�.

Solution

Using the form u�x; t� � X�x�T�t�, (3.25) becomes

XT 0 � DX00T

where again 0 denotes the derivative of a function with respect to its

independent variable. Rearranging yields

1

D

T 0

T
� X

00

X

Observing that this expression equates a function of t to a function of

x we again conclude that each side of it must be constant

T 0 � cDT (3.26)

X00 � cX (3.27)



3.3 Linear PDEs: Properties and Solution Techniques 283

The second of these contains a Sturm-Liouville operator and must sat-

isfy boundary conditions X�0� � 0, X�`� � u`. These boundary condi-
tions, however, are not homogeneous, so the problem as written is not

a Sturm-Liouville problem.

A simple change of variable solves this problem. We letu � us�x��
v�x; t� and choose us to satisfy the inhomogeneous boundary condi-

tions atx � 0 andx � `, in which case v satis®es homogeneous bound-

ary conditions v�0; t� � v�`; t� � 0. A particularly convenient choice

is us � u` x` , which is the steady-state solution to this problem. Thus

v�x; t� is the deviation from the steady state. Substituting into (3.25)

and observing that @us=@t � @2us=@x2 � 0 yields

@v

@t
� D@

2v

@x2

with v�x;0� � �us , v�0; t� � 0, v�`; t � 0� � 0. Now letting v�x; t� �
X�x�T�t� and repeating the above steps we ®nd that the problem for X

is a true Sturm-Liouville problem, including the homogeneous bound-

ary conditions X�0� � X�`� � 0. The eigenvalues are c � �k2, where
now k � n�=` for positive integern and the eigenfunctions are sin n�x

` .

Equation (3.26) is an initial-value problem. Its solutions, parametrized

by n, are

Tn�t� � Tn�0�e�
n2�2

`2
Dt

so the overall solution again has the Fourier series form

v�x; t� �
1X
n�1
Tn�0�e

�n2�2

`2
Dt

sin
n�x

`
(3.28)

The initial conditions Tn�0� are determined from the initial condi-

tionv�x;0� � �us by setting t � 0 in (3.28) and taking its inner product

with basis function sin m�x
`�

�u`
x

`
; sin

m�x

`

�
�
� 1X
n�1
Tn�0� sin

n�x

`
; sin

m�x

`

�
Thus

Tm�0� �
R `
0 �u` x` sin

m�x
` dxR `

0 sin m�x
` sin m�x

` dx
� ��1�m 2u`

m�

The ®nal exact solution is thus

u�x; t� � u`
x

`
�

1X
n�1
��1�n2u`

n�
e�

n2�2

`2
Dt

sin
n�x

`
(3.29)
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At short times t � `2=D, this series converges very slowly because of

the n�1 decay of the Fourier coef®cients Tn�0� of the initial condition.
In this situation, alternate approaches that approximate the domain as

semi-in®nite are more appropriate because diffusion has only had time

to spread the heat or solute over a short distance from the boundary.

See Exercises 3.23 and 3.36. As t increases, the exponential decay term

becomes smaller and the series converges more rapidly.

�

With these two examples, one can see a pattern emerging. Separa-

tion of variables leads to at least one direction that presents a Sturm-

Liouville problem whose eigenfunctions are a useful basis for repre-

senting the solution. In the second example, a change of variable was

required to ®nd a direction with the homogeneous boundary condi-

tions required of a Sturm-Liouville eigenvalue problem. The following

example extends this idea.

Example 3.6: Steady-state diffusion in a square domain

Solve Laplace's equation r2u � 0 in a unit square domain 0 < x <

1;0 < y < 1, with boundary conditions u � 200 on x � 0 and y � 0,

u � 300 on x � 1 and u � 500 on y � 1, as shown in Figure 3.8(a).

Solution

As stated, there are no homogeneous directions. Now we split the so-

lution into three pieces: u�x;y� � U�x;y��V�x;y��W�x;y�, where
U;V , andW all satisfy Laplace's equation, but with conveniently chosen

boundary conditions that sum to the boundary conditions for the orig-

inal problem, as illustrated in Figure 3.8(b). The problem for U is trivial

because all the boundaries have the same value of 200; thus U � 200.

The problem for V has homogeneous boundary conditions at y � 0

and x � 1, while that for W has homogeneous boundary conditions at

x � 0 and x � 1, aside from a multiplicative constant, it is just a �=2

rotation of the problem for V . The solution to theW problem (to within

a multiplicative constant) is Exercise 3.32. From it the solution to the

V problem can be found so the solution for u � U�V �W is complete.

�



3.3 Linear PDEs: Properties and Solution Techniques 285

r2u � 0 300

(a)

200

200

200

500

r2U � 0 r2V � 0 r2W � 0200

200

0

0

300

0 0

0

(b)

200 100 0

Figure 3.8: Laplace's equation in a square domain. (a) Original prob-

lem. (b) Three subproblems whose solutions sum to the

solution of the original problem.

Example 3.7: Eigenfunction expansion for an inhomogeneous prob-

lem

Solve the Poisson equation

uxx �uyy � f�x;y�
in a unit square with Dirichlet boundary conditions, which models a

steady-state distribution given a source f�x;y� distributed within the

domain.

Solution

Separation of variables does not work for this problem (try it), but a

version of eigenfunction expansion does. Think of this problem as a

linear algebra problem Lu � f . Here L is self-adjoint, so the solutions

to the eigenvalue problem Lw � �w � 0 form an orthogonal basis and

allow us to diagonalize L. We can express u and f in this basis, and

since L becomes diagonal we can easily solve for u.

To perform this procedure in the present case, we need to solve

wxx �wyy � �w � 0

in the unit square with w � 0 on the boundary. We can solve this

problem by separation of variables: it gives Sturm-Liouville problems in
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bothx andy , and yields eigenfunctionswmn�x;y� � sinm�x sinn�y

with (real) eigenvalues �mn � �2�m2 � n2�, for all integer pairs mn.

Now to solve the Poisson equation, we express u and f in terms of the

eigenfunctions

u�x;y� �
1X

m�1

1X
m�1

umnwmn�x;y�

f�x;y� �
1X

m�1

1X
m�1

fmnwmn�x;y�

Since f is known, fmn � �f ;wmn�=�wmn;wmn�, where the inner prod-

uct in this case is just the integral over the square. Now since wxx �
wyy � ��w, we can write ��mnumn � fmn, which we can solve im-

mediately to give umn � �fmn=�mn, so

u�x;y� �
1X

m�1

1X
n�1

fmn

��mn
sinm�x sinn�y �

In some situations, a separation of variable solution can be obtained

via multiple approaches. For example, the Laplacian operator in polar

coordinates can be written

r2 � Lr � 1

r 2
L� � Lz

where

Lr � 1

r

@

@r

�
r
@

@r

�
L� � @2

@�2
Lz � @2

@z2

Given appropriate homogeneous boundary conditions, all three of these

are Sturm-Liouville operators, so depending on the boundary condi-

tions, theremay by the possibility of more than onemethod of solution.

The following example illustrates this situation.

Example 3.8: Steady diffusion in a cylinder: eigenfunction expansion

and multiple solution approaches

Consider Laplace's equation in a cylindrical domain with boundary con-

ditions u�r ; z � 0� � 1, u�r � 1; z� � 0, u�r ; z � 1� � 0. That is, the

bottom is heated, and the top and side are cooled. Solve this equation

in two different ways:

(a) Using basis functions that depend on r .
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(b) Using basis functions that depend on z.

Solution

We could proceed by seeking a solution v�r ; z� � R�r�Z�z� as above.
Instead we will directly impose a Fourier series form for the solution

based on the eigenfunctions.

(a) For the current problem there is no �-dependence and we ®rst

seek a solution that uses basis functions in the r -direction., i.e.,

eigenfunctions of Lr . This is a singular Sturm-Liouville operator

(p�r� � r ) so only boundedness is required at the origin, and the

boundary condition at r � 1 is homogeneous. Referring back to

Example 2.8, we recognize that the eigenfunctions of Lr are the

Bessel functions of order zero so we can seek a solution

u�r ; z� �
1X
n�1
un�z�J0�

p
�nr�

where
p
�n � 2:4;5:5;8:7;11:8; : : : : To simplify notation, let kn �p

�n. Substituting this solution form into Laplace's equation and

using the fact that LrJ0�knr� � �k2nJ0�knr� yields that

d2un
dz2

� k2un � 0

Because of the bounded domain, it is convenient to represent the

solution to this problem as

un�z� � an coshknz � bn sinhknz

so

u�r ; z� �
1X
n�1
�an coshknz � bn sinhknz�J0�knr� (3.30)

At z � 0, u � 1. Taking the inner product, i.e., weighted integral

from r � 0 to r � 1 of (3.30), evaluated at z � 0, with J0�kmr�

leads to

an � �1; J0�kmr��w
�J0�kmr�; J0�kmr��w

(3.31)
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Evaluation of these and related integrals is facilitated by the fol-

lowing general results for Bessel functions with integer n and ar-

bitrary k; l

d

dx
�xnJn�kx�� � xnkJn�1�kx� (3.32)

d

dx
�xnYn�kx�� � xnkYn�1�kx� (3.33)

x
d

dx
�Jn�kx���nkJn�kx� � xkJn�1�kx� (3.34)

x
d

dx
�Yn�kx���nkYn�kx� � xkYn�1�kx� (3.35)

x
d

dx
�Jn�kx���nkJn�kx� � �xkJn�1�kx� (3.36)

x
d

dx
�Yn�kx���nkYn�kx� � xkYn�1�kx� (3.37)

J�n�kx� � ��1�nJn�kx� (3.38)

Y�n�kx� � ��1�nYn�kx� (3.39)

Z 1

0
xJn�kx�Jn�lx� dx

�
8<:0 k � l

1
2J

2
n�1�k� k � l; Jn�k� � 0; n > �1 (3.40)

Using the ®rst and last of these expressions, one can ®nd that

�1; J0�kmr��w �
Z 1

0
J0�kmr�r dr � 1

km
J1�km� (3.41)

�J0�kmr�; J0�kmr��w �
Z 1

0
J20�kmr�r dr �

1

2
J21�km� (3.42)

The boundary condition u � 0 at z � 1 requires that

bn � �an coshkn
sinhkn

Using these results, the solution is

u�r ; z� �
1X
n�1
an

�
coshknz � coshkn

sinhkn
sinhknz

�
J0�knr�

with an given by (3.31), (3.41), and (3.42).
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(b) Alternately, we can seek a solution using eigenfunctions of Lz.

The boundary conditions at z � 0 and z � 1 are not homogeneous

but this is easily addressed by lettingu � �1�z��v . Nowr2v � 0

(because r2�1 � z� � 0) with the homogeneous boundary condi-

tions v�r ;0� � v�r ;1� � 0. Now, however, v�1; z� � ��1 � z�.
We could proceed by seeking a solution v�r ; z� � R�r�Z�z� as
above. Instead we will directly impose a Fourier series form for

the solution based on the eigenfunctions sinn�z of Lz

v�r ; z� �
1X
n�1
vn�r� sinn�z

Substituting this solution form into Laplace's equation leads to

1X
n�1

�
1

r

d

dr
r
dvn
dr

�n2�2vn�r�

�
sinn�z � 0

Taking the inner product of this equation with sinm�z, invoking

orthogonality, and changingm to n yields

1

r

d

dr
r
dvn
dr

�n2�2vn�r� � 0

This is called the modified Bessel equation of order zero. It

differs from Bessel's equation by the sign in front of the second

term. Its solution can be found by the method of Frobenius; the

general solution is

vn�r� � anI0�n�r�� bnK0�n�r�

The functions I0 and K0 are the modified Bessel functions of

order zero; they are shown in Table 2.3. The function K0 has

a logarithmic singularity at the origin, so for boundedness we

require thatbn � 0. The coef®cientsan are found by imposing the

boundary condition at r � 1 and again taking the inner product

with an eigenfunction

an � ���1� z�; sinn�z�1
2 I0�n��

� �2
n�I0�n��

The solution in ®nal form is

v�r ; z� �
1X
n�1
anI0�n�r� sinn�z �
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In spherical coordinates, the Laplacian operator can be written

r2 �
�
Lru� 1

r 2
L�u� 1

r 2 sin2 �
L�u

�
where

Lr � 1

r 2
@

@r
r 2
@

@r
L� � 1

sin�

@

@�
sin�

@

@�
L� � @2

@�2

It often is useful to rewrite the ®rst of these in this form

Lrf � 1

r

@2

@r 2
�rf � (3.43)

Accordingly, the introduction of a new variable g � rf often is useful

in problems in spherical coordinates.

Example 3.9: Transient diffusion from a sphere

Consider the transient diffusion of a chemical species out of a sphere

with radius R into uniform surroundings where the species concentra-

tion is zero. This problem satis®es

@u

@t
� DLru

with u�r ;0� � u0; u�R; t > 0� � 0.

Solution

Spherically symmetric problems like this can be solved using the eigen-

functions of

Lr� � �� � 0

This is the Spherical Bessel's equation

d

dx
x2dy

dx
�
�
m2x2 �n�n� 1�

�
y � 0

in the speci®c case � �m2 and n � 0. Its solutions are the spherical

Bessel functions of order zero, which are simply

f�x� � asinmx
x

� bcosmx
x

These functions are orthogonal with respect to an inner product with

weight function w�r� � r 2. This factor arises naturally in the dif-

ferential volume element in spherical coordinates. The eigenvalues

m2, and coef®cients a and b are determined as usual by the (homoge-

neous/boundedness) boundary conditions. For example, for diffusion

in a sphere, boundedness at the origin requires that b � 0. �
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Example 3.10: Temperature ®eld around a sphere in a linear gradient

Consider the steady-state temperature ®eld T�r ; �� that surrounds a

sphere of radius R, e.g., a spherical inclusion in a solid material, ex-

posed to a temperature gradient aligned along the z axis. We take the

thermal conductivity of the sphere to be small enough that there is no

heat ¯ux into it. Thus we are solving

0 � LrT � 1

r 2
L�T

with boundary conditions

@T

@r
� 0; r � R

rT ! Gez; r !1

Solution

Axisymmetric diffusion problems involving the Laplacian in spherical

geometries are naturally treated by expansion in the eigenfunctions of

L�� � �� � 0

If we make the substitution � � cos�, L� becomes

L� � d

d�

�
1� �2

� d
d�

and the eigenvalue problem can be written as

�
1� z2

� d2�
dz2

� 2z
d�

dz
� �� � 0

This is Legendre's differential equation, see Example 2.9. Its eigenval-

ues are � � n�n�1� for nonnegative integers n and its eigenfunctions

are the Legendre polynomials Pn���.

Substituting the solution form

T�r ; �� �
1X
n�0
Tn�r�Pn��� (3.44)

into the governing equation, recalling that L�Pn � �n�n � 1�Pn, and

using the orthogonality of the Legendre polynomials yields that

r 2LrTn �n�n� 1�Tn � 0
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Rewriting this as

r 2
d2Tn
dr 2

� 2r
dTn
dr

�n�n� 1�Tn � 0 (3.45)

we recognize it as a Cauchy-Euler equation with solution

Tn�r� � anrn � bnr��n�1� (3.46)

Consider ®rst the boundary condition at in®nity. We can rewrite this

as T ! Gr�� T1 � rGP1���� T1, where T1 is arbitrary; we have not

speci®ed the temperature anywhere, only its gradient. Comparing this

form to the series solution (3.44), we see that a0 � T1, a1 � G, and
an � 0 for n > 1. At r � R

0 � @T
@r

�
1X
n�0

dTn
dr

Pn���

�
1X
n�0

�
nanR

n�1 � �n� 1�bnR
��n�1��1

�
Pn���

Because of the orthogonality of the Pn���, this sum must vanish term

by term

nanR
n�1 � �n� 1�bnR

��n�1��1 � 0

Using the known values of an

n � 0 : b0 � 0

n � 1 : a1 � G � 2b1R
�3 ) b1 � GR

3

2

n > 1 : an � 0 � �n� 1�bnR
��n�1��1 ) bn � 0

The ®nal result is

T�r ; �� � T1 �G
 
r � R3

2r 2

!
cos� (3.47)

�
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Example 3.11: Domain perturbation: heat conduction around a near-

sphere

Consider the problem of heat conduction outside an object described

in spherical coordinates by

r � R��� � 1� �P2�cos��

where P2�x� � �3x2� 1�=2 is the quadratic Legendre polynomial. This

shape is slightly elongated at the poles and narrower at the equator than

is a sphere, but has the same surface area. Use a regular perturbation

approach based on the smallness of the deviation of the surface from

spherical.

Solution

This example illustrates the technique of domain perturbation. This

approach is applicable to problemswhere the possibly unknown bound-

ary shape is a small perturbation from a shape for which a closed form

(e.g., separation of variables or Fourier transform) solution can be ob-

tained. This approach is sometimes also used in numerical solution

approaches to simplify the domain shape. In the present example, the

choice of the Legendre polynomial simpli®es the calculation but the

solution procedure would be similar, but more tedious, with a more

complicated surface shape, as long as the deviation from a sphere is

uniformly small.

The equation and boundary conditions are

r2T � 0; T �r � R� � 1; T ! 0 as r !1

Because the boundary is not a constant-coordinate surface, separation

of variables (in spherical coordinates) cannot be used to ®nd an exact

solution. Nevertheless, a perturbation approach can be used to impose

an asymptotically exact boundary condition at r � 1. This is done by

expanding the boundary condition in a Taylor series around r � 1:

1 � T�r � R����

� T�1; ��� @T
@r

����
r�1
�R���� 1�� 1

2

@2T

@r 2

�����
r�1
�R���� 1�2 �O��3�

Inserting the particular expression for the boundary shape:

1 � T�1; ��� @T
@r

����
r�1
�P2�cos��� 1

2

@2T

@r 2

�����
r�1
�2P2�cos��

2 �O��3�
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Note that this boundary condition is imposed at r � 1, allowing the

use of separation of variables. There is no indication that a singular

perturbation approach is necessary, so we posit a regular perturbation

expansion T�r ; �� � T0�r ; �� � �T1�r ; �� � �2T2�r ; ��. The governing

equation at each order is simply Laplace's equation, with boundary con-

dition at r � 1 at each order

�0 : T0 � 1

�1 : T1 � �P2�cos�� @T0@r

�2 : T2 � �P2�cos�� @T1@r � 1
2P2�cos��

2 @
2T0
@r2 :

Using the fact that axisymmetric decaying solutions to Laplace's equa-

tion in spherical coordinates are given by

1X
i�0
ci
Pi�cos��

r i�1

we ®nd that the solutions at each order are:

T0�r ; �� � 1

r

T1�r ; �� � P2�cos��
r 3

T2�r ; �� � 2

5

1

r
� 4

7

P2�cos��

r 3
� 36

35

P4�cos��

r 5

Given these solutions, we can ®nd that the dimensionless heat ¯ux from

the object is

Q � �2�
Z �
0

@T

@r

����
r�1

sin� d� � 4��1� 2

5
�2�

where Q � 1 corresponds to the heat ¯ux from a sphere. Thus the

change in heat ¯ux from the sphere is proportional to the square of the

deviation of the surface from spherical. Notice that the entire solution

procedure is valid, and the heat ¯ux the same if � < 0, so the object is

actually a slightly ¯attened sphere. Therefore both prolate and oblate

deviations from a spherical shape increase the heat ¯ux. �

3.3.3 Laplace's Equation, Spherical Harmonics, and the Hydrogen

Atom

SchrÈodinger's equation for the wave function 	�x; t� of a particle ex-

posed to a potential energy ®eld V�x� is

i
@	

@t
� �r2

	 � V�x�	 (3.48)
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We will consider the case of a spherically symmetric potential V�x� �
V�r�, whose form we will specify later, so it is natural to work in spher-

ical coordinates. The solutions of this equation have a very rich struc-

ture that encompasses many features of systems with spherical sym-

metry.

In contrast to the previous couple examples, we will allow the sepa-

ration of variables procedure to again guide us. To begin, let 	�x; t� �
f�t� �x�Ðthe temporal and spatial variables are separated but not

(yet) the individual coordinate directions. Inserting this form into (3.48)

and rearranging yields

i

df
dt

f
� �r

2 � V 
 

� E

where E is a constant. Thus

i
df

dt
� Ef (3.49)

��r2 � V�r�� � E (3.50)

The solution to (3.49) is

f�t� � f0e�iEt

Equation (3.50) has the form of an eigenvalue problem where the eigen-

value E is a dimensionless energy. This must be real so that 	 does not

vanish at past or future times. Now, since L� � @2=@�2 with periodic

boundary conditions, we let  �r ;�;�� � u�r ; ��eim� for any integer

m. As above, we have let � � cos�. Equation (3.50) becomes 
�Lr � 1

r 2
L� � m2

r 2 �1� �2� � V�r�
!
u � Eu (3.51)

We now write u�r ; �� � R�r�P���. Substitution into (3.51) and rear-

rangement to group terms dependent only on r and � yields

1

R
r 2LrR � r 2�E � V�r�� � �1

P
L�P � m2

1� �2 � c

Therefore

r 2LrR � r 2�E � V�r��R � cR � 0 (3.52)

L�P � m2

1� �2P � cP � 0 (3.53)
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Equation (3.53) describes the angular behavior of the solutions. For

m � 0, it reduces to Legendre's differential equationÐwe know that

for boundedness at � � �1 (� � 0 and � ), that c � l�l � 1�, with

l a whole number. For m � 0 it is called the associated Legen-

dre differential equation. Seeking a power series solution re-

veals that this equation has bounded solutions in �1 � � � 1 only

if m � �l;��l � 1�;��l � 2�; : : : ;0;1;2; : : : ; l. These solutions are the

associated Legendre polynomials

Plm��� �
�
1� �2

�m=2 dm

d�m
Pl���; m � 0 (3.54)

and Pl;�m � Plm.

Recapitulating, the products Plm�cos��eim� contain the angular de-

pendence of the solution. Suitably normalized and denoted Ylm��;��,

these products are called surface spherical harmonics, or some-

times just spherical harmonics; they are the eigenfunctions of the

angular part of the Laplacian�
L� � 1

sin2 �
L�

�
Ylm � l�l� 1�Ylm � 0 (3.55)

Each eigenvalue l has l�1 corresponding eigenfunctions Ylm withm �
0;1; : : : l. The normalized functions have the form

Ylm��;�� � ��1��m�jmj�=2
s

2l� 1

4�

�l�m�!
�l�m�!Plm�cos��e

im� (3.56)

and satisfy orthonormality with respect to integration over the surface

of the unit sphereZ 2�

0

Z �
0
Ylm��;��ÅYnp�cos�;�� sin� d� d� � �ln�mp (3.57)

The functions Ylm for l � 4 are shown in Figure 3.9. Surface spherical

harmonics are widely used to represent functions on the surface of a

sphere.

Returning to (3.52) for the r -dependence, consider ®rst the case

E � V�r� � 0, in which (3.50) becomes the Laplace equation r2 � 0.

Equation (3.52) and its solution reduce to (3.45) and (3.46), respectively,

with n replaced by l. Thus the general solution to r2 � 0, expressed

in spherical coordinates, is

 �r ; �;�� �
1X
l�0

lX
m�0

�
almr

l � blmr��l�1�
�
Ylm��;�� (3.58)
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Figure 3.9: From left to right, real parts of the surface spherical har-

monics Y40; Y41; Y42; Y43; Y44.

Equation (3.47) is a particular case of this solution. Terms r lYlm��;��

and r��l�1�Ylm��;�� are called the growing and decaying solid spher-

ical harmonics, respectively.

Now consider the case of an electron ªorbitingº a protonÐa hydro-

gen atomÐwhere the potential energy is the Coulomb potential

V�x� � �1
r

As boundary conditions, we require that 	 is bounded at r � 0 and that

it vanishes as r !1. If the latter condition is not satis®ed, the electron

is not bound to the proton and we do not have an atom. Equation (3.43)

motivates the substitution w�r� � rR�r� into (3.52), yielding

d2w

dr 2
�
�
E � 1

r
� l�l� 1�

r 2

�
w � 0

As r ! 1 we can approximate this as w00 � Ew � 0, suggesting that

we seek a solution w�r� � F�r�e��r , where � � p�E. This result in-
dicates that E < 0 for a bound electron. Without going into the details

(with which we are now largely familiar), seeking a Frobenius solution

F�r� � r�g�r� and requiring that Fe��r ! 0 as r !1 leads to� � l�1
and requires that g�r� be a truncated power series, i.e., a polynomial.

Inspecting the recursion relation for the power series, one ®nds in close

analogy to the results in Chapter 2 regarding Legendre and other or-

thogonal polynomials that it will truncate at degree n0 if
p
�E�l�n0� � 1

The solutions, which we denote Rn0 can be written in terms of as-

sociated Laguerre polynomials (Merzbacher, 1970; Winter, 1979).
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De®ning n � l�n0 as the principal quantum number this becomes

E � � 1

n2

This expression determines the eigenvalues of (3.50) and describes

very well the energy levels of a hydrogen atom. The eigenfunctions

 lmn0�x� � Ylm��;��Rn0�r� of (3.50) are characterized by l, m �
�l; : : : ; l, called the angular momentum quantum numbers, and n0,
called the radial quantum number. Since the eigenvalues E depend

only on l�n0, various combinations of l and n0 have the same energy.

The same is true for all eigenfunctions with the same m. The s, p,

d, and f atomic orbitals correspond to l � 0;1;2; and 3, respectively.

Since E < 0, when n � 1 only l � 0 states, s orbitals, can exist. This

is the ground state or lowest-energy state of the hydrogen atom. When

n � 2, both l � 0 (s orbitals) and l � 1 (p orbitals) can exist, and so

on. Thus we see in this analysis the basic features of the electronic

structure of atoms.

3.3.4 Applications of the Fourier Transform to PDEs

In Section 2.4.1 we saw that functions in a ®nite domain could be rep-

resented as a trigonometric Fourier series4

f�x� �
1X

k��1
Ãcke

ikx Ãck � �f ; eikx�

�eikx; eikx�

The Fourier transform generalizes this idea to an unbounded do-

main. First some de®nitions: the Fourier transform Ãf�k� of a function

f�x� is given by

Ãf�k� �
Z1
�1
f�x�e�ikxdx � F �f�x�	

This is the analogue of the expression for Ãck in a bounded domain; be-

cause periodicity is no longer required over a ®nite interval, k can be

any real number rather than needing to be an integer. The inverse

Fourier transform is the analogue of the Fourier series representa-

tion of f

f�x� � 1

2�

Z1
�1

Ãf�k�eikxdk � F�1
n
Ãf�k�

o
4Note that the Ãck used here denote the Fourier coef®cients when the basis functions

are orthogonal but not normalized. So here Ãck � ck=
p
2� .
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These operations are mappings from ªx-spaceº to ªk-spaceº and vice

versa. Here are some useful properties of Fourier transforms, which

are easily derived from its de®nition:

1. Derivative property

F

�
df�x�

dx

�
� ikF �f�x�	 � ik Ãf�k� (3.59)

2. Integral property

F

(Z x
x0

f�x�dx

)
� 1

ik
Ãf�k�� c��k� (3.60)

where c depends on the lower limit x0 of the integration.

3. Shift in x

F
�
f�x � a�	 � e�ika Ãf�k� (3.61)

4. Shift in k

F
n
eilxf�x�

o
� Ãf�k� l� (3.62)

5. Scaling

F
�
f��x�

	 � 1

j�j
Ãf

�
k

�

�
(3.63)

where � is a real scalar.

6. Behavior upon exchanging variables: if Ãf�k� � Fff�x�g, then
Ff Ãf�x�g � 2�f��k�. This property is useful for extending the

usefulness of lists or tables of transforms, like the one in the fol-

lowing paragraph.

7. Convolution theorem: the convolution of two functions G and

h is

u�x� �
Z1
�1
G�x � ��h��� d� �

Z1
�1
G���h�x � �� d�

This is often written u � G � h. The convolution theorem

states that

FfG � hg � bG�k�Ãh�k� (3.64)

A convolution in x-space is a product in k-space. Similarly,

Fff�x�g�x�g � 1

2�
Ãf�k�� Ãg�k� � 1

2�

Z1
�1

Ãf�k� k0�Ãg�k0� dk0

A product in x-space is a convolution in k-space.
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These properties will help us to solve PDEs.

Fourier transforms of some important functions are:

1. f�x� � ��x� () Ãf�k� � 1. A spike localized in space has equal

components at every wavelength.

2. Ãf�k� � 2���k� () f�x� � 1. Conversely, a spike located at

zero wavenumber is smeared all over space.

3. Ãf�k� � 2���k� l� () f�x� � eilx . A spike at k � l corresponds
to a sinusoid of wavenumber l.

4. f�x� � 1;�L < x < L and zero elsewhere () Ãf�k� � �2 sinkL�=k.

5.

f�x� � 1

1� x2
() Ãf�k� � �e�jkj

6.

f�x� � e�bjxj �b > 0� () Ãf�k� � 2b

b2 � k2 b > 0

7.

Ãf�k� � e�ak2 ; �a > 0� () f�x� � 1

2
p
�a
e�x

2=4a

The Fourier transform of a Gaussian is a Gaussian. Ifa is large, the

function decays very quickly as jkj increases, so the Gaussian in

k-space is very localized. Because a appears in the denominator

in x-space, however, the function is very spread out in x. The

opposite is true if a is small, with the balance holding at a � 1=2.

Here and here only is the spread of the function the same in k and

x. As a ! 0, 1
2
p
�ae

�x2=4a ! ��x�, in which case this property

reduces to the ®rst result on the list: f�x� � ��x� () Ãf�k� � 1.

Example 3.12: Derivation of a Fourier transform formula

Let f�x� � e�bjxj, with b > 0. Find its Fourier transform.

Solution

Ãf�k� �
Z1
�1
e�bjxje�ikx dx �

Z 0

�1
e�b�ik�x dx �

Z1
0
e��b�ik�x dx

� 1

b � ik �
1

b � ik �
2b

b2 � k2 �
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The generalization to a three-dimensional Fourier transform

is also useful

F3D
�
f�x;y; z�

	 � ZZZ1
�1
f�x;y; z�e�ikxxe�ikyye�ikzz dx dy dz

� Ãf�kx; ky ; kz�

Here Fourier transforms have been applied in all three spatial coordi-

nate directions. De®ning the wavevector k � �kx; ky ; kz�, this can be

written

Ãf�k� �
ZZZ1

�1
f�x�e�ik�x dx

Similarly, the inverse can be expressed

f�x� � F�13D

n
Ãf�k�

o
� 1

�2��3

ZZZ1
�1

Ãf�k�eik�x dk

The results presented above for one-dimensional transforms can be

used to generate formulas for multidimensional transforms. For ex-

ample

F3D
�
rf

	 � ik Ãf�k�
F3D fr � vg � ik � Ãv�k�
F3D

n
r2f

o
� �k2 Ãf ; k2 � k2x � k2y � k2z

F3D

�ZZZ1
�1
G�x � ��h��� d�

�
� bG�k�Ãh�k�

F3D

�
1

�2
p
�a�3

e�r
2=4a

�
� e�ak2 ; r 2 � x2 �y2 � z2

Note the similarity of the last result with the one-dimensional version.

It is perhaps illustrative to verify this result by taking the inverse trans-

form of the right-hand side

F�13D

n
e�ak

2
o
� 1

�2��3

ZZZ1
�1
e�ak

2

eik�x dk

� 1

2�

Z1
�1
e�k

2
xaeikxxdkx

1

2�

Z1
�1
e�k

2
yaeikyydky

� 1

2�

Z1
�1
e�k

2
zaeikzzdkz

� 1

2
p
�a
e�x

2=4a 1

2
p
�a
e�y

2=4a 1

2
p
�a
e�z

2=4a

� 1

�2
p
�a�

3
e�r

2=4a
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We illustrate the use of Fourier transforms to solve PDEs with ex-

amples.

Example 3.13: Transient diffusion in an unbounded domain: one and

multiple dimensions

(a) Consider transient diffusion

ut � Duxx (3.65)

in the one-dimensional in®nite domain ��1;1� with initial con-

dition u�x;0� � u0�x�, where u0�x� is known but otherwise ar-

bitrary. Use the Fourier transform in x to ®nd the solution.

Show that the transient solution asymptotically approaches the

constant steady-state solution

lim
t!1

u�x; t� � u0

where u0 is the mean initial temperature of the body, de®ned as

u0 � lim
M!1

1

2M

ZM
�M
u0�x�dx

(b) Extend this result to three dimensions, using initial condition

u�x;0� � u0�x�, where the three-dimensional transient diffusion

equation is

ut � D
�
uxx �uyy �uzz

�
(3.66)

Solution

(a) Taking the Fourier transform of (3.65) and applying the derivative

property yields

Ãut�k; t� � D�ik�2Ãu�k; t� � �k2DÃu

This gives us an ODE for each value of k, with initial condition

Ãu0�k�, and the solution is

Ãu�k; t� � e�k2Dt Ãu0�k�

The inverse Fourier transform puts this back in physical space.

Using the Fourier transform pair for the normal with a � Dt and
applying the convolution theorem gives

u�x; t� � 1

2
p
�Dt

Z1
�1
u0���e

��x���2=4Dt d� (3.67)
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It is also of interest to specialize this result to an arbitrarily sharp

initial condition by setting u0��� � ���� to obtain

u�x; t� � 1

2
p
�Dt

e�x
2=4Dt (3.68)

Next we look at the large time limit. In (3.67) u0��� is being

integrated against a normal distribution with mean x and vari-

ance 2a � 2Dt. As t increases, the variance goes to in®nity, and

the normal becomes more uniform on an increasingly large set

of �x; �� values. We can then approximate it as a uniform with

value 1=�2M� on an interval ��M;M�, where M increases with t,

and take it outside the integral. The result is

lim
t!1

u�x; t� � lim
M!1

1

2M

ZM
�M
u0��� d� � u0

which is the mean initial temperature. Since heat never enters or

leaves the body, the body's mean temperature is constant for all

time, and the temperature pro®le asymptotically approaches this

constant value as time increases.

(b) Taking the three-dimensional Fourier transform of (3.66) yields

the initial-value problem for the transform

Ãut � �k2DÃu; Ãu�x;0� � Ãu0�k�

which is readily solved to give

Ãu�k; t� � e�k2Dt Ãu0�k�

Setting a � Dt in the three-dimensional Fourier transform of

a normal, and using the three-dimensional convolution theorem

gives

u�x; t� � 1�
2
p
�Dt

�3
ZZZ1

�1
u0���e

�kx��k2=4Dt d� (3.69)

We see the close similarity to (3.67). The mean temperature result

holds also in the three-dimensional case. �
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Example 3.14: Steady diffusion from a wall with an imposed concen-

tration pro®le

Solve the steady state diffusion or heat conduction problem

uxx �uyy � 0

in the half-plane �1 < x < 1, 0 < y < 1, with boundary conditions

u�x;0� � u0�x� and u�x;y� bounded as y !1.

Solution

Taking the Fourier transform of the equation and boundary condition

in the x-direction (the problem is not unbounded in y) yields

�k2Ãu�k;y�� Ãuyy�k;y� � 0; Ãu�k;0� � Ãu0�k�

Requiring that the solution be bounded as y !1, this has the solution

Ãu�k;y� � Ãu0�k�e
�jkjy (3.70)

Now the inverse transform of this solution must be found. Recall that

from the point of view of the Fourier transform and its inverse, the

variable y is a constant (we have only taken the Fourier transform in

the x-direction). Therefore we can combine the following results from

above: Ãf�k� � �e�jkj a f�x� � 1
1�x2 and Ãf��x� � 1

�
Ãf�k=��. Letting

y � 1
� , we have that

Ãf�k;y� � e�jkjy ) f�x;y� � 1

�

1

y

1

1� x2

y2

� 1

�

y

x2 �y2

Given this inverse, we can then use the convolution theorem to take the

inverse transform of (3.70) giving the solution

u�x;y� � 1

�

Z1
�1
u0���

y

�x � ��2 �y2
d� �

3.3.5 Green's Functions and Boundary-Value Problems

Overview

The transient diffusion problem we solved in Example 3.13 gave us an

example of a Green's function, a solution to a differential equation
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with a point source forcing.5 We saw in that example that the solutions

for an arbitrary initial distribution u�x;0� � u0�x� could be written

as a convolution of u0 and the Green's function. Exercise 3.36 extends

that result. In the present section we will develop the basic theory of

Green's functions, with a particular focus on boundary-value problems.

Consider a linear boundary-value problem

Lu � f�x� (3.71)

with speci®ed boundary conditions that may be inhomogeneous in gen-

eral. The Green's function G�x;x0� for the operator L is the solution

to

LG � ��x � x0� (3.72)

For example, G�x;x0� is the solution for a point source placed at an

arbitrary position x0 within the domain of interest. The discussion be-

low reveals what boundary conditionsG should satisfy. For the present,

we will consider Green's functions for self-adjoint problems and as a

speci®c initial example will consider Sturm-Liouville operators. Recall

(2.33) from Section 2.4.2

�Lu;v�w �
Z b
a

1

w�x�

�
d

dx

�
p�x�

du

dx

�
� r�x�u

�
v w dx

� p�b� �u0�b�v�b��u�b�v0�b��
� p�a� �u0�a�v�a��u�a�v0�a��
�
Z b
a
u

1

w�x�

�
d

dx

�
p�x�

dv

dx

�
� r�x�v

�
w dx

Letting v�x� � G�x;x0�, this becomes

�Lu;G�w � �u; LG�w
� p�b� �u0�b�G�b;x0��u�b�v0�b;x0��
� p�a� �u0�a�G�a;x0��u�a�G0�a;x0��

Applying (3.71) and (3.72) in the two inner products gives us that

�f ;G�w � �u; ��x � x0��w
� p�b� �u0�b�G�b;x0��u�b�G0�b;x0��
� p�a� �u0�a�G�a;x0��u�a�G0�a;x0��

5In quantum mechanics in particular, a Green's function for a transient problem

like this one is called a propagator, since it propagates a �-function initial condition

forward in time.
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The inner product �u; ��x � x0��w evaluates to u�x0�w�x0�, so rear-

ranging leads to

u�x0� � 1

w�x0�

�Z b
a
f�x�G�x;x0�w�x� dx

� p�b��u0�b�G�b;x0��u�b�G0�b;x0��
� p�a��u0�a�G�a;x0��u�a�G0�a;x0���

Finally, we specify boundary conditions. For example, we can set inho-

mogeneous Dirichlet boundary conditions u�a� � ua; u�b� � ub. Be-
cause we are not specifying homogeneous boundary conditions here,

the operator L is said to be formally self-adjoint; true self-adjointness

for a differential operator requires that we impose homogeneous bound-

ary conditions such that the boundary terms vanish. In this case u0�a�
and u0�b� are not speci®ed. If we require G to satisfy homogeneous

Dirichlet boundary conditions G�a;x0� � G�b;x0� � 0, however, then

the unknown boundary values u0 do not appear and we arrive at a so-

lution for u in terms of f , G and the boundary conditions

u�x0� � 1

w�x0�

�Z b
a
f�x�G�x;x0�w�x� dx�

p�x�u�x�G0�x;x0�
��x�b
x�a

�
(3.73)

Therefore, given the solution G�x;x0� to the problem LG � ��x �x0�,
G�a;x0� � G�b;x0� � 0, we can ®nd the solution to Lu � f for any

f through (3.73). Note that (3.73) is closely analogous to the solution

x � A�1b of the algebraic problem Ax � b, with G playing the role

of A�1. Example 2.15 shows a derivation of this formula for a spe-

ci®c problem. Because that example already imposes homogeneous

Dirichlet boundary conditions, reworking it with u�x� � G�x;x0� and
f�x� � ��x � x0� would directly yield the Green's function for the

Dirichlet problem.

The above discussion focused on a Sturm-Liouville problem, which

is formally self-adjoint. For a non-self-adjoint operator, the Green's

function for the adjoint operator satis®es

L�G��x;x1� � ��x � x1� (3.74)

along with appropriate homogeneous boundary conditions. In general,

the position of the source is arbitrary, which is why we let its position



3.3 Linear PDEs: Properties and Solution Techniques 307

here be x1, which is generally distinct from x0. From the de®nition of

the adjoint

�LG;G�� � �G; L�G��
(we have chosen homogeneous boundary conditions on G and G� so

the boundary terms vanish), and inserting (3.72) and (3.74), yields

���x � x0�;G
��x;x1�� � �G�x;x0�; ��x � x1��

This reduces to simply

G��x0;x1� � G�x1;x0� (3.75)

This result is the analog of the matrix adjoint result A�ij � Aji. For a
(formally) self-adjoint operator it becomes the analog of the result for a

symmetric matrix: G�x0;x1� � G�x1;x0�. A speci®c case of this result

arose in Example 2.15. For complex functions, (3.75) simply becomes

G��x0;x1� � G�x1;x0�.

Green's Function Solution to the Poisson Equation

In multiple dimensions, Green's identities provide the foundation for

developing solutions based on Green's functions. We focus here on the

solution of the Poisson equation6

�r2u � f�x�

with boundary conditions speci®ed below. The Green's function of in-

terest here satis®es

�r2G�x;x0� � ��x � x0� (3.76)

Green's second identity, (3.14), with v replaced by G, isZ
V
�u�x�r2G�x;x0��G�x;x0�r2u�x��dV�x�

�
Z
S
�u�x�rG�x;x0��G�x;x0�ru�x�� � ndS�x�

where we have written the differential volume and surface elements as

explicit functions of x to remind us that it is the independent variable.

6We put a negative sign in front of the Laplacian here so that physically, the term

f�x� represents a source of heat, chemical species, etc., and thus the Green's function

represents a point source. Some authors do not use the negative sign.
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Inserting (3.3.5) and (3.76) and evaluating the integral containing the

�-function yields

u�x0� �
Z
V
G�x;x0�f �x�dV�x�

�
Z
S
�u�x�rG�x;x0��G�x;x0�ru�x�� � ndS�x� (3.77)

If u satis®es Dirichlet boundary conditions u � uS on S, then requiring

that G � 0 on S yields a solution for u

u�x0� �
Z
V
G�x;x0�f �x�dV�x��

Z
S
uS�x�

@G

@n
�x;x0� dS�x� (3.78)

where @G=@n � n �rG. A Green's function satisfying homogeneous

Dirichlet boundary conditions is sometimes called a Green's func-

tion of the first kind. If u satis®es Neumann boundary conditions

@u=@n � jS , then we apply homogeneous Neumann boundary condi-

tions @G=@n � 0 to the Green's function, in which case the solution for

u is

u�x0� �
Z
V
G�x;x0�f �x�dV�x��

Z
S
G�x;x0�jS dS�x� (3.79)

and G is a Green's function of the second kind.

Evaluating the solutions (3.78) or (3.79) requires us to determine

the solution to �r2G � ��x �x0� with the appropriate boundary con-

ditions. To do this, it is useful to let G be written as the sum of two

parts: G � G1 �GB . In this sum, G1 is called the free-space Green's

function. It is a solution to the equation Lu � � in an unbounded

domain, and contains the singular behavior induced by the presence of

the point source. The boundary correction GB satis®es LGB � 0 (the

singular behavior is contained inG1), and is determined by the require-

ment that G satisfy speci®c boundary conditions on S. We will ®nd G1
and GB for L � �r2 in two dimensions.

For the purpose of obtaining the free-space Green's function, we

will place the source at the origin: x0 � 0. Because the �-function

has no angular dependence, we will seek a two-dimensional solution to

�r2G1 � ��x� that is only a function of r . Therefore, at every point

in the domain except the origin, G1�r� satis®es the equation

1

r

d

dr
r
dG1
dr

� 0
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The solution to this is simple

G1�r� � c1 ln r � c2

We set c2 � 0; any constant component of the solution can be incorpo-

rated into GB . To ®nd c1 we ®rst integrate the equation �r2G1 � ��x�
over any volume V (area in this case) containing the origin

�
Z
V
r2G1 dV �

Z
V
��x� dV � 1

Recalling that r2 � r �r and applying the divergence theorem to the

left-hand side of this expression yields that

�
Z
S

@G1
@n

dS � 1

The integral is simple to evaluate if we let V be a circle of radius �

surrounding the origin, in which case

�
Z
S

@G1
@n

dS � �
Z
S

c1
r
r d� � 1

Therefore c1 � � 1
2� . Letting r � jx � x0j, the free-space Green's func-

tion for �r2 in two dimensions becomes

G1�x;x0� � G1�x � x0� � �1
2�

ln jx � x0j (3.80)

To determine GB , the shape of the domain and the boundary condi-

tions must be speci®ed. We will take the domain to be the half-plane

�1 < x < 1, 0 < y < 1 and seek a solution that vanishes as y ! 1.
In the case of Dirichlet boundary conditions, GB satis®es

�r2GB�x;x0� � 0

withGB � �G1 on y � 0. We can solve this problem using the ªmethod

of images.º Since G1 represents the ®eld due to a point source at the

position x0 � �x0; y0�, if we place a point sink (an ªimageº or ªre¯ec-

tionº of the source) at x0I � �x0;�y0�, symmetry shows us that the

®eld due to the source-sink combination will be zero at y � 0 (Figure

3.10). Therefore we set

GB�x;x0� � ��1
2�

ln jx � x0Ij
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y � 0

�x0; y0�

�x0;�y0�

�

�

Figure 3.10: A source (as indicated by the �) in the physical domain

at position �x0; y0� and an image sink (�) at �x0;�y0�.

The shaded region is outside the physical domain. Be-

cause source and sink have equal magnitude and op-

posite sign, and are the same distance from the plane

y � 0, the ®elds due to them cancel out on that line.

This satis®esr2GB � 0 in y > 0 because the sink is in the image region

y < 0. Thus the total Green's function is given by

G�x;x0� � �1
2�

ln jx � x0j � �1
2�

ln jx � x0Ij

� �1
2�

ln
jx � x0j
jx � x0Ij

Finally, the solution, (3.78), becomes

u�x0; y0� � �1
2�

Z1
0

Z1
�1

ln
jx � x0j
jx � x0Ij

f�x;y� dx dy

� y0

�

Z1
�1

uS�x�

�x � x0�2 �y2
0

dx

If f�x;y� � 0, this solution reduces to what we found using Fourier

transforms in Example 3.14. For the solution with Neumann boundary

conditions, (3.79), GB would have to satisfy @GB=@n � �@G1=@n on

y � 0. In this case GB is the ®eld due to an image source rather than a

sink at position x0I .

The simple geometry used here required only one ªimage pointº to

satisfy the boundary conditions. Nevertheless, the geometry does not

need to be much more complicated to require many or even an in®nite

number of image points. The in®nite strip, �1 < x < 1;0 < y < 1,

requires an in®nite number of image points since the image point we

use to satisfy, say, the boundary condition at y � 0 will change the

®eld at y � 1, which must be compensated by another image point,

and so on ad in®nitum. As a practical matter, often using one image

for each of the two boundaries provides an adequate approximation.
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Boundary Integral Formulation of the Laplace Equation

Equations (3.78) and (3.79) require the availability of the solution for

the Green's function with the appropriate boundary conditions and in

the domain of interest. In some cases, as we saw above, this solution

is available in closed form but often it is not. To address this situa-

tion, we step back to (3.77). In developing this equation, the boundary

conditions on G have not yet been speci®ed. For example, it is valid if

we let G � G1, which has a simple closed-form solution, (3.80). Using

this choice and letting f�x� � 0 so that we are considering the Laplace

equation, (3.77) becomes

u�x0� �
Z
S

�
G1�x;x0�

@u�x�

@n
�u�x�@G1�x;x0�

@n

�
dS�x� (3.81)

Above, we have taken x0 to be a point within the domain. If instead

we take it to be on the boundary itself, we would have a self-consistent

integral equation for the boundary values of u and @u=@n. The

solution to this equation could then be inserted into (3.81) to ®nd the

solution at any point within the domain. We will derive this equation

for the case where the domain is the interior of a bounded volume and

the boundary of the volume is smooth.

There is an important subtlety in doing this, which arises from the

fact that @G1=@n changes sign as x0 crosses from one side of the

boundary to the other. Consider a vertical boundary de®ned by the

line x � 0 with the outward normal pointing to the right, so points

on the boundary are given by x � �0; y�, and denote interior point

x0 � �x0; y0�. Taking the limit x0 ! 0 corresponds to approaching the

boundary, and

lim
x0!0

@G1�x;x0�

@n
� lim

x0!0

@G1�x;x0�

@x

� lim
x0!0

1

2�

x0

x2
0 � �y �y0�2

� 1

2
sgn�x0���y �y0�

where the last step is accomplished by recognizing jx0j
��x2

0��y�y0�2�
as

a delta family, see Section 2.2.5. Thus this term is singular as x0 ap-

proaches the boundary, and the sign depends on the side from which it

approaches. Using this result, and recalling that here x0 is approaching
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the boundary from the left (interior)

lim
x0!S

Z
S
u�x�

@G1�x;x0�

@n
dS�x� �

Z
S
u�x�

@G1�x;x0�

@n
dS�x�� 1

2
u�x0�

(3.82)

where the integral on the boundary must be evaluated in the sense of

its Cauchy principal value

lim
�!0

Z
S�S�

u�x�
@G1�x;x0�

@n
dS�x�

where S� is the portion of S within a tiny radius � of x0.

Finally, inserting (3.82) into (3.81) yields that for points x0 on the

boundary

1

2
u�x0� �

Z
S

�
G1�x;x0�

@u�x�

@n
�u�x�@G1�x;x0�

@n

�
dS�x� (3.83)

If Dirichlet boundary conditions u � g are imposed, then the left-

hand side and the second integral is known and the boundary values

of @u=@n are determined by the solution of this equation. If Neumann

boundary conditions are imposed, then the boundary values of u are

the unknowns. If u is imposed on some part of the boundary, and

@u=@n on the remainder, then @u=@n is an unknown on the part of the

boundary where u is imposed and vice versa.

Closed-form solutions to (3.83) can be obtained in special cases, but

its importance goes beyond these. On a fundamental level, it shows that

Laplace's equation, a partial differential equation, can be reformulated

as an integral equation whose domain is the boundary of the origi-

nal domain. On a practical level, it forms the basis of an important

computational approach to solving the Laplace equation and related

problems, the boundary element method. In this approach, the in-

tegrals in (3.83) are discretized, leading to a system of linear algebraic

equations whose unknowns are values of u and @u=@n at points on the

boundary.

3.3.6 Characteristics and D'Alembert's Solution to the Wave Equa-

tion

The wave equation

utt � c2r2u (3.84)

governs wave propagation in many physical contexts, including elec-

tromagnetic waves (light), vibrations of strings and membranes, and
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sound propagation. In one spatial dimension, the equation is

utt � c2uxx (3.85)

which was introduced in Section 3.3.1 as an archetypal hyperbolic equa-

tion. Following the change of variable procedure introduced there, we

®nd that � � x�ct and � � x�ct. Rewriting (3.85) in these coordinates
yields (3.18) with g � 0

@2u

@�@�
� 0

We can easily integrate this twice to ®nd the general solution of the

wave equation

u�x; t� � F1���� F2��� � F1�x � ct�� F2�x � ct�

It says that any solution is a superposition of a right-moving and a left-

moving wave. Usually, we want to understand the wave equation as an

initial-value problem, so we look at two cases of initial conditions and

then combine them to get a general result.

First, consider the initial condition u�x;0� � u0�x�;ut�x;0� � 0.

This condition corresponds to a plucked string: the string is pulled to

a stationary shape, held, then released. There is an initial deformation,

but no initial velocity. At t � 0 the above general solution and its time

derivative become

u�x;0� � u0�x� � F1�x�� F2�x�
ut�x;0� � 0 � �cF 01 � cF 02

The latter equation integrates to yield F1 � F2, and using this fact in the

®rst equation gives F1 � F2 � 1
2u0. Thus the solution for these initial

conditions is

u�x; t� � 1

2
u0�x � ct�� 1

2
u0�x � ct�

The initial condition splits immediately into two identical waves, one

traveling to the right and one to the left. These waves have the same

shape, but half the amplitude, of the initial condition. In contrast to

the parabolic heat equation ut � uxx , which smooths discontinuous

initial conditions as illustrated in Example 3.13, no smoothing occurs

in the wave equation. If an initial condition contains a discontinuity at

a point x, this will simply propagate along the characteristic directions

� � constant, � � constant.



314 Vector Calculus and Partial Differential Equations

Now consider a struck string rather than a plucked one. The initial

condition is u�x;0� � 0; ut�x;0� � v0�x� � 0. There is no initial

deformation, but there is an initial velocity. Now at t � 0 we have

u�x;0� � 0 � F1�x�� F2�x�
ut�x;0� � v0�x� � �cF 01 � cF 02

This tells us that F1 � �F2 and that v0 � 2cF 02. We can integrate this to

®nd that

F2�x � ct� � 1

2c

Z x�ct
0

v0��� d�

Similarly

F1�x � ct� � � 1

2c

Z x�ct
0

v0��� d�

The solution is F1 � F2, which is

u�x; t� � 1

2c

Z x�ct
x�ct

v0��� d�

The complete solution to the initial-value problem is the sum of the

above two cases. This is D'Alembert's solution

u�x; t� � 1

2
u0�x � ct�� 1

2
u0�x � ct�� 1

2c

Z x�ct
x�ct

v0��� d�

We have only considered the very simplest hyperbolic equation here.

For example, if the coef®cients a;b; c depend on position, then the

characteristics are curved. The references contain extensive informa-

tion about more complex hyperbolic problems.

Because the wave equation is linear, we can superpose multiple so-

lutions to form another solution. As an application of this fact, imagine

a pulse traveling rightward toward a boundary at x � 0, at which the

boundary condition is u � 0. At time t � 0, the pulse is centered

at x � x0. To understand this situation, recall Figure 3.10 and the

ªmethod of imagesº analysis of Section 3.3.5. Applying the same idea

here, we place an ªimageº pulse of the same shape but opposite sign

at the position x � �x0 (which is outside the physical domain) and

make it move leftward as shown in Figure 3.11. Now the real and im-

age pulses will eventually overlap, and by symmetry they will satisfy

u � 0 at x � 0. Once the ªimageº pulse enters the physical domain,

it is no longer an image, but a component of the true solution. The

implication of this construction is that when a wave hits a boundary

where no deformation is allowed, it re¯ects but with a change of sign.

What happens if the boundary condition is ux � 0?
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Image domain x > 0Physical domain x < 0

�x0

x0

Figure 3.11: An initially right-traveling wave in the domain x < 0

re¯ecting across a wall where u � 0, as solved using

superposition of a left-traveling ªimageº with opposite

sign.

3.3.7 Laplace Transform Methods

Next we illustrate the solution of several linear PDEs with Laplace trans-

forms. For a user with some experience, Laplace transforms are proba-

bly the most powerful method for solving linear, low-dimensional PDEs

in closed form. After taking the Laplace transform of a PDE, usually

with respect to the time variable, the result is a linear ODE in the trans-

form function. We can often solve this ODE. To perform the inverse

transform, we then require some inverse formulas for transforms with

singularities. We develop these inverse formulas next and then solve

some example PDEs. Let the transform function

f�s� � p�s�
q�s�

have singularities at the zeros of q�s�, which is assumed to have m

simple zeros 7

q�s� � 0 s � s1; s2; : : : ; sm
The inverse of this Laplace transform is given by the following formula

f�t� �
mX
n�1
ane

snt an � p�sn�
q0�sn�

(3.86)

7The singularities of complex-valued functions are poles, branch points, and essen-

tial singularities (Levinson and Redheffer, 1970). The order of a zero is the smallest

integer i such that q�sn�=�s � sn�i is nonzero, and a simple zero is a ®rst-order zero.

So we are assuming here that the function f�s� hasm simple poles.
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which is usually called the Heaviside expansion theorem. When p�s�

and q�s� are polynomials, the coef®cients an can be derived using par-

tial fractions. But the result applies to more general cases as we re-

quire in the two examples below, where q�s� � sinh
p
k� s and q�s� �

sinh s.8

When the zeros of q�s� are higher than ®rst order, f�t� is a linear

combination of products of polynomials and exponentials of time, and

the coef®cients are more complex. Let the zero sn have order rn, n �
1;2; : : :m. Then the inverse is given by

f�t� �
mX
n�1
esnt

rnX
i�1
anit

i�1 (3.87)

The coef®cients ani, for i � 1; : : : ; rn; n � 1;2; : : :m, are given by

ani � ��rn�i��sn�
�rn � i�!�i� 1�!

in which

��s� � �s � sn�rn p�s�
q�s�

and��i��sn� denotes the ith derivative of��s� evaluated at s � sn. For
students with a background in complex variables, Exercise A.2 provides

some hints to establish (3.87) (and hence also (3.86)), which requires in-

verting the Laplace transform by performing the contour integral (2.7).

Next we use Laplace transforms to solve the reaction-diffusion equa-

tion and the wave equation. We will see that the transform in both

problems has only simple zeros and we will use (3.86) for calculating

the inverse.

Example 3.15: Reaction and diffusion in a membrane

The following model describes diffusion through a membrane in which

component A decomposes by a ®rst-order reaction. The membrane

initially has zero concentration of A. At t � 0 the concentration at the

side of the membrane at x � 0 is abruptly raised to concentration cA0

and the other side is maintained at zero concentration.

8We are in good company. Heaviside also used the expansion for the case of q�s� �
sinhxs (Vallarta, 1926)(Heaviside, 1899, p. 88).
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PDE
@cA
@t
� DA

@2cA
@x2

�KcA

BC1 cA�0; t� � cA0 t > 0

BC2 cA�L; t� � 0 t > 0

IC cA�x;0� � 0 0 < x < L

(a) De®ne the dimensionless variables

c � cA
cA0

z � x
L

� � tDA

L2
k � KL

2

DA

and show that the model reduces to

PDE
@c

@�
� @

2c

@z2
� kc

BC1 c�0; �� � 1 � > 0

BC2 c�1; �� � 0 � > 0

IC c�z;0� � 0 0 < z < 1

in which k � KL2=DA is the only dimensionless parameter ap-

pearing in the problem. This dimensionless parameter is known

as the Thiele number or Thiele modulus in the chemical reaction

engineering literature (Rawlings and Ekerdt, 2020, p. 363). It in-

dicates the ratio of the reaction rate to the diffusion rate.

(b) Take the Laplace transform of your model (also the boundary con-

ditions). Solve the resulting differential equation and boundary

conditions for c�z; s� and show that

c�z; s� � sinh�
p
s � k�1� z��

s sinh
p
s � k

(c) Apply the ®nal-value theorem to c�z; s� to ®nd the steady-state

solution cs�z�.

(d) Take the limit of this solution as k! 0 for the zero-reaction case.

Does your solution satisfy the diffusion equation?

(e) Sketch the solution cs�z� for a range of k values and show the

effect of reaction on the steady-state concentration pro®le.

(f) Let p�s� � sinh
p
s � k�1 � z� and q�s� � s sinh

p
s � k, and ®nd

the zeros sn of q�s�. Also ®nd the value of p�sn�=q
0�sn� at the
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zeros of q�s�. The following formulas may be helpful: cosh�iu� �
cos�u�, sinh iu � i sinu.

(g) Invert the transform and ®nd c�z; t�. Check that the solution

satis®es the PDE and boundary conditions.

Solution

(a) Inserting the de®ned dimensionless variables in the PDE gives

DAcA0

L2
@c

@�
� DA

cA0

L2
@2c

@z2
�KcA0c

and rearranging gives

@c

@�
� @

2c

@z2
� KL

2

DA
c

@c

@�
� @

2c

@z2
� kc

Inserting the dimensionless variables in the boundary and initial

conditions gives

cA0c�z; �� � cA0 z � 0; � > 0

cA0c�z; �� � 0 zL � L; � > 0

cA0c�z; �� � 0 0 < zL < L; � � 0

Simplifying these expression gives

c�z; �� � 1 z � 0; � > 0

c�z; �� � 0 z � 1; � > 0

c�z; �� � 0 0 < z < 1; � � 0

(b) Taking the Laplace transform of the PDE and BCs gives

sc�z; s�� c�z;0� � d
2c

dz2
� kc

d2c

dz2
� �k� s�c � 0

c�1; s� � 0 c�0; s� � 1

s

The solution of the ODE can be written

c�z; s� � a cosh
p
s � k�1� z�� b sinh

p
s � k�1� z�
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and we use the two BCs to ®nd the constants a and b. We have

0 � a 1

s
� b sinh

p
s � k

so we have

b � 1

s sinh
p
s � k

which gives for the Laplace transform of the solution

c�z; s� � sinh
p
s � k�1� z�

s sinh
p
s � k

(c) Applying the ®nal-value theorem gives

cs�z� � lim
s!0
sc�z; s�

� lim
s!0
s
sinh

p
s � k�1� z�

s sinh
p
s � k

� lim
s!0

sinh
p
s � k�1� z�

sinh
p
s � k

cs�z� � sinh
p
k�1� z�

sinh
p
k

(d) Using the fact that sinhx � x for small x gives

lim
k!0
cs�z� �

p
k�1� z�p
k

� 1� z

Yes, the solution satis®es the steady-state diffusion equation and

boundary conditions

d2cs�z�

dz2
� 0 cs�0� � 1 cs�1� � 0

(e) The concentration pro®le cs�z� versus z for a variety of rate con-

stant k are given in Figure 3.12. We see that a large reaction rate

constant prevents species A from diffusing very far into the mem-

brane.

(f) Since the zeros of sinu are u � �n� , n � 0;1;2; : : :, the zeros of

sinhu are u � �n�i, n � 0;1;2; : : :.9 The zeros of sinh
p
k� s

9See Exercise 3.48 for a proof that these are the only zeros of sinu for u 2 C.
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Figure 3.12: Concentration versus membrane penetration distance

for different reaction rate constants.

are given by sn � ��n2�2 � k�, and for these roots, we have

that
p
sn � k � n�i, in which we choose the positive square root.

Therefore the zeros of the denominator q�s� are given by

s � �0;��n2�2 � k�	; n � 0;1;2; : : :

These are simple zeros so the inversion formula in (3.86) is ap-

plicable. Differentiating q�s� and evaluating q0�s� at the zeros

gives

q0�s� � sinh
p
s � k� s cosh

p
s � k

2
p
s � k

q0�0� � sinh
p
k

q0���n2�2 � k�� � ��n
2�2 � k���1�n

2n�i

Evaluating p�s� at the zeros gives

p�0� � sinh
p
k�1� z� p���n2�2 � k�� � i sinn��1� z�
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(g) Putting these terms together in (3.86) gives

c�z; �� � sinh
p
k�1� z�

sinh
p
k

�
1X
n�0
��1�n 2n�

n2�2 � k sin�n��1� z�� e��n2�2�k��

Noticing the n � 0 term vanishes, we can rewrite the solution as

c�z; �� � sinh
p
k�1� z�

sinh
p
k

�

2

1X
n�1

��1�n�1n�
n2�2 � k sin�n��1� z�� e��n2�2�k��

Compare also to entry 36 in Table A.1. �

Example 3.16: Solving the wave equation

Revisit the wave equation utt � c2uxx on x 2 �0;1� for a string with

®xed ends u�0; t� � u�1; t� � 0, and the plucked string initial con-

dition, u�x;0� � u0�x�, ut�x;0� � 0. Solve this equation using the

Laplace transform. Compare the solution to D'Alembert's solution.

Which form do you prefer and why?

Solution

First we de®ne � � ct to remove the velocity c and simplify our work.

The problem is now

u�� � uxx
u�x;0� � u0�x�; u��x;0� � 0 x 2 �0;1�

u�0; �� � 0; u�1; �� � 0 � � 0

Taking the Laplace transform with respect to the time variable gives

u�x; s�xx � s2u�x; s� � �su0�x�

with transformed boundary conditions

u�0; s� � u�1; s� � 0
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We obtain a second-order nonhomogeneous differential equation for

the transform. We have already solved this problem in Example 2.15

and obtained the Green's function. The solution is therefore

u�x; s� �
Z 1

0
G�x; �; s�u0���d�

in which

G�x; �; s� �

8>>><>>>:
sinh�s�� sinh�s�1� x��

sinh s
; � < x

sinh�sx� sinh�s�1� ���
sinh s

; � > x

Notice that, as we expect, G�x; �; s� is symmetric in �x; �� because the

second-order boundary-value problem is self-adjoint. Next we invert

G�x; �; s�. We require a Laplace inverse for the following form

f�s� � sinh�as� sinh�bs�

sinh s

Notice that sinh s has simple zeros at sn � n�i with n an integer. We

use the formula given in (3.86) to obtain

p�sn� � sinh�n�ai� sinh�n�bi� � � sin�n�a� sin�n�b�

q0�sn� � cosh�n�i� � ��1�n

Therefore the inverse is

f��� �
1X

n��1
��1�n�1 sin�n�a� sin�n�b�ein��

Substituting ein�� � cos�n��� � i sin�n��� and combining terms

gives

f��� � 2

1X
n�1
��1�n�1 sin�n�a� sin�n�b� cosn��

Notice that the function is now real valued as it must be. Using this

result to invert the Green's function gives

G�x; �; �� � 2

1X
n�1

8<:��1�n�1 sin�n��� sin�n��1� x�� cos�n��� � < x

��1�n�1 sin�n�x� sin�n��1� ��� cos�n��� � > x

But noticing that sin�n��1� ��� � ��1�n�1 sin�n��� reduces this to

G�x; �; �� � 2

1X
n�1

sin�n��� sin�n�x� cos�n���
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Substituting this into the solution gives

u�x; t� � 2

1X
n�1

sin�n�x� cos�n�t�

Z 1

0
u0��� sin�n���d�

De®ning the Fourier coef®cients representing the initial condition

an � 2

Z 1

0
u0��� sin�n���d�

we have ®nally10

u�x;�� �
1X
n�1
an sin�n�x� cos�n��� (3.88)

Returning to the original time variable with the substitution � � ct
gives

u�x; t� �
1X
n�1
an sin�n�x� cos�n�ct�

Notice that this solution does not resemble D'Alembert's solution

presented in Section 3.3.6. The Laplace transformhas provided a Fourier

series representation of the solution to the wave equation. It is easy to

see that the solution satis®es the wave equation. Taking two x deriva-

tives gives uxx � ��n��2u; similarly, taking two t derivatives gives

utt � �c2�n��2u so utt � c2uxx and the solution satis®es the wave

equation. The zero boundary conditions are satis®ed because all the

sine terms vanish at x � 0;1. The initial condition is satis®ed because

of the Fourier series representation of u0�x�. We see immediately that

the solution is periodic (in time) with period T � 2=c since all the cosine

terms have this period. The Fourier series solution is also convenient

if we wish to analyze the frequency content of the solution, which is

often a quantity of interest when modeling sound propagation.

D'Alembert's solution, on the other hand, provides the nice struc-

tural insight that the solution splits into two waves traveling in oppo-

site directions. But then we also require the additional insight from the

method of images to enforce zero boundary conditions and extend the

solution to the �x; t� values where x � ct < 0 or x � ct > 1, for which

u0�x � ct� or u0�x � ct� is not de®ned. �

10If we knew enough about the problem to propose a solution of this form, we could

arrive at this answer more quickly. The value of the Laplace transform here is that it is

prescriptive. You do not have to know (or guess) the structure of the solution to apply

the method.
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3.4 Numerical Solution of Initial-Boundary-Value Prob-

lems: Discretization and Numerical Stability

Chapter 2 introduced numerical methods for solving initial-value and

boundary-value problems. These approaches will be combined here to

solve initial-boundary-value problems

@u

@t
� Lu � f�x�; Bu�S; t� � h; u�x;0� � u0�x�

where L is a differential operator that contains all the spatial deriva-

tives, S is the boundary of the domain, and B is an operator that de-

termines the boundary conditions. To treat this problem the spatial-

dependence will be discretized using the approaches of Chapter 2 to

yield a set of ordinary differential equations in the form of a normal

initial-value problem. Then the time-integration approaches also intro-

duced in Chapter 2 can be used. This approach is sometimes called the

method of lines. We will see that a central issue in this approach is the

numerical stability of time integration, which is now closely coupled to

the spatial discretization (Press, Teukolsky, Vetterling, and Flannery,

1992; Strang, 1986).

Any of the methods introduced in Section 2.9 can be used for spatial

discretization. In the weighted residual formulation for one spatial

dimension, we look for an approximate solution uN�x; t�; a truncated

(discretized) series of basis (trial) functions �j�x�; the difference now

is that we allow the coef®cients in the series to depend on time. That

is

uN�x; t� �
NX
j�1
cj�t��j�x�

Note the similarity of this expression to those arising in the separation

of variables technique. We assume for the moment that the basis func-

tions satisfy the boundary conditions and de®ne the residual or error

by

R � @uN
@t

� LuN � f�x�

The residual is now forced to be orthogonal to the set of N test func-

tions  i; that is �R; � � 0; i � 1;2; : : : ;N. In the Galerkin method the

test functions equal the trial functions so this condition becomes

NX
j�1
��j ;�i�Çcj �

NX
j�1
�L�j ;�i�cj � �f ;�i�; i � 1;2; : : : ;N
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If we let Mij � ��j ;�i�, Aij � �L�j ;�i�, and bi � �f ;�i�, we can write

the weighted residual conditions as

Çc � �M�1Ac �M�1b

This is a set of linear ODEs (an initial-value problem) for the vector of

coef®cients c in the series foruN . We have reduced a partial differential

equation to a system of ordinary differential equations.

If the Galerkin tau method is used, then there are only N � Nbc
ordinary differential equations, where Nbc is the number of bound-

ary conditions. The boundary conditions add Nbc algebraic equations.

Typically, these can be explicitly solved for the last Nbc values of c and

the formulas substituted into the ODEs.

A similar result arises if we use the collocation approach. Now we

replace the spatial derivative operators in L by their matrix approxima-

tions, the collocation differentiation operators. This yields

Çu�xi�� LNiju�xj� � f�xi� for xi in the interior of the domain

u�xi� � uc�xi� on the boundaries

Here LN is the matrix operator obtained by inserting the collocation

differentiation operators.

In both Galerkin and collocation approaches, the PDE has been re-

duced to a system of ODEs. In principle, we know how to solve these.

In practice, though, there are numerical stability considerations that

arise because the matrices derive from the approximation of derivative

operators.

3.4.1 Numerical Stability Analysis for the Diffusion Equation

To get an initial idea of the stability issues we face when numerically

solving PDEs, we look at the diffusion equation in one dimension,

ut � Duxx
in an unbounded domain. Taking the Fourier transform of this equa-

tion gives Ãut�k� � �k2DÃu�k�, for all real values of k. This is a system

of linear ODEs with eigenvalues � � �Dk2. If we want spatial reso-

lution of wavelengths as short as 2�=kmax, an explicit Euler method

would require �t < �2=�max � 2=�Dk2max� to ensure stability. De®ning

`min � 2�
kmax

as the smallest wavelength resolved, we can rewrite this

stability limit as
�tD

`2min

<
�
2�2

��1



326 Vector Calculus and Partial Differential Equations

This result shows that, to within a numerical constant, the time step

for explicit Euler must be shorter than the time scale for diffusion over

a distance `min.

A similar result holds when ®nite element or ®nite difference meth-

ods are applied. For simplicity, we will consider a ®nite difference ap-

proximation to the diffusion equation, using the central difference for-

mula (2.96):
duj
dt

� Duj�1 � 2uj �uj�1
h2

where h is the spacing between mesh points xj and uj � u�xj�. Recall
from Chapter 2 that the ®nite element discretization using hat func-

tions leads to an identical form for the second derivative. The forward

Euler approximation to this ODE is

u�n�1�j � u�n�j � D�t
h2

�
u�n�j�1 � 2u�n�j �u�n�j�1

�
Following an approach initially developed by von Neumann, we will

seek a spatially periodic solution to this equation: u�n�j � eikxj � eikjh
where k is arbitrary. (The full solution is a superposition over all k.) In

a periodic or unbounded domain, this yields an exact solution to the

discretized problemÐin a bounded domain it works very well when

kL � 1 where L is the domain size. Substituting into the equation

above gives

u�n�1�j �
�
1� 2D�t

h2
� 2D�t

h2
coskh

�
eikjh

� Gu�n�j

Here G �
n
1� 2D�t

h2 � 2D�t
h2 coskh

o
is the growth factor, which for nu-

merical stability must satisfy jGj < 1. When k � 0, G � 1, which makes

physical sense because k � 0 corresponds to a constant function, which

does not decay by diffusion (there are no gradients). As k increases, G

decreases, taking on its most negative value when kh � � . To maintain

stability at this value of k requires that

2D�t

h2
< 1 (3.89)

Indeed, one common indication of numerical instability in a solution is

the observation of ªsawtoothº patterns with a length scale close to h.

Equation (3.89) is the key result of numerical stability theory for

parabolic differential equations and is sometimes called the diffusive
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Courant-Friedrichs-Lewy (CFL) condition11. It mirrors the result we

found above using Fourier transforms: to within a constant, the time

step �t must be smaller than the time h2=D required for diffusion be-

tween twomesh points or across one element. The maximum time step

scales as the square of the minimum element size h. This can be a very

severe restriction on the time step if high spatial resolution is required,

as in problems with boundary layers.

This severe stability restriction means that for problems where dif-

fusion is important (Peclet number is not high), implicit integration

techniques are almost always used. The second-order Adams-Moulton

method (AM2) is popular. For the ®nite difference approach used here,

AM2 becomes

u�n�1�j � u�n�j �
1

2

D�t

h2

�
u�n�j�1 � 2u�n�j �u�n�j�1

�
�1
2

D�t

h2

�
u�n�1�j�1 � 2u�n�1�j �u�n�1�j�1

�
This is called the Crank-Nicolson method. The linear system that

must be solved at each time step is tridiagonal so it can be factored

quickly.

3.4.2 Numerical Stability Analysis for the Convection Equation

We just considered diffusion, so it makes sense now to look at convec-

tion. The transient convection equation in one dimension (also called

the first-order wave equation)

ut � vux � 0 (3.90)

where v is a constant velocity. The Fourier transform of this is Ãut �
�ikv Ãu. Now the eigenvalue is purely imaginary. Recall that imaginary

eigenvalues pose a problem for many time-integration schemes; many,

including forward Euler and RK2, are never stable for problems with

imaginary eigenvalues.

Using the central difference formula

@u

@x
� u�xj�1��u�xj�1�

2h

Equation (3.90) becomes

duj
dt

� � v
2h
�u�n�j�1 �u�n�j�1�

11The true CFL condition was derived for convection problems and is given in the

following section.
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The same right-hand side arises in the ®nite element approximation

with hat functions. The forward Euler approximation is

u�n�1�j � u�n�j � v�t
2h

�
u�n�j�1 �u�n�j�1

�
(3.91)

which is sometimes called the forward-time center-space (FTCS) dis-

cretization. It is ®rst-order accurate in time and second-order accurate

in space.

To analyze stability we again seek a solution u�n�j � eikxj � eikjh.
This analysis shows that G � 1� iv�th sinkh, which always has magni-

tude greater than one when k � 0. FTCS will never work for the con-

vection equation, as we guessed from the Fourier analysis above, which

revealed that the eigenvalues of the convection operator are imaginary.

The same conclusion holds for the wave equation.

There are number of possible resolutions to this problem. One is to

use a different approximation for the spatial derivative. In particular,

we might expect that we should only use information from ªupwindº

when computing the solution at the next time stepÐafter all, in the

physical problem, convection carries the value of u downstream, so

the approximate solution u�n�1�j should ideally only be determined by

values upstream of it. Applying this idea, we replace the central differ-

ence above by a forward or ªupwindº difference. For v > 0 the forward

Euler approximation becomes

u�n�1�j � u�n�j � v�t
h

�
u�n�j �u�n�j�1

�
This gives the growth factor

G � 1� v�t
h

�
1� e�ikh

�
The stability condition jGj < 1 will hold if

v�t

h
< 1

De®ning C � v�t
h as the Courant number, the stability condition be-

comes

C < Cmax (3.92)

where in this case Cmax � 1. This is the Courant-Friedrichs-Lewy

condition, often simply called the Courant condition. Physically,

it tells us that the time step must be smaller than the time it takes for
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convection at speed v over one mesh unit h. By replacing the central

difference, which has second-order accuracy in space, with an upwind

difference, we have lost an order in spatial accuracy but have gained

stability. And anyway, the method is still ®rst order in time. One small

complication of this method is that for problems where the velocity can

change sign, it is necessary to take care that the appropriate upwind

difference is used. If downwind differencing is used, the approximation

is always unstable.

Stability also can be gained without use of upwind differences. The

Lax-Friedrichsmethod is a simplemodi®cation to the FTCS discretiza-

tion where the present value at point xj is replaced by the average of

the values at points j � 1 and j � 1

u�n�1�j � 1

2

�
u�n�j�1 �u�n�j�1

�
� v�t

2h

�
u�n�j�1 �u�n�j�1

�
(3.93)

By applying the average, this change effectively introduces a small

amount of smoothing or ªnumerical diffusionº into the time-integration

process. This can be seen explicitly by rewriting (3.93) so that it has

the form of (3.91) with an additional remainder term that indicates the

difference between the two methods

u�n�1�j � u�n�j � v�t
2h

�
u�n�j�1 �u�n�j�1

�
� 1

2

�
u�n�j�1 � 2u�n�j �u�n�j�1

�
(3.94)

The remainder term has very nearly the form of a central difference

approximation to the second-derivative operator, and in fact this ex-

pression is precisely the FTCS approximation to a convection-diffusion

equation with arti®cial or numerical diffusivity h2

2�t

ut � vux � h2

2�t
uxx

This diffusion term is enough to stabilize the method: using the von

Neumann analysis the stability criterion is found to be very similar to

what we found for the upwind method but is now insensitive to the

sign of v
jvj�t
h

� jCj < 1

All the methods developed so far for the convection equation are

®rst order in time, so even if the stability condition is satis®ed, the so-

lution may not be very accurate. The Lax-Wendroffmethod builds on

the Lax-Friedrichs method to yield second-order accuracy. Let u�n�1=2�j�1=2
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be intermediate values at the midpoint t��t=2 of the time step and on

ªhalf-mesh pointsº xj � h=2. Lax-Friedrichs, (3.93) is used to generate

these intermediate values

u�n�1=2�j�1=2 � 1

2

�
u�n�j�1 �u�n�j

�
� v�t

2h

�
u�n�j�1 �u�n�j

�
This solution is used in a modi®ed FTCS step to generate the solution

at time t ��t

u�n�1�j � u�n�j � v�t
h

�
u�n�1=2�j�1=2 �u�n�1=2�j�1=2

�
Eliminating the intermediate values, this can be rewritten in the more

illuminating form

u�n�1�j � u�n�j � v�t
2h

�
u�n�j�1 �u�n�j�1

�
� �v�t�

2

2h2

�
u�n�j�1 � 2u�n�j �u�n�j�1

�
(3.95)

This is almost identical to (3.94); the difference is that now the arti®cial

diffusivity has the value v2�t=2. The stability condition is again jCj <
1 and now, since the method is second order in time, the time step can

be set very close to the stability limit and still yield enough accuracy

for many purposes. Lax-Wendroff and related methods are thus widely

used.

Pure convection does not change the amplitude of an initial condi-

tion; convection only carries the initial condition downstream. In all of

the methods described here, some amplitude damping occurs (jGj < 1)

except precisely when k � 0 or C � 1. We care most about this damping

when kh is small, corresponding to length scales that are large com-

pared to the grid size, i.e., jGj should be very close to unity for all length
scales of interest. If we care about length scales close toh, then we have

made h too big; h should always be chosen to be much smaller than

the length scales over which the true solution varies. Taylor-expanding

jGj2 around kh � 0 yields

jGj2 � 1� �1� C2��kh�2 �O��kh�4�

and

jGj2 � 1� C2�1� C2�
�kh�4

4
�O�kh�6

for Lax-Friedrichs and Lax-Wendroff, respectively. The latter is sub-

stantially better, since the deviation from jGj2 � 1 scales as �kh�4

rather than �kh�2.
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3.4.3 Operator Splitting for Convection-Diffusion Problems

The cases above represent the low and high Peclet number limits of the

general convection-diffusion equation

ut � vux � Duxx
A simple explicit method for this equation would use central differ-

ences for the diffusion term and Lax-Wendroff for the convection term

u�n�1�j � u�n�j � D�t
h2

�
u�n�j�1 � 2u�n�j �u�n�j�1

�
� v�t

2h

�
u�n�j�1 �u�n�j�1

�
� �v�t�

2

2h2

�
u�n�j�1 � 2u�n�j �u�n�j�1

�
Unless the Peclet number is very large, the diffusive term controls

the stability, because it leads to a growth factor that scales as h�2

rather than the h�1 from the convective term. We could use an im-

plicit method on the whole problem, but this entails solution of a large

non-self-adjoint matrix problem (at every time step if the problem is

nonlinear). It would be preferable to use an implicit method only on

the diffusive piece, which is self-adjoint. A popular solution is called

operator splitting; an explicit method is used for the convective

terms and an implicit method for the diffusive ones. For example, Lax-

Wendroff can be used for the convective terms and Crank-Nicolson for

the diffusive. This is often executed in two steps:

1. The convective terms are applied, to give an intermediate solution

u���j

u���j � u�n�j � v�t
2h

�
u�n�j�1 �u�n�j�1

�
� �v�t�

2

2h2

�
u�n�j�1 � 2u�n�j �u�n�j�1

�
2. Crank-Nicolson is applied, using the intermediate values instead

of the values at step n

u�n�1�j � u���j �1
2

D�t

h2

�
u���j�1 � 2u���j �u���j�1

�
�1
2

D�t

h2

�
u�n�1�j�1 � 2u�n�1�j �u�n�1�j�1

�
In methods like this, because the diffusion terms are evaluated implic-

itly, the stability limit is set by a Courant condition on the convective

terms. In fact, one might also get away with an unstable (e.g., FTCS)

method for the convection term, relying on the implicit treatment of

the diffusion term to stabilize the overall result. There is not generally

a good reason to do this.
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3.5 Exercises

Exercise 3.1: Gradient formula from gradient de®nition

Consider a cubic volume with one corner at the origin and the opposite corner at

�x;y; z� � ��x;�y;�z�. In this case the integral de®nition of the gradient grad �
becomes

lim
�x!0

lim
�y!0

lim
�z!0

1

�x�y�z

Z
n� dS

Because we are going to shrink the volume to zero, we can make the truncated Taylor-

series approximation

��x;y; z� � ��0;0;0�� x @�
@x
�y @�

@y
� z @�

@z
� � � �

where the derivatives are evaluated at the origin. Combine these to derive the formula

r �P3
i�1 ei

@
@xi

(where x1 � x;x2 � y;x3 � z).

Exercise 3.2: Derivatives of unit vectors in polar (cylindrical) coordinates

By taking limits in polar coordinates, derive the formulas for the derivatives of the unit

vectors er ;e�
@er
@r

� 0
@e�
@r

� 0
@er
@�

� e�
@e�
@�

� �er
Do not refer to Cartesian coordinates in your derivation.

Exercise 3.3: Divergence of the ¯ux in polar coordinates

Derive an expression for the divergence of a ¯ux in polar coordinates, r � q, in which

q is an arbitrary vector. Do not use Cartesian coordinates in your derivation.

Hint: the answer is

r � q � 1

r

@

@r
�rqr �� 1

r

@q�
@�

Exercise 3.4: Gradient and Laplacian in spherical coordinates

Repeat Example 3.1 and ®nd expressions forr andr2 for spherical coordinates shown

in Figure 3.3. Do not refer to Cartesian coordinates in your derivation. Then derive the

result using the h and g formulas provided in the text. Which method do you prefer

and why?

Hint: the answers are in Table 3.1.

Exercise 3.5: Fundamental identities in vector calculus

Using Cartesian tensor notation, derive the following identities (here u;v, and w are

vectors and � is a scalar).

(a) r �r� u � 0

(b) r�r� � 0

(c) r � �uu� � u �ru� ur � u
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Exercise 3.6: Cross-product identities

(a) Verify that �ijk�klm � �il�jm � �im�jl. Now use this to derive the following

results.

(b) r�r� u �rr � u�r �ru

(c) r� �v �w� � �w �r�v �w�r � v�� �v �r�w � �vr �w�

(d) �u� v��w � �u �w�v � �v �w�u

(e) �u� v��w � �vu� uv� �w

(f) v � �r� v� �r� 12 kvk2�� �v �r�v

Exercise 3.7: A special case of Leibniz's rule

Derive Leibniz's rule for the special case where the volume V is a cube whose size

is constant but is moving with velocity q. In other words, explicitly show that the

contribution from the motion of V becomes
R
Smn � qdS.

Exercise 3.8: Adjoint of curl

Find the adjoint of the curl operator with Dirichlet boundary conditions.

Exercise 3.9: Volume as surface integral

(a) If A is a constant vector and r � kxk, then show using Cartesian tensor notation

that

A �r
�
1

r

�
� �A � x

r3

and

r�A � x� � A

(b) Show that

r � x � 3

(c) Use this result and the divergence theorem to derive a formula for the total

volume T � RV dV of a region V in terms of an integral over the surface S of the
volume.

Exercise 3.10: Curl theorem

Use the divergence theorem and results of vector algebra to show thatZ
V
r� v dV �

Z
S
n� v dS

Exercise 3.11: Poisson equation in a no-¯ux domain

Consider the Poisson equation

r2u � f
in a volume T with (no-¯ux) boundary condition n �ru � 0 on the boundary S of T . n
is the outward unit normal vector on the boundary.
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(a) Use the divergence theorem to show that a necessary condition for the existence

of a solution to this problem is Z
T
f dV � 0

(b) If f � r � v for some vector v, what condition must v satisfy for the result of

part (a) to be satis®ed?

Exercise 3.12: Helmholtz decomposition

Under rather general conditions it is possible to write a vector ®eld q�x� as

q �r��r� v

Using the results of Problem 3.5, ®nd independent equations for � and v in terms of

q. Find � and v for the case q � x1e1 � x21e2.

Exercise 3.13: The Stokes equations for viscous ¯ow

The Stokes equations for the velocity u and pressure p in a viscous ¯ow driven by a

body force f are

r2u�rp � �f
r � u � 0

These equations can be written in matrix-vector form as

AU � F

where

A �
"
r2 �r
r� 0

#
U �

"
u

p

#
F �

"
�f
0

#
If u � 0 on the boundary S of the ¯ow domain V , show that the Stokes operator A is

self-adjoint. That is, if

V �
"
v

q

#
then

�AU;V� � �U;AV�
where the inner product is given by

�U;V� �
Z
V
u � v dV �

Z
V
pq dV

Exercise 3.14: Differentiating functions of a matrix and matrix determinant

Derive the following two differentiation formulas.

(a) Use the polynomial expansion of a matrix function to show that

d

dt
f�A� � g�A� d

dt
A

in which g��� � d=d���f ��� is the usual derivative of the scalar function f���.
For the special case of f�A� � lnA for A nonsingular, we obtain

d

dt
lnA � A�1 d

dt
A
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(b) For nonsingular A, differentiate (1.39) with respect to scalar t and use the result

of the previous part to show that

d

dt
detA � det�A� tr

�
A�1

d

dt
A

�
(3.96)

Exercise 3.15: Euler expansion formula

Let coordinates u represent the reference position of a point in a deformable contin-

uum, and x be the position at time t so x�0� � u. We have that
d
dtx � v, the velocity

of the continuum. We know that the size of the volume element when transforming

coordinates is given by

dVu � det

�
@x

@u

�
dVx

in which det� @x@u � is the determinant of the Jacobian matrix of the transformation. As-

suming the Jacobian is nonsingular, use the matrix differentiation formula of the pre-

vious exercise to establish that

d

dt
det

�
@x

@u

�
� det

�
@x

@u

�
�r � v�

which is known as the Euler expansion (or dilation) formula.

Exercise 3.16: Temperature pro®le in tube ¯ow

Read Example 12.2±2 in (Bird et al., 2002, p.384). Check the following points.

(a) Substitute 	 from Equation 12.2±21 into 12.2±23. Then exchange the order of

integration, and show that the inner integral can be performed. Then, make a

change of variable to obtain

���; �� �
3
p
9�

�� 23 �

"
e��

3 � �
Z1
�3
t�1=3 e�t dt

#
which is equivalent to 12.2±24.

(b) Evaluate the derivatives

 
@�

@�

!
�

�
@�

@�

�
�

 
@2�

@�2

!
�

(c) Verify that the temperature pro®le in (a) satis®es the differential equation in

Equation 12.2±13. Use the chain rule and the results from (b).

(d) What is the numerical value of ��2=3�?

Exercise 3.17: The error function and some useful integrals

The error function is de®ned by

erf �z� � 2p
�

Z z
0
e�t

2
dt z > 0

Note that Z1
0
e�t

2
dt �

p
�

2

The complementary error function de®ned by

erfc�z� � 1� erf �z�

erfc�z� � 2p
�

Z1
z
e�t

2
dt z > 0
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(a) Sketch the error function and the complementary error function.

(b) Consider the function f�x�

f�x� �
Z1
0
e�t

2
cos�2tx�dt

Differentiate f�x� and then integrate by parts to show that f satis®es the dif-

ferential equation

df

dx
� 2xf�x� � 0

What is the initial condition for this ODE?

(c) Solve the ODE and show that

f�x� �
p
�

2
e�x

2

(d) Let t � au and x � b=�2a� and show that

p
�

2a
exp

�
� b2

4a2

�
�
Z1
0
e�a

2u2
cos�bu�du

(e) Integrate the previous equation with respect to b on the interval �0; ��. Change
the order of integration and show ®nally that

�

2
erf

�
�

2a

�
�
Z1
0
e�a

2u2 sin��u�

u
du

Exercise 3.18: Other useful integrals

Differentiate the following function with respect to x

p
�

4a

�
e2aberf

�
ax � b

x

�� e�2aberf �ax � b
x

��
and derive the inde®nite integral (Abramowitz and Stegun, 1970, p. 304)Z
e
�a2x2� b2

x2 dx �
p
�

4a

�
e2aberf

�
ax � b

x

�� e�2aberf �ax � b
x

��� const. a � 0

Use the inde®nite integral to derive the de®nite integralZ x
0
e
�a2x2� b2

x2 dx �
p
�

4a

�
e�2aberfc

�b
x
� ax�� e2aberfc�b

x
� ax�� a � 0; b � 0

(3.97)

From this result, show thatZ1
0
e
�x2� b2

x2 dx �
p
�

2
e�2b b � 0 (3.98)

This integral arises in transport problems in semi-in®nite domains (see Exercises 3.19

and 3.23).
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Exercise 3.19: Some useful Laplace transforms

The following Laplace transform pairs are useful for solving transient heat-conduction

and diffusion equations (see Exercises 3.23 and 5.6).

f�s� f �t�

e�k
p
s

s
; k > 0 erfc

�
k

2
p
t

�

e�k
p
s ; k > 0

k

2
p
�t3

e�
k2

4t

e�k
p
s

p
s
; k > 0

1p
�t
e�

k2

4t

(a) Establish the ®rst entry by taking the Laplace transform of the function

f�t� � erfc

�
k

2
p
t

�
Use the de®nition of the Laplace transform, switch the order of integration, and

use Equation 3.98.

(b) Establish the second entry by differentiating the ®rst f�t� with respect to t.

(c) Establish the third entry by differentiating the second f�s� with respect to s.

Exercise 3.20: A transform pair for reaction-diffusion problems

The following Laplace transform pair is useful in solving problems with simultaneous

diffusion and ®rst-order reaction (Carslaw and Jaeger, 1959, p. 496)

f�s� � e�k
p
s

�s ���ps k > 0

f�t� � 1

2
p
�
e�t

�
e�k

p
�erfc

�
k

2
p
t
�
p
�t

�
� ek

p
�erfc

�
k

2
p
t
�
p
�t

��
Derive this result by using the convolution theorem and the last entry in the table in

Exercise 3.19. You will also require the integral (3.97).

Exercise 3.21: Integral representations of K0

The following integral representation of K0 proves useful in applying Laplace trans-

forms to solve the diffusion equation

K0�x� � 1

2

Z1
0
t�1e��x

2t� 1
4t �dt (3.99)

The following argument provides a derivation.

(a) Denote the integral by

f0�x� � 1

2

Z1
0
t�1e��x

2t� 1
4t �dt

Differentiate with respect to x and show

1

x

d

dx

�
x
df0
dx

�
� 2x2

Z1
0
te��x

2t� 1
4t �dt � 2

Z1
0
e��x

2t� 1
4t �dt
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(b) Next use integration by parts to showZ1
0
e��x

2t� 1
4t �dt � x2

Z1
0
te��x

2t� 1
4t �dt � 1

4

Z1
0
t�1e��x

2t� 1
4t �dt

Substitute this result into the previous equation and show that f0 satis®es the

Bessel equation
1

x

d

dx

�
x
df0
dx

�
� f0�x� � 0

Therefore f0 is of the form

f0�x� � a1I0�x�� a2K0�x�
with some constants a1; a2.

(c) Given the integral de®ning f0�x�, what value does f0�x� approach for large x?
Use this fact to deduce the value of a1.

(d) Next use l'HÃopital's rule to show that

lim
x!0

f0�x�

ln�x�
� �1

It is known that K0�x� � � ln�x� as x ! 0 (see (Abramowitz and Stegun, 1970,

p. 375)), so we conclude that a2 � 1 and f0�x� � K0�x�.

Exercise 3.22: More useful Laplace transforms

Use the integral representations of the modi®ed Bessel function K0 derived in Exer-

cise 3.21 to derive the following Laplace transform pairs.

f�s� f �t�

K0�k
p
s�; k > 0

1

2t
e�

k2

4t

1p
s
K1�k

p
s�; k > 0

1

k
e�

k2

4t

These transforms are also useful in solving transient heat-conduction and diffusion

equations (see Exercise 5.9).

Exercise 3.23: Time-dependent heating of a semi-in®nite slab

Consider a slab of in®nite thickness, density �, heat capacity ÃCp , and thermal conduc-

tivity k with a surface at x � 0. The boundary conditions are

T�x;0� � T0 x > 0

T�0; t� � T1 t > 0

(a) De®ne the following scaled variables

� � T � T0
T1 � T0

� � kt

� ÃCP
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Show that the energy equation reduces to

@�

@�
� @

2�

@x2

with boundary conditions

��x;0� � 0 x > 0

��0; �� � 1 � > 0

Notice that there are no parameters in the problem, but there is also no natural

length scale for this problem.

(b) Take the Laplace transform of the PDE and show that

��x; s� � e
�xps

s

What assumptions did you make?

(c) Take the inverse transform using Exercise 3.19 to obtain

��x; �� � erfc

�
x

2
p
�

�
Plot ��x; �� as a function of x on 0 � x � 10 for � � �0:01;0:1;1;10;100;1000�.

(d) Show that the proposed solution satis®es the PDE and BCs.

Exercise 3.24: Partial fraction expansion

We often teach inversion of Laplace transforms by so-called partial fraction expansion.

For example, given

f�s� � 1

�s � a��s � b��s � c� a � b � c

Note thata � b � c ensuresa, b, and c are simple zeros of the denominator polynomial.

The function f�s� is ®rst written as a summation of simpler fractions

1

�s � a��s � b��s � c� �
A

s � a �
B

s � b �
C

s � c (3.100)

and the coef®cients A, B, and C are determined. Then the inverse is simply

f�t� � Aeat � Bebt � Cect

(a) Determine A, B, and C in the partial expansion approach and determine f�t�.

(b) Apply (3.86) with p�s� � 1 and q�s� � �s � a��s � b��s � c�, and ®nd f�t�
using (3.86). Which method do you prefer and why? Notice that (3.86) can be

applied when the denominator q�s� is more general than a polynomial as shown

in Example 3.15.
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Exercise 3.25: Transient heat conduction in a ®nite slab

Consider the transient heat conduction equation

� ÃCP
@T

@t
� �r � ��krT�

We have a one-dimensional slab with ends located at x � �L. The slab is initially

at uniform temperature T0. Just after t � 0, the two ends are immediately raised to

temperature T1 and held at this temperature. We wish to ®nd the transient solution

T�x; t� for this problem.

(a) Write the PDE and (three) boundary conditions for this situation, i.e., conditions

at x � L, x � �L, and t � 0. How many parameters appear in this problem?

(b) Choose nondimensional temperature, spatial position, and time variables as fol-

lows

� � T � T0
T1 � T0

z � x
L

� � tk

� ÃCPL2

Express the PDE and BCs in these nondimensional variables. How many param-

eters appear in this problem?

(c) Take the Laplace transform of the PDE, apply the boundary conditions, and show

that

��z; s� � cosh�
p
sz�

s cosh
p
s

(d) For what s values in the complex plane is ��z; s� singular?

(e) Invert the transform and ®nd ��z; ��.
Hint: the answer is

��z; �� � 1� 2

1X
n�0

��1�n
�n� 1=2��

cos��n� 1=2��z� e���n�1=2���
2� (3.101)

(f) Show that ��z; �� satis®es the PDE and boundary conditions at z � �1. Does

the solution satisfy the initial condition? How would you check this?

(g) What is the steady state, �s�z�, i.e., take the limit of ��z; �� as � !1.

Exercise 3.26: Heat conduction in a cylinder and a sphere

Let's change the body in Exercise 3.25 from a slab to a cylinder and a sphere and see

what happens. Again assume the body is initially at uniform temperature T0. Just after
t � 0, the outer boundary at r � R is immediately raised to temperature T1 and held

at this temperature. We wish to ®nd the transient solution T�r ; t� for these problems.

(a) Write the PDE and (three) boundary conditions for the cylindrical body, i.e.,

conditions at r � R, r � 0, and t � 0. How many parameters appear in this

problem?

(b) Choose nondimensional temperature, radial position, and time variables as fol-

lows

� � T � T0
T1 � T0

� � r
R

� � tk

� ÃCPR2

Express the PDE and BCs in these nondimensional variables. How many param-

eters appear in this problem?
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Figure 3.13: Transient heating of slab, cylinder, and sphere from

(3.101), (3.102), and (3.103). Dimensionless temperature

���; �� versus � at � � 10�4;10�3;10�2;0:1;0:5.

(c) Take the Laplace transform of the PDE, apply the boundary conditions and ®nd

���; s� for the cylinder. You do not need to invert this transform.

(d) Write the PDE and (three) boundary conditions for the spherical body, i.e., condi-

tions at r � R, r � 0, and t � 0. How many parameters appear in this problem?

(e) Choose the same nondimensional temperature, radial position, and time vari-

ables as follows

� � T � T0
T1 � T0

� � r
R

� � tk

� ÃCPR2

Express the PDE and BCs in these nondimensional variables. How many param-

eters appear in this problem?

(f) Take the Laplace transform of the PDE, apply the boundary conditions and ®nd

���; s� for the sphere. You do not need to invert this transform.

Exercise 3.27: Transient solutions for slab, cylinder, and sphere

We wish to plot and compare the temperature pro®le ���; �� versus � at different �
for the slab, cylinder, and sphere geometries.
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(a) The transform for the cylinder is given by

���; s� � I0�
p
s��

sI0�
p
s�

Find the zeros of the denominator.

Hint: you may want to use the Bessel function relations I0�r� � J0�ir� and
I1�r� � J1�ir�=i (Abramowitz and Stegun, 1970, p. 375, 9.6.3.).

(b) Use (3.86) and show that the inverse is given by

���; �� � 1� 2

1X
n�1

1

�nJ1��n�
J0��n�� e

��2
n� (3.102)

What are the �n in this formula?

(c) The transform for the sphere is

���; s� � sinh�
p
s��

�s sinh
p
s

Find the zeros of the denominator sinh
p
s. Note that the denominator has a

double zero at s � 0 because both s and sinh
p
s vanish at s � 0.

(d) Because of the double zero, we cannot use the inversion formula (3.86), which

assumes simple zeros. But notice the following fact. If the Laplace transforms

f�s� and g�s� satisfy

g�s� � f�s�
s

then their inverse transforms satisfy

g�t� �
Z t
0
f�t0�dt0

Therefore de®ne

f��; s� � s���; s� � sinh�
p
s��

� sinh
p
s

Use (3.86) to invert this transform and show

f��; �� � 2

1X
n�1

��1�n�1
�

�n�� sin�n���e�n
2�2�

(e) Perform the time integral and show that

���; �� � 2

1X
n�1

��1�n�1
n��

sin�n���
�
1� e�n2�2��

Notice that the following series is the Fourier sine series of the linear function �
(Selby, 1973, p. 480)

2

�

1X
n�1

��1�n�1
n

sin�n��� � �

so we have

���; �� � 1� 2

1X
n�1

��1�n�1
n��

sin�n��� e�n
2�2� (3.103)
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(f) Make plots of the temperature pro®le ���; �� versus � at several � for the slab,

cylinder, and sphere geometries. Your results should resemble Figure 3.13.

Which geometry heats up the quickest? The slowest? Give a physical explanation

for these results.

Exercise 3.28: Transient diffusion in a sphere by separation of variables

Revisit the transient diffusion problem in the spherical geometry described in Exercises

3.26 and 3.27. Solve it by separation of variables, using the information in Example 3.9.

Exercise 3.29: Fourier series

Find the Fourier series coef®cients for the function f�x� � 1 on the interval x 2
���=2; �=2� using the odd cosine terms fcosx; cos3x; cos5x; : : :g

f�x� �
1X
n�0

an cos�2n� 1�x

Use this result to check the initial condition of (3.101) in Exercise 3.25.

Hint: ®rst establish the orthogonality property
R�=2
��=2 cosnx cosmxdx � �

2 �mn; n;m �
1;2; : : :. Then obtain the an by taking inner products as discussed in Section 2.4.1.

Exercise 3.30: Plancherel's formula

Plancherel's formula states that

2�

Z1
�1
jf�x�j2 dx �

Z1
�1
j Ãf�k�j2 dk

Begin with the expression on the left and from it derive the expression on the right. In

general, both f�x� and Ãf�k� can be complex. Hint:
R1
�1 ei�k�l�x dx � 2���k� l�.

Exercise 3.31: Green's function for a fourth-order problem

(a) Use the Fourier transform technique to solve the ordinary differential equation

d4G

d�4
� 2
d2G

d�2
�G � ��� � x�

Use a computer algebra program or a math handbook to perform the integral

that is required to ®nd G���.

(b) The function G from the previous problem is the Green's function for the ordi-

nary differential operator L � d4

dx4 �2 d2

dx2 �1. Use this Green's function to solve

Lu � f�x�;u�x� ! 0 as x ! �1, where f�x� � 1 if 0 < x < 1 and 0 elsewhere.

Use numerical integration to approximate the solution for jxj < 10.

Exercise 3.32: A square with one heated wall

Solver2u � 0 in a unit square domain 0 < x < 1;0 < y < 1, with boundary conditions

u � 0 on x � 0, x � 1 and y � 0, and u � 1 on y � 1.
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Exercise 3.33: Separation of variables for the wave equation

Use separation of variables to solve

utt � c2uxx
with the following boundary conditions

u�x;0� �
8<:x; x < 1=2

1� x; x > 1=2
; u�0; t� � u�1; t� � 0; ut�x;0� � 0

Show that your solution can be put in the D'Alembert form u � F1�x�ct��F2�x�ct�.

Exercise 3.34: Separation of variables for a partially heated sphere

Use separation of variables to solve for the steady-state temperature distribution in

a sphere whose bottom half is kept at temperature T � 0, and whose top half is at

T � 1. Use the transformation � � cos� to convert the equation in the polar angle

direction to Legendre's equation. Note that the eigenvalues of Legendre's equation are

� � n�n � 1� for positive integers n. The corresponding eigenfunction is the Legen-

dre polynomial Pn���. Explicitly ®nd the ®rst four terms in the expansion. Laplace's

equation in spherical coordinates �r ; �;�� is

1

r2
@

@r

�
r2
@T

@r

�
� 1

r2 sin�

@

@�

�
sin�

@T

@�

�
� 1

r2 sin2 �

@2T

@�2
� 0

Exercise 3.35: The Helmholtz equation

Consider the wave equation

utt � c2r2u

in the domain y > 0, 1 < x < 1, with boundary condition u�x;y � 0; t� � f�x�ei!t .

This equation governs sound emanating from a vibrating wall.

(a) By assuming a solution of the form u�x;y; t� � v�x;y�ei!t , show that the

equation can be reduced to

�!2v � c2r2v � 0

with boundary condition v�x;0� � f�x�. This is the Helmholtz equation.

(b) Find the Green's function G � G1 � GB for this operator with the appropriate

boundary conditions, using the fact that the Bessel function Y0�r� � 2
� ln r as

r ! 0.

(c) Use the Green's function to solve for u�x;y; t�.

Exercise 3.36: Transient diffusion via Green's function and similarity solu-
tion approaches

In Example 3.13 we found that the transient diffusion problem

Gt � DGxx
has solution

G�x; t; �; �� � 1

2
p
�D�t � ��e

��x���2=4D�t���

We have changed notation here to emphasize that this solution is the Green's function

for transient diffusion with delta function source term f�x; t� � ��x � ����t � ��.
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(a) Use this result, along with the convolution theorem to ®nd the solution to the

initial-value problem

ut � Duxx � f�x; t�
in �1 < x <1 and initial condition u�x;0� � u0�x�.

(b) Now consider the case f � 0 in the domain x > 0 with boundary condition

u�0; t� � 0 and initial condition u�x > 0;0� � 1. Use an image or symmetry

argument to convert this into a problem in the unbounded domain, where you

can apply (3.67). The information in Exercise 3.17 may be useful. This solution

is found by Laplace transforms in Exercise 3.23.

(c) Solve this problem again by the method of similarity solution. That is, ob-

serve that the only length scale in the problem is the combination � � x=2pDt
(the factor of 2 is arbitrary but convenient), and seek a solution

u�x; t� � u���
Substitution of this form into the governing equation and application of the

chain rule leads to an ordinary differential equation.

Exercise 3.37: SchrÈodinger equation in a circular domain

The wave function for the ªquantum corralºÐan arrangement of atoms on a surface

designed to localize electronsÐis governed by the SchrÈodinger equation

i
@ 

@t
� r2 

Use separation of variables to ®nd the general (bounded) axisymmetric solution to this

problem in a circular domain with  � 0 at r � 1. Hint: if you assume exponential

growth or decay in time, the spatial dependence will be determined by the so-called

modi®ed Bessel equation. Use the properties of solutions to this equation to show that

there are no nontrivial solutions that are exponentially growing or decaying in time,

thus concluding that the time dependence must be oscillatory.

Exercise 3.38: Temperature pro®le with wavy boundary temperature

Solve the steady-state heat-conduction problem

uxx �uyy � 0

in the half-plane �1 < x < 1, 0 < y < 1, with boundary conditions u�x;0� �
A� B cos�x � A� B

2 �e
i�x � e�i�x� and u�x;y� bounded as y ! 1. Use the Fourier

transform in the x direction. How far does the wavy temperature variation imposed at

the boundary penetrate out into the material?

Exercise 3.39: Domain perturbation analysis of diffusion in a wavy-walled
slab

Solve r2T � 0 in the wavy-walled domain shown in Figure 3.14. The top surface is at

y � 1, the left and right boundaries are x � 0 and x � L, respectively, and the bottom

surface is y � � cos2�x=L, where � � 1. Find the solution to O��� using domain

perturbation.



346 Vector Calculus and Partial Differential Equations

T � 1

T � 0

r2T � 0
@T
@x � 0

@T
@x � 0

Figure 3.14: Wavy-walled domain.

Exercise 3.40: Fourier transform for solving heat conduction in a strip

Solve the steady-state heat-conduction problem

uxx �uyy � 0

in the in®nite strip �1 < x < 1, 0 < y < 1, with boundary conditions u�x;0� �
u0�x�;u�x;1� � u1�x�. Use the Fourier transform in the x direction to get an ordinary

differential equation and boundary conditions for Ãu�k;y�.

Exercise 3.41: Separation of variables and Laplace's equation for a wedge

Use separation of variables to solve Laplace's equation in the wedge 0 < � < �;0 < r <
1, with boundary conditions u�r ;0� � 0; u�r ;�� � 50; u�1; �� � 0.

Exercise 3.42: Laplace's equation in a wedge

Again consider Laplace's equation in a wedge, but now ®x the wedge angle at � � �=4.
Use the method of images to ®nd the Green's function for this domainÐwhere should

the images be, and what should their signs be? A well-drawn picture showing the posi-

tions and signs of the images is suf®cient. The ®rst two images are shown. They don't

completely solve the problem because each messes up the boundary condition on the

side of the wedge further from it.

�
G � 0 � position of point source

�
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Exercise 3.43: D'Alembert form of the wave equation

(a) By looking for solutions of the form u�x; t� � U�x�at� where a is to be deter-

mined, show that the general solution of the wave equation

@2u

@t2
� c2 @

2u

@x2

is

u�x; t� � f�x � ct�� g�x � ct�
where f and g are arbitrary.

(b) Use this solution to ®nd the solution with initial condition u�x;0� � w�x�,
@u=@t�x;0� � 0 in an unbounded domain. Pick a shape forw�x� and sketch the

solution u�x; t�.

Exercise 3.44: Heat equation in a semi-in®nite domain

The solution to the heat equation

ut � Duxx
subject to the initial condition u�x;0� � u0�x� is

u�x; t� �
Z1
�1
u0���

1

2
p
�Dt

e�
�x���2
4Dt d�

Use this solution and an argument based on images to ®nd the analogous solution for

the same problem, but in the domain x > 0, with boundary condition u�0; t� � 0 and

with initial condition u�x > 0; t � 0� � u��x�.

Exercise 3.45: Vibrating beam

The transverse vibrations of an elastic beam satisfy the equation

utt � �uxxxx � 0

where � > 0. Use separation of variables to ®nd u�x; t� subject to initial condi-

tion u�x;0� � u0�x�;ut�x;0� � 0 and boundary conditions u�0; t� � u�L; t� � 0,

uxx�0; t� � uxx�L; t� � 0. These conditions correspond to a beam whose ends are

pinned in place at x � 0 and x � L, but that have no torques exerted on them. Hint:

the equation �4 � c has solutions � � �c1=4 and � � �ic1=4, where c1=4 is the real

positive fourth root of c.

Exercise 3.46: Convection and reaction with a point source

Use the Fourier transform and its properties to ®nd a solution that vanishes at �1 for

the ordinary differential equation

du

dx
� �au� ��x�

where a > 0. Recall that F�1
n

1

a2�k2
o
� 1

2ae
�ajxj.
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Exercise 3.47: Green's function for Laplacian operator

(a) Find the free space Green's function G1 for the Laplacian operator in three di-

mensions. It is spherically symmetric.

(b) Show that ifu is a solution to Laplace's equation, then so isru, as well as c�ru,
where c is any constant vector.

(c) Show that Eij
@
@xi

@
@xj
u is also a solution, for any constant tensor E.

Exercise 3.48: Zeros of sine, cosine, and exponential in the complex plane

We extend the de®nition of the exponential to complex argument z 2 C as follows

ez � ex�iy � ex�cosy � i siny� z 2 C; x;y 2 R

in which we take the usual de®nitions of real-valued ex ; cosy; siny for x;y 2 R. We

extend the sine and cosine to complex arguments in terms of the exponential

cosz � e
iz � e�iz

2
sinz � e

iz � e�iz
2i

Given these de®nitions, ®nd all the zeros of the following functions in the complex

plane

(a) The function sinz.
Hint: using the de®nition of sine, convert the zeros of sinz to solutions of the

equation e2iz � 1. Substitute z � x � iy and ®nd all solutions x;y 2 R. Notice

that all the zeros in the complex plane are only the usual ones on the real axis.

(b) The function cosz. (Answer: only the usual ones on the real axis.)

(c) The function ez . (Answer: no zeros in C.)

Exercise 3.49: A Laplace transform inverse

The Laplace inverse for the following transform has been used in solving the wave

equation

f�s� � sinh�as� sinh�bs�

sinh s
a; b 2 R

Find f�t�, and note that your solution should be real valued, i.e., the imaginary number i
should not appear anywhere in your ®nal expression for f�t�.

Exercise 3.50: Wave equation with struck string

Revisit Example 3.16 and the wave equation u�� � uxx on x 2 �0;1� for a string with

®xed ends u�0; �� � u�1; �� � 0, but the struck string initial condition, u�x;0� � 0,

u��x;0� � v�x�. Here there is zero initial deformation, but a nonzero initial velocity.

(a) Solve this equation using the Laplace transform.

(b) Note that this initial condition requires an inverse Laplace transform for

f�s� � sinh�as� sinh�bs�

s sinh s

Show that this inverse is given by

f��� � 2

1X
n�1

��1�n�1
n�

sin�n�a� sin�n�b� sin�n��� (3.104)
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(c) Denote the Fourier coef®cients for the initial velocity v�x� as bn

v�x� �
1X
n�1

bn sin�n�x�

(d) Next consider the mixed initial condition u�x;0� � u0�x� and u��x;0� � v�x�.
Let an denote the Fourier coef®cients of u0�x� as in Example 3.16. Show that

the solution for the mixed initial condition is

u�x;�� �
1X
n�1

sin�n�x�
�
an cos�n���� bn

n�
sin�n���

�

Exercise 3.51: Wave equation with triangle wave initial condition

The wave equation is useful to describe propagation of sound and vibration of strings

and membranes. Consider the wave equation utt � c2uzz on z 2 �0; L� for a string

with ®xed ends u�0; t� � u�L; t� � 0, and the plucked string initial condition, i.e.,

®xed arbitrary position and zero velocity at t � 0, u�z;0� � u0�z�, ut�z;0� � 0. The

constant c is known as the wave speed.

(a) First rescale time and position as � � �c=L�t, x � z=L, to remove the parameters

c and L and simplify your work. Show that the rescaled problem is

u�� � uxx
u�x;0� � u0�x�; u��x;0� � 0 x 2 �0;1�

u�0; t� � 0; u�1; t� � 0 � � 0

(b) Consider the solution (3.88) given in Example 3.16. Establish that the solution

u�x;�� satis®es the wave equation, both boundary conditions, and the initial

condition. Establish that the solution u�x;�� is periodic in time. What is the

period?

(c) Consider the string's initial condition to be the triangle function depicted in

Figure 2.32 with a � 0:1. Given the Fourier coef®cients for this triangle function

from Exercise 2.10, plot your solution at the following times on separate plots:

1. � � 0;0:0175;0:035;0:0525;0:07

2. � � 0:45;0:48;0:49;0:495;0:4975;0:50

3. � � 0:50;0:5025;0:505;0:51;0:52;0:55

4. � � 0:90;0:95;1:00;1:05;1:10

5. � � 1:90;1:95;2:00;2:05;2:10

Provide a physical description (comprehensible to the general public) of what is

happening as the wave equation evolves forward in time. In particular, explain

what the initial condition does just after � � 0. Explain what happens when

waves arrive at the boundaries x � 0;1?
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Exercise 3.52: Numerical solution of the heat equation

(a) Write (and run) a program to use Chebyshev collocation to solve the heat equa-

tion

ut � uxx
with boundary conditions

u�x;0� � 0; 0 < x < 1;

u�0; t� � 0; u�1; t� � 1; 0 < t

Use the implicit Euler method and compare your solutions at a number of values

ofN at different times. Approximately how long does it take for the temperature

at x � 0:9 to reach 0.5?.

(b) How many terms in the exact solution are needed to ®nd the time at which

u�0:9� � 0:5? (to ®ve percent precision)?

Exercise 3.53: Propagation of a reaction front

Using the Chebyshev collocation technique for spatial discretization and the implicit

Euler time integration scheme, write aMATLAB or Octave program to solve the transient

reaction-diffusion problem

@T

@t
� �@

2T

@x2
� T � T3

T��1; t� � 1 T�1; t� � �1 T�x;0� � �1
using � � 0:1. Perform simulations for a long enough time that the solution reaches a

steady state, and perform convergence checks to verify that your spatial and temporal

discretizations are adequate, i.e., that the solution does not change much when the

resolution is increased.

Exercise 3.54: Von Neumann stability analysis

Use von Neumann stability analysis to ®nd the growth factor and the stability (Courant)

condition for the Lax-Wendroff method, (3.95).

Exercise 3.55: Divergence theorem for a fractal

Consider the sequence of objects shown in the following ®gure

n � 0 n � 1 n � 2 n � 3 n � 4

Each ®gure is generated from the previous by adding an equilateral triangle pertur-

bation to each straight line segment of the boundary. If we take the limit as n ! 1,
we have a so-called fractal object. This fractal is known as the Koch snow¯ake in

honor of the mathematician Niels Fabian Helge von Koch, who wrote about it in a 1904

paper, ªOn a continuous curve without tangents, constructible from elementary geome-

try.º(von Koch, 1904). We'll establish that the area, which is clearly bounded, converges

as n tends to in®nity, but the length of the boundary tends to in®nity.
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Note that in the limit as n tends to in®nity the boundary becomes arbitrarily

ªrough,º and the outward normal (and tangent) is nowhere de®ned. Despite these tech-

nical challenges, it can also be shown that a suitable generalization of the divergence

theorem still applies to this fractal object.

(a) Compute the area of the Koch snow¯ake at level n and show that

An
A0
� 1

4
� 27

20
�1� �4=9�n�1�

in which A0 is the area of the starting equilateral triangle. Therefore, show that

limn!1An � �8=5�A0

(b) Compute the perimeter and show that

Pn �
�
4

3

�n
P0

in which P0 is the perimeter of the starting equilateral triangle. Therefore, show

that limn!1 Pn � 1.

(c) Show that the divergence theorem holds for each value n. What result do you

use to establish this fact?

Assume for simplicity that the vector ®eld is a constant. How do you rationalize

the result that an integral over this bounded area is equal to a line integral over

an unbounded perimeter?

Exercise 3.56: More transport integrals

We derive a close relative of the integral derived in Exercise 3.18Z1
x
e
�a2x2� b2

x2 dx �
p
�

4a

�
e�2aberfc

�
ax � b

x

�� e2aberfc�ax � b
x

��
a > 0 (3.105)

Compare this result to (3.97)

(a) Establish (3.105) by using the inde®nite integral in Exercise 3.18 and substituting

the integration limits.

(b) Use this integral and the convolution theorem to establish the following trans-

form pair, which is a relative of the pair established in Exercise 3.20, see entry

31 in Table A.1.

f�s� � e�k
p
s

�s ��� k > 0

f�t� � 1

2
e�t

�
e�k

p
�erfc

�
k

2
p
t
�
p
�t

�
� ek

p
�erfc

�
k

2
p
t
�
p
�t

��
(3.106)

Exercise 3.57: Transient reaction and diffusion in a semi-in®nite domain

Consider ®rst-order reaction and diffusion taking place in a semi-in®nite domain, x � 0.

(The ®nite domain x 2 �0; L� is treated in Example 3.15, and the case without reaction

is treated using heat conduction in Exercise 3.23.)

The differential equations and boundary conditions are given by

PDE
@cA
@t
� D@

2cA
@x2

� kcA
BC cA�0; t� � cA0

t > 0

IC cA�x;0� � 0 x > 0
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(a) De®ne dimensionless concentration to be c�x; t� � cA=cA0. Take the Laplace

transform of the PDE and boundary conditions, solve the 2nd-order ODE, and

show that

c�x; s� � 1

s
e�

q
s�k
D x

(b) Take the inverse of the shifted transform

c�x; s � k� � 1

s � ke
�ps xp

D

using (3.106).

(c) Finally, shift the result from the inverse of c�x; s � k� to the desired inverse of

c�x; s� using entry 8 in Table A.1 and establish that

cA�x; t�

cA0
� 1

2

�
e�x
p
k=Derfc

�
x

2
p
Dt
�
p
kt

�
� ex

p
k=Derfc

�
x

2
p
Dt
�
p
kt

��

(d) Check that the solution satis®es the initial and boundary conditions.
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4

Probability, Random Variables, and

Estimation

4.1 Introduction and the Axioms of Probability

For those engineers familiar with only deterministic models, we now

make a big transition to random or stochastic models in the ®nal two

chapters of the text. Why? The motivation for including stochastic

models is simple: they have proven highly useful in many ®elds of

science and engineering. Moreover, even basic scienti®c literacy de-

mands reasonable familiarity with stochastic methods. Students who

have been exposed to primarily deterministic descriptions of physical

processes sometimes initially regard stochastic methods as mysteri-

ous, vague, and dif®cult. We hope to change this perception, remove

anymystery, and perhaps evenmake thesemethods easy to understand

and enjoyable to use. To achieve this goal, we must maintain a clear

separation between the physical process, and the stochastic model we

choose to represent it, and the mathematical reasoning we use to make

deductions about the stochastic model. Ignoring this separation and

calling upon physical intuition in place of mathematical deduction in-

variably creates the confusion and mystery that we are trying to avoid.

Probability is the branch of mathematics that provides the inference

engine that allows us to derive correct consequences from our starting

assumptions. The starting assumptions are stated in terms of unde-

®nable notions, such as outcomes and events. This should not cause

any alarm, because this is the same pattern in all ®elds of mathemat-

ics, such as geometry, where the unde®nable notions are point, line,

plane, and so forth. Since human intuition about geometry is quite

strong, however, the unde®nable starting notions of geometry are taken

in stride without much thought. Exposure to games of chance may pro-
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vide the same human intuition about probability's unde®nable starting

terms.

We start with the set or space of possible outcomes which we denote

by I . Let A and B be events, which are subsets of I and therefore

include some collection of outcomes. We use the empty set; to denote

an impossible event. LetA[B denote the event ªeitherA or B,º and
letA\B denote the event ªbothA and B.º The close analogy with the

set operations of union and intersection is intentional, and helpful. To

each event A � I , we can assign a probability to that event, denoted

Pr�A�. The three axioms of probability can then be stated as follows.

I. (Nonnegativity) Pr�A� � 0 for allA� I .
II. (Normalization) Pr�I� � 1.

III. (Finite additivity) Pr�A[B� � Pr�A��Pr�B� for allA;B � I
satisfyingA\B � ;.

These three axioms, due to Kolmogorov (1933), combined with the ax-

ioms of set theory, are the source from which all probabilistic deduc-

tions follow. It may seem surprising at ®rst that these three axioms

are suf®cient. In fact, we'll see soon that we do require a modi®ed

third axiom to handle in®nitely many events. First we state a few im-

mediate consequences of these axioms. Exercise 4.1 provides several

more. When A\B � ; we say that events A and B are mutually ex-

clusive, or pairwise disjoint. We use the symbol A n B to denote the

outcomes in setA that are not outcomes in set B, or, equivalently, the
outcomes in set A with the outcomes in B removed. The event A is

then de®ned to be I n A, i.e., A is the set of all outcomes that are not

outcomes in A. We say that two events A and B are independent if

Pr�A\B� � Pr�A�Pr�B�.
Some of the important immediate consequences of the axioms are

the following

Pr�;� � 0

Pr�A�� Pr�A� � 1

Pr�A� � 1

If B �A, then Pr�B� � Pr�A�
Pr�A[B� � Pr�A�� Pr�B�� Pr�A\B�

Proof. To establish the ®rst result, note thatA[; �A andA\; � ;
for allA� I , and apply the third axiom to obtain Pr�A[;� � Pr�A� �
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Pr�A� � Pr�;�. Rearranging this last equality gives the ®rst result.

To establish the second result note that from the de®nition of A, we

have that A [A � I and A \A � ;. Applying the third axiom then

gives Pr�A [A� � Pr�I� � Pr�A� � Pr�A�, and applying the second

axiom then gives the second result. Using this second result and the

®rst axiom, then gives the third result.1 To obtain the fourth result,

note that if B � A, then A can be expressed as A � B [ �A \ B�,
with B \ �A\B� � ;. Applying the third axiom then gives Pr�A� �
Pr�B�� Pr�A\B�, and applying the ®rst axiom gives Pr�A� � Pr�B�.

To obtain the ®fth result, we express bothA[B and B as the union

ofmutually exclusive events: A[B �A[�A\B�withA\�A\B� � ;,

and B � �A\B�[ �A\B� with �A\B�\ �A\B� � ;. Applying the

third axiom to both gives

Pr�A[B� � Pr�A�� Pr�A\B� Pr�B� � Pr�A\B�� Pr�A\B�

Solving the second equation for Pr�A\B� and substituting into the ®rst
gives the ®fth result, which is known as the addition law of probability.

Also note that due to the ®rst result, the probability of two mutually

exclusive events is zero. �

4.2 Random Variables and the Probability Density Func-

tion

Next we introduce the concept of an experiment and a random variable.

An experiment is the set of all outcomes I , the set of events F of inter-

est, and the probabilities assigned to these events. A random variable

is a function that assigns a number to the possible outcomes of the

experiment, X�!�;! 2 I . For an experiment with a ®nite number of

outcomes, such as rolling a die, the situation is simple. We can enumer-

ate all outcomes to obtain I � f1;2;3;4;5;6g, and the set of events, F ,
can be taken as all subsets of I . The set F obviously contains the six

different single outcomes of the die roll, f1g; f2g; f3g; f4g; f5g; f6g 2 F .
But the random variable is a different idea. We may choose to assign

the integers 1;2; : : : ;6 to the different outcomes. But wemay choose in-

stead to assign the values 1 to the outcomes corresponding to an even

number showing on the die, and 0 to the outcomes corresponding to

an odd number showing on the die. In the ®rst case we have the simple

assignment

X�!� �!; ! � 1;2;3;4;5;6

1Notice that we have used all three axioms to reach this point.
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and in the second case, we have the assignment

X�!� �
8<:0; ! � 1;3;5

1; ! � 2;4;6

The experiment is the same in both cases, but we have chosen different

random variables to re¯ect potentially different goals in our physical

modeling that led to this random process.

The situation becomes considerably more complex when we have an

experiment with uncountably many outcomes, which is the case when

we require real-valued random variables. For example, if we measure

the temperature in a reactor, andwant tomodel the reactor as a random

process, the random variable of interest X�!� assigns a (positive, real)

value to each outcome of the experiment ! 2 I . If we let I � R, for

example, it is not immediately clear what we should allow for the set

of events F . If we allow only the individual points on the real number

line, we do not obtain a rich enough set of events to be useful, i.e.,

the probability of achieving exactly some real-valued temperature T is

zero for all T 2 R. The events corresponding to (uncountably) in®nite

sets of points, e.g., a � T � b with a < b 2 R, are the ones that have

nonzero probability. If we try to allow F to be all subsets of the real

number line,2 however, we obtain a set that is so large that we cannot

satisfy the axioms of probability on the events in this set. Probabilists

have found a satisfactory resolution to this issue in which F is the set

of all intervals �a; b�, for all a;b 2 R, and all countable intersections

and unions of all such intervals.3 Moreover, we modify the third axiom

of probability to cover unions of countably in®nitely many events

III'. (Countable additivity) LetAi � I; i � 1;2;3; : : : be a count-

able collection of mutually exclusive events. Then

Pr�A1 [A2 [ � � � � � Pr�A1�� Pr�A2�� � � �

We can then assign probabilities to these events, Pr�A�;A2 F satisfy-

ing the axioms. The random variable X�!� is then a mapping from

! 2 I to R, and we have well-de®ned probabilities for the events

Pr�X � x� � Pr�! j X�!� � x� for all x 2 R. At this point we have

all the foundational elements that we require to develop the stochastic

2The power set of the reals, whose cardinality is larger than that of the reals.
3The collection of Borel sets of the reals, whose cardinality is equal to that of the

reals.
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methods of most use in science and engineering. The interested reader

may wish to consult Papoulis (1984, pp.22±27) and Thomasian (1969,

pp.320±322) for further discussion of these issues.

We let � be a random variable taking values in the ®eld of real num-

bers, and the function F��x� denote the (cumulative) probability dis-

tribution function of the random variable so that

F��x� � Pr�� � x�

i.e., we say that F��x� is the probability that the random variable � takes

on a value less than or equal to x. The function F� is a nonnegative,

nondecreasing function and has the following properties due to the

axioms of probability

F��x1� � F��x2� if x1 < x2

lim
x!�1F��x� � 0 lim

x!1F��x� � 1

We next de®ne the probability density function, denoted p��x�,

such that

F��x� �
Z x
�1
p��s�ds; �1 < x <1 (4.1)

We can allow discontinuous F� if we are willing to accept generalized

functions (delta functions and the like) for p� . Also, we can de®ne the

density function for discrete as well as continuous random variables if

we allow delta functions. Alternatively, we can replace the integral in

(4.1) with a sum over a discrete density function. The random variable

may be a coin toss or a dice game, which takes on values from a discrete

set contrasted to a temperature or concentration measurement, which

takes on values from a continuous set. The density function has the

following properties

p��x� � 0

Z1
�1
p��x�dx � 1

and the interpretation in terms of probability

Pr�x1 � � � x2� �
Z x2

x1

p��x�dx

The mean or expectation of a random variable � is de®ned as

E��� �
Z1
�1
xp��x�dx (4.2)
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The moments of a random variable are de®ned by

E��n� �
Z1
�1
xnp��x�dx

and the mean is the ®rst moment. Moments of � about the mean are

de®ned by

E��� �E����n� �
Z1
�1
�x �E����np��x�dx

The variance is de®ned as the second moment about the mean

var��� � E��� �E����2�
� E��2 � 2�E����E2����

� E��2�� 2E2����E2���

� E��2��E2���

The standard deviation is the square root of the variance

���� � �var����1=2

Normal distribution. The normal or Gaussian distribution is ubiqui-

tous in applications. It is characterized by its mean, m, and variance,

� 2, and is given by

p��x� �
1p

2�� 2
exp

 
�1
2

�x �m�2
� 2

!
(4.3)

We proceed to check that the mean of this distribution is indeed m

and the variance is � 2 as claimed, and that the density is normalized

so that its integral is one. We require the de®nite integral formulasZ1
�1
e�x

2

dx � p
� (4.4)Z1

�1
xe�x

2

dx � 0 (4.5)Z1
�1
x2e�x

2

dx �
p
�

2
(4.6)

The ®rst formula may also be familiar from the error function in trans-

port phenomena

erf �x� � 2p
�

Z x
0
e�u

2

du erf �1� � 1
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The second integral follows because the function e�x
2
is even and the

function x is odd. The third formula may also be familiar from the

gamma function, de®ned by (Abramowitz and Stegun, 1970, p.255±260)

��n� �
Z1
0
tn�1e�tdt � �n� 1�!

Changing the variable of integration using t � x2 givesZ1
�1
x2e�x

2

dx � 2

Z1
0
x2e�x

2

dx

�
Z1
0
t1=2e�tdt

� ��3=2� �
p
�

2

We calculate the integral of the normal density as followsZ1
�1
p��x�dx �

1p
2�� 2

Z1
�1

exp

 
�1
2

�x �m�2
� 2

!
dx

De®ne the change of variable

u � 1p
2

�
x �m
�

�
which gives Z1

�1
p��x�dx �

1p
�

Z1
�1

exp
�
�u2

�
du � 1

from (4.4) and the proposed normal density does have unit area. Com-

puting the mean gives

E��� � 1p
2�� 2

Z1
�1
x exp

 
�1
2

�x �m�2
� 2

!
dx

using the same change of variables as before yields

E��� � 1p
�

Z1
�1
�
p
2u� �m�e�u2

du

The ®rst term in the integral is zero from (4.5), and the second term

produces

E��� �m
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as claimed. Finally the de®nition of the variance of � gives

var��� � 1p
2�� 2

Z1
�1
�x �m�2 exp

 
�1
2

�x �m�2
� 2

!
dx

Changing the variable of integration as before gives

var��� � 2p
�
� 2

Z1
�1
u2e�u

2

du

and from (4.6)

var��� � � 2

Shorthand notation for the random variable � having a normal distri-

bution with meanm and variance � 2 is

� � N�m;� 2�

In order to collect a more useful set of integration facts for manipu-

lating normal distributions, we can derive the following integrals by

changing the variable of integration in (4.4)±(4.6). For x;a 2 R; a > 0Z1
�1
e�

1
2
x2=adx �

p
2�
p
aZ1

�1
xe�

1
2
x2=adx � 0Z1

�1
x2e�

1
2
x2=adx �

p
2�a3=2

Figure 4.1 shows the normal distribution with a mean of one and vari-

ances of 1/2, 1, and 2. Notice that a large variance implies that the ran-

dom variable is likely to take on large values. As the variance shrinks to

zero, the probability density becomes a delta function and the random

variable approaches a deterministic value.

Characteristic function. It is often convenient to handle the algebra

of density functions, particularly normal densities, by using a close

relative of the Fourier transform of the density function rather than

the density itself. The transform, which we denote as '��u�, is known

as the characteristic function in the probability and statistics literature.

It is de®ned by

'��t� � E
�
eit�

�
�
Z1
�1
eitxp��x�dx
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Figure 4.1: Normal distribution, with probability density p��x� �
�1=

p
2�� 2� exp���1=2��x �m�2=� 2�. Mean is one and

standard deviations are 1/2, 1, and 2.

where we again assume that any random variable � of interest has a

density p����. Note the sign convention with a positive sign chosen on

the imaginary unit i. Hence, under this convention, the conjugate of the

characteristic function '��t� is the Fourier transform of the density.

The characteristic function has a one-to-one correspondence with the

density function, which can be seen from the inverse transform formula

p��x� �
1

2�

Z1
�1
e�itx'��t�dt

Again note the sign difference from the usual inverse Fourier trans-

form. Note that multiplying a random variable by a constant � � a�
gives

'��t� � E
�
eita�

� �'��at� (4.7)
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Adding independent random variables � � �1 � �2 gives

'��t� � E
�
eit�x1�x2�

�
�
ZZ1
�1
eit�x1�x2�p�1;�2�x1; x2�dx1dx2

�
Z1
�1
eitx1p�1�x1�dx1

Z1
�1
eitx2p�2�x2�dx2

'��t� �'�1�t�'�2�t� (4.8)

We next compute the characteristic function of the normal distribution.

Example 4.1: Characteristic function of the normal density

Show the characteristic function of the normal density is

'��t� � exp

�
itm� 1

2
t2� 2

�

Solution

The de®nition of the characteristic function and the normal density

give

'��t� �
1p

2�� 2

Z1
�1
eitxe��1=2��x�m�2=�2

dx

Changing the variable of integration to z � x �m gives

'��t� �
1p

2�� 2
eitm

Z1
�1
eitze��1=2�z

2=�2

dz

� 2p
2�� 2

eitm
Z1
0
e��1=2�z

2=�2

cos tzdz

'��t� � eitm�t2�2=2

in which we used the de®nite integralZ1
0
e�a

2x2

cosbxdx �
p
�

2a
e�b

2=�4a2� a � 0

on the last line. Exercise 4.49 discusses how to derive this de®nite inte-

gral. Note also that the integral with the sin tz term vanished because

sine is an odd function. �
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4.3 Multivariate Density Functions

In applications we usually do not have a single random variable but a

collection of them. We group these variables together in a vector and let

random variable � now take on values in Rn. Proceeding analogously

to the single variable case, the joint distribution function F��x� is

de®ned so that

F��x� � Pr�� � x�
in which the vector inequality is de®ned to be the n corresponding

scalar inequalities for the components. Note that F��x� remains a

scalar -valued function taking values in the interval �0;1�

F��x� : R
n ! �0;1�

Also, as in the single variable case, we de®ne the joint density func-

tion, denoted p��x� : R
n ! R�0 such that

F��x� �
Z xn
�1
� � �

Z x1

�1
p��s�ds1 � � �dsn

or, provided the derivatives exist,

p��x� �
@n

@x1@x2 � � � @xn
F��x� (4.9)

As in the scalar case, the probability that the n-dimensional random

variable � takes on values between a and b is given by

Pr�a � � � b� �
Z bn
an
� � �

Z b1
a1

p��x�dx1 � � �dxn

Mean and covariance. The mean of the vector-valued random vari-

able � is simply the vector-valued integral

E��� �
Z1
�1
xp��x�dx (4.10)

Writing out this integral in terms of its components we have

E��� �

266666666664

1R
���

R
�1

x1p��x�dx1 : : : dxn
1R
���

R
�1

x2p��x�dx1 : : : dxn

...
1R
���

R
�1

xnp��x�dx1 : : : dxn

377777777775
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The covariance of two scalar random variables �; � is de®ned as

cov��; �� � E ��� �E���� ���E�����
� E�����E���E���

The covariance matrix, C , of the vector-valued random variable � with

components �i; i � 1; : : : n is de®ned as

Cij � cov��i; �j�

C �

266664
var��1� cov��1; �2� � � � cov��1; �n�

cov��2; �1� var��2� � � � cov��2; �n�
...

...
. . .

...

cov��n; �1� cov��n; �2� � � � var��n�

377775
Again, writing out the integrals in terms of the components gives

Cij �
1Z
� � �

Z
�1

�xi �E��i���xj �E��j��p��x�dx1 : : : dxn (4.11)

Notice that Cij � Cji, so C is symmetric and has positive elements on

the diagonal. We often express this de®nition of the variance with the

convenient shorthand

var��� � C � E��� �E������ �E����T �
� E���T ��E����E���T

Notice that the vector outer product xxT appears here, which is an

n�n matrix, and not the inner product xTx, which is a scalar.

Marginal density functions. We often are interested in only some

subset of the random variables in a problem. Consider two vectors

of random variables, � 2 Rn and � 2 Rm. We can consider the joint

distribution of both of these random variables p�;��x;y� or we may

only be interested in the � variables, in which case we can integrate out

them � variables to obtain the marginal density of �

p��x� �
1Z
� � �

Z
�1

p�;��x;y�dy1 � � �dym

Analogously, to produce the marginal density of � we use

p��y� �
1Z
� � �

Z
�1

p�;��x;y�dx1 � � �dxn
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4.3.1 Multivariate normal density

We de®ne the multivariate normal density of the random variable � 2
Rn as

p��x� �
1

�2��n=2�detP�1=2
exp

�
� 1

2
�x �m�TP�1�x �m�

�
(4.12)

in whichm 2 Rn is the mean and P 2 Rn�n is a real, symmetric, pos-

itive de®nite matrix. We show subsequently that P is the covariance

matrix of �. The notation detP denotes the determinant of P . The

multivariate normal density is well de®ned only for P > 0. The singu-

lar, or degenerate, case P � 0 is discussed subsequently. Shorthand

notation for the random variable � having a normal distribution with

meanm and covariance P is

� � N�m;P�

We also ®nd it convenient to de®ne the notation

n�x;m;P� � 1

�2��n=2�detP�1=2
exp

�
� 1

2
�x�m�TP�1�x�m�

�
(4.13)

so that we can write compactly for the normal with mean m and co-

variance P

p��x� � n�x;m;P�
in place of (4.12). The matrix P is real and symmetric. Figure 4.2 dis-

plays a multivariate normal for

P�1 �
"
3:5 2:5

2:5 4:0

#

As displayed in Figure 4.2, lines of constant probability in the multi-

variate normal are lines of constant

�x �m�TP�1�x �m�

To understand the geometry of lines of constant probability (ellipses

in two dimensions, ellipsoids or hyperellipsoids in three or more di-

mensions) we examine the eigenvalues and eigenvectors of a positive

de®nite matrix A as shown in Figure 4.3. Each eigenvector of A points

along one of the axes of the ellipse. The eigenvalues show us how

stretched the ellipse is in each eigenvector direction.

If we want to put simple bounds on the ellipse, then we draw a

box around it as shown in Figure 4.3. Notice that the box contains
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�2 �1 0 1 2x1
�2 �1

0
1

2

x2

0

0:2

0:4

0:6

p��x�

Figure 4.2: Multivariate normal for n � 2. The contour lines show

ellipses containing 95, 75, and 50 percent probability.

x2r
b
�2
v2 r

b
�1
v1

x1

q
b ÄA11

q
b ÄA22

Avi � �ivixTAx � b

Figure 4.3: The geometry of quadratic form xTAx � b.
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much more area than the corresponding ellipse and we have lost the

correlation between the elements of x. This loss of information means

we can put different tangent ellipses of quite different shapes inside

the same box. The size of the bounding box is given by

length of ith side �
q
b eAii

in which eAii � �i; i� element of A�1

See Exercise 4.15 for a derivation of the size of the bounding box. Fig-

ure 4.3 displays these results: the eigenvectors are aligned with the

ellipse axes and the eigenvalues scale the lengths. The lengths of the

sides of the box that is tangent to the ellipse are proportional to the

square root of the diagonal elements of A�1.

Example 4.2: The mean and covariance of the multivariate normal

Assume the random variable � is distributed normally as in (4.12)

p��x� �
1

�2��n=2�detP�1=2
exp

�
� 1

2
�x �m�TP�1�x �m�

�
1. Establish the following facts of integration. For z 2 Rn with A 2

Rn�n; A > 0

Z1
�1

exp

�
� 1

2
zTA�1z

�
dz � �2��n=2�detA�1=2 (4.14)

(scalar)Z1
�1
z exp

�
� 1

2
zTA�1z

�
dz � 0 (4.15)

(n-vector)Z1
�1
zzT exp

�
� 1

2
zTA�1z

�
dz � �2��n=2�detA�1=2A (4.16)

(n�n-matrix)

2. Show that the ®rst and second integrals, and the de®nition of

mean, (4.10), lead to

E��� �m
Show that the second and third integrals, and the de®nition of

covariance, (4.11), lead to

C � P
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So we have established that vector m and matrix P in (4.12) are

themean and covariance, respectively, of the normally distributed

random variable �.

Solution

1. To compute the integrals, we ®rst note that because A is real and

symmetric, there exists a factorization

A � Q�QT A�1 � Q��1QT

in which � is a diagonal matrix containing the eigenvalues of A

and Q is real and orthogonal. To establish the ®rst integral, we

use the variable transformation z � Qx and change the variable

of integration in (4.14)Z1
�1

exp

�
� 1

2
zTA�1z

�
dz �

Z1
�1

exp

�
� 1

2
xT��1x

�
jdetQjdx

�
Z1
�1

exp

�
� 1

2

nX
i�1
x2
i =�i

�
dx

�
nY
i�1

Z1
�1
e�

1
2
x2
i =�idxi

in which jdetQj � 1 because QQT � I, which makes det�QQT � �
�detQ�2 � 1 so detQ � �1. Performing the integrals gives

Z1
�1

exp

�
� 1

2
zTA�1z

�
dz �

nY
i�1

p
2�

q
�i

� �2��n=2
0@ nY
i�1
�i

1A1=2

� �2��n=2�detA�1=2

and we have established the ®rst result.

To establish the second integral, use the variable transformation

z � Qx to obtainZ1
�1
z exp

�
� 1

2
zTA�1z

�
dz � Q

Z1
�1
x exp

�
� 1

2
xT��1x

�
dx
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Notice that the ith element of this vector equation is of the form

Q

Z1
�1
xi exp

�
� 1

2
xT��1x

�
dx �

Q

Z1
�1
xie

� 1
2
x2
i =�idxi

nY
k�1;k�i

Z1
�1
e�

1
2
x2
k=�kdxk � 0

This integral vanishes because of the ®rst term in the product.

Since the integral vanishes for each element i, the vector of inte-

grals is therefore zero.

To establish the third integral, we again use the variable transfor-

mation z � Qx and change the variable of integration in (4.16)

Z1
�1
zzT exp

�
� 1

2
zTA�1z

�
dz �

Q

�Z1
�1
xxT exp

�
� 1

2
xT��1x

�
jdetQjdx

�
QT �

Q

�Z1
�1
xxT exp

�
� 1

2

nX
i�1
x2
i =�i

�
dx

�
QT � QVQT (4.17)

in which, again, jdetQj � 1, and the V matrix is de®ned to be the

integral on the right-hand side. Examining the components of V

we note that if i � j then the integral is of the form

Vij �
Z1
�1
xie

� 1
2
x2
i =�idxi

Z1
�1
xje

� 1
2
x2
j =�jdxj

nY
k�1;k�i;j

Z1
�1
e�

1
2
x2
k=�kdxk � 0 i � j

The off-diagonal integrals vanish because of the odd functions in

the integrands for the xi and xj integrals. The diagonal terms, on

the other hand, contain even integrands and they do not vanish

Vii �
Z1
�1
x2
i e

� 1
2
x2
i =�idxi

nY
k�1;k�i

Z1
�1
e�

1
2
x2
k=�kdxk
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Evaluating these integrals gives

Vii �
p
2��3=2i

nY
k�1;k�i

p
2�

q
�k

� �2��n=2
� nY
k�1
�k

�1=2
�i

Vii � �2��n=2�detA�1=2�i

Substituting this result into (4.17) gives

Z1
�1
zzT exp

�
� 1

2
zTA�1z

�
dz � QVQT

� �2��n=2�detA�1=2Q

2664
�1

. . .

�n

3775QT

� �2��n=2�detA�1=2Q�QT � �2��n=2�detA�1=2A

and we have established the integral result of interest.

2. Using the probability density of the multivariate normal and the

de®nition of the mean give

E��� �
Z1
�1
xp��x�dx

� 1

�2��n=2�detP�1=2

Z1
�1
x exp

�
� 1

2
�x �m�TP�1�x �m�

�
dx

Changing the variable of integration to z � x �m gives

E��� � 1

�2��n=2�detP�1=2

Z1
�1
�m� z� exp

�
� 1

2
zTP�1z

�
dz

E��� �m

in which the integral with m produces unity by (4.14) and the

integral involving z vanishes because the integrand is odd.

Next using the probability density of the multivariate normal, the

de®nition of the covariance, and changing the variable of integra-
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tion give

C �
Z1
�1
�x �E�����x �E����Tp��x�dx

� 1

�2��n=2�detP�1=2

Z1
�1
�x �m��x �m�T

exp

�
� 1

2
�x �m�TP�1�x �m�

�
dx

� 1

�2��n=2�detP�1=2

Z1
�1
zzT exp

�
� 1

2
zTP�1z

�
dz

� 1

�2��n=2�detP�1=2
�2��n=2�detP�1=2P

C � P �

Characteristic function of multivariate density. The characteristic

function of ann-dimensionalmultivariate random variable �, is de®ned

as

'��t� �
Z1
�1
eit

Txp��x�dx

in which t is now an n-dimensional variable. The inverse transform is

now

p��x� �
1

�2��n

Z1
�1
e�it

Tx'��t�dt

Note that if one has the characteristic function of the entire ran-

dom variable vector available, one can easily compute the characteristic

function of any marginal distribution. We simply set the components

of the t vector to zero for any variables we wish to integrate over to

create the marginal. To illustrate the idea, assume we have a joint den-

sity for two (vector-valued) random variables � and �, p�;��x;y�, and

its characteristic function '�tx; ty�

'�tx; ty� �
ZZ1
�1

exp

 
i
h
tTx tTy

i"x
y

#!
p�;��x;y�dxdy

If we are interested in the characteristic function of�'smarginal,'��ty�,
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we set tx � 0 in the joint characteristic function to obtain it

'�;��0; ty� �
ZZ1
�1

exp

 
i
h
0 tTy

i"x
y

#!
p�;��x;y�dxdy

�
Z1
�1
eit

T
yy

Z1
�1
p�;��x;y�dxdy

�
Z1
�1
eit

T
yyp��y�dy

�'��ty�

Example 4.3: Characteristic function of the multivariate normal

Show that the characteristic function of the multivariate normal � �
N�m;P� is given by

'��t� � eit
Tm��1=2�tTPt

Solution

From the de®nition of the characteristic function we are required to

evaluate the integral

'��t� �
Z1
�1
eit

Txe��1=2��x�m�TP�1�x�m�

�2��n=2�detP�1=2
dx

Changing the variable of integration to z � x �m gives

'��t� �
eit

Tm

�2��n=2�detP�1=2

Z1
�1
eit

Tze��1=2�z
TP�1zdz

Since P is positive de®nite, by Theorem 1.17 it can be factored as P �
Q�QT so P�1 � Q��1QT , and changing the variable of integration to

w � QTz in the integral gives

Z1
�1
eit

Tze��1=2�z
TP�1zdz �

Z1
�1
eit

TQwe��1=2�w
T��1wdw
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after noting that det�Q� � �1 since Q is orthogonal. Denoting tTQ �h
b1 b2 � � � bn

i
givesZ1

�1
eit

Tze��1=2�z
TP�1zdz �

nY
j�1

Z1
�1
eibjwje��1=2�w

2
j =�jdwj

�
nY
j�1

p
�
q
2�je

��1=2�b2j�j

� �2��n=2�detP�1=2 exp
�
� �1=2�

nX
j�1
b2j�j

�

in whichwe used (4.94) to evaluate the integral. Noting that
Pn
j�1 b

2
j�j �

tTQ�QT t � tTPt givesZ1
�1
eit

Tze��1=2�z
TP�1zdz � �2��n=2�detP�1=2e��1=2�tTPt (4.18)

Substituting this result into the characteristic function gives

'��t� � eit
Tm��1=2�tTPt

which is the desired result. �

Example 4.4: Marginal normal density

Given that � and � are jointly, normally distributed with mean and

covariance

m �
"
mx

my

#
P �

"
Px Pxy
Pyx Py

#
show that the marginal density of � is normal with the following pa-

rameters

� � N�mx; Px� (4.19)

Solution

Method 1. As a ®rst approach to establish (4.19), we could directly

integrate the y variables. Let Åx � x �mx and Åy � y �my , and nx
and ny be the dimension of the � and � variables, respectively, and

n � nx �ny . Then the de®nition of the marginal density gives

p��x� �
1

�2��n=2�detP�1=2Z1
�1

exp

24�1
2

 
Åx

Åy

!T "
Px Pxy
Pyx Py

#�1  
Åx

Åy

!35dÅy
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If we follow this approach, we'll also need to use the matrix inversion

lemma. This is left as an exercise for the interested reader.

Method 2. In the second approach, we use the previously derived

results of characteristic function of the multivariate normal and its

marginals. First the characteristic function of the joint density is given

by

'�;��tx; ty� � exp

0@i htTx tTy
i"mx

my

#
� �1=2�

"
tx
ty

#T
P

"
tx
ty

#1A
Setting ty � 0 to compute the characteristic function of �'s marginal

gives

'��tx� �'�;��tx;0�

� exp

0@i htTx 0
i"mx

my

#
� �1=2�

"
tx
0

#T
P

"
tx
0

#1A
� eitTxmx��1=2�tTxPxtx

But notice that this last expression is the characteristic function of a

normal with meanmx and covariance Px , so inverting this result back

to the densities gives

p��x� �
1

�2��nx=2�detPx�1=2
e��1=2��x�mx�TP�1x �x�mx�

or � � N�mx; Px�.

Summarizing, since we have already performed the required inte-

grals to derive the characteristic function of the normal, the second

approach saves signi®cant time and algebraic manipulation. It pays

off to do the required integrals one time, ªstoreº them in the charac-

teristic function, and then reuse them whenever possible, such as here

when deriving marginals. �

4.3.2 Functions of random variables.

In many applications we need to know how the density of a random

variable is related to the density of a function of that random variable.

Let f : Rn ! Rn be amapping of the random variable � into the random

variable �, and assume that the inverse mapping also exists

� � f���; � � f�1���
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Given the density of �;p��x�; we wish to compute the density of �,

p��y�, induced by the function f . Let X denote an arbitrary region of

the ®eld of the random variable �, and de®ne the set Y as the transform

of this set under the function f

Y � fyjy � f�x�;x 2 Xg
Then we seek a function p��y� such thatZ

X

p��x�dx �
Z
Y

p��y�dy (4.20)

for every admissible set X. Using the rules of calculus for transforming

a variable of integration we can writeZ
X

p��x�dx �
Z
Y

p��f
�1�y��

�����det
�
@f�1�y�
@y

������dy (4.21)

in which
��det�@f�1�y�=@y��� is the absolute value of the determinant

of the Jacobian matrix of the transformation from � to �.4 Subtracting

(4.21) from (4.20) givesZ
Y

 
p��y�� p��f�1�y��

�����det
�
@f�1�y�
@y

������
!
dy � 0 (4.22)

Because (4.22) must be true for any set Y, we conclude (a proof by

contradiction is immediate)5

p��y� � p��f�1�y��
�����det

�
@f�1�y�
@y

������ (4.23)

Example 4.5: Nonlinear transformation

Find the density function of the random variable � under the transfor-

mation � � �3 for � normally distributed � � N�m;� 2�.

Solution

The transformation is invertible and we have that � � �1=3. Taking the
derivative gives d�=d� � �1=3���2=3, and using (4.23) gives

p��y� � 1

3
p
2��

y�2=3 exp
�� �1=2��y1=3 �m�2=� 2

�
�

4See Appendix A for various notations for derivatives with respect to vectors.
5Some care should be exercised if one has generalized functions in mind for the

probability density.
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c x1

c

x2

X�c�

Figure 4.4: The region X�c� for y �max�x1; x2� � c.

Noninvertible transformations. Given random variables � having n

components � � ��1; �2; : : : �n� with joint density p� and k random

variables � � ��1; �2; : : : ; �k� de®ned by the transformation � � f���
�1 � f1��� �2 � f2��� � � � �k � fk���

We wish to ®nd p� in terms of p� . Consider the region generated in Rn

by the vector inequality

f�x� � c
Call this region X�c�, which is by de®nition

X�c� � fxjf�x� � cg
Note that X is not necessarily simply connected. The (cumulative) prob-

ability distribution (not density) for � then satis®es

F��y� �
Z
X�y�

p��x�dx (4.24)

If the density p� is of interest, it can be obtained by differentiating F�.

Example 4.6: Maximum of two random variables

Given two independent random variables, �1; �2 and the new random

variable de®ned by the noninvertible, nonlinear transformation

� �max��1; �2�

Show that �'s density is given by

p��y� � p�1�y�
Z y
�1
p�2�x�dx � p�2�y�

Z y
�1
p�1�x�dx
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Solution

The region X�c� generated by the inequality y � max�x1; x2� � c is

sketched in Figure 4.4. Applying (4.24) then gives

F��y� �
Z y
�1

Z y
�1
p��x1; x2�dx1dx2

� F��y;y�
� F�1�y�F�2�y�

which has a clear physical interpretation. It says the probability that

the maximum of two independent random variables is less than some

value is equal to the probability that both random variables are less

than that value. To obtain the density, we differentiate

p��y� � p�1�y�F�2�y�� F�1�y�p�2�y�

� p�1�y�
Z y
�1
p�2�x�dx � p�2�y�

Z y
�1
p�1�x�dx �

4.3.3 Statistical Independence and Correlation

From the de®nition of independence, two eventsA and B are indepen-

dent if Pr�A\B� � Pr�A�Pr�B�. We translate this de®nition into an

equivalent statement about probability distributions as follows. Given

random variables �; �, let eventA be � � x and event B be � � y , then
A\ B is � � x and � � y . By the de®nitions of joint and marginal

probability distribution, these events have probabilities: Pr�A\B� �
F�;��x;y�, Pr�A� � F��x�, Pr�B� � F��y�. So events A and B are in-

dependent if for the corresponding x and y , F�;��x;y� � F��x�F��y�.
We say that the two random variables �; � are statistically indepen-

dent or simply independent if this relation holds for all x;y

F�;��x;y� � F��x�F��y�; all x;y (4.25)

See Exercise 4.2 for the proof that an equivalent condition for statistical

independence can be stated in terms of the probability densities instead

of distributions

p�;��x;y� � p��x�p��y�; all x;y (4.26)

provided that the densities are de®ned. We say two random variables,

� and �, are uncorrelated if

cov��; �� � 0
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Example 4.7: Independent implies uncorrelated

Prove that if � and � are statistically independent, then they are uncor-

related.

Solution

The de®nition of covariance and statistical independence gives

cov��; �� � E��� �E�������E�����

�
ZZ1
�1
�x �E�����y �E����p�;��x;y�dxdy

�
Z1
�1
�x �E����p��x�dx

Z1
�1
�y �E����p��y�dy

� 0

�

Example 4.8: Does uncorrelated imply independent?

Let � and � be jointly distributed random variables with probability

density function

p�;��x;y� �
8<:

1
4�1� xy�x2 �y2��; jxj < 1;

��y�� < 1;

0; otherwise

(a) Compute the marginals p��x� and p��y�. Are � and � indepen-

dent?

(b) Compute cov��; ��. Are � and � uncorrelated?

(c) What is the relationship between independent and uncorrelated?

Are your results on this example consistent with this relationship?

Why or why not?

Solution

The joint density is shown in Figure 4.5.

(a) Direct integration of the joint density produces

p��x� �
1

2
; jxj < 1 E��� � 0

p��y� � 1

2
;

��y�� < 1 E��� � 0
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p�;��x;y� � 1
4

�
1� xy�x2 �y2�

�

�1
0

1x �1
0

1

y

0

0:25

0:5

Figure 4.5: A joint density function for the two uncorrelated random

variables in Example 4.8.

and we see that both marginals are zero mean, uniform densities.

Obviously � and � are not independent because the joint density

is not the product of the marginals.

(b) Performing the double integral for the expectation of the product

term gives

E���� �
ZZ 1

�1
xy � �xy�2�x2 �y2�dxdy

� 0

and the covariance of � and � is therefore

cov��; �� � E�����E���E���
� 0

and � and � are uncorrelated.

(c) We know that independent implies uncorrelated. This example
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does not contradict that relationship. This example shows uncor-

related does not imply independent, in general, but see the next

example for normals. �

Example 4.9: Independent and uncorrelated are equivalent for nor-

mals

If two random variables are jointly normally distributed,"
�

�

#
� N

 "
mx

my

#
;

"
Px Pxy
Pyx Py

#!

Prove � and � are statistically independent if and only if � and � are

uncorrelated, or, equivalently, P is block diagonal.

Solution

We have shown already that independent implies uncorrelated for any

density, so we now show that, for normals, uncorrelated implies inde-

pendent. Given cov��; �� � 0, we have

Pxy � PTyx � 0 detP � detPx detPy

so the density can be written

p�;��x;y� �
1

�2��
1
2
�nx�ny �

�
detPx detPy

�1=2
exp

0@�1
2

"
Åx

Åy

#T "
Px 0

0 Py

#�1 "
Åx

Åy

#1A (4.27)

For any joint normal, we know that the marginals are simply

� � N�mx; Px� � � N�my ; Py�

so we have

p��x� �
1

�2��nx=2�detPx�1=2
exp

�
�1
2
ÅxTP�1x Åx

�
p��y� � 1

�2��ny=2�detPy�1=2
exp

�
�1
2
ÅyTP�1y Åy

�
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Forming the product and combining terms gives

p��x�p��y� �
1

�2��
1
2
�nx�ny �

�
detPx detPy

�1=2
exp

0@�1
2

"
Åx

Åy

#T "
P�1x 0

0 P�1y

#"
Åx

Åy

#1A
Comparing this equation to (4.27), and using the inverse of a block-

diagonal matrix, we have shown that � and � are statistically indepen-

dent. �

4.4 Sampling

Let scalar random variable � have density p� with meanm and variance

P , and considern independent samples of �, denoted x1; x2; : : : ; xn. By

independent samples, we mean that the joint density of the samples is

the product of the marginals, which all are identical and equal to p�

px1;:::;xn�z1; : : : ; zn� � px1�z1� � � �pxn�zn� � p��z1� � � �p��zn�

4.4.1 Linear Transformation

The following facts about the linear transformations of random vari-

ables prove useful. Consider random variable � 2 Rn with density p� ,

and let A 2 Rm�n be a constant matrix. Then the following formulas

give the mean and variance of random variable � � A�

E��� � AE��� var��� � Avar���AT (4.28)

We establish these formulas as follows. Using the de®nition of expec-

tation, we have that

E��� � E�A��

�
Z1
�1
Axp��x�dx

� A
Z1
�1
xp��x�dx

� AE���
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Using the de®nition of variance, we have that

var��� � var�A��

�
Z1
�1
�Ax �E�A����Ax �E�A���Tp��x�dx

� A
Z1
�1
�x �E�����x �E����Tp��x�dxAT

� Avar���AT

With normals, we often wish to check if the variance is positive def-

inite after a linear transformation. Let P 2 Rn�n be positive de®nite

and A 2 Rm�n be an arbitrary matrix. The following result is often

useful: P > 0 and A's rows linearly independent () APAT > 0. See

also statement 5 in Section 1.4.4.

Singular or degenerate normal distributions. It is often convenient

to extend the de®nition of the normal distribution to admit positive

semide®nite covariance matrices. The distribution with a semide®nite

covariance is known as a singular or degenerate normal distribution

(Anderson, 2003, p. 30). Figure 4.6 shows a nearly singular normal

distribution.

To see how the singular normal arises, let the scalar random variable

� be distributed normally with zero mean and positive de®nite covari-

ance, � � N�0; Px�, and consider the simple linear transformation

� � A� A �
"
1

1

#

in which we have created two identical copies of � for the two compo-

nents �1 and �2 of �. Now consider the density of �. If we try to use

the standard formulas for transformation of a normal, we would have

� � N�0; Py� Py � APxAT �
"
Px Px
Px Px

#

and Py is singular since its rows are linearly dependent. Therefore one

of the eigenvalues of Py is zero, and Py is positive semide®nite and

not positive de®nite. Obviously we cannot use (4.12) for the density

in this case because the inverse of Py does not exist. To handle these

cases, we ®rst provide an interpretation that remains valid when the

covariance matrix is singular and semide®nite.
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p�x� � exp
�
�1=2

�
27:2x2

1 � 2��43:7�x1x2 � 73:8x2
2

��

�2�1
0

1
2 x1

�2 �1
0

1
2x2

0

0:25

0:5

0:75

1

Figure 4.6: A nearly singular normal density in two dimensions.

De®nition 4.10 (Density of a singular normal). A singular joint normal

density of random variables ��1; �2�, �1 2 Rn1 , �2 2 Rn2 , is denoted"
�1
�2

#
� N

�"
m1

m2

#
;

"
�1 0

0 0

#�

with �1 > 0. The density is de®ned by

p��x1; x2� �
1

�2��n1=2�det�1�1=2

exp

�
� 1

2
�x1 �m1�

T
�
�1
1 �x1 �m1�

�
��x2 �m2� (4.29)

In this limit, the ªrandomº variable �2 becomes deterministic and

equal to its mean m2. For the case n1 � 0, we have the completely

degenerate case in which p�2�x2� � ��x2 �m2�, which describes the

completely deterministic case �2 � m2, and there is no component

�1. Notice that by performing the required integrals of (4.29) the two
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marginal densities are found to be

p�1�x1� �
1

�2��n1=2�det�1�1=2
exp

�
� 1

2
�x1 �m1�

T
�
�1
1 �x1 �m1�

�
p�2�x2� � ��x2 �m2�

Example 4.11: Computing a singular density

Consider again the motivating example with the unit normal scalar ran-

dom variable � � N�0; Px�; Px � 1 and the linear transformation

� � A� A �
"
1

1

#

Use De®nition 4.10 to express the density p� for this case, and draw a

®gure showing the appearance of p�.

Solution

We ®rst compute the eigenvalue decomposition of the semide®nite co-

variance Py

Py � APxAT � AAT �
"
1 1

1 1

#
and obtain

Py � Q�QT Q � 1p
2

"
�1 �1
�1 1

#
� �

"
2 0

0 0

#

Next we de®ne the invertible variable transformation

� � QT� � � Q�

and we can write the covariance of �, Pz, as

Pz � QTPyQ � � �
"
2 0

0 0

#

which is in the form of De®nition 4.10. Using that de®nition gives the

density for �

p��z1; z2� � 1p
2�
p
2
e�

1
2
�z21=2� ��z2�

Finally transforming back to the variable � using

z1 � � 1p
2
�y1 �y2� z2 � � 1p

2
�y1 �y2�
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y1

y2

p��y�

Figure 4.7: The singular normal resulting from y � Ax with rank

de®cient A.

and noting ��ax� � �1=a���x� gives

p��y1; y2� � 1p
2�

exp

�
� 1

2

�y1 �y2�2

4

�
��y1 �y2�

To draw a sketch, ®rst we note that p��y1; y2� � 0 fory1 � y2 because

of the delta function. So we have a singular normal de®ned in the plane,

and the density is nonzero on the line y1 � y2. Therefore take a zero

mean, unit variance normal de®ned on the y1 axis, and rotate it by 45

degrees to the y1 � y2 line, and that is the joint density for p��y1; y2�.

The result is shown in Figure 4.7. �

The expanded de®nition of normal distribution enables us to gener-

alize the important result that the linear transformation of a normal is

normal, so that it holds for any linear transformation, including rank-

de®cient transformations such as the A matrix given above in which

the rows are not independent. We state this result as the following

theorem and defer the proof to Exercise 4.24.

Theorem4.12 (Normal distributions under linear transformation). Con-

sider a normally distributed random variable � 2 Rn, � � N�0; Px�,
with semide®nite covariance Px � 0 and an arbitrary linear transfor-

mation A 2 Rm�n and transformed random variable � � A�. Then

� � N�0; Py� with Py � APxAT � 0.
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4.4.2 Sample Mean, Sample Variance, and Standard Error

Usually in applications we do not obtain nearly enough samples to ob-

tain convergence to the entire density, and we settle for convergence

to a few low-order moments of the distribution, such as the mean and

variance. The sample mean is de®ned as

Ãxn � 1

n

nX
i�1
xi

and we expect this quantity to converge to �'s mean as the number of

samples increases. Indeed if we take expectations

E�Ãxn� � E
�
1

n

nX
i�1
xi

�
� 1

n

nX
i�1
E�xi� � 1

n

nX
i�1
m �m

whichmeans that the sample mean is an unbiased estimate of the mean

of random variable �, for all values of n. An estimator's bias is de®ned

to be the difference between the expectation of the estimator and the

true value, and an estimator is termed unbiased if the bias is zero.

Next, toward de®ning an appropriate sample variance, we consider

the sum of squares of the samples' differences from the sample mean

Sn �
Pn
i�1�xi � Ãxn�2, which can be rearranged as follows

Sn �
nX
i�1
�xi � Ãxn�

2

�
nX
i�1

�
�xi �m�� �Ãxn �m�

�2
�

nX
i�1

�
�xi �m�2 � 2�xi �m��Ãxn �m�� �Ãxn �m�2

�

�
� nX
i�1
�xi �m�2

�
� 2n�Ãxn �m�2 �n�Ãxn �m�2

Sn �
� nX
i�1
�xi �m�2

�
�n�Ãxn �m�2

Taking the expectation gives

E�Sn� �
nX
i�1

var�xi��nvar�Ãxn�
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We know var�xi� � P , for all i � 1; : : : ; n, and to compute the vari-

ance of Ãxn, it is convenient to ®rst determine the variance of vec-

tor X, obtained by stacking the samples together in a column vector

X �
h
x1 x2 � � � xn

iT
. Since the xi are mutually independent, we

have that var�xi; xj� � P�ij ; i; j � 1; : : : ; n or in matrix form

var�X� �

266664
P

P
. . .

P

377775
Using Ãxn � AX with A � �1=n�

h
1 1 � � � 1

i
and the second part of

(4.28) gives

var�Ãxn� � Avar�X�AT � 1

n
P

Substituting these into the equation for expectation of Sn gives

E�Sn� � nP � P � �n� 1�P

So here we notice an interesting outcome; if we want to obtain an unbi-

ased estimate of the variance, we should de®ne the sample variance

as sn � Sn=�n� 1� to obtain

sn � 1

n� 1

nX
i�1
�xi � Ãxn�

2

E�sn� � P

This explains the somewhat mysterious de®nition of sample variance

involving division of the sum of squares by n � 1 instead of n, which

one might have anticipated. We show later that division by n gives

the maximum-likelihood estimate of the variance, which is also a good

estimate because it converges to P as n!1. Although the maximum-

likelihood estimate is not an unbiased estimate for ®nite n, the bias

decreases to zero as n!1.
Standard error is the standard deviation of the sampling distribu-

tion of an estimator. For example, in the scalar case, if we consider the

sample mean above to be an estimator of the mean, we have worked

out that the variance of the sample mean is var�Ãxn� � �1=n�var�x� �
�1=n�� 2, and the standard error of the mean is therefore

SE�Ãxn� � �p
n
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When the standard deviation of the random variable being sampled is

also unknown, people sometimes replace � in the previous expression

with an estimate of it, such as the square root of the sample variancep
sn. We then have

SE�Ãxn� �
p
snp
n

This quantity does provide a rough measure of the uncertainty in Ãxn
due to the ®nite sample size. But if we want to say something precise

about the uncertainty in the sample mean as an estimate of mean, we

must calculate a true con®dence interval for that estimate. We show

how to calculate con®dence intervals in the discussion of maximum

likelihood estimation in Section 4.7.

4.5 Central Limit Theorems

Central limit theorems are concerned with the following remarkable

observation: if we have a set of n independent random variables xi; i �
1;2; : : : ; n, then, under fairly general conditions, the density py of their

sum

y � x1 � x2 � � � � � xn
tends to a normal density as n!1. We require only mild restrictions

on how the xi themselves are distributed for the sum y to tend to a

normal. It is perhaps best to illustrate this observation with a concrete

example.

Example 4.13: Sum of 10 uniformly distributed random variables

Consider 10 uniformly and independently distributed randomvariables,

x1, x2, . . . , x10. Consider a new random variable y , which is the sum

of the 10 x random variables

y � x1 � x2 � � � �x10

What is y 's mean and variance? Draw samples of the 10 xi random

variables, and compute samples of y . Plot frequency distributions of

x and y . Even though the 10 x random variables are uniformly dis-

tributed, and their probability distribution looks nothing like a normal

distribution, discuss how well y is approximated by a normal.
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Solution

The x random variables are distributed as x � U�0;1�, which means

px�x
0� �

8<:1 x0 2 �0;1�
0 otherwise

(4.30)

Computing the mean and variance gives

E�x� �
Z 1

0
xdx � 1

2

var�x� �
Z 1

0
�x � �1=2��2dx � 1

12

If we stack the x variables in a vector

x �
h
x1 x2 � � � x10

iT
we can write the y random variable as the linear transformation of x

y � Ax A �
h
1 1 � � � 1

i
We have that y 's mean and variance are given by

E�y� � AE�x� � 5

var�y� � Avar�x�AT � 5

6

So, if the central limit theorem is in force with only 10 random variables

in the sum, we might expect y to be distributed as

y � N�5;5=6�

A histogram of the 10,000 samples of x1 and y are shown in Fig-

ures 4.8 and 4.9. It is clear that even 10 uniformly distributedx random

variables produce nearly a normal distribution for their sum y . �

4.5.1 Identically distributed random variables

Consider n independent random variables, Xi, i � 1;2; : : : ; n, each with

identical distribution havingmean � and variance� 2. We are interested

in the distribution of the sum Sn � X1 � X2 � � � � � Xn as n becomes
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Figure 4.8: Histogram of 10,000 samples of uniformly distributed x.
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Figure 4.9: Histogram of 10,000 samples of y �
10X
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xi.
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large. Since the Xi are independent, the mean and variance of Sn are

given by

E�Sn� �
nX
i�1
E�Xi� � n�

var�Sn� �
nX
i�1

var�Xi� � n� 2

Since we want to take the limit as n ! 1, we ®rst rescale the sum

to keep the mean and variance ®nite. Given the formulas for shifting

mean and variance we choose Zn � �Sn �n��=�
p
n�� and obtain

E�Zn� � 1p
n�

�E�Sn��n�� � 0

var�Zn� � 1

n� 2
var�Sn� � 1

Theorem 4.14 (De Moivre-Laplace central limit theorem). Let Xi; i �
1;2; : : : ; n be independent and identically distributed with mean � and

variance � 2, then Zn tends to the standard normal N�0;1� as n!1.

Proof. In keeping with Laplace's approach to the problem, we shall use

characteristic functions to establish this result. We shall ®nd useful

the following bound on the error in the Taylor series approximation of

the exponential with a purely imaginary argument.������eix �
nX

m�0

�ix�m

m!

������ � jxjn�1
�n� 1�!

(4.31)

This bound is simple to establish (see Exercise 4.53). We will use it with

n � 2 stated in this form

eix � 1� ix � x
2

2!
�O�jxj3� (4.32)

in which O�jxj3� denotes that the size of the error term in (4.31) is less

than some constant times jxj3. We ®rst show that the characteristic

function ofZn converges to the characteristic function ofN�0;1�, which

is e��1=2�t
2
. Let Yi � �Xi � ��=� so that the Yi have zero mean and

unit variance. We use (4.32) with argument eitx and obtain a series
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expansion for Yi's characteristic function

'Yi�t� �
Z1
�1
eitxpYi�x�dx

�
Z1
�1

�
1� itx � �1=2�t2x2 � jxj3O�jtj3��pYi�x�dx

� 1� itE�Yi�� �1=2�t2var�Yi��E�jYij3�O�jtj3�
� 1� �1=2�t2 �O�jtj3�

Notice that here we have assumed E�jYij3� is ®nite, so that it can be

absorbed into the O�jtj3� term. Next, since Zn � �1=
p
n�
Pn
i�1 Yi, we

have from (4.7) and (4.8) that

'Zn�t� �
�
'Yi�t=

p
n�
�n � �1� �1=2�t2=n�O�t3=n3=2�

�n
In taking the limit as n ! 1 the last term is negligible and can be

dropped to obtain

lim
n!1'Zn�t� � lim

n!1
�
1� �1=2�t2=n�n

Using the calculus result that limx!0�1 � ax�1=x � ea with n � 1=x

gives

lim
n!1'Zn�t� � e��1=2�t

2

The ®nal step, which unfortunately requires the most effort, is to show

that if the characteristic function converges, then the random variable

also converges (in distribution). Assuming this is true, we then have

lim
n!1Zn � N�0;1�

and the result is established. �

This argument can be improved in several ways. For example, it is

suf®cient to assume only that the secondmoment is ®nite, not the third

absolute moment E�jYij3� assumed here (Durrett, 2010, pp.114±116).

And we have not justi®ed the claim of convergence in distribution im-

plied by convergence in characteristic function. However, the argument

does nicely illustrate why characteristic functions prove so useful. In

the next section we pursue a much more general approach that is not

based on the characteristic function, so we content ourselves to leave

this proof here.



4.5 Central Limit Theorems 395

4.5.2 Random variables with different distributions

The central limit theorem of de Moivre and Laplace is already a spectac-

ular mathematical result. But as it stands, it is not a compelling reason

to assume that unmodeled noise in a physical system would be well

represented by a normal distribution. After all, how would we deduce

that some unmodeled random effect in a physical system is the result

of many different independent random causes, all of which have iden-

tical distributions? But the central limit theorem runs deeper. We next

remove the assumption that the Xi are identically distributed. This ver-

sion of the central limit theorem was developed by Lindeberg (1922).

We consider the following conditions on the Xi variables.

Assumption 4.15 (Lindeberg conditions). Consider independent ran-

dom variables Xi; i � 1;2; : : : ; n satisfying E�Xi� � 0 and var�Xi� � � 2
i ,

and let s2n �
Pn
i�1 �

2
i . The following two conditions hold as n!1

(a) sn !1

(b) For every � > 0,
1

s2n

nX
k�1
E�X2

k ; jXkj > �sn�! 0

The notation E�X2
k ; jXkj > �sn� is shorthand for taking expectations

of the truncated random variable

E�X2; jXj > a� �
Z a
�1
pX�w�w

2dw �
Z1
a
pX�w�w

2dw

Notice that the de®nition implies thatE�X2; jXj > a��E�X2; jXj � a� �
var�X�. Many suf®cient conditions for the central limit theorem have

been proposed over the years, but all were superseded by the Lindeberg

conditions, which were also shown to be necessary (Feller, 1935; LÂevy,

1935). For example, Exercise 4.55 shows that the identically distributed

assumption of the de Moivre-Laplace central limit theorem is a special

case of these conditions. Also, all bounded random variables satisfy

these conditions. We have the following theorem with ��x� denoting

the distribution function of the standard normal.

Theorem 4.16 (Lindeberg-Feller central limit theorem). Consider in-

dependent random variables Xi; i � 1;2; : : : ; n with E�Xi� � 0 and

var�Xi� � � 2
i satisfying Assumption 4.15. The normalized sum Zn �

Sn=sn converges in distribution to the unit normal

lim
n!1 sup

x

��FZn�x�� ��x��� � 0

The proof of this theorem is given in Section 4.9.
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4.5.3 Multidimensional central limit theorems

The central limit theorem (CLT) can be extended to vector-valued ran-

dom variables, Xi 2 Rd. Consider ®rst independent, identically dis-

tributed (IID) Xi; i � 1;2; : : : ; n random variables with E�Xi� � �, and
var�Xi� � �. We assume that � > 0 is positive de®nite. We have the

following result.

Theorem 4.17 (Multivariate CLTÐIID). Let vector-valued random vari-

ables Xi; i � 1;2; : : : ; n be independent and identically distributed with

E�Xi� � � and var�Xi� � �. The normalized sumZn � �1=
p
n�
Pn
i�1

�
Xi�

�
�
converges in distribution to the normal N�0;��.

Again, the IID version is a special case of a more general version

that assumes a generalization of the Lindeberg condition.

Theorem 4.18 (Multivariate CLTÐLindeberg-Feller). Consider indepen-

dent vector-valued random variables Xi; i � 1;2; : : : ; n with E�Xi� � �i
and var�Xi� � �i > 0, and satisfying the following conditions asn!1
(a)

Pn
i�1 �i ! �

(b) For every � > 0,
Pn
i�1E

�kXik2 ;kXik > ��! 0

Then the sum Zn �
Pn
i�1

�
Xi��i

�
converges in distribution to the normal

N�0;��.

See van der Vaart (1998, pp. 20-21) for further discussion of this

case. Theorem 4.18 is the mathematical basis for the common physical

assumption that noise in process measurements is often well modeled

by a zero mean normal distribution. The variance often can be deter-

mined by examining samples of the measurement, which is an impor-

tant part of the process modeling task that is often overlooked.

Finally, the history of the term ªcentral limit theoremº is also in-

teresting. Apparently coined by PolyÂa in 1920 (in German: zentraler

Grenzwertsatz), he referred to the theorem as central to the theory of

probability, a place of honor that it maintains to this day. But the word

central can also be interpreted to mean the center of the normal distri-

bution, where the distribution converges quickly as n increases com-

pared to the tails of the distribution, where the convergence is much

slower (Le Cam, 1986). Le Cam's article is highly recommended read-

ing for anyone interested in the fascinating history of the central limit

theorem.
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4.6 Conditional Density Function and Bayes's Theorem

Let � and � be jointly distributed random variables with probability

density p�;��x;y�. We seek the density function of � given that a spe-

ci®c realization y of � has been observed. We de®ne the conditional

density function as

p�j��xjy� �
p�;��x;y�

p��y�
p��y� � 0

Consider a roll of a single die in which� takes on values E or O to denote

whether the outcome is even or odd and � is the integer value of the

die. The 12 values of the joint density function are simply computed

p�;��1;E� � 0

p�;��2;E� � 1=6

p�;��3;E� � 0

p�;��4;E� � 1=6

p�;��5;E� � 0

p�;��6;E� � 1=6

p�;��1;O� � 1=6

p�;��2;O� � 0

p�;��3;O� � 1=6

p�;��4;O� � 0

p�;��5;O� � 1=6

p�;��6;O� � 0

(4.33)

The marginal densities are then easily computed; we have for �

p��x� �
EX

y�O
p�;��x;y�

which gives by summing across rows of (4.33)

p��x� � 1=6; x � 1;2; : : :6

Similarly, we have for �

p��y� �
6X

x�1
p�;��x;y�

which gives by summing down the columns of (4.33)

p��y� � 1=2; y � E;O

These are both in accordance of our intuition on the rolling of the die:

uniform probability for each value 1 to 6 and equal probability for an

even or an odd outcome.
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Now the conditional density is a different concept. The conditional

density p�j��xjy� tells us the density of x given that � � y has been

observed. So consider the value of this function

p�j��1jO�

which tells us the probability that the die has a 1 given that we know

that it is odd. We expect that the additional information on the die

being odd causes us to revise our probability that it is 1 from 1/6 to

1/3. Applying the de®ning formula for conditional density indeed gives

p�j��1jO� � p�;��1;O�=p��O� �
1=6

1=2
� 1=3

Consider the reverse question, the probability that we have an odd

given that we observe a 1. The de®nition of conditional density gives

p�j��Oj1� � p�;��O;1�=p��1� �
1=6

1=6
� 1

i.e., we are sure the die is odd if it is 1. Notice that the arguments to

the conditional density do not commute as they do in the joint density.

This fact leads to a famous result. Consider the de®nition of condi-

tional density, which can be expressed as

p�;��x;y� � p�j��xjy�p��y�

or

p�;��y;x� � p�j��yjx�p��x�
Because p�;��x;y� � p�;��y;x�, we can equate the right-hand sides

and deduce

p�j��xjy� �
p�j��yjx�p��x�

p��y�
p��y� � 0 (4.34)

which is known as Bayes's theorem (Bayes, 1763). Notice that this re-

sult comes in handy whenever we wish to switch the variable that is

known in the conditional density, which we will see is a key step in

state estimation problems.

Example 4.19: Conditional normal density

Show that if � and � are jointly normally distributed as"
�

�

#
� N

 "
mx

my

#
;

"
Px Pxy
Pyx Py

#!
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then the conditional density of � given � is also normal

p�j��xjy� � n�x;m;P� (4.35)

in which the mean and covariance are

m �mx � PxyP�1y �y �my� P � Px � PxyP�1y Pyx (4.36)

Solution

The de®nition of conditional density gives

p�j��xjy� �
p�;��x;y�

p��y�

Because ��; �� is jointly normal, we know from Example 4.4

p��y� � n�y;my ; Py�

and therefore

p�j��xjy� �
n

�"
x

y

#
;

"
mx

my

#
;

"
Px Pxy
Pyx Py

#�
n�y;my ; Py�

Substituting in the de®nition of the normal density from (4.13) gives

p�j��xjy� �
�detPy�1=2

�2��n�=2 det

 "
Px Pxy
Pyx Py

#!1=2 exp���1=2�a� (4.37)

in which the argument of the exponent is

a �
"
x �mx

y �my

#T "
Px Pxy
Pyx Py

#�1 "
x �mx

y �my

#
� �y �my�

TP�1y �y �my�

(4.38)

If we use P � Px � PxyP�1y Pyx as de®ned in (4.36) then we can use the

partitioned matrix inversion formula to express the matrix inverse in

(4.38) as"
Px Pxy
Pyx Py

#�1
�
"

P�1 �P�1PxyP�1y
�P�1y PyxP�1 P�1y � P�1y PyxP�1PxyP�1y

#
Substituting this expression into (4.38) andmultiplying out terms yields

a � �x �mx�
TP�1�x �mx�� 2�y �my�

T �P�1y PyxP
�1��x �mx�

� �y �my�
T �P�1y PyxP

�1PxyP�1y ��y �my�
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which is the expansion of the following quadratic term

a �
h
�x �mx�� PxyP

�1
y �y �my�

iT
P�1

h
�x �mx�� PxyP

�1
y �y �my�

i

in which we use the fact that Pxy � PTyx . Substituting (4.36) into this

expression yields

a � �x �m�TP�1�x �m�

Finally noting that for the partitioned matrix

det

"
Px Pxy
Pyx Py

#
� detPy detP

and substituting the two previous equations into (4.37) yields

n

�"
x

y

#
;

"
mx

my

#
;

"
Px Pxy
Pyx Py

#�
n�y;my ; Py�

� n�x;m;P� (4.39)

or

p�j��xjy� � n�x;m;P�

which is the desired result. �

Example 4.20: More normal conditional densities

Let the joint conditional of random variables �A; B� given C be a normal

distribution with the following mean and variance

pA;BjC�a; bjc� � n��a; b�;m;P� (4.40)

m �
"
ma

mb

#
P �

"
Pa Pab
Pba Pb

#

Show that the conditional density of A given B and C is also normal

pAjB;C�ajb; c� � n�a;m;P� (4.41)

with mean and variance given by

m �ma � PabP�1b �b �mb� P � Pa � PabP�1b Pba
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Solution

From the de®nition of joint density we have that

pAjB;C�ajb; c� �
pA;B;C�a; b; c�

pB;C�b; c�

Multiplying the top and bottom of the fraction by pC�c� yields

pAjB;C�ajb; c� �
pA;B;C�a; b; c�

pC�c�

pC�c�

pB;C�b; c�

or

pAjB;C�ajb; c� �
pA;BjC�a; bjc�
pBjC�bjc�

Substituting the distribution given in (4.40) and using the result in

Example 4.4 to integrate over a to obtain the marginal pBjC�bjc� �R
pA;BjC�a; bjc�da yields

pAjB;C�ajb; c� �
n

�"
a

b

#
;

"
ma

mb

#
;

"
Pa Pab
Pba Pb

#�
n�b;mb; Pb�

Now using (4.39) and (4.36) gives

pAjB;C�ajb; c� � n�a;m;P�
m �ma � PabP�1b �b �mb� P � Pa � PabP�1b Pba

and the result is established. �

4.7 Maximum-Likelihood Estimation

We now turn to one of the most basic problems in modeling: how to de-

termine model parameters from experimental measurement. Finding

methods to solve parameter estimation problems has had a signi®cant

impact on the development of mathematics, generally, and statistics,

in particular. To get started we consider the simplest but arguably still

one of the most important problems, determining the parameters in a

linear model. Consider some set of environmental or predictor vari-

ables, x, that we wish to use to explain some response variables, y .

The linear model means simply that y � �x in which � is a set of pa-

rameters that we wish to determine from measurements of y for given

values of x. We often intend to use the identi®ed parameters to make
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predictions about y 's response to x values that we have not used in

any previous experiment. We may use the identi®ed model to optimize

over the x variables to ®nd the conditions that maximize the responses

y . This approach may save considerable time and expense compared

to the alternative of trial and error experimental adjustment of the x

variables.

In addition to ®nding the ªbestº parameter estimate, we would also

like to quantify our uncertainty in the estimate. Modeling the uncer-

tainty in the data as a random variable with some ®xed probability

density is one of the key methods that we can use to solve this prob-

lem. Uncertainty in measurement leads to uncertainty in estimate, and

stipulating the structure of the measurement uncertainty allows us to

®nd (exactly in some cases) the uncertainty in the estimate. Because of

the central limit theorem, our ®rst choice for modeling uncertainty in

measurement is the normal distribution. We then have the model

y � �x � e

in which e is assumed normal and zero mean. The effect of nonzero

mean is assumed to be included in � as additional parameters to be

estimated.

The six canonical linear estimation problems. We next look at the

six versions of this problem that result from assuming (i) y is a scalar

or vector, (ii) � is a vector or matrix, and (iii) whether we know the

measurement error variance, or if it has to be estimated from the data.

The variable x will be a vector throughout. The goal in each problem

is the same: ®nd the optimal parameter estimate by maximizing the

probability of the data, and quantify the estimate's uncertainty, for

example, by determining con®dence intervals. The ®rst ®ve estimation

problems have analytical, closed-form solutions. Number six requires

iterative, numerical solution for both the optimal parameter estimate

and the measurement error covariance estimate.

4.7.1 Scalar Measurement y, Known Measurement Variance �2

We consider ®rst the case in which yi is a scalar measurement for n

samples i � 1; : : : ; n, ei is the measurement error (a random variable)

for the ith sample, � 2 Rnp is a vector of np model parameters, and

xi 2 Rnp is the np vector of environmental conditions for the ith sam-

ple

yi � xTi � � ei ei � N�0; � 2� (4.42)
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Consider n � 1 samples. The probability density of the set of yi sam-

ples for given values of � and � are obtained from the given normal

distribution for the measurement error ei � yi � xTi �. We have that

p�y1; y2; : : : ; yn;�;�� � 1

�2��n=2�n
exp

0@� 1

2� 2

nX
i�1
�yi � xTi ��2

1A
Taking logarithm gives

� lnp�y1; y2; : : : ; yn;�;�� � n
2
ln2� �n ln� � 1

2� 2

nX
i�1
�yi � xTi ��2

This equation is easier to express if we ®rst stack the yi in a vector and

xi in a matrix as

y �

266664
y1

y2

...

yn

377775 X �

266664
xT1
xT2
...

xTn

377775
giving

� lnp�y ;�;�� � n
2
ln2� �n ln� � 1

2� 2
�y �X��T �y �X��

We de®ne the log of the likelihood as a function of the parameters �

and � with the data y regarded as ®xed values

�L��;�� � n
2
ln2� �n ln� � 1

2� 2
�y �X��T �y �X�� (4.43)

Because we assume that we know the measurement error variance � 2,

the only unknown in this ®rst estimation problem is �. Therefore, to

®nd the maximum-likelihood estimate, we maximize L��;�� by differ-

entiating with respect to � and set the result to zero

dL��;��

d�
� 1

� 2
XT �y �X�� (4.44)

0 � 1

� 2
XT �y �X��

Assuming that X has full column rank, we solve the last equation giv-

ing the familiar least-squares formula for the maximum-likelihood es-

timate b� � �XTX��1XTy (4.45)
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We delay a discussion of what to do when X does not have full column

rank until Section 4.8. But we know from Chapter 1 that the optimal

estimate is not unique, and we have a linear subspace of estimates that

all are optimal. This situation is depicted in Figure 1.6(b).

Probability density of parameters and parameter con®dence inter-

val. The next item of interest is the probability density of the esti-

mates. Let �0 be the parameter generating the measurements so the

model is y � X�0 � e. Then we have

b� � �XTX��1XTy

� �XTX��1XT �X�0 � e� e � N�0; � 2In�

� �0 � �XTX��1XTeb� � �0 � �XTX��1XTe

Using the result on linear transformation of a normal, we have

b� � N��0; � 2�XTX��1� (4.46)

As shown in Exercise 4.21, for a random variable � 2 Rnp distributed as

a multivariate normal with mean m and covariance P , the probability

that � takes on value x inside the ellipse

�b � fx j �x �m�TP�1�x �m� � bg

is given by

Pr�� 2 �b� �
�np=2; b=2�

��np=2�

in which the complete and incomplete gamma functions are de®ned by

(Abramowitz and Stegun, 1970, p.255±260)

��np� �
Z1
0
tnp�1e�tdt � �np � 1�! �np; x� �

Z x
0
tnp�1e�tdt

De®ning the transformation � � �� �m�TP�1�� �m�, we have that

Pr�� 2 �b� � Pr�� � b� � F��b� and have shown that

F��b� �
�np=2; b=2�

��np=2�

This cumulative distribution is known as the �2 distribution with np
degrees of freedom, i.e., F��b� � F�2�b;np�. Exercise 4.33 discusses
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the �2 distribution in more detail. The function F�1�2 ��;np� then inverts

this relationship so we have that

F�1�2 ��;np� � b

Therefore, given a con®dence level �, the elliptical region of the multi-

variate normal containing probability � is obtained by substituting this

relation for b into the equation de®ning the ellipse

�x �m�TP�1�x �m� � F�1�2 ��;np�

Finally, substituting in the values of the mean and covariance gives

the following �-level elliptical con®dence region for the maximum-

likelihood estimate

� b� � �0�T
 
XTX

� 2

!
� b� � �0� � F�1�2 ��;np� (4.47)

For a large-dimensional parameter vector, the elliptical region is cum-

bersome to present. In these cases we may wish to approximate the

con®dence region with the smallest bounding box that contains the

ellipse. As shown in Exercise 4.15, this box is given by

��� b� � �0���
i
�
�
F�1�2 ��;np��

2�XTX��1ii
�1=2

which is commonly reported as plus/minus limits with the following

notation b� � �0 � c
in which

ci �
�
F�1�2 ��;np��

2�XTX��1ii
�1=2

Note that the parameter uncertainly interval does not depend on

the measurement samples yi when we know the measurement error

variance. We can compute c before we do the experiment, based solely

on the chosen xi. Only b� depends on the experiment. And if we do an

increasing number of experiments, XTX �Pn
i�1 xix

T
i increases linearly

with the number of samples n, so the con®dence interval c decreases

as n�1=2. So one method to reduce uncertainty in parameter estimates

is to replicate experiments.
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Marginal parameter estimates. Another way to condense the multi-

variate density is to compute its marginals. Since b� is distributed as a

normal in (4.46), we compute marginals as in (4.19) giving

b�i � N���0�i; � 2�XTX��1ii �

We can then compute �-level con®dence levels on each of the np uni-

variate normals giving b� � �0 �m
in which

mi �
�
F�1�2 ��; 1��

2�XTX��1ii
�1=2

Notice that themi and ci formulas are different. The ®rst is the bound-

ing box for the true multivariate �-level con®dence region; the sec-

ond is simply a collection of the �-level con®dence intervals for all the

marginals of the multivariate estimate. Let's call this latter region the

ªmarginal boxº to distinguish it from the bounding box. Students often

ask, ªSince it is dif®cult to present a high-dimensional ellipse, which of

these two plus/minus results should be reported as the con®dence in-

terval in a research presentation?º This question has no satisfactory

answer. The important point is to know and communicate what you

are reporting. The bounding box certainly contains more than the �-

level probability since it contains the true �-level region in its interior.

The marginal box does not have this property. The interpretation of

the marginal box is the same as the interpretation of any marginal den-

sity. If you obtained many samples of the parameter estimates from

many datasets, the ith interval of the marginal box would contain an �-

level fraction of all the different samples of the ith parameter estimate.

No statement about the probability of the jointly distributed parameter

estimate follows from this characterization. We include the following

example to help clarify these distinctions.

Example 4.21: The con®dence region, bounding box, and marginal

box

Assume that the two-dimensional random variable � is distributed as

N�m;P� with

m �
"
1

2

#
P �

"
2 3=4

3=4 1=2

#

(a) Plot the multivariate density.
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Figure 4.10: The multivariate normal density (top right). The two

marginal densities and marginal 95% con®dence re-

gions (shaded) (top left and bottom right). The joint el-

liptical 95% con®dence region (shaded), bounding box

(outer), and the marginal box (inner) (bottom left).

(b) Compute and plot the two marginal densities, and their 95% con-

®dence intervals.

(c) Compute the bounding box and the marginal box, and plot them

along with the joint density 95% con®dence ellipse.

(d) Take 1000 independent samples of �, and determine the number

inside the ellipse, the bounding box, and the marginal box. Ap-

proximately what con®dence levels can you assign to the bound-

ing box and marginal box?
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Solution

(a) The multivariate density is shown in the top right of Figure 4.10.

The 95% con®dence ellipse is given by

�x �m�TP�1�x �m� � F�1�2 �0:95;2� � 5:99

This ellipse is shown in the bottom left of Figure 4.10.

(b) The two marginals are (see also Example 4.4)

p�1�x1� �
1p
4�
e��1=4��x1�1�2

p�2�x2� �
1p
�
e��x2�2�2

The marginal densities of �1 and �2 are shown in the bottom right

and top left of Figure 4.10, respectively. The 95% interval for the

two marginals are given by

�x1 � 1�2

2
� F�1�2 �0:95;1� � 3:84 x1 2 ��1:77;3:77�

�x2 � 2�2

�1=2�
� F�1�2 �0:95;1� � 3:84 x2 2 �0:614;3:39�

These intervals are shown as the shaded regions in the bottom

right and top left of Figure 4.10.

(c) The ellipse's bounding box is given by

�x1 � 1�2

2
� F�1�2 �0:95;2� � 5:99 x1 2 ��2:46;4:46�

�x2 � 2�2

�1=2�
� F�1�2 �0:95;2� � 5:99 x2 2 �0:269;3:73�

The ellipse, bounding box, and marginal box are shown in the

bottom left of Figure 4.10.

(d) Generating 1000 samples of � and counting the fraction of sam-

ples within each of the three regions gives

ellipse � 0:956

bounding box � 0:981 marginal box � 0:920 �
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4.7.2 Scalar Measurement y, Unknown Measurement Variance �2

We now consider the measurement error variance � 2 to be unknown.

We have the same model as in the previous section

yi � xTi � � ei ei � N�0; � 2�

When the measurement variance is unknown, we maximize the like-

lihood function given in (4.43) over both � and � and estimate both

quantities from the data. The � derivative is the same as in (4.44), and

differentiating (4.43) with respect to � gives

@L��;��

@�
� 1

� 2
XT �y �X��

@L��;��

@�
� �n

�
� ��3�y �X��T �y �X��

Equating the derivatives to zero and solving simultaneously gives

b� � �XTX��1XTy (4.48)

c� 2 � 1

n
�y �X b��T �y �X b�� (4.49)

We see that the maximum-likelihood parameter estimate is unchanged

from the known variance case, and themaximum-likelihood estimate of

the variance is the mean of the square of the residual over the samples.

Notice that the maximum-likelihood estimate of variance is close to but

not equal to the sample variance s2 given by the formula (for n > np)

s2 � 1

n�np
�y �X b��T �y �X b��

s2 � n

n�np
c� 2

We show subsequently that the sample variance is an unbiased estimate

of � 2 so the maximum-likelihood estimate of � 2 is biased. But this

bias is small for a large number of samples compared to parameters

n� np.

Given the same result for b� as in the previous problem, the proba-

bility density of b� is unchanged from the previous problem. We next

determine the probability density of c� 2. For this it is convenient to

®rst consider the singular value decomposition of the X matrix. We

assume that this n� np matrix has independent columns so the rank

is np. As discussed in Chapter 1, a real n�np matrix with independent
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columns can be written as the product of orthogonal n � n matrix U

and orthogonal np �np matrix V , and diagonal np �np matrix �

X �
h
U1 U2

i"
�

0

#
VT

X � U1�V
T

in which the following relationships result from orthogonality

UT
1 U1 � Inp UT

2 U2 � In�np UT
1 U2 � 0np�n�np

UT
2 U1 � 0n�np�np U1U

T
1 �U2U

T
2 � In VTV � VVT � Inp

Using the singular value decomposition (SVD) for X, we ®nd by substi-

tution and orthogonality

�XTX��1XT � V��1UT
1

X�XTX��1XT � U1U
T
1

I �X�XTX��1XT � U2U
T
2

These relations allow us to express the estimate and residual in terms

of the measurement errors as

b� � �0 � V��1UT
1 e

y �X b� � U2U
T
2 e (4.50)

Using these relations we can express the following quadratic terms as

� b� � �0�T �XTX
�
� b� � �0� � eTU1U

T
1 e

�y �X b��T �y �X b�� � eTU2U
T
2 e

These relations provide an essential insight. The error e obviously af-

fects both quadratic terms, but its effect in the sum of the squares of

the residual (the sample variance) is through U2 and its effect in the

parameter estimate's distance from the true value is through U1. Be-

cause these two matrices are orthogonal to each other, the effect of

the measurement error is independently distributed in these two quad-

ratic terms. We make this statement precise subsequently. First it is

helpful to establish that the following two random variables, z1, z2 are

statistically independent

z1 � 1

�
UT
1 e z2 � 1

�
UT
2 e
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Given that e � N�0; � 2I� and the result on linear transformation of a

normal, the pair z1; z2 is distributed as"
z1
z2

#
� N�0; P� P �

"
Inp 0

0 In�np

#

Since the pair is jointly normal and the covariance is diagonal, z1 and

z2 are statistically independent. We also know that their quadratic

products are distributed as chi-squared

zT1 z1 � �2np zT2 z2 � �2n�np
Exercise 4.33 discusses the chi-squared and chi densities, and also

shows that the mean of �2n is n.

From that fact we can deduce quickly the earlier claim that the sam-

ple variance is an unbiased estimate. Summarizing our results on sam-

ple variance thus far

s2 � 1

n�np
�y �X b��T �y �X b��

s2 � � 2

n�np
�zT2 z2�

Taking expectation gives

E�s2� � � 2

n�np
E�zT2 z2� �

� 2

n�np
E��2n�np�

E�s2� � � 2

and the result is established.

As shown in Exercise 4.3, if two random variables are statistically

independent, then all functions of the two random variables are also

statistically independent. Therefore we know that zT1 z1 and zT2 z2 are

statistically independent. The ratio of two chi-squared, statistically in-

dependent random variables is de®ned as the F -distribution 
n�np
np

!
zT1 z1

zT2 z2
� F�np; n�np�

The F -distribution can be shown to have density

pF�z;n;m� �
�
�n�m

2

�
�
�n
2

�
�
�m
2

� 1
z

s
�zn�nmm

�zn�m�n�m z � 0; n;m � 1
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Exercises 4.35 and 4.45 provide further discussion of the F -distribution.

Substituting the de®nitions of z1, z2 in terms of b� and c� 2 give

� b� � �0�T
 
XTX

� 2

!
� b� � �0� � �2np n

� c� 2

� 2

�
� �2n�np�

n�np
nnp

�
� b� � �0�T �XTX�� b� � �0�c� 2

� F�np; n�np� (4.51)

This last distribution provides the basis for the con®dence intervals on

the parameter estimates. Summarizing our results so far, the densities

for the parameter estimates and the measurement variance estimate

are

b� � N��0; �
2�XTX��1� (4.52)

n

� c� 2

� 2

�
� �2n�np (4.53)

Notice that these distributions are inadequate to construct con®dence

levels on the estimated parameter b� because they both depend on the

unknown measurement variance � 2. One might be tempted to re-

place the unknown � 2 in the normal density for b� with the maximum-

likelihood estimate c� 2 and obtain the con®dence intervals for b� from

that density. That idea is in the right spirit, but is not quite correct. We

obtain the correct con®dence region by considering the distribution in

(4.51). Notice that the ratio of the two quadratic terms has divided out

the common term � 2. De®ne the random variable � to be the left-hand

side of (4.51)

� �
�
n�np
nnp

�
� b� � �0�T �XTX�� b� � �0�c� 2

We want to ®nd the value b so that Pr�� � b� � �, or, since � is dis-

tributed as an F -distribution

F��b� � FF�b;np; n�np� � �
Taking the inverse of the cumulative F -distribution then gives

b � F�1F ��;np; n�np�
The ellipsoidal con®dence intervals for the parameter estimates are

therefore given by

� b� � �0�T
 
XTXc� 2

!
� b� � �0� �

 
nnp
n�np

!
F�1F ��;np; n�np�
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We can use the sample variance s2 in place of c� 2 in this formula to give

a slightly simpler expression

� b� � �0�T
 
XTX

s2

!
� b� � �0� � np F�1F ��;np; n�np� (4.54)

We can obtain the bounding box intervals as was done in the previous

section b� � �0 � c
in which

ci �
�
npF

�1
F ��;np; n�np� s2�XTX��1ii

�1=2
The signi®cant difference between this and the previous case is that

here the con®dence interval c also depends on the measurements. The

size as well as the center ( b�) of the �-level con®dence ellipse is there-

fore random. But the statistical interpretation remains the same; given

many replicated experiments, the true parameter �0, which is not a

random variable, will lie within the generated con®dence ellipse for the

experiment 95% of the time (for � � 0:95). We have the same depen-

dence as the previous case, the con®dence interval c decreases with

number of samples n�1=2.
We can also compute the marginals and the marginal box as we did

in the previous case. The result is

b� � �0 �m mi �
�
F�1F ��; 1; n�np� s2�XTX��1ii

�1=2
mi � F�1t

�
1��
2

;n�np
��
s2�XTX��1ii

�1=2
which can be equivalently expressed using the t-statistic in place of the

F -statistic as shown in Exercise 4.59.

4.7.3 Vector ofMeasurementsy, Different Parameters Correspond-

ing to Different Measurements, Known Measurement Covari-

ance R

We next consider the vector measurement case. This case arises fre-

quently when identifying empirical linear models between a vector of

input variables x and a vector of output or response variables yi. We

consider ®rst the case in which each measurement type has its own
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vector of parameters describing it

2664
1

y1

p
...

yp

3775
i

�

2664
q

�T1

p
...

�Tp

3775
264

1

q xi

375 �
2664

1

e1

p
...

ep

3775
i

yi � � xi � ei ei � N�0; R�

(4.55)

The environmental variable xi is assumed to have q components, xi 2
Rq, and � 2 Rp�q, and we assume q < n. In this model we have

np � pq model parameters to estimate. Notice that this model is not

restricted to only p independent versions of the model given by (4.42).

The generalization allowed here comes from the covariance matrix R.

To reduce this case to the (4.42), we would add the further restriction

that R � � 2I. We will see that allowing the different measurements

y1; : : : ; yp to be correlated does not prevent us from solving this esti-

mation problem also in closed form. We continue to assume here (and

assume throughout) that the different samples are independent (hence

uncorrelated).

Consider n � 1 samples, i � 1; : : : ; n, and, given the deterministic

variables � and the n xi, we have for the probability density of the

measurements

p�y1; y2; : : : ; yn;�; R� �
1

�2��np=2�detR�n=2
exp

�
� 1

2

nX
i�1
�yi ��xi�TR�1�yi ��xi�

�

or, by taking logarithm

� lnp�y1; y2; : : : ; yn;�; R� �
np

2
ln2� � n

2
lndetR � 1

2

nX
i�1
�yi ��xi�TR�1�yi ��xi�

We again de®ne the log-likelihood as a function of the parameters �

and R with the data yi, i � 1;2; : : : n, regarded as ®xed values

�L��; R� � np
2

ln2� � n
2
lndetR � 1

2

nX
i�1
�yi ��xi�TR�1�yi ��xi�
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Since R is known, we take the derivative of L with respect to the matrix

�. It is perhaps easiest to perform this derivative using component

notation. Rewriting the expression for L in components gives

�L��; R� � np
2

ln2� � n
2
lndetR� 1

2
�yir ��rjxij�TR�1rs �yis ��slxil�

in which we use the Einstein summation convention for repeated in-

dices. Taking the derivative of scalar-valued function L with respect to

�mn gives a matrix derivative

@L

@�mn
� 1

2

�
�rm�jnxijR

�1
rs �yis ��slxil��

�yir ��rjxij�R�1rs �sm�lnxil
�

Performing the sums over the deltas, noting R is symmetric, and col-

lecting terms gives

@L

@�mn
� R�1ms�yis ��slxil�xni

If we convert this back to the vector/matrix notation of the problem

statement we have

@L

@�
�

nX
i�1
R�1�yi ��xi�xTi

Setting this matrix to zero and solving gives the maximum-likelihood

estimate for the parameters �

b� � �X
i

yix
T
i

��X
i

xix
T
i

��1

in which we assume that the matrix
P
i xix

T
i has full rank. Again, we

discuss what to do when this rank condition fails later in Section 4.8.

Notice that the value of the measurement error covariance R is irrele-

vant in the estimation of � in this problem also. It is often convenient

to arrange the variables so that the summation is performed by matrix

operations. Arranging the data vectors in the following matrices

Y �
h
y1 � � � yn

i
X �

h
x1 � � � xn

i
allows us to express the maximum-likelihood estimate as

b� � YXT
�
XXT

��1
(4.56)
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Next we determine the probability density of the estimated param-

eter b�. We denote the parameter value generating the data as �0, so

the measurements are given by

Y � �0X � E E �
h
e1 � � � en

i
The estimate and its transpose are therefore

b� � �0 � EXT �XXT ��1b�T � �T
0 � �XXT ��1XET

We ®nd the transpose convenient because we now wish to stack the

matrix b�T in a vector giving

b�T �
h
�1 �2 � � � �p

i
vecb�T �

266664
�1
�2
...

�p

377775
Applying the vec operator to both sides of the transposed form of the

parameter estimates gives

vecb�T � vec�T
0 � �I 
 �XXT ��1X�vecET

From the de®nition of E we see

vecET �

26666666666666666664

e1;1
e1;2
...

e1;n
...

ep;1
ep;2
...

ep;n

37777777777777777775

ej;i jth measurement, ith sample

Given this arrangement of these normally distributed randomvariables,

we have for the density

vecET � N�0; P�
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in which

P �

26666666666666666664

R11
. . .

R11

� � �
R1p

. . .

R1p

...
. . .

...

Rp1
. . .

Rp1

� � �
Rpp

. . .

Rpp

37777777777777777775
P � R 
 I

Using the result on linear transformation of a normal, we have

vecb�T � vec�T
0 � N�0; S� S � R 
 �XXT ��1 (4.57)

in which

S � �I 
 �XXT ��1X��R 
 I��I 
 �XXT ��1X�T

Using the Kronecker product formulas from Section 1.5.3, we can sim-

plify this covariance as follows

S � �I 
 �XXT ��1X��R 
 I��I 
 �XXT ��1X�T

� �R 
 �XXT ��1X��I 
XT �XXT ��1�

S � R 
 �XXT ��1

Equation (4.57), with this result for S, is the matrix analog of the vector

result in (4.46).

Given the normal density, the elliptical con®dence region for vecb�T

can be found as in Section 4.7.1

�vecb�T � vec�T
0 �

T S�1�vecb�T � vec�T
0 � � F�1�2 ��;np� (4.58)

Interlude

Let's put the tools of orthogonality and Kronecker products to good use

and prove a fundamental result in statistics, namely that the sample

mean and sample variance from a normal distribution are statistically

independent.
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Theorem 4.22 (Mean and variance of samples from a normal). Let xi 2
Rp; i � 1; : : : ; n be n independent samples from N��;��. De®ne the

sample mean and the maximum-likelihood estimate of the variance as

x � 1

n

nX
i�1
xi b� � 1

n

nX
i�1
�xi � x��xi � x�T

Then x is distributed as N��; �1=n��� and independently of b�, and nb� is

distributed as
Pn�1
i�1 ziz

T
i in which the zi are distributed independently

and identically as N�0;��

Proof. Stack the n xi vectors next to each other in a matrix

X �
h
x1 x2 � � � xn

i
We next construct an orthogonal transformation of this matrix. Let 1

be 1=
p
n times an n-vector of ones so that X1 � pn x. Next consider

the null space of 1T . From the fundamental theorem of linear algebra,

that is an n�1 dimensional space. Collect an orthonormal basis in the

n � �n � 1� matrix Bn�1. Then construct the following orthogonal B

matrix

B �
"
BTn�1
1T

#
BT �

h
Bn�1 1

i
BBT � BTB � I

De®ne the transformed random variablesh
z1 z2 � � � zn

i
�
h
x1 x2 � � � xn

i
BT

Z � XBT

in which zn �
p
n x. The samples xi are distributed as

vecX �

2664
x1
...

xn

3775 � N
2664
2664
�
...

�

3775 ;
2664
�

. . .

�

3775
3775

or in more compact notation

vecX � N�pn1
 �; I 
 ��

The transformation gives for Z

vecZ � �B 
 I�vecX vecZ � N�m;P�
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in which

m � pn�B 
 I��1
 �� P � �B 
 I��I 
 ���B 
 I�T

Rearranging these expressions gives

m � pnB1
 � P � �BBT 
 ��

From the orthogonality relations we have

B1 �

266664
0
...

0

1

377775 BBT � I

so

vecZ �

266664
z1
...

zn�1
zn

377775 � N
266664
266664

0
...

0p
n�

377775 ;
266664
�

. . .

�

�

377775
377775

From the covariance we conclude that the variables z1; z2; : : : ; zn are

statistically independent. Computing b� gives

b� � 1

n

nX
i�1
�xi � x��xi � x�T

� 1

n

nX
i�1

�
xix

T
i � xxT

�
� 1

n

�
XXT �nxxT �

� 1

n

�
ZBBTZT � znzTn

�
� 1

n

�
ZZT � znzTn

�
b� � 1

n

n�1X
i�1
ziz

T
i

which establishes the stated distribution for b�. Since b� is a function of

only z1; : : : zn�1 and x is a function of only zn, b� and x are independent.

Since x � zn=
p
n, we have that x � N��; �1=n���, and the theorem is

proved. �
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This result is established in many statistical texts using a dazzling

variety of arguments, some bordering on the mystical. The proof given

above is a compact expression of a standardmethod given by Anderson

(2003, p. 77).

4.7.4 Vector ofMeasurementsy, Different Parameters Correspond-

ing to Different Measurements, Unknown Measurement Co-

variance R

When R is also unknown, we maximize L with respect to both � and R.

�L��; R� � np
2

ln2� � n
2
lndetR � 1

2

nX
i�1
�yi ��xi�TR�1�yi ��xi�

(4.59)

The� derivative has been given previously. Differentiating with respect

to R is facilitated by using the following fact about the trace of a matrix

product

tr�AB� � tr�BA�

which follows immediately from the de®nition of trace and expressing

the matrix product in components

tr�AB� � AijBji � BjiAij � tr�BA�

Using this result twice on a product of three matrices gives

tr�ABC� � tr�BCA� � tr�CAB�

This identity allows us to rewrite the following scalar term

�yi ��xi�TR�1�yi ��xi� � tr
�
R�1�yi ��xi��yi ��xi�T

�
Next we use the fact that

d

dA
tr�A�1B� � ��A�1�TBT �A�1�T

See Exercise A.7 for a derivation. Applying this result and using the

fact that R is symmetric gives

@

@R
�yi ��xi�TR�1�yi ��xi� � �R�1�yi ��xi��yi ��xi�TR�1

The derivative of the determinant and the log of the determinant are

(see Exercise 4.5 for a derivation)

ddetA

dA
� �A�1�T detA d lndetA

dA
� �A�1�T
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The R derivative of (4.59) is therefore

@L��; R�

@R
� �n

2
R�1 � 1

2
R�1

�X
i

�yi ��xi��yi ��xi�T
�
R�1

Setting this matrix equation to zero, using the estimate of �, and solv-

ing gives the maximum-likelihood estimates for this problem

b� �
�X

i

yix
T
i

��X
i

xix
T
i

��1
bR � 1

n

X
i

�yi � b�xi��yi � b�xi�T
The estimate bR is a biased estimate of the measurement variance R

with E� bR� � R�n�q�=n. The distribution for n bR can be shown to be a

Wishart distribution (see Exercise 4.51), which is a generalization of the

�2 distribution to the multivariate case (Wishart, 1928). The Wishart

distribution can be shown to be (Anderson, 2003, pp. 252±255)

pW �W ;n� � �detW�
n�p�1

2

2
np
2 �detR�

n
2 �p

�n
2

�e� 1
2
tr�R�1W� (4.60)

in which �p is the multivariate gamma function de®ned by

�p�z� � �p�p�1�=4
pY
i�1

��z � 1

2
�i� 1��

Note that the argument of the probability densitypW �W ;n� is a positive

de®nite matrix W . The probability is zero for W not positive de®nite.

4.7.5 Vector of Measurementsy, Same Parameters for all Measure-

ments, Known Measurement Covariance R

Next we consider the case in which the different measurement types

are affected by the same set of parameters. The model is266664
y1

y2

...

yp

377775
i

�

266664
xT1
xT2
...

xTp

377775
i

264�
375 �

266664
e1
e2
...

ep

377775
i

yi � Xi � � ei ei � N�0; R�
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In this model, all of the different components of the measurement

y1; y2; : : : ; yp are affected by the same, single vector of parameters

�. Consider n � 1 samples, i � 1; : : : ; n, and, given the deterministic

variables � and the n Xi, we have for the probability density of the

measurements

p�y1; y2; : : : ; yn;�;R� �
1

�2��np=2�detR�n=2
exp

�
� 1

2

nX
i�1
�yi �Xi��TR�1�yi �Xi��

�

� L��;R� �
np

2
ln2� � n

2
lndetR � 1

2

nX
i�1
�yi �Xi��TR�1�yi �Xi�� (4.61)

Taking the derivative with respect to � gives

@L��;R�

@�
� 1

2

nX
i�1

2XT
i R

�1yi � 2XT
i R

�1Xi�

�
nX
i�1
XT
i R

�1�yi �Xi��

Setting this vector equation to zero and solving for� gives themaximum-

likelihood estimate

b� � �X
i

XT
i R

�1Xi
��1X

i

XT
i R

�1yi (4.62)

In this problem, it can make sense to estimate � with a single sample

(n � 1) if we can choose the number of measurements p signi®cantly

larger than the number of parameters np. For a single sample, the

parameter estimate formula is

b� � �XTR�1X
��1

XTR�1y (4.63)

which is the solution of a weighted least-squares problem using R�1 as
the weight. Compare this expression to (4.45).

Notice also that this is the ®rst estimation problem for which the

maximum-likelihood estimate of the parameter b� depends on the co-

variance of the measurement error R. We see next that this dependence

prevents us from solving the ®nal estimation problem in closed form.
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We next calculate the probability density of the estimate. We denote

the parameter value generating the data as �0, so themeasurements are

given by

yi � Xi�0 � ei

and substituting this result into the estimate equation gives

b� � �0 � �X
i

XT
i R

�1Xi
��1X

i

XT
i R

�1ei

b� � �0 � �X
i

XT
i R

�1Xi
��1 h

XT
1 R

�1 � � � XT
nR

�1
i2664
e1
...

en

3775
Using the result on linear transformation of a normal, we have

b� � �0 � N�0; S� (4.64)

in which

S �
�X

i

XT
i R

�1Xi
��1 h

XT
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Given the normal density, we can compute the elliptical con®dence re-

gion as in Section 4.7.1

� b� � �0�T S�1 � b� � �0� � F�1�2 ��;np� (4.65)

The bounding box intervals follow as in Section 4.7.1. Notice that when-

ever the variance of the measurement errors is known, the maximum-

likelihood estimate is normally distributed and the elliptical con®dence

intervals are given by F�1�2 ��;np�.
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4.7.6 Vector of Measurementsy, Same Parameters for all Measure-

ments, Unknown Measurement Covariance R

The ®nal case is the one that arises most often in mechanistic modeling

of chemical and biological experiments. To determine the unknown

R, we maximize L��;R� over R in addition to �. Using the results of

Section 4.7.4 we can take the derivative of (4.61) with respect toR giving

@L��;R�

@R
� �n

2
R�1 � 1

2
R�1

�X
i

�yi �Xi���yi �Xi��T
�
R�1

Setting this result to zero and using the result of the previous sec-

tion gives the following set of necessary conditions for the maximum-

likelihood estimates

b� �
�X

i

XT
i
bR�1Xi��1X

i

XT
i
bR�1yi (4.66)

bR � 1

n

X
i

�yi �Xi b���yi �Xi b��T (4.67)

These are two sets of nonlinear equations in the unknowns b� and bR,
which must be solved numerically. One simple solution strategy is to

®rst estimate the parameter b�0 with (4.66) using an initial guess for

the covariance such as bR0 � I. One then estimates the iterate bR1 by

substituting b�0 into (4.67), and the process is repeated. If this iteration

procedure converges, then one has found the maximum-likelihood es-

timates by solving a sequence of standard estimation problems. But

there is no guarantee that this procedure converges. One may ®nd that

a crude initial guess like bR0 � I lies outside the region of convergence

of the iteration procedure.

Maximum-Likelihood and Bayesian Estimation

With this background in maximum-likelihood estimation, we would

like to compare the approach to another class of popular methods

known as Bayesian estimation. As we saw in the previous sections,

in the maximum-likelihood approach, we maximize the probability of

the measurements over the model parameter �

b�MLE � argmax
�
p�y ;�� (4.68)
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As in theMLE sections wewritep�y ;�� to indicate that � is a parameter,

not a random variable. In the MLE approach, b� is the random variable,

not �, and we assess the con®dence intervals for b�.
In Bayesian estimation, on the other hand, � itself is modeled as

a random variable. The information that we have about � before the

experiment is denoted by p���. In the experiment, we imagine drawing

a value of � as well as the measurement errors to create the data yi �
xTi ��ei, i � 1; : : : ; n. With themeasuredy available, we thenmaximize

p��jy� over � to obtain the estimate

b�BE � argmax
�
p��jy�

The conditional density p��jy� is known as the posterior density, i.e.,
the density for � after the experiment, and the density p��� is known as

the prior, i.e., the density before experiment. In Bayesian estimation,

we assess howmuch themeasurement ofy has changed our knowledge

about �. From Bayes's theorem we can express the posterior as

p��jy� � p�yj��p���
p�y�

Notice that p�yj�� is exactly the same functional form as p�y ;�� in

the MLE approach. Since the denominator does not depend on �, in

Bayesian estimation we estimate � by the following equivalent maxi-

mization b�BE � argmax
�
p�yj��p��� (4.69)

The only difference in the estimators (4.68) and (4.69) is the presence of

the prior p��� in the Bayesian approach. In the absence of knowledge

about �, we often assume that p��� is a uniform distribution. This is

called the uniform prior. Since p��� does not depend on � with the

uniform prior, the MLE and BE estimates are identical in this case.

The posterior density of Bayesian estimation is a useful way to sum-

marize the state of knowledge about the parameter � given the available

experiments. Since one has available the posterior density, con®dence

levels on random variable � are determined directly from p��jy�. Box
and Tiao (1973) provide further discussion of Bayesian estimation. In

Chapter 5 when we address the problem of state estimation, we will

use the Bayesian approach.



426 Probability, Random Variables, and Estimation

4.8 PCA and PLS regression

Principal components analysis (PCA) and projection onto latent struc-

tures (also known as partial least squares) (PLS) are two methods used

to develop empirical linear models between a vector of predictor or

environmental variables x, and a vector of responses y . This is the

same linear model discussed in Sections 4.7.3 and 4.7.4, so we can

view these methods as alternatives to the maximum-likelihood estima-

tion approach presented in those sections. The focus of these methods

is on determining estimates of the linear model that can handle situ-

ations with possible collinearities in the x variables, and missing or

erroneous information, such as unknown error structure. Collinear-

ities in the data can make the maximum-likelihood estimator highly

sensitive to outliers and nonnormal errors. Because the measurement

error structure is regarded as unknown or at least unreliable, robust-

ness of the estimated model to unmodeled effects is the goal, rather

than statistical optimality as in the maximum-likelihood methods.

As in Section 4.7.3, let p-vector y and q-vector x be related by the

linear model y � �x � e, and we wish to determine the parameter

matrix � 2 Rp�q given data on y and x. We use xi; yi; i � 1;2; : : : ; n

to denote the available samples. We assume n > q (often n � q) so

that we have more equations than unknowns, which is necessary for

a well-conditioned estimation problem. It is customary to de®ne data

matrices

Y �

266664
yT
1

yT
2
...

yT
n

377775 X �

266664
xT1
xT2
...

xTn

377775
in which Y 2 Rn�p; X 2 Rn�q, and the model is Y � X�T � E. In order

to use a more standard notation we let B � �T 2 Rq�p, and we have

the linear model

Y � XB � E

Wewish to estimate parameters B frommeasurementsX and Y without

knowledge of the statistical structure of E. Given what we already know

about least squares from Chapter 1, a natural approach would be to

minimize some measure of the size of the residual matrix E over all

choices of B. If we choose the sum of the squares of all the elements of

matrix E as ourmeasure, we have (the square of) the so-called Frobenius
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norm of the matrix

kEkF �
� nX
i�1

pX
j�1
E2ij

�1=2
So our ®rst candidate for estimating matrix B is

min
B
kY �XBk2F

It is not dif®cult to show that the solution to this problem is the fol-

lowing

Bls � �XTX��1XTY � XyY
with the usual pseudoinverse that we have seen in the standard vector

least-squares problem in Chapter 1. Notice that by taking the trans-

pose, this is also the maximum-likelihood estimate given in (4.56) for

the case in which the measurement error in y is assumed normally

distributed with covariance R, whether the covariance is known, or un-

known and must be estimated from the data.

Also, we already know that XTX has an inverse if and only if the

columns of X are linearly independent; see Proposition 1.20. Since we

may not have control over the experimental conditions, we often must

contend with datasets in which X has dependent or nearly dependent

columns, i.e., we have near collinearity in the columns of X. In such

cases, the maximum-likelihood estimate Bls is unreliable and sensitive

to small changes in the data or small errors in the assumed model

structure.

SVD. But we also have a clear ideawhat to do about this issue given our

backgroundwith singular value decomposition (SVD). We ®rst replaceX

with its (real) SVDX � USVT , and sinceX hasmore rows than columns,

we obtain

X �
h
U1 U2

i"
�

0

#
VT � � diag��1; � � � ; �q�; �1 � � � � � �q > 0

in which U1 contains the ®rst q columns of U , and U2 contains the

remaining n� q columns. Multiplying the partitioned matrices gives

X � U1�V
T

Next to handle the case in which � has several small singular values,

corresponding to matrix X with columns that are nearly collinear, we

approximate X by setting any small singular values to zero. Assume
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we have ` large singular values, and q � ` small singular values that

are nearly zero. In this case, the rank of X may be q, but with small

perturbations to the data in matrix X, it can easily drop to rank `. We

have

X �
h
U` Uq

i"
�` 0

0 �q

#"
VT`
VTq

#
� U`�`VT` �Uq�qVTq

X � U`�`VT` (4.70)

Using this lower-rank SVD in place of X then gives the following more

robust least-squares estimate

BSVD � V`��1` UT
` Y (4.71)

The ill-conditioning caused by inverting � with all q singular values is

overcome by inverting only the largest ` singular values. Thus the SVD

estimate is less sensitive to errors in the data than the least-squares

or maximum-likelihood estimate. Realize also that only the maximum-

likelihood estimate is unbiased. By suppressing the small singular val-

ues, we introduce a small bias in BSVD, but greatly reduce the variance

in the estimate.

PCR. Given this background in the SVD approach, we are in an excel-

lent position to summarize the principal component regression (PCR)

method. In PCR, the X data matrix is decomposed as follows

X � TPT

with orthogonal matrices T , known as the scores, and P , known as the

loadings. Only the ®rst ` principal components are retained, and the

matrixX is approximated byX � T`PT` in which T` and P` are the ®rst `

columns of T and P , respectively. The principal component regression

for B is given by the following

BPCR � P`�T T` T`��1T T` Y
So the correspondence with the SVD approach is as follows. The scores

in PCR are the product of the singular values and the left singular vec-

tors T` � U`�`. The loadings are the right singular vectors, P` � V`.
Substituting these relationships into the formula for BPCR shows that

BPCR � BSVD
and the two approaches are equivalent. So one advantage of learning

the SVD as part of linear algebra is that you have also learned PCR.
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PLSR. A potential drawback of the PCR approach is that only the pre-

dictor variables are evaluated. The principal components are selected

to maximize the information about matrix X. But there is no guarantee

that these components can represent the responses Y . To improve the

predictive capability of the model, the PLS regression (PLSR) adds an

interesting wrinkle. In this approach, one does not start with the SVD

of X but with the SVD of XTY , which includes information about both

X and Y and the correlation between them. Note that XTY 2 Rq�p,
which is a small matrix regardless of the number of samples, n. So

computing the SVD of a matrix of the dimension of XTY , which is done

repeatedly in PLSR, is a fast computation. The components, called la-

tent variables, are obtained recursively as follows (Mevik and Wehrens,

2007). The ®rst left and right singular vectors u1 and v1, are used to

obtain the scores t1 and w1, respectively, via

t1 � Xu1 � E1u1 w1 � Yv1 � F1v1
in which the matrices E1 and F1 are initialized as X and Y , respectively.

TheX scores are then usually normalized t1 � t1=
q
tT1 t1. We now de®ne

the two loadings, p1 and q1 using the same score t1

p1 � ET1 t1 q1 � FT1 t1
Next the data matrices are de¯ated by subtracting the information in

the current latent variable via

Ei�1 � Ei � tipTi Fi�1 � Fi � tiqTi
The next iterate starts with the SVD of ETi�1Fi�1 in place of XTY and the

process is repeated. As in PCR, the number of latent variables ` � q is

chosen as the number of iterations of the algorithm. The left singular

vectors ui, the scores ti, and the loadings pi and qi for i � 1;2; : : : ; `

are stored as the columns of the four matrices U , T , P , and Q. After `

iterations we have low-rank approximations of both X and Y

ÃX � TPT ÃY � TQT

We can de®ne the PLS solution for B as the following (nonunique) least-

squares solution of Y � ÃXB

BPLS � RT TY � RQT

in which R � U�PTU��1 so that PTR � I`. Note that this estimate

satis®es also ÃY � ÃXBPLS � XBPLS.
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Cross validation. In both PCR and PLS we need to decide how many

principal components or latent variables to retain in the model. The

most widely accepted method to make this decision is known as cross

validation. In cross validation the dataset is divided into two or more

sets; one set is used for ®tting the parameters, and the other set is used

to evaluate the predictive power of the model using the remaining data

that have not been used in the ®tting process. The validation error, de-

®ned as Ev � Yv �Xv ÃB`, in which ÃB` is the estimated model parameter

matrix using the ®tting dataset �X; Y� and the chosen number of prin-

cipal components or latent variables, `. To determine the best value of

` to use for estimating B, one ®nds the ` that minimizes kEvk2F . This
value of ` is large enough that the model ®ts the data accurately, but

not so large that the model has been ®t to the noise in the data. We

demonstrate the cross validation technique with the following example.

Example 4.23: Comparing PCR and PLSR

Consider a dataset with ®ve predictor variables, x 2 R5, to model a

vector of two responses, y 2 R2. The dataset has 200 samples. The

data are available on the website www.chemengr.ucsb.edu/~jbraw/

principles.

We would like to estimate the coef®cient B in the model Y � XB.
Compare the results using PCR and PLSR for the regression. Show the

prediction error in Y for the number of principal components or latent

variables ranging from one to ®ve (full least squares). Which regres-

sion method provides the best ®t with the smallest number of principal

components/latent variables?

Solution

First we divide the 200 samples into two sets, and use the ®rst 100

samples for estimating the parameter matrix B, and the second 100

samples for cross validation. For principal component analysis, we

compute the SVD of the 5� 100 X matrix. The ®ve singular values are

� � diag�15:1; 3:26; 2:72; 2:67; 0:0226�

We see that X has four large singular values and one near zero, indi-

cating that the rank of X is nearly four. Next we estimate BPCR using

(4.71) for ` � 1;2;3;4;5 and calculate the sum of squares of the ®tting

error, kY �XBPCRk2F . The results are shown in the top of Figure 4.11. It

is not surprising that the ®tting error decreases with increasing num-

ber of principal components. As we see, the ®tting error contains little
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Figure 4.11: The sum of squares ®tting error (top) and validation

error (bottom) for PCR versus the number of principal

components `; cross validation indicates that four prin-

cipal components are best.

information about how many principal components to use. After esti-

mating the parameters, we then compute the output responses for the

validation data and compute kYv �XvBPCRk2F in which Xv ; Yv are the

predictor and response variables in the validation dataset. This vali-

dation error is plotted in the bottom of Figure 4.11. Here we see that

we should use four principal components in the model, in agreement

with the SVD analysis of X. Using the unreliable smallest singular value

in the regression causes a large error when trying to predict response

data that have not been used in the ®tting process.

Next we implement the PLS regression algorithm as described above

for ` � 1;2;3;4;5 latent variables. The validation error is shown in

Figure 4.12 along with the validation error of PCR. Notice that only two

latent variables are required to obtain the same error as four principal

components. This reduction in model order is the primary bene®t of

the PLSR approach. By evaluating the SVD of XTY instead of only X, we

obtain the latent variables that can explain the responses Y , not just

the variables with independent information in X, which is what PCR
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Figure 4.12: The sum of squares validation error for PCR and PLSR

versus the number of principal components/latent vari-

ables `; note that only two latent variables are required

versus four principal components.

provides.

Next, in Figure 4.13 we present the predicted responses versus the

measured responses for the validation dataset. A perfect prediction

would be a straight line with a slope of 45 degrees. Note that these data

were not used in the ®tting process, so this plot displays the predictive

capability of the model. We see that the PLS model with two latent

variables has roughly the same predictive capability as the PCR model

with four principal components. Finally, in Figure 4.14 we make the

same comparison if we use only three principal components and one

latent variable. Notice that we obtain signi®cantly worse predictions of

the validation dataset, indicating that we have undermodeled the data

by choosing too few variables for the regression. �

By now there is an extensive literature including many books and

research monographs on model regression with PCR and PLSR. Many

researchers have documented the usefulness and robustness of these
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Figure 4.13: Predicted versus measured outputs for the validation

dataset. Top: PCR using four principal components.

Bottom: PLSR using two latent variables. Left: ®rst out-

put. Right: second output.

techniques to identify linear empirical models in numerous applica-

tions. The understanding of PCR is reasonably complete, since it is

based on the SVD of the single matrix, X. By contrast, the understand-

ing of PLSR is not as complete. PLS was introduced by H. Wold in the

1960s in the ®eld of econometrics (Wold, 1966). The use of PLS in

the ®elds of analytical chemistry and chemometrics was pioneered by

S. Wold, Martens, and Kowalski. The tutorial by Geladi and Kowal-

ski (1986) and historical reviews by S. Wold (2001) and Martens (2001)

summarize the approach and early contributions. Its use in process

monitoring and control was developed by MacGregor, Marlin, Kresta,

and Skagerberg (1991). Kaspar and Ray (1993) discovered the connec-

tion between the early PLS algorithms and the singular value decom-

position, which we exploited here to compactly express the PLS algo-

rithm. An ef®cient recursive formulation was developed by Qin (1998).

Ef®cient numerical implementations of PCR and PLSR are available in

several high-level computing languages such as R, Octave, and MATLAB,

which make it easy for the user to try out these approaches (Mevik and

Wehrens, 2007).
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Figure 4.14: Effect of undermodeling. Top: PCR using three princi-

pal components. Bottom: PLSR using one latent vari-

able.

As demonstrated in the example, starting with the SVD of XTY

rather than X is useful for ®nding the smallest number of latent vari-

ables that have the most predictive capability. But PLSR research has

not yet provided a complete analysis of themethod and its salient prop-

erties. We do not know, for example, in what sense PLSR is an opti-

mal estimator or whether there might be, as yet undiscovered, better

methods. Adding to the complexity, several different alternative PLSR

algorithms have been developed. The appearance of many different

algorithms has in turn generated some confusion and controversy. To

clarify matters, connections between the properties of several of the

different algorithms have been established. But until some optimality

properties of PLSR are uncovered, research on the PLSR approach will

likely continue. In any ®eld, a valuable technique that also de®es easy

explanation is a prime target for further research.

4.9 Appendix Ð Proof of the Central Limit Theorem

In this appendix we provide a complete proof of Theorem 4.16. We fol-

low the basic approach outlined in the stimulating papers by Le Cam
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(1986) and Pollard (1986). Moreover, in this version of the central limit

theorem we not only establish convergence to the normal distribution

as n ! 1, but also develop an approach that leads to bounds valid

for ®nite n on the distance of the sum's distribution from the normal

distribution. This version of the central limit theorem and, more impor-

tantly, the techniques used to establish it are wide ranging and worth

knowing for researchers making extensive use of random variables. As

you will see, the proof is elementary, by which we mean that none of

the steps require any advanced techniques that are not already familiar

to the reader. But the proof is rather long. Note also that this mate-

rial can be skipped without affecting the understanding of any other

section in the text.

Proof. We start by considering two sums of independent random vari-

ables; let Sn � Xi � X2 � � � � � Xn and Tn � Y1 � Y2 � � � � � Yn, in
which E�Xk� � E�Yk� � 0 and var�Xk� � var�Yk� � � 2

k . The zero mean

assumption is not restrictive. If the original Xk have nonzero mean �k,

consider instead the zero mean, shifted variables ÄXk � Xk � �k. Next
de®ne Rk as follows

Rk �
nX
j<k

Xj �
nX
j>k

Yj ; k � 1;2; : : : ; n

so that

R1 � Y2 � Y3 � � � � � Yn
R2 � X1 � Y3 � Y4 � � � � � Yn
R3 � X1 �X2 � Y4 � � � � � Yn
� � �

Rn � X1 �X2 � � � � �Xn�1
Notice from this de®nition that Rk and Xk as well as Rk and Yk are also

independent for k � 1;2; : : : ; n. We see shortly why the Rk variables

are useful.

We also require an approximation theorem; the formwe choose here

is motivated by a nice, unpublished note of F.W. Scholz (2011).

Theorem 4.24 (Taylor's theorem with bound on remainder). Let f be

a bounded function on R with three continuous, bounded derivatives.

Consider the second-order Taylor series with remainder

f�x � h� � f�x�� f 0�x�h� f
00�x�
2

h2 � r�x;h�
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The remainder satis®es the following bound for all h 2 R

sup
x2R

jr�x;h�j � Kf min�h2; jhj3� (4.72)

The term jhj3 is expected from the standard Taylor expansion, but

including the term h2 gives a better bound for large h, which we shall

®nd useful subsequently. Exercise 4.54 discusses how to prove this

theorem, which is not dif®cult.

So we assume that f has three continuous, bounded derivatives,

and express f�Xk � Rk� as

f�Xk � Rk� � f�Rk��Xkf 0�Rk��
X2
k

2
f 00�Rk�� r�Rk; Xk�

Performing a similar expansion for f�Yk�Rk�, taking expectations, and
subtracting gives

E�f�Xk � Rk�� f�Yk � Rk�� � �E�Xk��E�Yk��E�f 0�Rk���
�1=2��E�X2

k��E�Y 2
k ��E�f 00�Rk���E�r�Rk; Xk�� r�Rk; Yk��

where we have used the fact that E�AB� � E�A�E�B� for A and B in-

dependent random variables. Noting that the ®rst two terms cancel,

taking absolute values, and using (4.72) gives��E�f�Xk � Rk�� f�Yk � Rk���� � KfE�g�Xk�� g�Yk�� (4.73)

where we used the fact6 that
��E�f �X���� � E�

��f�X���� and de®ned

g�X� �min�X2; jXj3� to compress the notation. Next comes the reason

for introducing the Rk variables. Notice that differencing the sum of

f�Rk �Xk� and f�Rk � Yk� leaves only two terms

nX
k�1
f�Rk�Xk��f�Rk�Yk� � f�Rn�Xn��f�R1�Y1� � f�Sn��f�Tn�

Taking expectations and then absolute values and using (4.73) then

gives ��E�f �Sn�� f�Tn���� � Kf nX
k�1
E�g�Xk�� g�Yk�� (4.74)

Establishing this inequality is the ®rst major step.

6Since f�x� � ��f�x��� for all x, multiply by the density pX�x� and integrate.
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Figure 4.15: The indicator (step) function f1�w;x� and its smooth

approximation, f�w;x�. A piecewise ®fth-order poly-

nomial gives continuous derivatives up to third order;

see Exercise 4.57 for details.

But we wish to bound the distance between the two cumulative dis-

tributions FSn and FTn , so we next choose an appropriate function f���
to achieve this goal. Consider the step function f1�w;x� depicted in

Figure 4.15, in which w is the argument to the function and x is con-

sidered a ®xed parameter. Using f1�w;x� we have immediately

E�f1�Sn�� �
Z1
�1
f1�w;x�pSn�w�dw �

Z x
�1
pSn�w�dw � FSn�x�

The function f1��� is known as an indicator function, because f1�Sn�

indicates when the random variable Sn satis®es Sn � x. So this is

the kind of function we seek, but, of course, f1 does not have even

a bounded ®rst derivative, let alone three bounded derivatives as re-

quired in our development. So we ®rst smooth out this function as

depicted in Figure 4.15. Exercise 4.57 gives an example of a piecewise

polynomial function f with the required smoothness. Moreover, there

exists an L0 > 0 such that Kf � 20L�3 is a valid upper bound in (4.72)

for every L satisfying 0 < L � L0; see (4.96). We will require this bound

shortly.

Computing Ef�Sn� givesZ1
�1
pSn�w�f�w;x�dw �

Z x
�1
pSn�w�dw �

Z x�L
x

pSn�w�f�w;x�dw

E�f �Sn�� � FSn�x��
Z x�L
x

pSn�w�f�w;x�dw
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and, subtracting the analogous expression for Tn and rearranging gives

FSn�x�� FTn�x� � E�f �Sn�� f�Tn���
Z x�L

x
�pSn�w�� pTn�w��f�w;x�dw

� E�f �Sn�� f�Tn���
Z x�L

x
pTn�w�f�w;x�dw

� E�f �Sn�� f�Tn��� bnL

with bn � maxw pTn�w�. Since we will later choose the Yk variables,

we have some control over the constant bn. Taking absolute values and

substituting (4.74) then gives the following bound

��FSn�x�� FTn�x��� � Kf nX
k�1
E�g�Xk�� g�Yk��� bnL (4.75)

Establishing this inequality is the second major step. Note that if we

choose L small, we make Kf large, so making the sum on the right-hand

side small will require a judicious choice of L.

Next we choose the Yk to be N�0; � 2
k �, and the scaled sum Tn=sn �Pn

k�0 Yk=sn has zero mean and unit variance for all n, i.e, it is a stan-

dard normal, denoted Z with distribution function ��x�. This gives

immediately for (4.75) the value bn � maxw pZ�w� � 1=
p
2� , which is

also independent of n for this choice of Yk. The variable Zn � Sn=sn �Pn
k�1Xk=sn is a sum of scaled Xk, and also has zero mean and unit

variance for all n. Applying (4.75) to these variables gives

sup
x

��FZn�x�� ��x��� � Kf nX
k�1
E�g�Xk=sn�� g�Yk=sn��� bnL (4.76)

To evaluate the right-hand side, we partition the interval of integration

as discussed before

E�g�Xk=sn�� � E�g�Xk=sn�; jXkj � �sn�� E�g�Xk=sn�; jXkj > �sn�

Next we use the fact that g�Xk=sn� � jXk=snj3 in the ®rst term and that

g�Xk=sn� � �Xk=sn�2 in the second term to obtain the bound

E�g�Xk=sn�� � E�jXk=snj3 ; jXkj � �sn��E��Xk=sn�2; jXkj > �sn�

� �

s2n
E�jXkj2 ; jXkj � �sn�� 1

s2n
E�X2

k ; jXkj > �sn�

� ��
2
k

s2n
� 1

s2n
E�X2

k ; jXkj > �sn�
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Performing the sum gives

nX
k�1
E�g�Xk=sn�� � �� 1

s2n

nX
k�1
E�X2

k ; jXkj > �sn�

The second term goes to zero as n!1 by the Lindeberg condition. So

for large enoughn it is smaller than the ®rst term, which is independent

of n. So as n!1 we have that

nX
k�1
E�g�Xk=sn�� � 2�

We also can show that the normally distributed Yk variables satisfy the

Lindeberg conditions if the Xk do. See Exercise 4.56 for the steps. So

we have that as n!1
nX
k�1
E�g�Xk=sn�� g�Yk=sn�� � 4� (4.77)

Next we choose L, and therefore Kf , as follows

L �
� nX
k�1
E�g�Xk=sn�� g�Yk=sn��

�1=4
� �4��1=4

To use the bound in (4.96), we require L � L0. Therefore setting �0 �
L40=4 > 0, we have from the previous inequality that for every � < �0,

Kf � 20L�3 �
�
20

nX
k�1
E�g�Xk=sn�� g�Yk=sn��

��3=4

Substituting these values for Kf and L into (4.76) and using (4.77) gives

sup
x

��FZn�x�� ��x��� � c�1=4
with c � �1=2�5�3=4 � 1=

p
� � 0:71. Since this bound holds for all

� � �0, we have established that

lim
n!1 sup

x

��FZn�x�� ��x��� � 0

and the proof is complete. �
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4.10 Exercises

Exercise 4.1: Consequences of the axioms of probability

(a) If B � A, show that Pr�A n B� � Pr�A�� Pr�B�.

(b) By de®nition, the eventsA and B are independent if Pr�A\B� � Pr�A�Pr�B�.
IfA and B are independent, show thatA and B are independent.

Exercise 4.2: Statistical independence condition in densities

Show that two random variables � and � are statistically independent if and only if

p�;��x;y� � p��x�p��y�; all x;y (4.78)

Exercise 4.3: Statistical independence of functions of random variables

Consider statistically independent random variables, � 2 Rm and � 2 Rn. De®ne

random variable � 2 Rp and � 2 Rq as � � f���; � � g���. Show that � and � are

statistically independent for all functions f��� and g���. Summarizing

Statistical independence of random variables ��; �� implies statistical in-

dependence of random variables �f ���; g���� for all f��� and g���.
Note that f��� and g��� are not required to be invertible.

Exercise 4.4: Trace of a matrix function

Derive the following formula for differentiating the trace of a function of a square

matrix
dtr�f �A��

dA
� g�AT � g�x� � df�x�

dx
(4.79)

in which g is the usual scalar derivative of the scalar function f .

Exercise 4.5: Derivatives of determinants

For A 2 Rn�n nonsingular, derive the following formulas

ddetA

dA
� �A�1�T detA d lndetA

dA
� �A�1�T

Exercise 4.6: Transposing the maximum-likelihood problem statement

Consider again the estimation problem for the model given in (4.55), but this time

express it in transposed form

yTi � xTi e�� eTi ei � N�0; R� (4.80)

(a) Derive the maximum-likelihood estimate for this case. Show all steps in the

derivation. Arrange the data in matrices

eY �
26664
yT1
.
.
.

yTn

37775 eX �
26664
xT1
.
.
.

xTn

37775
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and show the maximum-likelihood estimate can be expressed as

be� � � eXT eX��1 eXT eY
Expressing the model this way gives an estimate formula that is analogous to

what other problem?

(b) Find the resulting probability density for the estimate and give the analogous

result corresponding to (4.57).

(c) Which form of the model do you prefer and why?

Exercise 4.7: Joint, marginal, mean, and covariance

We consider two discrete-valued random variables, � and �. Calculate the joint density,
p�;��x;y�, both marginal densities, p��x�;p��y�, the means, E���;E���, and covari-

ance, cov��; ��, for the following two cases

(a) We throw two dice, and � and � are the values on each die.

(b) We throw two dice, � is the value on one die and � is the sum of the two values.

Exercise 4.8: Probability density of the inverse function

Consider a scalar random variable � 2 R and let the random variable � be de®ned by

the inverse function

� � ��1
(a) If � is distributed uniformly on �a;1� with 0 < a < 1, what is the density of �?

(b) Is �'s density well de®ned if we allow a � 0? Explain your answer.

Exercise 4.9: Expectation as a linear operator

(a) Consider the random variable x to be de®ned as a linear combination of the

random variables a and b
x � a� b

Show

E�x� � E�a��E�b�
Do a and b need to statistically independent for this statement to be true?

(b) Next consider the random variable x to be de®ned as a scalar multiple of the

random variable a
x � �a

in which � is a scalar. Show

E�x� � �E�a�

(c) What can you conclude about E�x� if x is given by the linear combination

x �
X
i

�ivi

in which vi are random variables and �i are scalars.
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Exercise 4.10: Calculating mean and variance from data

We are sampling a real-valued, scalar random variable x�k� 2 R at time k. Assume

the random variable comes from a distribution with mean x and variance P , and the

samples at different times are statistically independent.

A colleague has suggested the following formulas for estimating the mean and

variance from N samples

ÃxN � 1

N

NX
j�1
x�j� ÃPN � 1

N

NX
j�1
�x�j�� ÃxN�

2

(a) Prove the estimate of the mean is unbiased for all N, i.e., show

E�ÃxN� � x; all N

(b) Prove the estimate of the variance is not unbiased for any N, i.e., show

E�ÃPN� � P; any N

(c) Using the result above, provide an improved formula for the variance estimate

that is unbiased for allN. How large doesN have to be before these two estimates

of P are within 1%?

Exercise 4.11: The sum of throwing two dice

Using (4.23), what is the probability density for the sum of throwing two dice? On what

number do you want to place your bet? How often do you expect to win if you bet on

this outcome?

Make the standard assumptions: the probability density for each die is uniform

over the integer values from one to six, and the outcome of each die is independent of

the other die.

Exercise 4.12: The product of throwing two dice

Using (4.23), what is the probability density for the product of throwing two dice? On

what number do you want to place your bet? How often do you expect to win if you

bet on this outcome?

Make the standard assumptions: the probability density for each die is uniform

over the integer values from one to six, and the outcome of each die is independent of

the other die.

Exercise 4.13: Expected sum of squares

Given random variable x has mean m and covariance P , show that the expected sum

of squares is given by the formula (Selby, 1973, p.138)

E�xTQx� �mTQm� tr�QP�

Recall that the trace of a square matrix A, written tr�A�, is de®ned to be the sum of the

diagonal elements

tr�A� �
X
i

Aii
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Exercise 4.14: Normal distribution

Given a normal distribution with scalar parametersm and �

p��x� �
s

1

2��2
exp

"
�1
2

�
x �m
�

�2#
(4.81)

By direct calculation, show that

(a)

E��� �m
var��� � �2

(b) Show that the mean and the maximum likelihood are equal for the normal dis-

tribution. Draw a sketch of this result. The maximum-likelihood estimate, Ãx, is
de®ned as

Ãx � argmax
x
p��x�

in which arg returns the solution to the optimization problem.

Exercise 4.15: The size of an ellipse's bounding box

Here we derive the size of the bounding box depicted in Figure 4.3. Consider a real,

positive de®nite, symmetric matrix A 2 Rn�n and a real vector x 2 Rn. The set of x
for which the scalar xTAx is constant are n-dimensional ellipsoids. Find the length of

the sides of the smallest box that contains the ellipsoid de®ned by

xTAx � b
Hint: consider the equivalent optimization problem tominimize the value of xTAx

such that the ith component of x is given by xi � c. This problem de®nes the ellipsoid

that is tangent to the plane xi � c, and can be used to answer the original question.

Exercise 4.16: Conditional densities are positive de®nite

We showed in Example 4.19 that if � and � are jointly normally distributed as"
�
�

#
� N�m;P�

� N
 "
mx

my

#
;

"
Px Pxy
Pyx Py

#!
then the conditional density of � given � is also normal

��j�� � N�mxjy ; Pxjy�

in which the conditional mean is

mxjy �mx � PxyP�1y �y �my�

and the conditional covariance is

Pxjy � Px � PxyP�1y Pyx

Given the joint density is well de®ned, prove the marginal densities and the conditional

densities are also well de®ned, i.e., given P > 0, prove Px > 0, Py > 0, Pxjy > 0,

Pyjx > 0.
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Exercise 4.17: Transform of the multivariate normal density

Show the Fourier transform of the multivariate normal density given in (4.12) is

'�u� � exp

�
iuTm� 1

2
uTPu

�

Exercise 4.18: The difference of two exponentially distributed random vari-
ables

The randomvariables �1 and �2 are statistically independent and identically distributed
with the exponential density

p��t� � e�t t � 0

De®ne the new random variable y to be the difference

y � �1 � �2
We wish to calculate y 's probability density py .

(a) First introduce a new random variable z � �2 and de®ne the transformation

from ��1; �2� to �y; z�. Find the inverse transformation from �y; z� to ��1; �2�.
What is the determinant of the Jacobian of the inverse transformation?

(b) What is the joint density p�1;�2�t1; t2�? Sketch the region in �y; z� that corre-
sponds to the region of nonzero probability of the joint densityp�1;�2 in ��1; �2�.

(c) Apply the formula given in (4.23) to obtain the transformed joint density py;z .

(d) Integrate over z in this joint density to obtain py .

(e) Generate 1000 samples of �1 and �2, calculate y , and plot y 's histogram. Does

your histogram of the y samples agree with your result from (d)? Explain why

or why not.

Exercise 4.19: Surface area and volume of a sphere in n dimensions

In three-dimensional space, n � 3, the surface area and volume of the sphere are given

by

S3�r� � 4�r2 V3�r� � 4=3�r3

You are also familiar with the formulas for n � 2, in which case ªsurface areaº is the

circumference of the circle and ªvolumeº is the area of the circle

S2�r� � 2�r V2�r� � �r2
If we de®ne sn and vn as the constants such that

Sn�r� � snrn�1 Vn�r� � vnrn
we have

s2 � 2� v2 � �
s3 � 4� v3 � 4=3�

We seek the generalization of these results to the n-dimensional case. Compute the

formulas for sn and vn and show

sn � 2���n=2

��n=2�
vn � �n=2

��n=2� 1�
(4.82)



4.10 Exercises 445

Exercise 4.20: Surface area and volume of an ellipsoid in n dimensions

The results for surface area and volume of a sphere in n dimensions can be extended

to obtain the surface area and volume of an ellipse (ellipsoid, hyperellipsoid) in n
dimensions. Let x be an n-vector. The surface of an ellipse is de®ned by the equation

xTAx � R2
in which A 2 Rn�n is a symmetric, positive de®nite matrix and R2 is the square of the

ellipse ªradius.º Let the interior of the ellipse of size R be denoted by the set �R

�R � fx j xTAx � R2g
Wewish to compute the volume of the ellipse, which is de®ned by the following integral

V en�R� �
Z
�R
dx

The surface area, Sen�R�, is de®ned to have the following relationship with the volume

V en�R� �
Z R
0
Sen�r�dr

dV en�r�

dr
� Sen�r�

(a) Derive formulas for sen and ven such that

Sen�R� � senRn�1 V en�R� � venRn
for the ellipse.

(b) Show that your result subsumes the formula for the volume of the 3-dimensional

ellipse given by �
x

a

�2
�
�
y

b

�2
�
�
z

c

�2
� 1 V � 4

3
�abc

Exercise 4.21: De®nite integrals of the multivariate normal and �2

(a) Derive the following n-dimensional integral over an elliptical regionZ
�b
e�x

TAxdx � �n=2

�detA�1=2
�n=2; b�

��n=2�
�b � fx j xTAx � bg

(b) Let � be distributed as a multivariate normal with mean m and covariance P ,
� � N�m;P�, and let � denote the total probability that � 2 �b . Use the integral
in the previous part to show

Pr�� 2 �b� � � �
�n=2; b=2�

��n=2�
(4.83)

(c) De®ning the transformation � � xTAx, we have that � 2 �b is equivalent to

� 2 �0; b�, and since Pr�� 2 �0; b�� � F��b�

F��b� � � �
�n=2; b=2�

��n=2�

This distribution is known as the �2 distribution, also discussed in Exercise 4.33.

Therefore the function F�1
�2
��;n� inverts this relationship and gives the size of

the ellipse that contains total probability �

F�1
�2
��;n� � b (4.84)

Plot
�n=2;x=2�
��n=2� and F�1

�2
�x;n� versus x for various n (try n � 1;4), and display

the inverse relationship given by (4.83) and (4.84).
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Exercise 4.22: Normal distributions under linear transformations

Given the normally distributed random variable, � 2 Rn, consider the random variable,

� 2 Rn, obtained by the linear transformation

� � A�
in which A is a nonsingular matrix. Using the result on transforming probability den-

sities, show that if � � N�m;P�, then � � N�Am;APAT �. This result establishes

that (invertible) linear transformations of (nonsingular) normal random variables are

normal.

Exercise 4.23: Normal with singular covariance

Consider the random variable � 2 Rn and an arbitrary positive semide®nite covariance

matrix Px with rank r < n. Starting with the de®nition of a singular normal, De®nition

4.10, show that the density for � � N�mx ; Px� is given by

p��x� �
1

�2��r=2�det�1�1=2
exp

�� 1

2
�x�mx�

TQ1�
�1
1 Q

T
1 �x�mx�

�
��QT

2 �x�mx��

in which matrices � 2 Rr�r and orthonormal Q 2 Rn�n are obtained from the eigen-

value decomposition of Px

Px � Q�QT �
h
Q1 Q2

i"
�1 0

0 0

#"
QT

1

QT
2

#

and �1 > 0 2 Rr�r , Q1 2 Rn�r , Q2 2 Rn��n�r�. On what set of x is the density

nonzero?

Exercise 4.24: Linear transformation and singular normals

Prove Theorem 4.12, which generalizes the result of Exercise 4.22 to establish that any

linear transformation of a normal is normal. And for this statement to hold, we must

expand the meaning of normal to include the singular case.

Exercise 4.25: Useful identities in least-squares estimation

Establish the following two useful results using the matrix inversion formula�
A�1 � CTB�1C

��1 � A�ACT �B � CACT ��1 CA�
A�1 � CTB�1C

��1
CTB�1 � ACT

�
B � CACT

��1
(4.85)

Exercise 4.26: Least-squares parameter estimation and Bayesian estimation

Consider a model linear in the parameters

y � X� � e (4.86)

in which y 2 Rp is a vector of measurements, � 2 Rm is a vector of parameters,

X 2 Rp�m is a matrix of known constants, and e 2 Rp is a random variable modeling

the measurement error. The standard parameter estimation problem is to ®nd the best

estimate of � given the measurements y corrupted with measurement error e, which
we assume is distributed as

e � N�0; R�
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(a) Consider the case in which the measurement errors are independently and iden-

tically distributed with variance �2, R � �2I. For this case, the classic least-

squares problem and solution are

min
�

y �X�2 Ã� �
�
XTX

��1
XTy

Consider themeasurements to be sampled from (4.86) with true parameter value

�0. Show that using the least-squares formula, the parameter estimate is dis-

tributed as

Ã� � N��0; PÃ�� PÃ� � �2
�
XTX

��1
(b) Now consider again the model of (4.86) and a Bayesian estimation problem. As-

sume a prior distribution for the random variable �

� � N��; P�
Compute the conditional density of � given measurement y , show this density

is a normal, and ®nd its mean and covariance

��jy� � N�m;P�
Show that Bayesian estimation and least-squares estimation give the same result

in the limit of a uniform prior. In other words, if the covariance of the prior is

large compared to the covariance of the measurement error, show

m � �XTX��1XTy P � PÃ�
(c) What (weighted) least-squares minimization problem is solved for the general

measurement error covariance

e � N�0; R�
Derive the least-squares estimate formula for this case.

(d) Again consider the measurements to be sampled from (4.86) with true param-

eter value �0. Show that the weighted least-squares formula gives parameter

estimates that are distributed as

Ã� � N��0; PÃ��
and ®nd PÃ� for this case.

(e) Show again that Bayesian estimation and least-squares estimation give the same

result in the limit of a uniform prior.

Exercise 4.27: Least-squares and minimum-variance estimation

Consider again themodel linear in the parameters and the least-squares estimator from

Exercise 4.26

y � X� � e e � N�0; R�
Ã� �

�
XTR�1X

��1
XTR�1y

Show that the covariance of the least-squares estimator is the smallest covariance of

all linear, unbiased estimators.
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Exercise 4.28: Two stages are not better than one

We can often decompose an estimation problem into stages. Consider the following

case in which we wish to estimate x from measurements of z, but we have the model

between x and an intermediate variable, y , and the model between y and z

y � Ax � e1 cov�e1� � Q1

z � By � e2 cov�e2� � Q2

(a) Write down the optimal least-squares problem to solve for Ãy given the z mea-

surements and the secondmodel. Given Ãy , write down the optimal least-squares

problem for Ãx in terms of Ãy . Combine these two results together and write the

resulting estimate of Ãx givenmeasurements of z. Call this the two-stage estimate

of x.

(b) Combine the two models together into a single model and show the relationship

between z and x is

z � BAx � e3 cov�e3� � Q3

Express Q3 in terms of Q1;Q2 and the models A;B. What is the optimal least-

squares estimate of Ãx given measurements of z and the one-stage model? Call

this the one-stage estimate of x.

(c) Are the one-stage and two-stage estimates of x the same? If yes, prove it. If

no, provide a counterexample. Do you have to make any assumptions about the

models A;B?

Exercise 4.29: Let's make a deal!

Consider the following contest of the American television game show of the 1960s, Let's

Make a Deal. In the show's grand ®nale, a contestant is presented with three doors.

Behind one of the doors is a valuable prize such as an all-expenses-paid vacation to

Hawaii or a new car. Behind the other two doors are goats and donkeys. The contestant

selects a door, say door number one. The game show host, Monty Hall, then says,

ªBefore I show you what is behind your door, let's reveal what is behind door num-

ber three!º Monty always chooses a door that has one of the booby prizes behind it.

As the goat or donkey is revealed, the audience howls with laughter. Then Monty asks

innocently,

ªBefore I show you what is behind your door, I will allow you one chance to change

your mind. Do you want to change doors?º While the contestant considers this option,

the audience starts screaming out things like,

ªStay with your door! No, switch, switch!º Finally the contestant chooses again,

and then Monty shows them what is behind their chosen door.

Let's analyze this contest to see how to maximize the chance of winning. De®ne

p�i; j;y�; i; j;y � 1;2;3

to be the probability that you chose door i, the prize is behind door j andMonty showed
you door y (named after the data!) after your initial guess. Then you would want to

max
j
p�jji;y� (4.87)

for your optimal choice after Monty shows you a door.

(a) Calculate this conditional density and give the probability that the prize is behind

door i, your original choice, and door j � i.
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(b) You need to specify a model of Monty's behavior. Please state the one that is

appropriate to Let's Make a Deal.

(c) For what other model of Monty's behavior is the answer that it does not matter

if you switch doors. Why is this a poor model for the game show?

Exercise 4.30: A nonlinear transformation and conditional density

Consider the following relationship between the random variable y , and x and w

y � f�x��w
The author of a famous textbook wants us to believe that

pyjx�Y jX� � pw�Y � f�X��
Derive this result and state what additional assumptions on the random variables x
and w are required for this result to be correct.

Exercise 4.31: Least squares and con®dence intervals

A common model for the temperature dependence of the reaction rate is the Arrhenius

model. In this model the reaction rate (rate constant, k) is given by

k � k0 exp��E=T� (4.88)

in which the parameters k0 is the preexponential factor and E is the activation energy,

scaled by the gas constant, and T is the temperature in Kelvin. We wish to estimate k0
and E from measurements of the reaction rate (rate constant), k, at different temper-

atures, T . In order to use linear least squares we ®rst take the logarithm of (4.88) to

obtain

ln�k� � ln�k0�� E=T
Assume you have made measurements of the rate constant at 10 temperatures evenly

distributed between 300 and 500 K. Model the measurement process as the true value

plus measurement error e, which is distributed normally with zero mean and 0.001

variance

ln�k� � ln�k0�� E=T � e e � N�0;0:001�
Choose true values of the parameters to be

ln�k0� � 1 E � 100

(a) Generate a set of experimental data for this problem. Estimate the parameters

from these data using least squares. Plot the data and the model ®t using both

(T , k) and (1=T , lnk) as the (x;y) axes.

(b) Calculate the 95% con®dence intervals for your parameter estimates. What are

the coordinates of the semimajor axes of the ellipse corresponding to the 95%

con®dence interval?

(c) What are the coordinates of the corners of the box corresponding to the 95%

con®dence interval?

(d) Plot your result by showing the parameter estimate, ellipse, and box. Are the

parameter estimates highly correlated? Why or why not?
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Exercise 4.32: A fourth moment of the normal distribution

You have established the following matrix integral result involving the second moment

of the normal distributionZ1
�1
xxT exp

�
�1
2
xTP�1x

�
dx � �2��n=2�detP�1=2P

Establish the following matrix result involving a fourth momentZ1
�1
xxTxxT exp

�
�1
2
xTP�1x

�
dx � �2��n=2�detP�1=2 �2PP � tr�P�P�

First you may want to establish the following result for scalar x

ip �
Z1
�1
xp exp

 
�1
2

x2

�2

!
dx

�
8<:0 p odd

2
p�1
2 �p�1��p�12 � p even

Exercise 4.33: The �2 and � densities

Let Xi; i � 1;2; : : : ; n; be statistically independent, normally distributed random vari-

ables with zero mean and unit variance. Consider the random variable Y to be the sum

of squares

Y � X2
1 �X2

2 � � � � �X2
n

(a) Find Y 's probability density. This density is known as the �2 density with n
degrees of freedom, and we say Y � �2n. Show that the mean of this density is

n.

(b) Repeat for the random variable

Z �
q
X2
1 �X2

2 � � � �X2
n

This density is known as the � density with n degrees of freedom, and we say

Z � �n.

Exercise 4.34: The t-distribution

Assume that the random variables X and Y are statistically independent, and X is

distributed as a normal with zero mean and unit variance and Y is distributed as �2

with n degrees of freedom. Show that the density of random variable t de®ned as

t � Xp
Y=n

is given by

pt�z;n� � 1p
n�

�
�n�1

2

�
�
�n
2

� �
z2

n
� 1

��n�1
2

t-distribution (density) (4.89)

This distribution is known as Student's t-distribution after its discoverer, the chemist

W. S. Gosset (Gosset, 1908), writing under the name Student.
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Exercise 4.35: The F-distribution

Given random variables X and Y are independently distributed as �2 with n and m
degrees of freedom, respectively. De®ne the random variable F as the ratio,

F � X=n

Y=m

Show that F 's probability density is

pF �z;n;m� �

s
�zn�nmm

�zn�m�n�m
zB�n2 ;

m
2 �

z � 0 n;m � 1

in which B is the complete Beta function (Abramowitz and Stegun, 1970, p. 258) de®ned

by

B�n;m� � ��n���m�

��n�m�
This density is known as the F -distribution (density).

Exercise 4.36: Relation between t- and F-distributions

Given the random variable F is distributed as pF �z; 1;m� distribution with parameters

n � 1 andm, consider the transformation

� � �
p
F

Show that the random variable � is distributed as a t-distribution with parameterm

p��z;m� � pt�z;m�

Exercise 4.37: Independence and conditional density

Consider two random variables A, B with joint density pAB�a; b�, and well-de®ned

marginals pA�a� and pB�b� and conditional pAjB�ajb�. Show that A and B are statis-

tically independent if and only if the conditional of A given B is independent of b

pAjB�ajb� � f�b�

Exercise 4.38: Independent estimates of parameter and variance

(a) Show that b� andd�2 given in (4.48) and (4.49) are statistically independent.

(b) Are the random variables b� andy�X b� statistically independent as well? Explain

why or why not.

Exercise 4.39: Many samples of the vector least-squares problem

We showed for the model

y � X� � e e � N�0; R�
that the maximum-likelihood estimate is given by (4.63)

b� � �XTR�1X��1 XTR�1y
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Use this result to solve the n-sample problem given by the following model2666664
y1
y2
.
.
.

yp

3777775
i

�

2666664
xT1
xT2
.
.
.

xTp

3777775
264�
375 �

2666664
e1
e2
.
.
.

ep

3777775
i

yi � Xi � � ei ei � N�0; R�
First stack the yi samples in an enlarged vector ey , and de®ne the corresponding

stacked eX matrix and ee measurement error2666664
y1
y2
.
.
.

yn

3777775 �
2666664

X1
X2
.
.
.

Xn

3777775
264�
375 �

2666664
e1
e2
.
.
.

en

3777775 ei � N�0; R�

ey � eX � � ee ee � N�0; eR�
(a) What is the covariance matrix eR for the new ee measurement error vector?

(b) What is the corresponding formula for b� in terms of ey for this problem?

(c) What is the probability density for this b�?
(d) Does this result agree with (4.64)? Discuss why or why not.

Exercise 4.40: Vector and matrix least-squares problems

A colleague has an old but good piece of software that solves the traditional vector

least-squares problem with constraints on the parameters

y � A� � e e � N�0; R�
in which y;�; e are vectors and A;R are matrices. If the constraints are not active, the

code produces the well-known solution

b� � �ATR�1A��1ATR�1y (4.90)

You would like to use this code to solve your matrix model problem

yi � �xi � ei ei � N�0; R�
in which yi; xi; ei are vectors, � is a matrix, i is the sample number, i � 1; : : : ; n, and
you have n statistically independent samples. Your colleague suggests you stack your

problem into a vector and ®nd the solution with the existing code. So you arrange your

measurements as

Y �
h
y1 � � � yn

i
X �

h
x1 � � � xn

i
E �

h
e1 � � � en

i
and your model becomes the matrix equation

Y � �X � E (4.91)

You looked up the answer to your estimation problem when the constraints are not

active and ®nd the formula b� � YXT �XXT ��1 (4.92)
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Figure 4.16: Typical strain versus time data from amolecular dynam-

ics simulation. The data are available on the website

www.chemengr.ucsb.edu/~jbraw/principles.

You do not see how this answer can come from your colleague's code because the

answer in (4.90) obviously depends onR but your answer above clearly does not depend

on R. Let's get to the bottom of this apparent contradiction, and see if we can use vector

least-squares codes to solve matrix least-squares problems.

(a) What vector equation do you obtain if you apply the vec operator to both sides

of the matrix model equation, (4.91)?

(b) What is the covariance of the vector vecE appearing in your answer above?

(c) Apply (4.90) to your result in (a) and obtain the estimate vecb�.
(d) Undo the vec operation to obtain an expression for b�, and compare to (4.92).

Are they identical or different? Explain any differences. Does the parameter

estimate depend on R? Explain why or why not.

Exercise 4.41: Estimating a material's storage and loss moduli from molec-
ular simulation

Consider the following strain response model7

�xy�!t� � G1 sin!t �G2 cos!t

in which �xy is the strain, G1 is the storage modulus, and G2 is the loss modulus (G1

and G2 are positive scalars). We wish to estimate G1 and G2 from measurements of

�xy at different times t for a given forcing frequency !.

The strain ªmeasurementº in this case actually comes from a molecular dynamics

simulation. The simulation computes a noisy realization of �xy�!t� for the given ma-

terial of interest. A representative simulation data set is provided in Figure 4.16. These

data are available on the website www.chemengr.ucsb.edu/~jbraw/principles so

you can download them.

7This problem was motivated by Rohit Malshe's preliminary exam on May 7, 2007.
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Figure 4.17: Plot of y versus x available on the website www.

chemengr.ucsb.edu/~jbraw/principles.

(a) Without knowing any details of the molecular dynamics simulation, suggest a

reasonable least-squares estimation procedure for G1 and G2.

Find the optimal estimates and 95% con®dence intervals for your recommended

estimation procedure.

Plot your best-®t model as a smooth time function along with the data.

Are the con®dence intervals approximate or exact in this case? Why?

(b) Examining the data shown in Figure 4.16, suggest an improved estimation pro-

cedure. What traditional least-squares assumption is violated by these data?

How would you implement your improved procedure if you had access to the

molecular dynamics simulation so you could generate as many replicate ªmea-

surementsº as you would like at almost no cost.

Exercise 4.42: Who has the error?

You are ®tting some n laboratory measurements to a linear model

yi �mxi � b � eyi i � 1;2; : : : ; n

in which you have been told that the x variable is known with high accuracy and the y
variable has measurement error ey distributed as

ey � N�0;0:03�
The data are shown in Figure 4.17 and are available on the website www.chemengr.

ucsb.edu/~jbraw/principles.

(a) Given these assumptions, write the model as

y � X� � ey
®nd the best estimate of the slope and intercept

b� � " Ãm
Ãb

#
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and the 95% probability con®dence ellipse, and also the plus/minus bounds on

the parameter estimates.

(b) Plot the data, and the line of best ®t to these data.

(c) Due to some confusion in the lab, you are told later that actually y is known

with high accuracy and the x variable has measurement error ex distributed as

ex � N�0;0:01�

Transform the model so that it is linear in a transformed parameter vector �

xi � f�yi;�1;�2�� exi i � 1;2; : : : ; n

What are f and � for the transformed model?

(d) Given these assumptions, write the model as

x � Y�� ex
®nd the best estimate Ã� for this model. Add this line of best ®t to the plot of

the data and the line of best ®t from the previous model. Clearly label which

line corresponds to which model.

(e) Compute the 95% con®dence ellipse and plus/minus bounds for b�.
(f) Can you tell from the estimates and the ®tted lines which of these two proposed

models is more appropriate for these data? Discuss why or why not.

Exercise 4.43: Independence of transformed normals

Consider n independent samples of a scalar, zero-mean normal random variable with

variance �2 arranged in a vector e �
h
e1 e2 � � � en

iT
so that

e � N�0; �2In�

Consider random variables x and y to be linear transformations of e, x � Ae and

y � Be.
(a) Provide necessary and suf®cient conditions for matrices A and B so that x and

y are independent.

(b) Given that the conditions on A and B are satis®ed, what can you conclude about

x and y if e has variance �2In but is not necessarily normally distributed.

Exercise 4.44: The multivariate t-distribution

Assume that the random variables X 2 Rp and Y 2 R�0 are statistically independent,

X � N�0;�� and Y � �2n.
(a) Show that the density of random variable t de®ned as

t � Xp
Y=n

�m
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withm 2 Rp a constant is given by

pt�z;p;n;m;�� �
�
�n�p

2

�
�
�n
2

�
�n��p=2�det��1=2

�
1� 1

n
�z �m�T��1�z �m�

���n�p�=2
(4.93)

This distribution is known as the multivariate t-distribution, and was discov-

ered by Cornish (1954), and Dunnett and Sobel (1954).

(b) Show that the ratio of the least-squares estimates of the parameters and vari-

ance for the case of the linear model with unknown measurement variance are

distributed as

b� � �0r
n

n�np
d�2

� �0 � t�np ; n�np ; �0; �XTX��1�

Exercise 4.45: Integrals of the multivariate t-distribution and the F-statistic

Given the random variable t is distributed as a multivariate t de®ned in Exercise 4.44,

consider the p-dimensional hyperellipse �b , of size b 2 R�0, centered atm 2 Rp

�b � fz j �z �m�T��1�z �m� � bg
Show that the value of b that gives probability Pr�t 2 �b� � � for the multivariate

t-distribution is given by the following F -statistic

b � pF�1F ��;p;n�

in which F�1F ��;p;n� is the inverse of the cumulative F -distribution.

Exercise 4.46: Con®dence interval for unknown variance

Consider again b� andd�2 from (4.48) and (4.49) and de®ne the new random variable Z
as the ratio

Z �
b� � �0r
n

n�np
d�2

� �0

in which b� andd�2 are statistically independent as shown in Exercise 4.38.

(a) Show Z is distributed as a multivariate t-distribution as de®ned in Exercise 4.44.

(b) Show that lines of constant probability of the multivariate t-distribution are

ellipses in b� as in the normal distribution.

(c) De®ne an �-level con®dence interval using the multivariate t-distribution in

place of the normal distribution and show that

� b� � �0�T
 
XTXd�2

!
� b� � �0� � npn

n�np
F�1F ��;np ; n�np�

in agreement with (4.54).
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Exercise 4.47: Adding two uniformly distributed random variables

Given two independent, uniformly distributed random variables, X � U�0;1� and Y �
U�4;5�, ®nd the density for Z � X � Y . Note that the transformation from �X; Y� to Z
is not an invertible transformation.

Exercise 4.48: Product of two unit variance normals

Let X and Y be independent scalar random variables distributed identically as N�0;1�.
Find and plot the density for Z � XY . Is pZ�z� well de®ned for all z? If not, explain

why not.

Exercise 4.49: A useful integral in Fourier transforms of normals

Derive the de®nite integral used in taking the Fourier transform of the normal densityZ1
0
e�a

2x2
cosbxdx �

p
�

2a
e�b

2=�4a2� a � 0

Hint: consider ®rst the exponential version of the integral on ��1;1�. We wish to

show that Z1
�1
e�a

2x2
eibxdx �

p
�

a
e�b

2=�4a2� a � 0 (4.94)

which gives the integral of interest as well as a second resultZ1
0
e�a

2x2
sinbxdx � 0 a � 0

To proceed, complete the square on the argument of the exponential and show that

�a2x2 � ibx � �a2
��
x � ib

2a2
�2 � b2

4a4

�
Then perform the integral by noticing that integrating the normal distribution givesZ1

�1
e��1=2��x�m

0�2=�2
dx �

p
2��

even whenm0 � im is complex valued instead of real valued. This last statement can

be established by a simple contour integration in the complex plane and noting that

the exponential function is an entire function, i.e., has no singularities in the complex

plane.

Exercise 4.50: Orthogonal transformation of normal samples

Let vectors x1; x2; : : : ; xn 2 Rp be n independent samples of a normally distributed

random variable with possibly different means but identical variance, xi � N�mi; R�.
Consider the transformation

yi �
nX
j�1
Cijxj i � 1;2; : : : ; n

in which matrix C is orthogonal.

Show that the yi are independently distributed as yi � N��i; R� in which �i �Pn
j�1 Cijmj for i � 1;2; : : : ; n.
Hint: to reduce the algebra, you may wish to start off by arranging the xi and yi

samples in the following matrices

X �
h
x1 x2 � � � xn

i
Y �

h
y1 y2 � � � yn

i
and deduce the relationship between X, Y , and C given in the problem statement.
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Exercise 4.51: Estimated variance and the Wishart distribution

Let vectors e1; e2; : : : ; en 2 Rp be n independent samples of a normally distributed

random variable with zero mean and identical variance, ei � N�0; R�. De®ne the matrix

S �
nX
i�1
eie

T
i

The distribution for random matrix S is known as the Wishart distribution, written

S � Wp�R;n�

and integer n is known as the number of degrees of freedom.

Consider the estimation problem of Section 4.7.4 written in the form

Y � �0X � E E �
h
e1 � � � en

i
�0 2 R

p�q

(a) Show that the EET � Wp�R;n�.

(b) De®ne bE � Y � b�X and show that n bR � bE bET .
(c) Show that bE bET � Wp�R;n� q�, and therefore that n bR � Wp�R;n� q�.

Hint: take the SVD of the q �n matrix X for q < n

X � U
h
� 0

i"VT1
VT2

#

De®ne Z � EV , which can be partitioned as
h
Z1 Z2

i
� E

h
V1 V2

i
, and show

that bE bET � Z2ZT2 . Work out the distribution of Z2Z
T
2 from the de®nition of the

Wishart distribution and the result of Exercise 4.50.

(d) Show that the variance estimate R de®ned as

R � 1

n� q
bE bET

is an unbiased estimate of the variance R.

Exercise 4.52: Singular normal distribution as a delta sequence

Two generalized functions f��� and g��� are de®ned to be equal (in the sense of distri-

butions) if they produce the same integral for all test functions ���� 2 �
hf ;�i � hg;�iZ1

�1
f�x���x�dx �

Z1
�1
g�x���x�dx

The space of test functions � is de®ned to be the set of all smooth (nongeneralized)

functions that vanish outside of a compact set C � ��c; c� for some c > 0.

Show that the zero mean normal density n�x;��

n�x;�� � 1p
2��

e�
1
2 �x=��

2

is equal to the delta function ��x� in the limit � ! 0.
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Exercise 4.53: Error bound for the Taylor series of the exponential

Derive the bound (4.31) used in establishing the central limit theorem for sums of

identically distributed random variables������eix �
nX

m�0

�ix�m

m!

������ � jxjn�1
�n� 1�!

Hint: expand eix in a Taylor series with remainder term at x � 0 and take magnitudes.

Note that for this particular function, the inequality above turns out to be an equality.

Exercise 4.54: Error bound for the remainder term in Taylor series

Derive the bound (4.72) for a second-order Taylor series of a bounded function f having

three continuous, bounded derivatives

r�x;h� � f�x � h��
�
f�x�� f �1��x�h� f

�2��x�

2
h2
�

sup
x2R

jr�x;h�j � Kf min�h2; jhj3�

Show that the following Kf is valid for any b > 0

Kf �max

�
��2=b2�M

�0�
f � �1=b�M�1�

f � �1=2�M�2�
f �; �b=6�M

�3�
f ; �1=6�M

�3�
f

�
(4.95)

with M
�i�
f � supx2R f �i��x�.

Hints: ®rst expand f�x�h� about f�x� to second order using the standard Taylor

theorem with remainder. This gives the jhj3 bound. For the second-order bound, ®rst

take absolute values of the de®nition of r�x;h� and use the triangle inequality. Choose

a constant b > 0 and consider two cases: jhj � b and jhj > b. Develop second-order

bounds for both cases and then combine them to obtain a second-order bound for all

h. Finally, combine the second-order and third-order bounds by taking the smaller.

Exercise 4.55: Lindeberg conditions

Show that the following are special cases of the Lindeberg conditions given in Assump-

tion 4.15.

(a) The de Moivre-Laplace central limit theorem assumption that the Xi are inde-

pendent and identically distributed with mean zero and variance �2.

(b) The Lyapunov central limit theorem assumption that there exists � > 0 such

that as n!1
1

s2��n

nX
k�1
E���Xk��2���! 0

Note that the Lyapunov assumption implies only part (b) of Assumption 4.15.

(c) The bounded random variable assumption, i.e., there exists B > 0 such that��Xi�� � B; i � 1;2; : : :.

Therefore, by proving Theorem 4.16, we have also proved the de Moivre-Laplace

and the Lyapunov versions of the central limit theorem. We have also shown that the

central limit theorem holds for bounded random variables, provided that sn !1.
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Figure 4.18: Smooth approximation to a unit step function,H�z�1�.

Exercise 4.56: Normal random variables satisfy Lindeberg conditions

Let Xi; i � 1;2; : : : ; n be independent with mean zero and variance �2
i . Let Yi; i �

1;2; : : : ; n be independent normals with mean zero and variance �2
i . Show that if the

Xi satisfy the Lindeberg conditions listed in Assumption 4.15, then so do the Yi.
Hint: using the Xi variables, show that for n suf®ciently large and any � > 0,

�i=sn �
p
2� for all i. This result shows that no single random variable can account for

a signi®cant fraction of the sum's variance as n becomes large. Next evaluate the Lin-

deberg condition for the Yi variables, and use the fact that
P
i �

3
i � �maxi �i�

P
i �

2
i �

�maxi �i�s
2
n.

Exercise 4.57: Smoothing a step (indicator) function

We construct a suitably smooth indicator function as shown in Figure 4.15. To simplify

the presentation, ®rst consider the set up in Figure 4.18. We seek a monotone function

f�z� with three continuous derivatives that increases from zero at z � 0 to one at

z � 2. We shall then rescale the z-axis to make this function as sharp as we please.

(a) Divide the interval in half and consider a ®fth-order polynomial on z 2 �0;1�.
p�z� � a0 � a1z � a2z2 � a3z3 � a4z4 � a5z5

To have p�z� and its ®rst three derivatives vanish at z � 0, we require a0 � a1 �
a2 � a3 � 0. We will re¯ect this function about the y � 1=2 and z � 1 lines

to provide the matching function q�z� on z 2 �1;2�, or, in equations, q�z� �
�p�2�z��1. Note that the symmetry implies p�i��1� � ��1�i�1q�1�, so that all
odd derivatives are automatically continuous at z � 1, and the even derivatives

are negatives of each other at z � 1. So we require that the even derivatives at

z � 1 are zero. We therefore have two conditions, p�1� � 1=2 and p00�1� � 0, to

®nd the remaining two coef®cients

p�1� � a4 � a4 � 1=2 p00�1� � 12a4 � 20a5 � 0

Solve these equations and show that a4 � 5=4 and a5 � �3=4.
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(b) The candidate function f�z� is therefore

f�z� �

8>>>>><>>>>>:
0; z � 0

�5=4�z4 � �3=4�z5; 0 < z � 1

1� �5=4��2� z�4 � �3=4��2� z�5; 1 � z < 2

1; 2 � z

Plot this function and its ®rst three derivatives, and check that they are contin-

uous at z � 0;1;2. Show that the maxima in magnitude of the derivatives are

given by

M
�0�
f � 1 M

�1�
f � 5=4 M

�2�
f � 20=9 M

�3�
f � 15

and check these values also on your plots.

(c) Next we rescale. Letw � �1�z=2�L�x and f�z� � f�2�1��w�x�=L�� � ef�w�.
The function ef�w� now has the required properties of Figure 4.15. Show that

the derivative bounds are scaled by

M
�i�
Äf
� �2=L�iM�i�

f

(d) Show ®nally that because of this scaling with L, there exists L0 > 0 such that the

bound in (4.95) is given by

K Äf � 20L�3 for every L satisfying 0 < L � L0 (4.96)

For an even smoother, seventh-order polynomial, with a smaller third derivative, see

Thomasian (1969, p.486).

Exercise 4.58: Properties of PLSR algorithm

Given the PLSR algorithm described in Section 4.8, establish the following properties.

(a) TTT � Iq

(b) Q minimizes
Y � TQT

2
F
for given Y and T .

(c) T � XR

Exercise 4.59: The marginal intervals for the unknown meaurement vari-
ance case and the t-statistic

Consider again the maximum-likelihood estimation problem presented in Section 4.7.2

for the linear model with scalar measurement y , and unknown measurement variance

�2.

(a) Show that the marginal box for this case is given by

b� � �0 �m
mi �

�
F�1F ��; 1; n�np� s2�XTX��1ii

�1=2
(b) Compare your formula formi above to ci given in the text for the bounding box

interval. Which one is larger and why?
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(c) Next use the approach in Exercise 4.34 to show that the marginal box can equiv-

alently be expressed with a t-statistic

mi � F�1t
�
1��
2

;n�np
��
s2�XTX��1ii

�1=2
in which F�1t is the inverse of the cumulative t-distribution, i.e.,Z F�1t ��;n�

�1
pt�z;n�dz � �

for all n � 1 and � 2 �0;1�. Therefore, comparing the two formulas formi, we

have also established the following relationship between the t-statistic and the

F -statistic

F�1t
�
1��
2

;n

�
�
q
F�1F ��; 1; n� n � 1; � 2 �0;1�
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5

Stochastic Models and Processes

5.1 Introduction

We are by now expert in using (deterministic) differential and partial

differential equations as models of chemical and biological systems.

These equations capture equations of motion, conservation of mass

and energy, and many of the fundamental principles useful in analy-

sis and design of chemically reacting systems. Chapters 2 and 3 were

mainly devoted to developing this program. Themotivation for stochas-

tic processes and differential equations is to incorporate into themodel

the random effects of the internal system (discrete molecules) and the

external environment on the system of interest. In some applications

at ®ne length scales, the random effects are mainly due to the internal

random behavior of the molecules. But even in applications at large

scales, the random effects of the external environment are often quite

important to understand and interpret the (noisy) measurements com-

ing from a system.

In this chapter, we illustrate the usefulness of random variables and

random processes in the modeling and analysis of systems of interest

to chemical and biological engineers. We ®nd the basic probability and

statistics that we covered in Chapter 4 indispensable tools in carrying

out this program. We study three main examples: (i) the Wiener pro-

cess as a model of diffusion in transport phenomena, (ii) the Poisson

process as amodel of chemical reactions and kinetics at the small scale,

and (iii) the Kalman ®lter for reducing the effects of noise in process

measurements, a fundamental task in systems engineering. By covering

representative examples from transport phenomena, chemical kinetics,

and systems engineering, we hope to both introduce random models

and processes, as well as demonstrate their wide range of applicability

in modern chemical and biological engineering.

465
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5.2 Stochastic Processes for Continuous Random Vari-

ables

5.2.1 Discrete Time Stochastic Processes

Our target in this part of the chapter is an understanding of the struc-

ture and dynamics of continuous time stochastic processes: the stochas-

tic analogs of deterministic differential equations. In building up to

these, it is instructive to start with the conceptually simpler stochastic

difference equation. Consider the following example

x�k� 1� � Ax�k��G��k� (5.1)

in which k 2 I�0 is the sample number in discrete time, � is a random

variable, assumed to have some ®xed and known probability density,

and ��k�; k � 0;1;2; : : : are independent, identically distributed sam-

ples of �. If we de®ne a sampling interval �t, then t � k�t. Because of
the in¯uence of the random variable �, the variable x is also a random

variable. In general it can take any value, so we call it a continuous

random variable in contrast to the integer-valued or discrete random

variables we encounter in Section 5.3.

We wish to study the statistical properties of the process x�k� due

to the random disturbance �. Because the process is linear, an explicit

solution is simply calculated

x�k� � Akx�0��
k�1X
j�0
Ak�j�1G��j� k � 0 (5.2)

There is no dif®culty expressing the solution to the stochastic differ-

ence equation; in fact we cannot determine by looking at the form of

the solution if ��k� is a random variable or simply a deterministic func-

tion of time. This is the perfect place to start because everything is

well de®ned regardless of whether or not � is a random variable. We

build some simple intuition with stochastic difference equations and

then proceed to continuous time systems. We shall also see that dif-

ference equations arise whenever we wish to numerically approximate

the solution to stochastic differential equations, so some facility with

the difference equations is highly useful.

The integrated white-noise process provides a starting point for

understanding many important aspects of stochastic processes. Con-

sider a system with scalar x, A � 1, zero initial condition and ��k� �
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w�k�, where the w�k� are independent and unit normals w � N�0;1�

x�k� 1� � x�k��Gw�k� x�0� � 0 (5.3)

We wish to ®nd the probability density of x�k� versus time for this

process.

We have x�1� � x�0��Gw�0� � Gw�0�, so x�1� � N�0; G2�. Since

the w�k� sequence is independent of x, we have for k � 2

x�2� � x�1��Gw�1�
"
x�1�

w�1�

#
� N

�"
0

0

#
;

"
G2 0

0 1

#�
Noting that

x�2� �
h
1 G

i"x�1�
w�1�

#
and using Theorem 4.12 on the linear transformation of a normal we

have that

x�2� � N�0;2G2�

Continuing this process gives

x�k� � N�0; kG2� k � 0

and we have that the variance of x�k� increases linearly with time and

the mean remains zero for the integrated white-noise process. If we

choose G � p�t, then x�k� � N�0; k�t� and the system satis®es

x�t� � N�0; t� t � 0 G �
p
�t

or equivalently its probability density p�x� satis®es

p�x; t� � 1p
2�t

exp

 
�1
2

x2

t

!

Similarly, if we let G � p2D�t where D is a constant, then

x�t� � N�0;2Dt� t � 0

or

p�x; t� � 1

2
p
�Dt

exp

 
�1
4

x2

Dt

!
This is precisely (3.68) from Chapter 3, which describes the transient

spread by diffusion of a delta-function initial condition. Thus we see
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already the ®rst sign of what turns out to be a deep and important con-

nection between diffusion and stochastic processes: (5.3) is a model

for a particle undergoing Brownian motion in one dimension. Contin-

uing with the diffusion analogy, if we consider x�k�t� � x�t� to be a

position variable, then the mean square displacement is given by

E
�
x2�t�

�
� var�x�t�� � kG2 � 2Dt

For diffusion processes, the mean square displacement increases lin-

early in time.

The analysis above can be extended to the case where the random

term has nonzero mean: � � N�m;1�, which we can write � �m �w
with w de®ned as above. Now

x�k� 1� � x�k��Gm�Gw�k�

De®ning v � Gm=�t this becomes

x�k� 1� � x�k�� v�t �Gw�k�

Again, if we interpretx as a particle position, then the particle travels or

ªdriftsº a distance v�t in one time interval as well as diffusing. Letting

G � p2D�t
x�t� � N�vt;2Dt�

The particle drifts with a velocity v so its mean position changes lin-

early with time, while also diffusing.

Finally, we return to the case where � is drawn from an arbitrary

distribution rather than a normal. With A � 1 and x�0� � 0, (5.2)

becomes

x�k� � G
k�1X
j�0
��j�

That is, the solution becomes a sum of independent identically dis-

tributed (IID) random variables. In Section 4.5 we learned the remark-

able fact that sums of IID random variables converge to a normal distri-

bution. Thus as k!1, x�k� becomes normally distributed even if the

noise that drives it is not. So, for example, if we can only observe the

process x�t� at time intervals that are infrequent compared to �t, it

will be virtually impossible to know whether the underlying noise was

Gaussian or notÐthe resulting process x�k� will be. This result is one

reason why, in the absence of further information, taking the noise in

a system to be normally distributed is often a good approximation.
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5.2.2 Wiener Process and Brownian Motion

We now wish to de®ne the continuous time version of the discrete time

integrated white noise or Brownian motion just presented. This pro-

cess, denotedW�t�, is known as a Wiener process in honor of the math-

ematician Norbert Wiener. The property that we retain in taking the

limit as �t ! 0 is that W�t� is normally distributed with zero mean

and linearly increasing variance or

W�t� � N�0; t� t � 0

By analogy with the results above, a diffusion process x�t� with diffu-

sivity D and x�0� � 0 would simply be

x�t� �
p
2DW�t� (5.4)

Note that the linear increase in variance with time should hold for any

starting time s, giving

W�t��W�s� � N�0; t � s� s � 0; t � s (5.5)

The increment of the Wiener process is denoted

�W�t � s� � W�t��W�s�

Considering distinct time instants ti, with ti > ti�1, we de®ne �ti �
ti � ti�1 and �W�ti� � W�ti� � W�ti�1�. Increments involving non-

overlapping time intervals are independent. The Wiener increments

have a number of important properties that follow from their de®ni-

tions

E��W�ti�� � 0 (5.6)

E��B�W�ti���B�W�tj��� � B2�ti�ij (5.7)

E ��W�ti�n� � 0 for n odd (5.8)

E
�
�W�ti�

2m
�
/ �tmi for integerm (5.9)

In Theorem 4.12 we saw that the distribution of a sum of normally

distributed random variables is also normally distributed. A number of

important results for Wiener processes follow from this fact. A Wiener

process can be written as a sum of N Wiener increments for any N

W�t � t0� �
NX
i�1

�W�ti� (5.10)



470 Stochastic Models and Processes

where tN � t and the only restriction on ti is that ti > ti�1. Accordingly,
a diffusion (Brownianmotion) process can bewritten as a sumofWiener

increments multiplied by
p
2D

x�t � t0� �
NX
i�1

p
2D�W�ti� (5.11)

Furthermore, for separate Wiener processes W1;W2;W3

q
2D1�W1�ti��

q
2D2�W2�ti� �

q
2�D1 �D2��W3�ti� (5.12)

In other words, the sum of two diffusion processes is equivalent to a

different diffusion process whose diffusivity is the sum of the ®rst two.

To visualize a trajectory of a Brownian motion process x�t�, we

can use (5.11), generating points x�t� at constant time intervals �t.

Observing that now �W � N�0;�t�, this is equivalent to evaluating the

discrete time process

x��k� 1��t� � x�k�t��
p
2D�t w�k� x�0� � 0

with w�k� � N�0;1� de®ned as above. Figure 5.1 shows a trajectory of

this process for sample time �t � 10�6 and diffusivity D � 5 � 105.

Notice that the roughness is quite apparent in the top row of Figure

5.1. But by looking at ®ner time scales, we can see the effect of the

®nite step size in the discrete time approximation. The continuous

time Wiener process de®ned in (5.5) maintains its roughness at all time

scales; Figure 5.2 shows how the path should appear between the sam-

ples if we chose the step size properly for this magni®cation. Unlike

more familiar functions, the Wiener process is very irregular. Thus it

is important to address its continuity and smoothness properties.

The Wiener process is continuous. A crude argument for this state-

ment is that j�W j / p�t, which approaches zero as �t ! 0. A more

re®ned one is presented in Exercise 5.4. On the other hand, because of

the �t1=2 behavior of �W , we arrive at the perhaps surprising fact that
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Figure 5.1: A simulation of the Wiener process with ®xed sample

time �t � 10�6 and D � 5 � 105. The boxed region

in each ®gure is expanded in the next plot to display a

decreasing time scale of interest. The true Wiener pro-

cess is rough at all time scales and therefore dW�t�=dt

does not exist. The top row shows an adequate sampling

rate to display the roughness of the Wiener process. The

middle row shows the time scale of interest starting to

become too small for the given sample time. The bot-

tom row shows a time scale of interest much too small

for the given sample time; one can see the samples and

the straight lines drawn between them.
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�236

�232

�228

0.499995 0.5 0.500005

W�t�

t

Figure 5.2: Sampling faster on the last plot in Figure 5.1; the sam-

ple time is decreased to �t � 10�9 and the roughness is

restored on this time scale. Thought question: how did

we generate a random walk that passes exactly through

the solid sample points taken from Figure 5.1? Hint: cer-

tainly not by trial and error! Such a process is called a

Brownian bridge (Bhattacharya and Waymire, 2009).

the Wiener process is not differentiable1

E
������W

�t

����� � 1

�t
E �j�wj�

� 1

�t

1p
2��t

Z1
�1
jxj exp

 
�x2

2�t

!
dx

�
p
2�t=�

�t

�
s

2

�

1p
�t

This diverges as �t�1=2 as �t ! 0.

1The results of Exercise 5.8 were applied in this derivation.
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Now let us return for the moment to the discrete time integrated

white-noise process, (5.3). Considering a sampling interval �t and let-

ting x�k � 1� � x�k� � �x and Gw�k� � B�W , we can rewrite this

as

�x � B�W (5.13)

Under other circumstances we could divide by �t and let it shrink to

zero, yielding
dx

dt
�
p
2D
dW

dt

We have just found, however, that dW=dt does not exist. Neverthe-

less, we can de®ne a differential of the Wiener process as the Wiener

increment W�t ��ts��W�t� when �t becomes the in®nitesimal dt

dW�t� � W�t � dt��W�t� � N�0; dt�
This is also known as the white-noise process. It is not continuous.

Now we can write (5.13) in differential form

dx � B dW (5.14)

This is the most elementary stochastic differential equation.

With initial condition x�0� � 0, its solution is (5.4).

5.2.3 Stochastic Differential Equations

Basic ideas

To motivate and introduce stochastic differential equations, consider

®rst the deterministic differential equation

dx

dt
� f�x; t� (5.15)

When we wish to augment this model to include some random effects,

one might try
dx

dt
� f�x; t�� g�x; t���t�

in which ��t� is a random variable, often a normally distributed, zero

mean random variable, as discussed in Chapter 4.

We have already run into problems with this formulation. Even to

model a ªwell-behavedº (e.g., continuous) stochastic process like dif-

fusion, we have seen that the random term would have to take on the

form

g�x; t���t� � BdW
dt
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But we also saw that dWdt does not exist. Extending what we did above for

Brownian motion, we thus consider differentials instead of derivatives

and write a general stochastic differential equation (SDE) in the form

dx �A�x; t� dt �B�x; t� dW (5.16)

Formally, we can integrate this to yield

x�t� � x�0��
Z t
0
A�x�t0�; t0� dt0 �

Z t
0
B�x�t0�; t0� dW�t0� (5.17)

The ®rst integral is classical. The second would be as well if dW
dt existed,

in which case would just write thatZ t
0
B�x�t0�; t0� dW�t0� �

Z t
0
B�x�t0�; t0�dW

dt
dt0

This integral is nontrivial and to understand it we need to understand

a little bit about the calculus of stochastic processes.

Elementary Stochastic Calculus

Stochastic integrals of the form

S �
Z t
t0
G�t0�dW�t0�

are more complex than conventional integrals because both G and dW

can vary stochastically (think of the case G�t� � W�t�). Nevertheless,
as with conventional integrals, we can divide the interval �t0; t� into n

subintervals t0 � t1 � t2::: � tn�1 � t, and choose intermediate time

points �i such that ti�1 � �i � ti. Now the integral S is approximated

by the sum

Sn �
nX
i�1
G��i��W�ti��W�ti�1��

In normal calculus this sum converges to the same value independent

of the choice of the �i; in stochastic calculus this is not the case. We

will choose �i � ti�1, yielding the ItÃo stochastic integral2. Thus

(5.16) is an ItÃo stochastic differential equation.

2Other choices are used in various situationsÐfor example the Stratonovich

stochastic integral takes �i � �ti�1 � ti�=2. Stochastic calculus is complex and techni-

cal; Gardiner (1990) and Schuss (2010) provide detailed discussions that are accessible

to the non-mathematician.
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The ItÃo stochastic integral corresponds to a stochastic ªrectangle

rule,º with the function value chosen at the left side of the subinter-

val. One practical reason for this choice is that it is the one most

straightforwardly applied in numerical solutions of stochastic differen-

tial equations. The Euler-Maruyama scheme generalizes the explicit

Euler method to the stochastic case, using this rectangle rule approxi-

mation

x�t ��t� � x�t��A�x�t�; t��t �B�x�t�; t��W��t� (5.18)

where �W��t� � N�0;�t�. This is the standard method for ®nding

trajectories of SDEs and is often referred to as Brownian dynamics

simulation; it is not highly accurate, but higher-order schemes for

SDEs are very complex to implement (Kloeden and Platen, 1992).

A more fundamental reason for working with the ItÃo integral is that,

when applied to (5.17), it corresponds to a noise term that does not

change the mean of x�t�, because its expected value is zero

E
 Z t

t0
G�t0� dW�t0�

!
� 0 (5.19)

This is easily seen by taking the expected value of the discrete sum and

using the fact that for the ItÃo integral, G��i� and �W�ti��W�ti�1�� are
independent

E �Sn� �
nX
i�1
E �G�ti�1��W�ti��W�ti�1���

�
nX
i�1
E�G�ti�1��E �W�ti��W�ti�1��

� 0

because E �W�ti��W�ti�1�� � 0. This calculation makes clear that

the choice of �i matters: if �i were not taken to be ti�1, then G��i�
and �W�ti��W�ti�1�� would not be independent and E�Sn� would not

necessarily be zero.

By considering integrals of the formZ
G�t0��dW�t0��2�N

and using the ItÃo expression for Sn one can show thatZ t
t0
G�t0��dW�t0��2�N �

( R t
t0 G�t

0�dt0 N � 0

0 N > 0
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This result tells us how to treat higher differentials involving dW and

dt in general

�dW�t��2 � dt; �dW�t��2�N � 0; dW dt � 0

and so on. If dWi and dWj are different white-noise processes, e.g.,

corresponding to different components of a vector of such processes,

then

dWidWj � �ijdt (5.20)

Unlike in regular calculus, in working with differentials ofW , one must

keep terms up todW 2. To understandwhy, simply recall thatE�j�W j�/p
�t.

We can use the above observations about stochastic differentials to

derive the ItÃo stochastic chain rule. Let F be a function of t and

W�t�. Then

dF�t;W�t�� �
 
@F

@t
� 1

2

@2F

@W 2

!
dt � @F

@W
dW�t�

For example, if we let F � x�t;W�t�� � A�t � t0� � B�W�t� �W�t0��,
whereA and B are constants, then application of the chain rule gives

us back the constant coef®cient SDE dx �A dt �B dW .

Now consider a function f�x�t��, where x�t� evolves according to

(5.16). The differential of f can be written

df�x�t�� � f�x�t � dt��� f�x�t��

� f 0�x�t��dx�t�� 1

2
f 00�x�t���dx�t��2

� f 0�x�t���A dt �B dW�� 1

2
f 00�x�t���A dt �B dW�2

Noting that dt2 � 0 and dW 2 � dt, we have ItÃo's formula

df�x�t�� � �Af 0 � 1

2
B2f 00� dt �Bf 0 dW (5.21)

Example 5.1: Diffusion on a plane in Cartesian and polar coordinate

systems

We can write two-dimensional Brownian motion in Cartesian coordi-

nates as

dx � B dWx (5.22)

dy � B dWy (5.23)
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where Wx and Wy are independent Wiener processes and B � p2D.
How would we write the same process in polar coordinates?

Solution

As a brief prelude, observe that for a particle starting at the origin, the

mean square displacement satis®es

E
�
r 2�t�

�
� B2

�
E
�
W 2
x

�
�E

�
W 2
y

��
� B2 �t � t�
� 4Dt

This result easily extends to Brownian motion in any number d of di-

mensions, giving the result E �r 2�t�� � 2dDt.

Returning to the speci®c question at hand, consider the radial co-

ordinate ®rst and keep in mind that we may need to keep terms up to

quadratic in dx and dy

dr � @r
@x
dx � @r

@y
dy � 1

2

@2r

@x2
dx2 � 1

2

@2r

@x@y
dxdy � 1

2

@2r

@y2
dy2

Here all the partials can be evaluated from the formulas r �
q
x2 �y2

and � � tan�1
�
y
x

�
. Now using the SDEs and noting that dx2 � dy2 �

B2dt, dxdy � 0, we have that

dr � cos�B dWx � sin�B dWy � 1

2r
B2 dt

Now, using (5.12) we see that cos� dWx � sin� dWy is a diffusion

process with variance dt. We will denote this process as dWr , so

dr � B
2

2r
dt � B dWr (5.24)

Consider a particle that starts at r � 0. Applying ItÃo's formula with

f � r 2 and taking the expected value we ®nd that

E�d�r 2�� � 2B2 dt

Letting B2 � 2D we ®nd that E�r 2� � 4Dt in two dimensions, as we

should.

Now we turn to the equation for �

d� � @�
@x
dx � @�

@y
dy � 1

2

@2�

@x2
dx2 � 1

2

@2�

@x@y
dxdy � 1

2

@2�

@y2
dy2
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By symmetry there cannot be any drift termÐpositive and negative

changes in � must be equally likely. Evaluating derivatives we ®nd

d� � B

r 2
��ydWx � xdWy�

Using (5.12) again we can replace �ydWx � xdWy with r dW�

d� � B
r
dW� (5.25)

�

Example 5.2: Average properties from sampling

Often we are interested in an ªaverageº property of the model rather

than a single realization of the stochastic equation. Consider again

the random walk model of the diffusion process on the plane, (5.22)-

(5.23). Simulate the process and compute an estimate of the mean

square displacement versus time.

Solution

We approximate this process for simulation with the discrete process

X�k� 1� � X�k�� V�t �
p
2D�tP (5.26)

where X � �x;y�T , k is the sample number, �t is the sample time, and

time is t � k�t. The velocity of the particles is V � �vx; vy�T and the

random two-vector P is the two-dimensional normal distribution with

zero mean and covariance equal to a 2� 2 identity matrix

P � N�0; I�

This choice provides uncorrelated steps in the x and y directions. In

the ensuing discussion we choose �t � 1 so k � t. We also take

vx � vy � 0 here so there is no drift, only diffusion. A representa-

tive simulation of (5.26) is given in Figure 5.3.

We can approximate average properties by simulating many trajec-

tories or equivalently many independent particles, and then taking the

average. Let Xi�k� be the position of the ith particle at sample time k,

which follows the evolution

Xi�k� 1� � Xi�k��
p
2Dni (5.27)
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Figure 5.3: A representative trajectory of the discretely sampled

Brownian motion; D � 2, V � 0, n � 500.
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Figure 5.4: The mean square displacement versus time; D � 2, V �
0, n � 500.
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The squared displacement of the ith particle is given by

r 2i �k� � XT
i �k�Xi�k� (5.28)

and the mean square displacement is given by the average over many

particles

hr 2i�k� � 1

n

nX
i�1
r 2i �k� n large

Figure 5.4 shows the mean square displacement for the random walk

with no drift and D � 2 for the diffusion coef®cient. We use n � 500

particles for this simulation. Notice that the mean square displacement

grows linearly with time. The simulation agrees with Einstein's analysis

of diffusion (Einstein, 1905). See also (Gardiner, 1990, pp.3±5) as well

as our analyses above

hr 2i�k� � 4Dk (5.29)

�

5.2.4 Fokker-Planck Equation

There are two ways to think about solving an SDE. We can ®nd particu-

lar trajectoriesÐthis is what the Euler-Maruyama scheme above will do.

We can also consider the evolution of the probability density p�x; t�.

In considering the integrated white-noise and Wiener processes, we ob-

served the connection between the evolution of p�x; t� and the diffu-

sion equation. The Wiener process is the solution to dx � dW . Because

its trajectories x�t��x�0� � N�0; t�, the density p�x; t� for a trajectory
starting at x � x0 is a solution to the transient diffusion equation

@p

@t
� D@

2p

@x2
; p�0; t� � ��x � x0� (5.30)

with D � 1
2 . To generalize this result, consider the time evolution

of the expected value of an arbitrary function f�x�t��, where x�t�

evolves according to the ItÃo SDE (5.16). Using ItÃo's formula and the

result E �Bf 0 dW� � 0, which is the in®nitesimal version of (5.19)

E �df�x�t��� � E
�
�Af 0 � 1

2
B2f 00� dt �Bf 0 dW

�
� E

�
�Af 0 � 1

2
B2f 00� dt

�
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This can be rewritten as

d

dt

Z
f�x�p�x; t� dx �

Z
�Af 0 � 1

2
B2f 00�p�x; t� dx

Rearranging and integrating by parts yieldsZ
f�x�

@p�x; t�

@t
dx �

Z
f�x�

�
@

@x

��Ap�x; t��
� 1

2

@

@x2

�
B2p�x; t�

��
dx

Finally, since f is arbitrary, this result can only hold in general if

@p�x; t�

@t
� @

@x

��A�x; t�p�x; t��� @2

@x2

�
1

2
B2�x; t�p�x; t�

�
(5.31)

This is the evolution equation for p�x; t�, often called the Fokker-

Planck equation (FPE). For a trajectory starting at x � x0, the initial
condition for this equation is again p�0; t� � ��x � x0�. The equation
can be put into conservation form

@p�x; t�

@t
� � @

@x

�
A�x; t�p�x; t�� @

@x

�
1

2
B2�x; t�p�x; t�

��
(5.32)

The term inside the curly brackets is the ¯ux of probability density

and this equation bears obvious similarities to equations we are famil-

iar with from transport phenomena. It shows us that trajectories of

an ItÃo SDE have a drift coef®cient A�x; t� and a diffusion coef®cient

D�x; t� � 1
2B2�x; t�. This is sometimes called the ªshort-timeº diffu-

sivity, because one can show using ItÃo's formula (Exercise 5.5) that for

a particle at position x0 at time t0

E
 
d�x � x0�2

dt

!�����
t�t0

� 2D�x0; t0� (5.33)

Similarly, the instantaneous drift velocity of the trajectory is (as in the

deterministic case)

E
�
d�x � x0�
dt

�����
t�t0

�A�x0; t0� (5.34)

The probability density must integrate to unityZ
p�x; t� dx � 1 (5.35)
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Elaborating on the connection between the FPE and transport equa-

tions, we recall that the convection-diffusion equation in one dimension

is
@c

@t
� � @

@x

�
v�x�c �D @

@x
c

�
The ®rst term in the ¯ux expression inside the curly brackets is analo-

gous to that for the FPE, withA � v , but there is an important differ-

ence in the second term. When the (short-time) diffusivity D � 1
2B2 in

the FPE varies with position, it is not equivalent to the (gradient) diffu-

sivity D that appears in the transport equation. Exercise 5.2 explores

these differences in further detail.

We also can generalize the analysis to an n-vector random process

x, with components xi, i � 1;2; : : : ; n. The SDE and FPEs for this case

are

dxi �Ai�x; t�dt �Bij�x; t� dWj (5.36)

@

@t
p � �

nX
i�1

@

@xi
�Ai�x; t�p��

nX
i�1

nX
j�1

@2

@xi@xj
�Dij�x; t�p� (5.37)

Herep is a function of all componentsxi and time, p � p�x1; : : : ; xn; t�,
and Dij � 1

2BikBjk are the elements of the diffusion coef®cient ma-

trix. The derivation of (5.37) from (5.36) makes use of the multidi-

mensional ItÃo formula

df�x� �
 
Ai
@f

@xi
� 1

2
BikBjk @

@xi

@

@xj
f

!
dt � Bij @f

@xi
dWj (5.38)

As in the scalar case, probability is conservedZ
p�x1; x2; : : : ; xn� dx1 dx2 : : : dxn � 1 (5.39)

In vector/matrix notation the equations are written

dx �A�x; t�dt �B�x; t� � dW (5.40)

@

@t
p�x; t� � �r � �A�x; t�p�x; t���rr : �D

�
x; t�p�x; t�

�
(5.41)

with

D�x; t� � 1

2
B �BT (5.42)

This result indicates that D is symmetric positive semide®nite. For

numerical integration of multidimensional SDEs, the Euler-Maruyama

scheme extends straightforwardly.
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Example 5.3: Transport of many particles suspended in a ¯uid

A large number of particles, each obeying the equation

dx � vdt �
p
2DdW (5.43)

are moving in a ¯uid. How do we describe the evolution of the concen-

tration ®eld in the ¯uid?

Solution

The probability density for an individual particle evolves as

pt � �vpx �Dpxx
For themany-particle system, we de®ne ann-particle joint density func-

tion (n is on the order of Avogadro's number) as

p�x1; x2; : : : ; xn; t�dx1dx2 � � �dxn
probability density that particles 1

through n are located at x1 through xn,

respectively, at time t

The concentration of particles at x, c�x; t�, is then

c�x; t� �
nX
j�1

Z



p�x1; : : : ; xj ; : : : ; xn���xi � xj�
nY
i�1
dxi (5.44)

The jth term in the sum represents the probability that the jth particle

is located at x at time t, and the sum over all particles gives the total

concentration. If the particle motions are independent

p�x1; : : : ; xn; t� �
nY
i�1
pi�xi; t�

Performing the integral in (5.44) gives

c�x; t� �
nX
j�1
pj�x; t�

which indicates that the linear superposition of each particle's proba-

bility of being at location x produces the total concentration at x. If

the particles are identical, pj�x; t� � p�x; t�; j � 1; : : : ; n, this reduces

to

c�x; t� � np�x; t�
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The evolution equation for c is therefore

ct�x; t� � �vcx�x; t��Dcxx�x; t�

The conclusion is that the concentration pro®le created by many non-

interacting, identical particles obeys the same evolution equation as the

probability density of a single particle. Averaging the behavior of many

particles does not ªaverage awayº the diffusion term in the evolution

equation of the total concentration c�x; t�. See Deen (1998, pp. 59-63)

for further discussion of this case. �

Example 5.4: Fokker-Planck equations for diffusion on a plane

Example 5.1 introduced the stochastic differential equations for diffu-

sion on a plane in Cartesian and polar coordinate representations. For

the Cartesian representation, (5.22) and (5.23) have probability density

p�x;y� that satis®es the diffusion equation

@p�x;y�

@t
� D

 
@2

@x2
� @2

@y2

!
p�x;y� � Dr2p�x;y�

with normalization (conservation of probability) conditionZZ1
�1
p�x;y� dx dy � 1

If we rewrite this equation in polar coordinates we get

@p�r ; ��

@t
� D

 
1

r

@

@r

�
r
@

@r

�
� 1

r 2
@2

@�2

!
p�r ; �� � Dr2p�r ; �� (5.45)

and Z 2�

0

Z1
0
p�r ; ��r dr d� � 1

Do we get the same result if we start with the polar coordinate form

of the stochastic differential equations, (5.24) and (5.25)? Why or why

not?

Solution

Equations (5.24) and (5.25) can be written as the system"
dr

d�

#
�
"
D
r

0

#
dt �

"
B 0

0 B
r

#"
dWr

dW�

#
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With regard to (5.36) and (5.37), x1 � r ;x2 � � and

A�
"
D
r

0

#

D � 1

2

"
B 0

0 B
r

#"
B 0

0 B
r

#T
�
"
D 0

0 D
r2

#
Inserting these expressions into (5.37) and denoting the probability

density as pP�r ; �� yields

@pP�r ; ��

@t
� �D @

@r

pP�r ; ��

r
�D

 
@2

@r 2
� 1

r 2
@2

@�2

!
pP�r ; �� (5.46)

This is not the transient diffusion equation in polar coordinates.

We begin to understand this difference by writing the normalization

condition, (5.39) Z 2�

0

Z1
0
pP�r ; �� dr d�

This differs by a factor of r in the integrand from the conventional area

integral in polar coordinates. The reason is simple: in going from the

SDE to the FPE, we did not tell ItÃo's formula about the geometry of area

elements on the plane, but only to take an SDE written with variables

x1 � r ;x2 � � and write the corresponding FPE. There is no paradox

here, only a message to be careful about coordinate transformations.

Finally, we wish to understand the relationship between p and pP .

Motivated by the factor of r difference in the normalization conditions,

wemight guess thatpP�r ; �� � crp�r ; ��where c is a constant. Indeed,
making this substitution into (5.46), we recover the transient diffusion

equation in polar coordinates, (5.45). For a process starting at the origin

at t � 0, the normalized solutions (Exercise 5.9) are

p�r ; �; t� � 1

4�Dt
e�r

2=�4Dt�

and

pP�r ; �; t� � rp�r ; �; t� �

5.3 Stochastic Kinetics

5.3.1 Introduction, and Length and Time Scales

Our next application of interest is reaction networks and chemical ki-

netics taking place at small numbers of molecules. First we start with a
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continuum kinetics example to de®ne some useful nomenclature. Con-

sider the following two-step series reaction

A
k1
-! B B

k2
-! C

We de®ne the species vector of concentrations c �
h
cA cB cC

iT
, and

denote the stoichiometry for the reaction network with the stoichio-

metric matrix

� �
"
�1 1 0

0 �1 1

#
We let �i, i � 1;2; : : : ; nr denote the rows of the stoichiometric matrix,

written as column vectors

�1 �

264�11
0

375 �2 �

264 0

�1
1

375
We assume the reaction takes place in a well-mixed reactor and assume

some rate law for the reaction kinetics, such as

r1 � k1cA r2 � k2cB r �
"
r1
r2

#

As taught in every undergraduate chemical engineering curriculum, the

material balances for the three species is then given by

d

dt
c � �Tr�c� �

nrX
i�1
�iri�c� (5.47)

The solution of this model with a pure reactant A initial condition is

shown in Figure 5.5.

Next we consider reactions taking place at small concentrations. In-

stead of the common case in which we have on the order of Avogadro's

number of reacting molecules, assume we have only tens or hundreds

of molecules moving randomly in a constant-volume, well-mixed, re-

actor. At such low concentrations, the deterministic concentration as-

sumption makes no sense, and we have to consider the random behav-

ior of the molecules. But we still have to choose an appropriate length

and time scale of interest. Indeed, if we move down to the length scale

of the atoms, we can model the electron bonds deforming continu-

ously in time from reactants through transition states to products. We

choose instead a larger time and length scale so that each reaction that
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Figure 5.5: Two ®rst-order reactions in series in a batch reactor,

cA0 � 1; cB0 � cC0 � 0; k1 � 2; k2 � 1.

takes place can be regarded as a single instantaneous event causing a

discrete change in the number of reactants and products. At this scale,

we track the integer-valued numbers of reactant and products, and we

treat the reaction events as random jump processes. This choice of

length and time scale makes the discrete Poisson process the natural

description for stochastic kinetics.

5.3.2 Poisson Process

Just as the Wiener process W�t� is the simplest mathematical process

appropriate formodeling diffusion, the Poisson process Y�t� is the sim-

plest mathematical process appropriate for modeling stochastic chem-

ical kinetics. The Poisson process is an integer-valued counting pro-

cess. Time is modeled as a continuous variable, but the value of the

Poisson process is discrete. The Poisson process is characterized by a

rate parameter, � > 0, and for small time interval �t, the probability

of an event taking place in this time interval is proportional to ��t. To

start off, we assume that parameter � is constant. The probability that

an event does not take place in the interval �0;�t� is therefore approx-

imately 1���t. Let random variable � be the time of the ®rst event of
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the Poisson process starting from t � 0. We then have for small �t

Pr�� > �t� � 1� ��t

Like the Wiener process, the Poisson process has independent incre-

ments, which means that the number of events in disjoint time inter-

vals are independent. The independent increment assumption coupled

with the fact that � does not change implies that the probability that

an event does not take place in two consecutive time intervals �0;2�t�

is Pr�� > 2�t� � �1 � ��t�2. Continuing this argument to n intervals

gives for t � n�t

Pr�� > t� � �1� ��t�n � �1� ��t�t=�t

Taking the limit as �t ! 0 gives

Pr�� > t� � e��t

From the probability axioms and the de®nition of � 's probability dis-

tribution, we then have

Pr�� � t� � F��t� � 1� e��t

Differentiating to obtain the density gives the exponential density

p��t� � �e��t (5.48)

The exponential distribution should be familiar to chemical and bio-

logical engineers because of the residence-time distribution of a well-

mixed tank. The residence-time distribution of the CSTR with volume

V and volumetric ¯owrate Q satis®es (5.48) with � being the dilution

rate or inverse mean residence time, � � Q=V .
Figure 5.6 shows a simulation of the unit Poisson process, i.e., the

Poisson process with � � 1. If we count many events, the sample path

looks like the top of Figure 5.7, which resembles a ªbumpyº line with

slope equal to �, unity in this case. The frequency count of the times to

next event, � , are shown in the bottom of Figure 5.7, and we can clearly

see the exponential distribution with this many events. Note that to

generate a sample of the exponential distribution for the purposes of

simulation, one can simply take the negative of the logarithm of a uni-

formly distributed variable on �0;1�. Most computational languages

provide functions to give pseudorandom numbers following a uniform

distribution, so it is easy to produce samples from the exponential dis-

tribution as well. See Exercise 5.14 for further discussion.
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Figure 5.6: A sample path of the unit Poisson process.
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Figure 5.7: A unit Poisson process with more events; sample path

(top) and frequency distribution of event times �.
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The time of the ®rst event also characterizes the probability Pr�Y�t� �
0� for t � 0. The probability that Y is still zero at time t is the same as

the probability that the ®rst event has occurred at some time greater

than t, or Pr�Y�t� � 0� � Pr�� > t� � 1� Pr�� � t�. Therefore we have
the relationships

Pr�Y�t� � 0� � 1� F��t� � e��t

We next generalize the discussion to ®nd the probability density for

the time of the second and subsequent events. Let random variable �2
denote the time of the second event. We wish to compute the density

p�2;��t2; t�. Because of the independent increments property and the

fact that � is constant, we have for the joint density

p�2;��t2; t� �
8<:p��t2 � t�p��t�; t2 > t0 t2 � t1

Integrating the joint density gives the marginal

p�2�t2� �
Z t2
0
p��t2 � t�p��t�dt

�
Z t2
0
�e���t2�t��e��tdt

p�2�t2� � �2t2e��t2

or p�2�t� � �2te��t . We can then use induction to obtain the density

of the time for the nth event, n > 2. Assuming that �n�1 has density

�n�1tn�2e��t=�n� 2�!, we have for �n

p�n�tn� �
Z tn
0
p�n;�n�1�tn; t�p�n�1�t�dt

�
Z tn
0
p��tn � t� �n�1

�n� 2�!
tn�2e��tdt

�
Z tn
0
�e���tn�t�

�n�1

�n� 2�!
tn�2e��tdt

p�n�tn� �
�n

�n� 1�!
tn�1n e��tn (5.49)

From here we can work out Pr�Y�t� � n� for any n. For Y�t� to be n at

time t, we must have time �n � t and time �n�1 > t, i.e., n events have

occurred by time t but n�1 have not. In terms of the joint density, we

have

Pr�Y�t� � n� �
Z1
t

Z t
0
p�n�1;�n�t

0; t�dtdt0
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As before, the independent increments property allows us to express

the joint density as p�n�1;�n�t
0; t� � p��t0 � t�p�n�t� for t0 � t. Substi-

tuting this and (5.49) into the previous equation gives

Pr�Y�t� � n� �
Z1
t

Z t
0
�e���t

0�t� �n

�n� 1�!
tn�1e��tdtdt0

Pr�Y�t� � n� � ��t�
n

n!
e��t (5.50)

See Exercise 5.13 for an alternative derivation. The discrete density

appearing on the right-hand side of (5.50), i.e, p�n� � e�aan=n! with
parameter a � �t, is known as the Poisson density. Its mean and vari-

ance are equal to a (see Exercise 5.12). So we have that E�Y�t�� � �t,
which is consistent with Figure 5.7.

Because � and t appear only as the product �t, the Poisson process

with intensity �, now denoted Y��t�, can be expressed in terms of the

unit Poisson process, denoted Y�t�, with the relation

Y��t� � Y��t� t � 0

The justi®cation is as follows. We have just shown

Pr�Y��t� � n� � ��t�
n

n!
e��t

and, for the unit Poisson process, we have Pr�Y�t� � n� � tne�t=n!,
which is equivalent on the substitution of �t for t. Because the incre-

ments are independent, we also have the property for all n � 0

Pr�Y�t�� Y�s� � n� � Pr�Y�t � s� � n� t � s

which is similar to (5.5) for the Wiener process.

Nonhomogeneous Poisson process. Next we consider the nonhomo-

geneous Poisson process in which the intensity ��t� is time varying. We

de®ne the Poisson process for this more general case so that the prob-

ability of an event during time interval �t; t � �t� is proportional to

��t��t for �t small. We can express the nonhomogeneous process

also in terms of a unit Poisson process with the relation

Y��t� � Y
� Z t

0
��s�ds

�
t � 0

To see that the right-hand side has the required property, we compute

the probability that an event occurs in the interval �t; t��t�. Let z�t� �
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R t
0 ��s�ds. We have

Pr�t � � � t ��t� � Pr�Y��t ��t�� Y��t� > 0�

� Pr�Y�z�t ��t�� Y�z�t��� > 0�

� Pr�Y�z�t ��t�� z�t�� > 0�

� 1� Pr�Y
� Z t��t

t
��s�ds

� � 0�

� 1� e�
R t��t
t ��s�ds

For �t small, we can approximate the integral as
R t��t
t ��s�ds � ��t��t

giving

Pr�t � � � t ��t� � 1� �1� ��t��t� � ��t��t
and we have the stipulated probability.

Random time change representation of stochastic kinetics. With

these results, we can now express the stochastic kinetics problem in

terms of the Poisson process. Assume nr reactions take place between

ns chemical species with stoichiometric matrix � 2 Rnr�ns , and denote

its row vectors, written as columns, by �i; i � 1;2; : : : ; r . Let X�t� 2 Ins
be an integer-valued random variable vector of the chemical species

numbers, and let ri�X�; i � 1;2; : : : ; nr be the kinetic rate expressions

for thenr reactions. We assign to each reaction an independent Poisson

process Yi with intensity ri. Note that this assignment gives nr non-

homogeneous Poisson processes because the species numbers change

with time, i.e., ri � ri�X�t��. The Poisson processes then count the

number of times that each reaction ®res as a function of time. Thus

the Poisson process provides the extents of the reactions versus time.

From these extents, it is a simple matter to compute the species num-

bers from the stoichiometry. We have that

X�t� � X�0��
nrX
i�1
�iYi

� Z t
0
ri�X�s��ds

�
(5.51)

This is the celebrated random time change representation of stochastic

kinetics due to Kurtz (1972).

Notice that this representation of the species numbers has X�t� ap-

pearing on both sides of the equation. This integral equation repre-

sentation of the solution leads to many useful solution properties and

simulation algorithms. We can express the analogous integral equation
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for the deterministic continuum mass balance given in (5.47)

c�t� � c�0��
nrX
i�1
�i

Z t
0
ri�c�s��ds

Comparing the two results, we see the obvious similarities; the key dif-

ferences are that the species number vector X is an integer-valued ran-

dom variable, and the Poisson process Y ®res the reactions at random

times.

5.3.3 Stochastic Simulation

The random time change representation suggests a natural simulation

or sampling strategy for the species numbers X�t�. We start with a

chosen or known initial condition, X�0�. We then select based on each

reaction, nr exponentially distributed proposed times for the next re-

actions, �i; i � 1;2; : : : ; nr . These exponential distributions have in-

tensities equal to the different reaction rates, ri�X�0��. As mentioned

previously, we obtain a sample of an exponential F�i�t� � 1 � e�rit
by drawing a sample of a uniformly distributed RV on �0;1�, u, and

rescaling the logarithm

�i � ��1=ri� lnui i � 1;2; : : : ; nr

We then select the reaction with the smallest event time as the reaction

to ®re, giving

t1 � min
i2�1;nr �

�i i1 � arg min
i2�1;nr �

�i

We then update the species numbers at the chosen reaction time with

the stoichiometric coef®cients of the reaction that ®res

X�t1� � X�0�� �i1
This process is then repeated to provide a simulation over the time

interval of interest. This simulation strategy is known as the first

reaction method (Gillespie, 1977). We summarize the ®rst reaction

method with the following algorithm.

Algorithm 5.5 (First reaction method).

Require: Stoichiometricmatrix and reaction-rate expressions, �i, ri�X�,

i � 1;2; : : : ; nr ; initial species numbers, X0; stopping time T .

1: Initialize time t � 0, time index k � 1, and species numbers X�t� �
X0.
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p1 p2 p3

u0 1

Figure 5.8: Randomly choosing a reaction with appropriate probabil-

ity. The interval is partitioned according to the relative

sizes of the reaction rates. A uniform random number u

is generated to determine the reaction. In this case, since

p2 � u � p3, m � 3 and the third reaction is selected.

2: Evaluate rates ri � ri�X�t��. If ri � 0, all i, exit (system is at steady

state.)

3: Choose nr independent samples of a uniformly distributed RV, ui.

Compute random times for each reaction �i � ��1=ri� lnui.
4: Select smallest time and corresponding reaction, �k �mini2�1;nr � �i,
ik � argmini2�1;nr � �i.

5: Update time and species numbers: tk � t � �k, X�tk� � X�t�� �ik .
6: Set t � tk, replace k k� 1. If t < T , go to Step 2. Else exit.

Gibson and Bruck (2000) show how to conserve random numbers

in this approach by saving the nr � 1 random numbers that were not

selected at the current iteration, and reusing them at the next itera-

tion. With this modi®cation, the method is termed the next reaction

method.

An alternative, and probably the most popular, simulation method

was proposed also by Gillespie (1977, p. 2345). In this method, the

reaction rates are added together to determine a total reaction rate r �Pnr
i�1 ri�X�t��. The time to the next reaction is distributed as p��t� �

re�rt . So sampling this density provides the time of the next reaction,

which we denote � . To determine which reaction ®res, the following

cumulative sum is computed

pi �
nrX
i�1
ri=r ; i � 0;1;2; : : : nr

Note that 0 � p0 � p1 � p2 � � � � � pnr � 1, so the set of pi are a par-

tition of �0;1� as shown in Figure 5.8 for nr � 3 reactions. The length

of each interval indicates the relative rate of each of the nr reactions.

So to determine which reaction m ®res, let u be a sample from the
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uniform distribution on �0;1�, and determine the interval m in which

u falls by the condition

pm�1 � u � pm
Given the reaction that ®resm and the time of the reaction � , we then

update the species numbers in the standard way

X�t � �� � X�t�� �m
This method is known as Gillespie's direct method or simply the

stochastic simulation algorithm (SSA). We summarize thismethod

with the following algorithm.

Algorithm 5.6 (Gillespie's directmethod or SSA).

Require: Stoichiometricmatrix and reaction-rate expressions, �i, ri�X�,

i � 1;2; : : : ; nr ; initial species numbers, X0; stopping time T .

1: Initialize time t � 0, time index k � 1, and species numbers X�t� �
X0.

2: Evaluate rates ri � ri�X�t�� and total rate r � Pi ri. If r � 0, exit

(system is at steady state.)

3: Choose two independent samples,u1; u2, of a uniformly distributed

RV on �0;1�. Compute time of next reaction � � ��1=r� lnu1.

4: Select which reaction, ik, as follows. Compute the cumulative sum,

pi �
Pi
j�1 rj=r for i 2 �0; nr �. Note p0 � 0. Find index ik such that

pik�1 � u2 � pik .
5: Update time and species numbers: tk � t � � , X�tk� � X�t�� �ik .
6: Set t � tk, replace k k� 1. If t < T , go to Step 2. Else exit.

Figure 5.9 shows the results when starting withnA � 100molecules.

Notice the random aspect of the simulation gives a rough appearance

to the number of molecules versus time, which is quite unlike the de-

terministic simulation presented in Figure 5.5. Because the number of

molecules is an integer, the simulation is discontinuous with jumps at

the reaction event times. But in spite of the roughness, we can already

make out the classic behavior of the series reaction: loss of starting

material A, appearance and then disappearance of the intermediate

species B, slow increase in ®nal product C. Note also that Figure 5.9

is only one simulation or sample of the random process. Unlike the de-

terministic models, if we repeat this simulation, we obtain a different

sequence of random numbers and a different simulation. To compute

accurate expected or average behavior of the system, we performmany

of these random simulations and then compute the sample averages of

quantities we wish to report.
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Figure 5.9: Stochastic simulation of the ®rst-order series reaction

A -!B -!C starting with 100 A molecules.

5.3.4 Master Equation of Chemical Kinetics

The simulations in the previous section allow us to envision many pos-

sible simulation trajectories depending on the particular sequence of

random numbers we have chosen. Some re¯ection leads us to con-

sider instead modeling the evolution of the probability density of the

state. We shall see that we can either solve this evolution equation di-

rectly, or average over many randomly chosen simulation trajectories

to construct the probability density by brute force. Both approaches

have merit, but here we focus on expressing and solving the evolution

equation for the probability density.

Consider the reversible reaction

A� B
k1
-*)-
k�1

C (5.52)

taking place in a constant-volume, well-stirred reactor. Let p�a;b; c; t�

denote the probability density for the system to have a molecules of

species A, bmolecules of species B, and cmolecules of species C at time

t. We seek an evolution equation governing p�a;b; c; t�. The prob-

ability density evolves due to the chemical reactions given in (5.52).

Consider the system state �a; b; c; t�; if the forward event takes place,



5.3 Stochastic Kinetics 497

the system moves from state �a; b; c; t� to �a � 1; b � 1; c � 1; t � dt�.
If the reverse reaction event takes place the system moves from state

�a; b; c; t� to �a � 1; b � 1; c � 1; t � dt�. We have expressions for the

rates of these two events

r1 � k1ab r�1 � k�1c

These are the rates required for the trajectory simulations of the pre-

vious sections. But here we are asking for more. Here we want to know

how these reaction events occurring at these rates change the prob-

ability density that the system is in state �a; b; c; t�. This evolution

equation for the probability density is known as the master equation

for chemical kinetics. The master equation for this chemical example

system is

@p�a; b; c; t�

@t
� ��k1ab � k�1c� � p�a;b; c; t�
� k1�a� 1��b � 1� � p�a� 1; b � 1; c � 1; t�

� k�1�c � 1� � p�a� 1; b � 1; c � 1; t� (5.53)

We see that the reaction rate for each event is multiplied by the prob-

ability density that the system is in that state.

Because we have a single reaction, we can simplify matters by de®n-

ing " to be the extent of the reaction. The numbers of molecules of

each species are calculated from the initial numbers and reaction ex-

tent given the reaction stoichiometry

a � a0 � " b � b0 � " c � c0 � "

We see that " � 0 corresponds to the initial state of the system. Using

the reaction extent, we de®ne p�"; t� to be the probability density that

the system has reaction extent " at time t. Converting (5.53) we obtain

@p�"; t�

@t
� ��k1�a0 � "��b0 � "�� k�1�c0 � "�� � p�"; t�
� k1�a0 � " � 1��b0 � " � 1� � p�" � 1; t�

� k�1�c0 � " � 1� � p�" � 1; t� (5.54)

The four terms in the master equation are depicted in Figure 5.10.

Given a0; b0; c0 we can calculate the range of possible extents. For

simplicity, assume we start with only reactants A and B so c0 � 0.

Then the minimum extent is " � 0 because we cannot ®re the reverse
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reaction from this starting condition. If we ®re the forward reaction

n � min�nA0; nB0� times, the limiting reactant A or B is completely

consumed and no further forward reactions are possible. Therefore

the range of possible extents is 0 � " � n. We now can write n � 1

equations stemming from the master equation and place them in the

matrix form

d

dt

26666666664

p0
p1
p2
...

pn�1
pn

37777777775
�

26666666664

�0 0
�1 �1 1

�2 �2 2
. . .

. . .
. . .

n�1
�n �n

37777777775

26666666664

p0
p1
p2
...

pn�1
pn

37777777775
(5.55)

in which pj�t� is shorthand for p�j; t�, and �j , �j , and j are the fol-

lowing rate expressions evaluated at different extents of the reaction

�j � k1�a0 � j � 1��b0 � j � 1�

�j � �k1�a0 � j��b0 � j�� k�1�c0 � j�
j � k�1�c0 � j � 1�

We can also write this model as

dP

dt
� AP (5.56)

P�0� � P0
in which P is the column vector of probabilities for the different reac-

tion extents

P �
h
p0 p1 � � � pn

iT
and the A matrix contains all the model parameters.

The essential connection between the stochastic and determinis-

tic approaches to the well-mixed chemical kinetics problem is that the

stochastic model's probability density becomes arbitrarily sharp at the

solution to the deterministic problem as the number of molecules in-

creases. Figure 5.11 displays the solution to (5.55) starting with 20 A

molecules, 100 Bmolecules and 0 Cmolecules. The extent of reaction is

scaled by the initial number of A molecules. Notice that the probability

density spreads out rapidly as time increases and there is signi®cant

uncertainty in the equilibrium state.

If we increase the starting number of molecules by a factor of 10,

we obtain the results depicted in Figure 5.12. Notice the sharpening
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p�"; t�

"" � 1 " � 1" � 2 " � 2

A� B  - C

A� B  - C A� B -! C

A� B -! C

Figure 5.10: Master equation for chemical reaction A + B -*)- C. The

probability density at state " changes due to forward

and reverse reaction events. The rate of change is pro-

portional to the reaction rate times the probability den-

sity of being in that state.

in the probability density. We can see that the extent versus time is

traced out by the peak in probability density is approaching the mass

action kinetics limit. You can imagine the sharpness in the density if

we started out with on the order of Avogadro's number of A molecules.

As stressed earlier, however, if we are not operating near that limit, the

random ¯uctuation may be an important physical behavior to include

in the model. To describe this behavior, the stochastic approach is

essential and the deterministic approach cannot be substituted.

The master equation, (5.56), is a simple linear, constant-coef®cient

differential equation, and the solution is

P�t� � eAtP0
The challenge in solving the master equation directly is its high dimen-

sion. The dimension of P is the number of different species values

that the system can reach by reaction. If we have a single reaction, the

extent can range from zero, its initial value, to a value that exhausts

some limiting species. Denote this limiting species's initial number by

n0, the dimension of the state vector P is then n0. But if we have mul-

tiple reactions, we multiply nr by the limiting species corresponding

to all the combinations of reactions. The scaling is on the order of the

product n0nr . If we have 1000 initial molecules with 10 reactions, the

dimension of the master equation P vector is already on the order of

104. The Amatrix already contains 108 elements, although it would be
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Figure 5.11: Solution to master equation for A + B -*)- C starting with

20 A molecules, 100 B molecules and 0 C molecules,

k1 � 1=20; k�1 � 3. Congratulations, you now under-

stand what is displayed on the cover of the text.

quite sparse. Thus solving the master equation becomes computation-

ally intractable for problems of evenmodest size. The best we can hope

for with these larger models is to sample the master equation with sim-

ulations. Even simulating enough trajectories to obtain reliable sample

averages can be quite time consuming, whichmotivates research efforts

to develop ef®cient simulation algorithms and sampling strategies.

Given this basic understanding, we now express the general master

equation fornr reactions with the random variableX (species numbers)

as the state of the system rather than the reaction extents. Given a

system in state x 2 Ins , reaction i with stoichiometric vector �i can

reach state x from only state x � �i, and can leave this state to reach

state x � �i. We then have for the evolution of the probability density

d

dt
pX�x; t� �

X
i

ri�x � �i�pX�x � �i; t��
�X

i

ri�x�

�
pX�x; t� (5.57)

with initial condition pX�x;0� � p0�x�. Equation (5.57) is the chemi-
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Figure 5.12: Solution to master equation for A + B -*)- C starting with

200 A molecules, 1000 B molecules and 0 C molecules,

k1 � 1=200; k�1 � 3.

cal master equation for a general reaction network. It is also known

as the forward Kolmogorov equation in the mathematics literature.

Applying (5.57) to the previous example we have

x �

2
64
nA

nB

nC

3
75 �1 �

2
64
�1
�1
1

3
75 ��1 �

2
64

1

1

�1

3
75 r1�x� � k1nAnB r�1�x� � k�1nC

and master equation

d

dt
pX�x; t� � r1�x��1; t�pX�x��1; t��r�1�x���1; t�pX�x���1; t�

� �r1�x; t�� r�1�x; t��pX�x; t�
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or, written to show the species numbers

d

dt
pX

�264nAnB
nC

375 ; t� � k1�nA � 1��nB � 1�pX

�264nA � 1

nB � 1

nC � 1

375 ; t��

k�1�nC � 1�pX

�264nA � 1

nB � 1

nC � 1

375 ; t�� �k1nAnB � k�1nC�pX�
264nAnB
nC

375 ; t�

5.3.5 Microscopic, Mesoscopic, and Macroscopic Kinetic Models

Next we would like to explore how the discrete stochastic kinetic model

of amicroscopic system transforms into the deterministic kineticmodel

of amacroscopic system that is familiar to undergraduate chemical and

biological engineers. Along the way, we derive a model for the regime

bridging the microscopic and macroscopic levels, which is sometimes

called the mesoscopic regime. Our goal is to start with the microscopic

chemical master equation and take the limit as the system size becomes

large. We use the system volume 
 for the size parameter. The pro-

cedure we follow is given by van Kampen (1992, pp. 244-263) and is

known as the omega expansion. The essentials of the approach are

perhaps best explained by taking a concrete (and nonlinear) example.

Consider the bimolecular reaction

2A -! B

In the deterministic macroscopic description, we have a reaction-rate

expression r � ekc2, in which c is molar concentration of A, an intensive

variable, and the rate constant ek has units of l3=�mol � t�, so the rate

has units of mol=�t � l3�, a rate of reaction per volume, which is also

intensive. The mole balance for species A in a well-mixed system is the

familiar
dc

dt
� �2ekc2 c�0� � c0 (5.58)

For these same kinetics, at the small scale, we have the microscopic

chemical master equation

d

dt
P�n; t� � �kn�n� 1�

2

P�n; t��k�n� 2��n� 1�

2

P�n�2; t� n � 0

(5.59)

in which n is the number of A molecules in the well-mixed system of

volume 
. Here n is a discrete (nonnegative, integer-valued) random
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Figure 5.13: The equilibrium reaction extent's probability density for

Reactions 5.52 at system volume 
 � 20 (top) and 
 �
200 (bottom). Notice the decrease in variance in the

reaction extent as system volume increases.

variable. As 
 becomes large, we expect the concentration c � n=
 to

be well described by the ODE (5.58). It is initially far from clear how we

take this limit to make this transition from a discrete-valued random

variable n to a continuous-valued deterministic variable c.

To motivate the appropriate analysis, we ®rst look at solutions to

the master equation for increasing values of 
. Figure 5.13 shows the

®nal equilibrium distributions of the scaled reaction extent, ", from

Figures 5.11 and 5.12. We have increased the system size from 
 � 20

in the top ®gure to 
 � 200 in the bottom ®gure. We also show the

variance in random variable " in the two simulations. Notice that for a

ten-fold increase in 
, the variance has decreased by almost this same

ten-fold amount. From these solutions to the master equation we have

some idea what to expect. For a large system, the integer increments in

the number of molecules n become so ®ne that we can approximately

replace them by a continuous variable c. But we also see randomness
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in the concentration, and although the (relative) magnitude of the con-

centration ¯uctuations decreases as the system size increases, it is not

zero. In fact, we see that the familiar normal distribution appears to de-

scribe the probability distribution of the ¯uctuations and the variance

scales with 
�1.
Therefore we are led to hypothesize that we can approximate n as

a combination of the deterministic concentration c and a continuous

random variable � to capture the ¯uctuations. Based on our numerical

experiments, the form we choose is

n � c
 � �
1=2 (5.60)

so that the variance inn=
 scales with
�1, i.e., var�n=
� � 
�1var���.
We are neglecting terms of order 
0 and lower in the expansion of n

in (5.60). Thus we are expressing n=
 as a perturbation solution in

increasing powers of small parameter 
�1=2. The additional complica-

tion in this case compared to our previous perturbation examples in

Chapters 2 and 3, is that we are also changing from a discrete variable

n to continuous variables c and �.

The master equation describes the density of random variable n,

P�n; t�, and we wish to deduce an evolution equation for the density

of random variable �, which we denote ���; t�. And we also expect the

analysis to show that the familiar differential equation (5.58) describes

the deterministic variable c. As a transformation of random variables,

we are considering the two densities to be related by

P�n; t� � P�c
 � �
1=2; t� � ���; t�
in which we suppress the dependence of n on c. Consider c to be some

known function of time when expressing the transformation between

the two random variables n and �.

Given this transformation, the partial derivatives are related by Pt �
�t ����t and �t is found by differentiating (5.60) holding n constant,

which yields

�t � �Çc
1=2

in which Çc represents the time derivative of c�t�. Substituting this into

the relation for the partial derivatives gives

Pt � �t � Çc
1=2
��

This is the ®rst step. We have the left-hand side of the master equation

evaluated in terms of the new density �. Next we work on the right-

hand side.
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The term P�n; t� is simply the transformed ���; t�, but we also re-

quire P�n�2; t�. First we solve (5.60) for � so that we know what n�2
corresponds to in variable �

��n� � n
�1=2 � c
1=2 (5.61)

Using (5.61) gives ��n�2����n� � 2
�1=2. Next we use a Taylor series
to represent ����n � 2�; t� in terms of ����n�; t�, denoted simply as

�, and its derivatives

����n� 2�; t� � �� 2
�1=2
�� �

4
�1

2!
��� �

8
�3=2

3!
���� � � � � (5.62)

The number of terms retained in the Taylor series determines the order

of the approximation for the density �. We now can easily transform

the remaining terms in n using (5.60)

n�n� 1�



� c2
 � 2c�
1=2 � ��c � �2�� �
�1=2

�n� 2��n� 1�



� c2
 � 2c�
1=2 � �3c � �2�� 3�
�1=2 � 2
�1

Now we combine all of these ingredients by substituting them into the

master equation (5.59) giving

�t � Çc
1=2
�� �

k

2

�
4c � 4�
�1=2 � 2
�1�

��
k
�
c2
1=2 � 2c� � �3c � �2�
�1=2 � 3�
�1 � 2
�3=2�

���
k
�
c2 � 2c�
�1=2 � �3c � �2�
�1 � 3�
�3=2 � 2
�2�

���

in which we have kept up to the second-order term in (5.62).

The third and ®nal step is to extract from this large equation the in-

formation provided at the different orders of the expansion parameter


.

Order 
1=2. Collecting the terms of order 
1=2 gives �Çc � kc2��� � 0

and, since �� � 0, we deduce

dc

dt
� �kc2 (5.63)

which is the macroscopic equation (5.58) after noting that the usual

macroscopic convention absorbs a factor of one-half into the de®nition

of the rate constant, i.e., ek � k=2.
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Order 
0. Collecting the terms of order 
0 gives

�t � 2kc �� 2kc� �� � kc2 ���

which can be rearranged into

@

@t
� � � @

@�

�� 2kc� �
�� @2

@�2
�
kc2 �

�
This is the familiar Fokker-Planck equation, (5.41), which we can write

as an equivalent SDE

d� � �2kc� dt �
p
2kc2 dW

Because this is a linear Fokker-Planck equation (the drift term is linear

in � and the diffusivity is independent of �), this equation is sometimes

referred to as the linear noise approximation.

To simulate the model at this level of approximation, we ®rst solve

(5.63) for c�t�, and then perform a randomwalk simulation for the ¯uc-

tuation term ��t�, which depends on c�t�. We combine these two parts

for n�t� using (5.60). This description in which c�t� is deterministic

and ��t� is a continuous random walk is the mesoscopic description.

We see the results in Figure 5.14. The top ®gure shows the discrete

simulation using KMC for volume 
 � 500 and initial condition of 500

A molecules n0 � 500. Note that the plot has a log scale on the time

axis to more clearly show the evolution at early times. These two simu-

lations display quite similar character. To compare them more quanti-

tatively, we could compute several low-order moments of the densities

by computing sample averages over many simulations.

As a more comprehensive alternative, we compute the correspond-

ing cumulative probability distributions at the selected time t � 1,

shown as the dashed line in Figure 5.14. We obtain the cumulative

distribution for the discrete model by solving the master equation and

summing

F�n; t� �
nX

n0�0
P�n0; t� 0 � n � n0

We can obtain the density for the omega expansion by solving the PDE

for ���; t�, shifting the mean by the deterministic c�t�, and integrating

for the cumulative distribution. Or we can instead derive a correspond-

ing evolution equation for �'s cumulative density

F��x; t� �
Z x
�1

���; t�d�
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Figure 5.14: Simulation of 2 A -! B for n0 � 500, 
 � 500. Top:

discrete simulation; bottom: SDE simulation.

and shift its mean by c�t�, Fc�x; t� � F��x � c�t�; t�. Exercise 5.22

discusses this approach in more detail. The results are shown in Fig-

ure 5.15. The staircase function is the solution to the discrete master

equation at time t � 1, at which time the deterministic concentration

is one-half, i.e., c�t� � 1=2 at t � 1. The steps in x � n=
 are caused

by the zero probability at all the odd integer values of n in the discrete

model. The smooth function is the omega expansion, which we can see

is in reasonably close agreement with the discrete model for 
 � 500.

Finally, in the limit as 
 ! 1, the ¯uctuation � becomes negligible

compared to c, and we have the familiar deterministic macroscopic

description, (5.63) or (5.58). In Figure 5.15, this limit would be observed

by the two functions converging to a unit step function at the value of

x � c�t�. See also Exercise 5.22.

There is now an extensive and rapidly growing literature on stochas-
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Figure 5.15: Cumulative distribution for 2 A -! B at t � 1 with n0 �
500, 
 � 500. Discrete master equation (steps) versus

omega expansion (smooth).

tic kinetics. The book chapter by Anderson and Kurtz (2011) is highly

recommended for those interested in a current and comprehensive

overview of most of the topics covered here as well as more advanced

topics on: relevant central limit theorems for Poisson processes, mar-

tingales, and scaling and model reduction.

5.4 Optimal Linear State Estimation

5.4.1 Introduction

Sensors are how we learn about the world. Our ®ve natural senses

provide us with our ®rst exposure to sensors, i.e., the type built in

by nature. Since humans are very curious about the world, people

have been hard at work for a long time augmenting the natural senses

by constructing arti®cial or man-made sensors. Some of mankind's

biggest advances in science and engineering were precipitated by a

breakthrough in sensor technology, e.g., the telescope, the microscope,

detectors for electromagnetic radiation outside the visible range, etc.

One of the important things that we know about sensors is that

they are limited and imperfect indicators of the world around us. They

often are affected by nature in ways that the user does not intend or

desire; they often con¯ate many different physical effects into a single

signal, which makes it challenging for us to interpret what the sensor is
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telling us. Finally, all sensors, as well as the systems that we are trying

to measure, are subject to uncontrolled and random effects.

One of the fundamental problems in systems engineering is to de-

vise methods for taking these imperfect measurements of imperfectly

controlled systems and deciding on the best estimate of the state of

the system. We are inherently trading off two sources of error: the

sensor's random error or noise, and the system's random ¯uctuation

or disturbance. We may decide in some situation that a change in a

sensor signal indicates that the system has changed. But we may de-

cide in a different situation that a change in a sensor signal is caused

by a random effect or disturbance to the sensor itself, and the system

is completely unchanged. Optimally combining these two sources of

information: what the sensor tells us and the other knowledge that we

have about the system's behavior, is the task of state estimation.

To make these concepts precise, we consider a linear system. Let

x 2 Rn be an n-vector containing all the relevant information about a

system of interest

x� � Ax � Bu

The u variables are the input variables that also affect the evolution

of the system. If we control the inputs, they are called actuators, i.e.,

the valves in a chemical plant. If the inputs are not controlled by us,

they are regarded as disturbances, and often given another letter to in-

dicate this difference. We use w 2 Rn to represent the disturbances.

Because of the central limit theorem, these will be considered normally

distributed random variables with zero mean and variance Q. The dy-

namic model is then

x� � Ax � Bu�w

The initial state of the system x0 is also generally unknown and will be

considered a normally distributed random variable with mean x0 and

variance P�0�. Nowwe consider the sensors. Lety 2 Rp be thep-vector

of available measurements. Normally p < n indicating that we are not

measuring every relevant property of the system. Because sensors are

expensive, often p� n indicating that we have a complex system with

many states, but are information poor with few measurements. The

sensor is also affected by random disturbances, which we denote by v .

Because the input u is considered known, we can remove it from the

model for simplicity without changing any important features of the
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state estimation problem. The linear model of interest is then

x� � Ax �w
y � Cx � v

and the disturbances and unknown initial condition satisfy

w � N�0;Qw� v � N�0; Rv� x�0� � N�x0; P�0��

If the measurement process is quite noisy, then R is large. If the

measurements are highly accurate, then R is small. Similar considera-

tions apply for the process noise, Q. If the state is subjected to large

disturbances, then Q is large, and if the disturbances are small, Q is

small. Again we choose zero mean for w because the nonzero mean

disturbances should have been accounted for in the systemmodel. The

variance P�0� re¯ects our con®dence in the initial state. If we know

how the system starts off, P�0� is small. If we have little knowledge,

we take P�0� large. In industrial applications, the initial condition may

be known with high accuracy for batch processes. But the initial con-

dition is usually considered largely unknown when analyzing a dataset

taken from a continuous process.

We require three main results concerning normals, conditional nor-

mals, and linear transformation. These follow directly from the prop-

erties of the normal established in Chapter 4, but see Exercise 5.24 for

some hints if you have dif®culty deriving any of these. Recall also the

normal function notation (4.13)

n�x;m;P� � 1

�2��n=2�detP�1=2
exp

�
� 1

2
�x �m�TP�1�x �m�

�
which was introduced in Chapter 4, and will be used frequently in the

following discussion.

Joint independent normals. If pxjz�xjz� is normal, and y is statisti-

cally independent of x and z and normally distributed

pxjz�xjz� � n�x;mx; Px�

y � N�my ; Py� y independent of x and z

then the conditional joint density of �x;y� given z is

px;yjz�x;yjz� � n�x;mx; Px� n�y;my ; Py�

px;yjz

 "
x

y

#�����z
!
� n

 "
x

y

#
;

"
mx

my

#
;

"
Px 0

0 Py

#!
(5.64)
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Linear transformation of a normal. Ifx and z are jointly normally dis-

tributed with conditional density pxjz�xjz� having mean m and

variance P , and y is a linear transformation of x, y � Ax, then
pyjz�yjz� is normal with mean Am and variance APAT

pxjz�xjz� � n�x;m;P� y � Ax
pyjz�yjz� � n�y;Am;APAT � (5.65)

Conditional of a joint normal. If the joint conditional density of �x;y�

given z is normal

px;yjz

 "
x

y

#�����z
!
� n

 "
x

y

#
;

"
mx

my

#
;

"
Px Pxy
Pyx Py

#!

then the conditional density of x given �y; z� is also normal

pxjy;z�xjy;z� � n�x;m;P� (5.66)

in which

m �mx � PxyP�1y �y �my� P � Px � PxyP�1y Pyx

Note that the conditional mean m is itself a random variable because

it depends on the random variable y .

5.4.2 Optimal Dynamic Estimator

We have speci®ed the random process of interest

x� � Ax �w (5.67)

y � Cx � v (5.68)

with known densities

w � N�0;Qw� v � N�0; Rv� x�0� � N�x0; P�0��

We will next derive the optimal estimator for this process. As part of

this derivation, we will derive the probability densities of the state as a

function of time. This is the same pattern that we followed in the ®rst

two sections on Brownian motion and stochastic kinetics. We started

with the random process (Wiener and Poisson processes), and then we

derived their probability density equations (Fokker-Plank and chemical

master equations).
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Because we have assumed a prior, the density of x�0�, we are using

Bayesian estimation. The overall game plan is as follows. The initial

state x�0� is assumed normal. Our optimal estimate before measure-

ment is denoted Ãx��0�. The minus sign indicates estimate beforemea-

surement. We obtain from the sensor measurement y�0�. We then

compute the conditional density of x�0�jy�0�. We show that is also

normal. The maximum of that conditional density is our optimal es-

timate after measurement, denoted Ãx�0�. We are combining the mea-

surement with the prior to calculate the posterior. Then we use the

random process (5.68) to forecast the state forward one time step to

obtain x�1�. We show that the density of x�1� (conditioned on y�0�)

is also normal,3 and the maximum of that density is our estimate at

k � 1 before measurement, Ãx��1�. Then we add measurement y�1�

and compute the conditional density of x�1�jy�0�;y�1�; its maximum

gives Ãx�1�, and we continue the iteration. So now we ®ll in the details.

Combining the measurement. We start off at k � 0 with estimate

Ãx��0� � x0 and consider the effect of adding the ®rst measurement.

We obtain noisy measurement y�0� satisfying

y�0� � Cx�0�� v�0�
in which v�0� � N�0; R� is the measurement noise. Given the measure-

menty�0�, we next obtain the conditional densitypx�0�jy�0��x�0�jy�0��.
This conditional density describes the change in our knowledge about

x�0� after we obtain measurement y�0�. This step is the essence of

state estimation. To derive this conditional density, ®rst consider the

pair of variables �x�0�;y�0�� given as"
x�0�

y�0�

#
�
"
I 0

C I

#"
x�0�

v�0�

#
We assume that the noise v�0� is statistically independent of x�0�,

and use the independent joint normal result (5.64) to express the joint

density of �x�0�; v�0��"
x�0�

v�0�

#
� N

 "
x0

0

#
;

"
Q�0� 0

0 R

#!
From the previous equation, the pair �x�0�;y�0�� is a linear transfor-

mation of the pair �x�0�; v�0��. Therefore, using the linear transfor-

mation of normal result (5.65), and the density of �x�0�; v�0�� gives

3Because we have linear transformations of normals at each step of the procedure,

every density in sight will be normal.
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the density of �x�0�;y�0��"
x�0�

y�0�

#
� N

 "
x0

Cx0

#
;

"
Q�0� Q�0�CT

CQ�0� CQ�0�CT � R

#!

Given this joint density, we then use the conditional of a joint normal

result (5.66) to obtain

px�0�jy�0�
�
x�0�jy�0�� � n�x�0�;m;P�

in which

m � x0 � L�0�
�
y�0�� Cx0

�
L�0� � Q�0�CT �CQ�0�CT � R��1

P � Q�0��Q�0�CT �CQ�0�CT � R��1CQ�0�

We see that the conditional density px�0�jy�0� is normal. The optimal

state estimate is the value of x�0� that maximizes this conditional den-

sity. For a normal, that is the mean, and we choose Ãx�0� � m. We

also denote the variance in this conditional after measurement y�0�

by P�0� � P with P given in the previous equation. The change in

variance after measurement (Q�0� to P�0�) quanti®es the information

increase by obtaining measurement y�0�. The variance after measure-

ment, P�0�, is always less than or equal to Q�0�, which implies that we

can only gain information by measurement; but the information gain

may be small if the measurement device is poor and the measurement

noise variance R is large.

Forecasting the state evolution. Next we consider the state evolution

from k � 0 to k � 1, which satis®es

x�1� �
h
A I

i"x�0�
w�0�

#

in which w�0� � N�0;Q� is the process noise. We next calculate the

conditional density px�1�jy�0�. Now we require the conditional version

of the joint density �x�0�;w�0��. We assume that the process noise

w�0� is statistically independent of both x�0� and v�0�, hence it is

also independent of y�0�, which is a linear combination of x�0� and

v�0�. Therefore we use (5.64) to obtain"
x�0�

w�0�

#
� N

 "
Ãx�0�

0

#
;

"
P�0� 0

0 Q

#!
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We then use the conditional version of the linear transformation of a

normal (5.65) to obtain

px�1�jy�0��x�1�jy�0�� � n�x�1�; Ãx��1�; P��1��

in which the mean and variance are

Ãx��1� � AÃx�0� P��1� � AP�0�AT �Q

We see that forecasting forward one time step may increase or decrease

the conditional variance of the state. The termAP�0�AT may be smaller

or larger than P�0�, but the process noise Q always makes a positive

contribution.

Given that px�1�jy�0� is also a normal, we are situated to add mea-

surement y�1� and continue the process of adding measurements fol-

lowed by forecasting forward one time step until we have processed

all the available data. Because this process is recursive, the storage re-

quirements are small. We need to store only the current state estimate

and variance, and can discard the measurements as they are processed.

The required online calculation is minor. These features make the op-

timal linear estimator an ideal candidate for rapid online application.

We next summarize the state estimation recursion.

General time step k. Denote the measurement trajectory by

y�k� � �y�0�;y�1�; : : : y�k�	
At time k the conditional density with data y�k� 1� is normal

px�k�jy�k�1��x�k�jy�k� 1�� � n�x�k�; Ãx��k�; P��k��

and we denote the mean and variance with a superscript minus to in-

dicate these are the statistics before measurement y�k�. At k � 0,

the recursion starts with Ãx��0� � x0 and P��0� � Q�0� as discussed
previously. We obtain measurement y�k�, which satis®es"

x�k�

y�k�

#
�
"
I 0

C I

#"
x�k�

v�k�

#

The density of �x�k�; v�k�� follows from (5.64) since measurement

noise v�k� is independent of x�k� and y�k� 1�"
x�k�

v�k�

#
� N

 "
Ãx��k�
0

#
;

"
P��k� 0

0 R

#!
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Equation (5.65) then gives the joint density"
x�k�

y�k�

#
� N

 "
Ãx��k�
C Ãx��k�

#
;

"
P��k� P��k�CT

CP��k� CP��k�CT � R

#!

We note
�
y�k� 1�;y�k�

	 � y�k�, and using the conditional density

result (5.66) gives

px�k�jy�k� �x�k�jy�k�� � n�x�k�; Ãx�k�; P�k��

in which

Ãx�k� � Ãx��k�� L�k� �y�k�� C Ãx��k��
L�k� � P��k�CT �CP��k�CT � R��1

P�k� � P��k�� P��k�CT �CP��k�CT � R��1CP��k�

We forecast from k to k� 1 using the model

x�k� 1� �
h
A I

i"x�k�
w�k�

#

Because w�k� is independent of x�k� and y�k�, the joint density of

�x�k�;w�k�� follows from a second use of (5.64)"
x�k�

w�k�

#
� N

 "
Ãx�k�

0

#
;

"
P�k� 0

0 Q

#!

and a second use of the linear transformation result (5.65) gives

px�k�1�jy�k��x�k� 1�jy�k�� � n�x�k� 1�; Ãx��k� 1�; P��k� 1��

in which

Ãx��k� 1� � AÃx�k�
P��k� 1� � AP�k�AT �Q

and the recursion is complete.

Summary. We place all the required formulas for implementing the

optimal estimator in one place for easy reference. The initial conditions

for k � 0 are

Ãx��0� � x0 P��0� � Q�0�
The update equations for time k � 0 are
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Ãx�k� � Ãx��k�� L�k��y�k�� C Ãx��k�� (5.69)

L�k� � P��k�CT �CP��k�CT � R��1 (5.70)

P�k� � P��k�� P��k�CT �CP��k�CT � R��1CP��k� (5.71)

Ãx��k� 1� � AÃx�k� (5.72)

P��k� 1� � AP�k�AT �Q (5.73)

The full densities of the state before and after measurement are

px�k�jy�k�1��x�k�jy�k� 1�� � n�x�k�; Ãx��k�; P��k��

px�k�jy�k�
�
x�k�jy�k�� � n�x�k�; Ãx�k�; P�k��

These formulas provide the celebrated Kalman ®lter (Kalman, 1960).

One of Kalman's key contributions was to use the state-space model

to describe the system dynamics. As we see here, after that step, the

solution of the optimal ®ltering problem reduces to a few well-known

results about normals, linear transformation, and conditional density.

One of the main practical advantages of the Kalman ®lter is the ex-

tremely ef®cient implementation. One can update and store the con-

ditional mean and variance with only a few matrix multiplications and

®nding one matrix inverse. This ef®cient recursion makes the Kalman

®lter ideal for online state estimation where one would like to ®nd the

optimal estimate in real time as the sensormeasurements become avail-

able.

5.4.3 Optimal Steady-State Estimator

Notice from (5.70) that the optimal estimator has a time-varying gain,

L�k�, coming from the time-varying recursion for P�k� and P��k�, given
by (5.71) and (5.73). If we are willing to give up a small amount of

performance during small initial times, we can obtain an even simpler

®lter. Assume for the moment that these recursions converge to a

steady state. The steady state then satis®es

Ps � P�s � P�s CT �CP�s CT � R��1CP�s
P�s � APsAT �Q

Substituting Ps from the ®rst equation into the second equation and

eliminating Ps give the steady-state covariance before measurement as

the solution to the following algebraic Riccati equation

P�s � Q�AP�s AT �AP�s CT �CP�s CT � R��1CP�s AT
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The steady-state ®lter gain then follows from (5.70)

Ls � P�s CT �CP�s CT � R��1

and the optimal steady-state estimate before measurement, i.e., the

conditional mean of the state given measurements, is obtained by com-

bining (5.69) and (5.72) giving

Ãx��k� 1� � AÃx��k��ALs
�
y�k�� C Ãx��k��

Implementing this ®lter as data y�k� become available is extremely ef-

®cient. Of¯ine one solves the steady-state Riccati equation, P�s , and
computes the steady-state ®lter gain, Ls . Online one has to store only

Ls and current estimate Ãx��k�, and implement a fewmatrix-vector mul-

tiplications and vector additions after y�k � 1� is measured to obtain

the next estimate, Ãx��k�1�. We have an ideal algorithm that combines

extremely small storage requirements and extremely fast computation

making the steady-state Kalman ®lter ideal for many applications in

many engineering disciplines.

In any design problem, including state estimator design, we usu-

ally have many, sometimes con¯icting, design objectives. Optimality is

certainly one desirable objective. But we would also like some perfor-

mance guarantees on the estimator. For example, if the disturbances

to the system are small does the estimate error become small as we

collect more measurements? We formulate this objective as a stability

question in the ®nal section. To motivate that discussion, consider the

following case: A � I; C � 0, i.e., the system is an integrator and we are

not making any measurements. Even without disturbances, the system

evolution is x� � x, and therefore x�k� � x0 for all k � 0. But (5.70)

gives that Ls � 0, so the estimator equation is Ãx� � Ãx and therefore

Ãx�k� � x0 for all k � 0. Since the RV x�0� is not necessarily at its

mean, x�0� � x0, and we see that the state estimate does not converge

to the system state no matter how many ªmeasurementsº we make.

This system needs to be redesigned before we can obtain a state esti-

mator that converges to the system state. It is clear what is wrong with

this system since C � 0 provides no information from the sensor, but

to detect all such badly designed systems, we introduce the concept of

observability.

5.4.4 Observability of a Linear System

The basic idea of observability is that any two distinct states can be

distinguished by applying some input and observing the two system
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outputs over some ®nite time interval (Sontag, 1998, p.262±263). The

general de®nition for nonlinear systems can be quite complex, but ob-

servability for linear systems is much simpler. First of all, the applied

input is irrelevant and we can set it to zero. Therefore consider the

linear time-invariant system �A;C� with zero input and disturbances

x� � Ax
y � Cx

with initial condition x�0� � x0. The solution for the state is x�k� �
Akx0, and the output is therefore

y�k� � CAkx0 (5.74)

The system is observable if there exists a ®nite N, such that for every

x0, N measurements fy�0�;y�1�; : : : ; y�N � 1�g distinguish uniquely

the initial state x0. As shown in Exercise 5.26, if we cannot determine

the initial state using n measurements, we cannot determine it using

N > n measurements. Therefore we can develop a convenient test for

observability as follows. For n measurements, the system model gives266664
y�0�

y�1�
...

y�n� 1�

377775 �
266664

C

CA
...

CAn�1

377775x0 (5.75)

The question of observability is therefore a question of uniqueness of

solutions to these linear equations. The matrix appearing in this equa-

tion is known as the observability matrix O

O �

266664
C

CA
...

CAn�1

377775 (5.76)

From Section 1.3.6 of Chapter 1, we know that the solution to (5.75) is

unique if and only if the columns of the np � n observability matrix

are linearly independent. Therefore, we have that the system �A;C� is

observable if and only if

rank�O� � n
We see in the next section that observability is a suf®cient condition

for estimator stability.
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To illustrate this observability analysis in a chemical engineering

context, we present the following example (Ray, 1981, p.58).

Example 5.7: Observability of a chemical reactor

Consider an isothermal, continuous well-stirred tank reactor (CSTR)

with ®rst-order liquid-phase reactions

A
k1
-! B B

k2
-! C

The volumetric ¯owrate Qf and tank volume VR are constant. The

concentration of A in the feed cAf is the manipulated variable, and

cBf � 0. Let x �
h
cA cB

iT
.

(a) Write down the mass balances for species A and B and show that

Çx � Acx � Bcu
What are matrices Ac and Bc for this problem?

(b) Consider measuring only species A reactor concentration with

sample time �t > 0. What is matrix Cc in this case? Is the system

with this sampled measurement observable?

(c) Consider measuring only species B reactor concentration. What is

matrix Cc in this case? Is the system with this sampled measure-

ment observable? Provide a physical explanation if this answer

differs from the answer to the previous part.

Solution

(a) Assuming constant density, the mass balances for A and B are

d

dt

"
cA
cB

#
�
"
��F=V � k1� 0

k1 ��F=V � k2�

#"
cA
cB

#
�
"
k=V

0

#
cAf

Ac �
"
��F=V � k1� 0

k1 ��F=V � k2�

#
Bc �

"
k=V

0

#
We can convert this continuous time system into a discrete time

system by approximating the time derivative with an explicit Euler

method4

dx

dt
� x�k� 1�� x�k�

�t
4Improving the numerical approximation does not change the observability analysis

that follows.
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giving

x� � Ax y � Ccx

A �
"
1� ��t��F=V � k1� 0

��t�k1 1� ��t��F=V � k2�

#

(b) Formeasuring only species Awe haveCc �
h
1 0

i
. We then check

the observability matrix for the DT system, giving

O�A;Cc� �
"

1 0

1� ��t��F=V � k1� 0

#

which has rank one. Since rank�O� < n, the system is not observ-

able.

(c) For measuring only species B we have Cc �
h
0 1

i
. This gives the

observability matrix

O�A;Cc� �
"

0 1

��t�k1 1� ��t��F=V � k2�

#

which has rank two for all sample times �t > 0. Since rank�O� �
n, the system is observable.

The answers are different because measuring A tells us howmuch

total B we have produced, but we have no information about how

much B was present initially nor howmuch was consumed to pro-

duce C. Therefore we cannot reconstruct the B concentration from

the model and the A concentration. Measuring species B, how-

ever, provides information about how much A is in the reactor,

because the A concentration affects the production rate of B. The

B measurement information plus the mass balances enable us to

reconstruct the A concentration. The value of the rank condition

of the observability matrix is that it makes rigorous this kind of

physical intuition and reasoning. �

5.4.5 Stability of an Optimal Estimator

Optimality of a ®lter is one desirable characteristic, but systems engi-

neers often care about other characteristics such as stability. Stability

in this situation means that the state estimate ªgets closeº (in some
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sense that we make precise shortly) to the true state as more measure-

ments become available. As shown previously with an unobservable

system (A � I; C � 0), we can have situations in which optimal estima-

tors are not stable. In these situations, optimality is small consolation,

and the estimator is not useful.

We de®ne estimate error as the difference between the true system

state and our estimate of the state. We shall use the estimate before

measurement to illustrate

ex�k� � x�k�� Ãx��k�

The evolution of the estimate error can be given by substituting the

ex�k� 1� � Ax�k��w�k��AÃx��k��ALs
�
y�k�� C Ãx��k��

Substituting the system measurement y�k� � Cx�k�� v�k� and com-

bining terms gives

ex�k� 1� � �A�ALsC�ex�k��w�k��ALsv�k�
Estimator stability is the question of whether �A � ALsC� is a stable

matrix, i.e., has all its eigenvalues inside the unit circle.

We have the following theorem covering the stability of the steady-

state estimator.

Theorem 5.8 (Riccati iteration and estimator stability). Given �A;C�

observable, Q > 0, R > 0, P��0� � 0, and the discrete Riccati equation

P��l� 1� � Q�AP��l�A0�
AP��l�C0�CP��l�C0 � R��1CP��l�A0; l � 0;1; : : :

Then

(a) There exists P�s � 0 such that for every P��0� � 0

lim
l!1

P��l� � P�s

and P�s is the unique solution of the steady-state Riccati equation

P�s � Qw �AP�s A0 �AP�s C0�CP�s C0 � R��1CP�s A0

among the class of positive semide®nite matrices.
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Figure 5.16: The change in 95% con®dence intervals for Ãx�kjk� ver-
sus time for a stable, optimal estimator. We start at

k � 0 with a large initial variance P�0�, which gives a

large con®dence interval.

(b) The matrix A�ALsC in which

Ls � P�s C0�CP�s C0 � R��1

is a stable matrix.

Bertsekas (1987, pp. 59-64) provides a proof of the ªdualº of this

theorem, which can be readily translated to this case.

So what is the payoff for knowing how to design a stable, optimal

estimator? Assume we have developed a linear empirical model for a

chemical process describing its normal operation around some nominal

steady state. After some signi®cant unmeasured process disturbance,

we have little knowledge of the state. So we take initial variance P��0�
to be large. Figure 5.16 shows the evolution of our 95% con®dence inter-

vals for the state as time increases and we obtain more measurements.

We see that the optimal estimator's con®dence interval returns to its

steady-state value after about only 10 measurements. Recall that the
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conditional variances of state given measurement do not require the

measurements. Only the optimal estimates Ãx�k� depend on the data.

So we can assess the information quality of our sensor system before

we even examine the data. But realize that the noise parametersQ and

R almost always need to be determined from process data before we

can perform this analysis. Moreover, if we plan to use feedback control

to move the disturbed process back to its optimal operating point, the

better our estimate of the state, the better our control and therefore

process performance.

State estimation is a fundamental topic appearing in many branches

of science and engineering, and has a large literature. A nice and brief

annotated bibliography describing the early contributions to optimal

state estimation of the linear Gaussian system is provided by ÊAstrÈom

(1970, pp. 252-255). Kailath (1974) provides a comprehensive and his-

torical review of linear ®ltering theory including the historical devel-

opment of Wiener-Kolmogorov theory for ®ltering and prediction that

precededKalman ®ltering (Wiener, 1949; Kolmogorov, 1941). Jazwinski

(1970) provides an early and comprehensive treatment of the optimal

stochastic state estimation problem for linear and nonlinear systems.

Many optimal control texts contain discussions of the nonlinear state

estimation problem (Bryson and Ho, 1975; Stengel, 1994). The moving

horizon estimation (MHE) method, which uses online optimization to

address system nonlinearity and constraints, is presented by Rawlings,

Mayne, and Diehl (2020, Ch. 4).

5.5 Exercises

Exercise 5.1: Random walk with the uniform distribution

Consider again a discrete-time random walk simulation

x�k� 1� � x�k�� v�t �
p
2D�t w�k� (5.77)

in which x;w 2 R2, k is sample number, �t is the sample time with t � k�t. Instead
of using normally distributed steps as in Figure 5.3, let w � 2

p
3�u � 1=2� in which

u � U�0;1�

pu�a1; a2� �
8<:1 0 � a1; a2 � 1

0 otherwise

We then have that w � U��p3;p3� with zero mean and unit variance. The Octave or

MATLAB function rand generates samples of u, from which we can generate samples of

w with the given transformation.

(a) Calculate a trajectory for this randomwalk in the plane and compare to Figure 5.3

for the normal distribution.
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(b) Calculate the mean square displacement for 500 trajectories and compare to

Figure 5.4 for the normal distribution.

(c) Derive the evolution equation for the probability densitypx�x; t� for this process
in the limit as �t goes to zero. How is this model different from the usual

diffusion equation given by (5.30) for the randomwalk with normally distributed

steps?

Exercise 5.2: The different diffusion coef®cients D and D
In the chapter we compared two models for the evolution of concentration undergoing

convection and diffusion processes

@c

@t
� � @

@x
�v�x; t�c�� @

@x
�D�x; t�

@c

@x
�

and

@c

@t
� � @

@x
�v�x; t�c�� @2

@x2
�D�x; t�c�

in which we consider x, v , andD scalars. The ®rst is derived from conservation of mass

with a ¯ux law de®ned by N � �D@c=@x. The second is the Fokker-Planck equation

corresponding to the following random walk model of diffusion

dx � v�x; t�dt �
q
2D�x; t� dW

(a) Show that when the diffusivity D�x; t� does not depend on x, these two models

are equivalent and D�t� � D�t�.

(b) Show that the Fokker-Planck equation can always be written in the following

convection-diffusion form with a modi®ed drift term

@c

@t
� � @

@x
�Äv�x; t�c�� @

@x
�D�x; t� @c

@x
�

and ®nd the expression for Äv�x; t�.

Exercise 5.3: The diffusion coef®cient matrices D andD

Repeat Exercise 5.2 but for the case in which x and v are n-vectors and D and D are

n�n diffusion coef®cient matrices

@c

@t
� �r � �v�x; t�c��r � �D�x; t� �rc�

and

@c

@t
� �r � �v�x; t�c��rr : �D�x; t�c�

Exercise 5.4: Continuity of random processes

We know that the Wiener process is too rough to be differentiated, but is it even con-

tinuous? To answer this question, we ®rst have to extend the de®nition of continuity

to cover random processes such as W�t�. We use the following de®nition.

De®nition 5.9 (Continuity (with probability one)). A scalar random process r�t� is
continuous (with probability one) if for all " > 0 and � < 1, there exists � > 0, which

generally depends on " and �, such that

Pr�jr�t�� r�s�j � "� � � for all t, s satisfying jt � sj � �
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In other words, a randomprocess is continuous if squeezing the times close enough

together squeezes the values of the random process together, with probability as close

to one as desired.

Using this de®nition, prove that the Wiener processW�t� is continuous (with prob-

ability one) and that the white-noise process dW�t� is discontinuous, i.e., not continu-
ous. Hence, establish that integrating the discontinuous white-noise process smooths

it enough to creates a continuous Wiener process.

Exercise 5.5: Multidimensional ItÃo formula and moments of multidimen-
sional SDEs

(a) Use ItÃo's formula to derive (5.33) and (5.34).

(b) Derive the multidimensional form of ItÃo's formula, (5.38), for an SDE in the form

dxi �Ai�x; t�dt �Bij�x; t�dWj

Recall (5.20).

(c) Use this formula to derive the multidimensional versions of (5.33) and (5.34):

E
0@d�xi � x0i��xj � x0j�

dt

1A������
t�t0

� 2Dij�x
0; t0�

E
 
d�xi � x0i�

dt

!�����
t�t0

�Ai�x
0; t0�

Exercise 5.6: Diffusion equation in one dimension with Laplace transform

Consider the diffusion equation on the line

@c

@t
� Dr2c 0 < t; �1 < x <1

We wish to calculate the response c�x; t� to an impulse source term at t � 0, c�x;0� �
��x�.

(a) In Chapter 3, we already solved this problem using the Fourier transform. Here

we try the Laplace transform. Take the Laplace transform of the one-dimensional

diffusion equation with this initial condition and show

D
d2c�x; s�

dx2
� sc�x; s� � ���x� (5.78)

(b) What are the two linearly independent solutions to the homogeneous equation?

Break the problem into two parts and solve the differential equation for x > 0

and x < 0. You have four unknown constants at this point.

(c) Which of the two linearly independent solutions is bounded for x ! 1? Which

of these two solutions is bounded for x ! �1? Use this reasoning to ®nd two

of the unknown constants.

(d) Use continuity of c�x; s� at x � 0 to ®nd one more unknown constant. Integrate

(5.78) across a small interval containing zero to obtain a condition on the change

in the ®rst derivative

dc�x � 0�; s�
dx

� dc�x � 0�; s�
dx
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(e) Use this jump condition to ®nd the last constant and obtain the full transform

c�x; s� valid for all x.

(f) Invert this transform and show

c�x; t� � 1

2
p
�Dt

e�x
2=�4Dt� 0 < t; �1 < x <1 (5.79)

State which inversion formula you are using.

(g) Compute the mean square displacement for this concentration pro®le.

p�x; t� � c�x; t�

hx2i �
Z1
�1
p�x; t�x2dx

Exercise 5.7: Random walk in one dimension

Prepare a simulation of a random walk in one dimension for D � 2. Start the particles

at x � 0 at t � 0 and simulate until t � 1000.

(a) Show the trajectories of the random walks for ®ve particles on the same plot.

(b) Plot the mean square displacement versus time for 1000 particles. Compare this

result to the analytical solution given in Exercise 5.6(g). Describe any differences.

(c) Plot the histogram of particle locations at t � 1000 for 1000 particles. On the

same plot, compare this histogram to the analytical result given in (5.79). De-

scribe any differences.

Exercise 5.8: More useful integrals

Use the de®nition of the complete gamma function and establish the following integral

relationship Z1
0
xpe�ax

n
dx � ��

p�1
n �

na�p�1�=n
a > 0

For the case n � 2, this relation reduces toZ1
0
xpe�ax

2
dx � ��

p�1
2 �

2a�p�1�=2
a > 0 (5.80)

which proves useful in the next exercises.

Exercise 5.9: Diffusion equation in cylindrical coordinates with Laplace
transform

Consider the diffusion equation in cylindrical coordinates with symmetry in the � co-

ordinate
@c

@t
� 1

r

@

@r
rD
@c

@r
0 < t; 0 < r <1

We wish to calculate the response c�r ; t� to an impulse source term at t � 0,

c�r ;0� � 1
2�r ��r�.

(a) Take the Laplace transform of the diffusion equation with this initial condition

and show

D
1

r

d

dr
r
dc�r ; s�

dr
� sc�r ; s� � � 1

2�r
��r� (5.81)



5.5 Exercises 527

(b) What are the two linearly independent solutions to the homogeneous equation?

(c) Which of the two linearly independent solutions is bounded for r !1? Use this

reasoning to determine one of the unknown constants.

(d) Integrate (5.81) across a small interval containing zero to obtain a condition on

the change in the ®rst derivative

lim
r!0�

r
dc�r ; s�

dr
� lim
r!0�

r
dc�r ; s�

dr

(e) Use this jump condition to ®nd the second constant and obtain the transform

c�r ; s� � 1

2�D
K0

�r
s

D
r

�
(f) Invert this transform and show

c�r ; t� � 1

4�Dt
e�r

2=�4Dt� 0 < t; 0 < r <1

State which inversion formula you are using.

(g) Compute the mean square displacement for this concentration pro®le

hr2i �
Z 2�

0

Z1
0
r2c�r ; t�r dr d�

Exercise 5.10: Diffusion equation in spherical coordinates with Laplace
transform

Consider the diffusion equation in spherical coordinates with symmetry in the � and

� coordinates
@c

@t
� 1

r2
@

@r
r2D

@c

@r
0 < t; 0 < r <1

We wish to calculate the response c�r ; t� to an impulse source term at t � 0,

c�r ;0� � 1

4�r2
��r�.

(a) Take the Laplace transform of the diffusion equation with this initial condition

and show

D
1

r2
d

dr
r2
dc�r ; s�

dr
� sc�r ; s� � � 1

4�r2
��r� (5.82)

(b) What are the two linearly independent solutions to the homogeneous equation?

(c) Which of the two linearly independent solutions is bounded for r !1? Use this

reasoning to ®nd one of the unknown constants.

(d) Integrate (5.82) across a small interval containing zero to obtain a condition on

the change in the ®rst derivative

lim
r!0�

r2
dc�r ; s�

dr
� lim
r!0�

r2
dc�r ; s�

dr

(e) Use this jump condition to ®nd the second constant and obtain the full transform

c�r ; s� valid for all r .
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(f) Invert this transform and show

c�r ; t� � 1

8��Dt�
3
2

e�r
2=�4Dt� 0 < t; 0 < r <1

State which inversion formula you are using.

(g) Compute the mean square displacement for this concentration pro®le

hr2i � 4�

Z1
0
r2c�r ; t� r2 dr

Exercise 5.11: Probability distributions for diffusion on the plane

This exercise provides another view of the issues raised in Example 5.4. Consider again

the diffusion equation, (5.30), repeated here

@p

@t
� Dr2p

subject to a unit impulse at the origin at t � 0.

We consider solving this equation in the plane using both rectangular coordinates

�x;y� and polar coordinates �r ; ��.

(a) Using rectangular coordinates, let p�x;y; t� satisfy (5.30)

@p

@t
� D

 
@2p

@x2
� @

2p

@y2

!
with initial condition

p�x;y; t� � ��x���y� t � 0

Solve this equation and show

p�x;y; t� � 1

4�Dt
e��x

2�y2�=�4Dt� (5.83)

Notice this p�x;y; t� is a valid probability density (positive, normalized).

(b) If we consider the two components �x;y� as time-varying random variables with

the probability density given by (5.83)

� �
"
x
y

#

p��x;y; t� �
1

4�Dt
e��x

2�y2�=�4Dt�

then we say � is distributed as follows

� � N�0; �2Dt�I�
in which I is a 2�2 identity matrix. The position random variable in rectangular

coordinates is normally distributed with zero mean and covariance �2Dt�I.

(c) Next de®ne a new random variable,

� �
"
r
�

#
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as the (invertible) transformation from rectangular to polar coordinates. We

have for the transformation, inverse transformation and Jacobian

� � f���
"
r
�

#
�
" q

x2 �y2

tan�1�y=x�

#

� � f�1���
"
x
y

#
�
"
r cos�
r sin�

#
df�1���
d�

�
"
cos� �r sin�
sin� r cos�

# �����@f�1���@�

����� � r
Use the rule for ®nding the probability density of a transformed random vari-

able5 and show

p��r ; �; t� � 1

4�Dt
re�r

2=�4Dt�

This is the quantity denoted pP in Example 5.4. Calculate the marginal pr by

integration and show

pr �r ; t� � 1

2Dt
re�r

2=�4Dt�

Note that these are bothwell-de®ned probability densities (positive, normalized).

The ®rst is the probability density of the pair of random variables �r ; ��, and the

second is the marginal density of the random variable r for particles undergoing
the Brownian motion.

Exercise 5.12: Mean and variance of the Poisson distribution

Given that discrete random variable Y has the Poisson density

pY �n� � a
n

n!
e�a

for n � 0;1; : : :, and parameter a 2 R � 0, show that

E�Y� � a var�Y� � a

Exercise 5.13: Alternate derivation of Poisson process density

Consider the Poisson process probability Pr�Y�t� � n� for n � 0. Show that

Pr�Y�t� � n� � Pr�Y�t� � n�� Pr�Y�t� � n� 1�

You may want to review Exercise 4.1(a). Using the de®nition of the event time �n, show
that

Pr�Y�t� � n� �
Z t
0
p�n�t�dt �

Z t
0
p�n�1�t�dt

Substitute (5.49) and use integration by parts to show (5.50)

Pr�Y�t� � n� � ��t�
n

n!
e��t

5p��y� � p��f�1�y��
����det� @f�1�y�@y

�����. See (4.23).
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Exercise 5.14: Generating samples from an exponential distribution

Let random variable u be distributed uniformly on �0;1�. De®ne random variable � by

the transformation

� � �1

�
lnu

Show that � has density (see Section 4.3.2)

p��t� � �e��t

Thus uniformly distributed random samples can easily be transformed to give expo-

nentially distributed random samples as required for simulating Poisson processes and

stochastic kinetics.

Exercise 5.15: State-space form for master equation

Write the linear state-space model for the master equation in the extent of the reaction

describing the single reaction

A� B
k1
-*)-
k�1

C (5.84)

Assume we are not measuring anything.

(a) What are x;A; B;C;D for this model?

(b) What is the dimension of the state vector in terms of the initial numbers of

molecules in the system.

Exercise 5.16: Properties of the kinetic matrix

(a) Show that for a valid master equation the row sum is zero for each column of

the A matrix in (5.56).

(b) Show that this result holds for the A given in (5.55) for the reaction A� B -*)- C .

(c) What is the row sum for each column of theA� matrix in the sensitivity equation?

Show this result.

Exercise 5.17: Reaction probabilities in stochastic kinetics

Consider a stochastic simulation of the following reaction

a A� b B
k1
-*)-
k�1

c C� d D

(a) Write out the two reaction probabilitieshi�nj�; i � 1;�1 considering the forward
and reverse reactions as separate events.

(b) Compare these to the deterministic rate laws ri�cj�; i � 1;�1 for the forward and
reverse reactions considered as elementary reactions. Why are these expressions

different? When do they become close to being the same?
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Exercise 5.18: Sampling to solve the master equation

Consider the stochastic simulation method described in the chapter. We may view the

trajectory of each simulation using this method as a sample of the probability density

of the system. Show that the expectation of this sampling process satis®es the chemical

master equation, (5.53).

Exercise 5.19: The evolution of the mean concentration

Consider the simple irreversible reaction

A
k
-! B r � knA

in which nA is the number of A molecules and k is a rate constant. The reactor volume

starts withnA0 Amolecules. Consider p�nA; t�, the probability that the reactor volume

contains nA molecules at time t.

(a) Over what range of nA is p�nA; t� de®ned? Call this set N. Write the evolution

equation for p�nA; t�;nA 2 N.

(b) De®ne the mean of A's probability density by

hnA�t�i �
X

nA2N
nAp�nA; t�

From this de®nition and the evolution of the probability density, write an evo-

lution equation for hnA�t�i. The probability density itself should not appear in

the evolution equation for the mean.

(c) How is the mean's evolution equation related to the usual mass action kinetics

governing the macroscopic concentration cA�t�?

Exercise 5.20: Stochastic simulation for nonlinear kinetics6

Consider the reversible, second-order reaction

A� B
k1
-*)-
k�1

C r � k1cAcB � k�1cC

(a) Solve the deterministic material balance for a constant-volume batch reactor

with

k1 � 1 L/mol�min k�1 � 1 min�1
cA�0� � 1 mol/L cB�0� � 0:9 mol/L cC�0� � 0 mol/L

Plot the A, B, and C concentrations out to t � 5 min.

(b) Compare the result to a stochastic simulation using an initial condition of 400 A,

360 B and zero C molecules. Notice from the units of the rate constants that k1
should be divided by 400 to compare simulations. Figure 5.17 is a representative

comparison for one sequence of pseudorandom numbers.

(c) Repeat the stochastic simulation for an initial condition of 4000 A, 3600 B, zero C

molecules. Remember to scale k1 appropriately. Are the ¯uctuations noticeable
with this many starting molecules?
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Figure 5.17: Deterministic simulation of reaction A � B -*)- C com-

pared to stochastic simulation starting with 400 A

molecules.

nA0
nB0

BA

cA0

cB0

Figure 5.18: Species A and B in a well-mixed volume element. Con-

tinuum and molecular settings.
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Exercise 5.21: What happened to my rate?

Consider a well-mixed continuum setting in which we have positive, real-valued con-

centrations of reacting molecules of two types, A and B, as depicted in Figure 5.18.

Let the concentration of A and B molecules in the volume of interest be denoted cA0,
cB0. Consider the three possible irreversible reactions between these species using the

elementary rate expressions

A�A
k1
-! C r1 � k1c2A

A� B
k2
-! D r2 � k2cAcB (5.85)

B � B
k3
-! E r3 � k3c2B

Consider also the total rate of reaction

r � r1 � r2 � r3
(a) If the A and B species are chemically similar so the different reactions' rate

constants are all similar, k1 � k2 � k3 � k, and the concentrations of A and B

are initially equal, the total rate is given by

r � 3kc2A0

But if we erase the distinctions between A and B completely and relabel the B

molecules in Figure 5.18 as A molecules, we obtain the new concentrations of A

and B as cA � 2cA0, cB � 0 and the total rate is then

r � r1 � r2 � r3
r � k1c2A � k2cAcB � k3c2B
r � k�2cA0�2 � k�2cA0 � 0�� k�0�2

r � 4kc2A0

Why are these two total rates different and which one is correct?

(b) Repeat your analysis of the reaction rates if we reduce the length scale and

consider the molecular kinetic setting in which we have integer-valued nA0, nB0
molecules of A and B in the volume of interest.

(c) Perform a stochastic simulation of the molecular setting using the following

parameters

nA0 � 50 nB0 � 60 nC0 � nD0 � nE0 � 0

k1 � k2 � k3 � k � 10sec�1

Make a plot of all species versus time. Print the plot and the simulation code.

Exercise 5.22: Cumulative distribution for the omega expansion

Given the governing equation for the ¯uctuation density in the omega expansion

@

@t
� � � @

@�

�� 2kc� �
�� @2

@�2
�
kc2 �

�
De®ne the cumulative distribution

F�x; t� �
Z x
�1

���; t�d�

6See also Exercise 4.17 in (Rawlings and Ekerdt, 2020).
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V

A vAi

mA

Figure 5.19: Molecular system of volume V containing molecules of

mass mA with velocity vAi.

(a) Derive the PDE governing F 's evolution. What are the corresponding boundary

conditions and initial condition?

(b) Solve this PDE numerically and compare to Figure 5.15 in the text. Increase 


holding c0 � n0=
 ®xed and describe the effect on F .

Exercise 5.23: Properties of the Maxwell-Boltzmann distribution

Consider the simple molecular system depicted in Figure 5.19 with a large number

of ideal gas molecules of species A with molecular weight mA. The system volume

is V . Molecule i has velocity vAi, i � 1;2; : : : n. A velocity vector is denoted v �h
vx vy vz

iT
with corresponding x;y; z components. These velocities are consid-

ered samples of a random variable with ®xed and known distribution.

The Maxwell-Boltzmann distribution for the zero mean ¯uctuation velocity in an

ideal gas is

pu�ux ; uy ; uz� �
�

m

2�kBT

�3=2
e
� 1

2
m
kBT

�u2
x�u2

y�u2
z�

in whichm is the molecule mass, T is absolute temperature, and kB is the Boltzmann

constant, kB � R=NAv. This distribution is a multivariate normal with zero mean and

variance matrix
kBT
m I, which we write as

u � N
�
0;
kBT

m
I

�
Denote the A species mean velocity (drift term) as vA. The A molecule velocities are

then distributed as

vAi � N
�
vA;

kBT

mA
I

�
all i (5.86)

Starting from the distribution (5.86), derive the following expectations in terms of the

mean species velocity vA and kB ; T ;mA.

1. E�vAi�
2. E�vAivTAi�
3. E�v2Ai� in which v2Ai � vAi � vAi � vTAivAi
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4. E�v2AivAi�

Exercise 5.24: The normal's properties for optimal linear estimation

Establish the three properties (5.64)±(5.66) used in deriving the optimal linear estima-

tor. Some hints follow.

(a) For (5.64), use the independence of y to establish that

px;y;z�x;y; z� � px;z�x; z�py�y�
and divide both sides by pz�z�.

(b) For (5.65), we are given that �x; z� is jointly distributed as

px;z�x; z� � n
�"
x
z

#
;

"
mx

mz

#
;

"
Px Pxz
Pzx Pz

#�
Consider the linear transformation"

y
z

#
�
"
A 0

0 I

#"
x
z

#
and show that "

y
z

#
� N

�"
Amx

mz

#
�
"
APxAT APxz
PzxAT Pz

#�
Now use the conditional density formula to obtain pyjz .

(c) For (5.66), note that this property is derived in Example 4.20.

Exercise 5.25: Observability, controllability, and duality

Review the concept of controllability presented in Exercise 1.26. Show that �A;C� is
observable if and only if �AT ; CT � is controllable. This result marks the beginning of

the interesting story of the duality between regulation and estimation.

Exercise 5.26: Observability with N measurements

Consider the linear system

x� � Ax y � Cx
Prove the statement made in the text that if x�0� 2 Rn cannot be uniquely determined

by n measurements
�
y�0�;y�1�; : : : ; y�n� 1�

�
, then it cannot be determined by N

measurements for any N.

Exercise 5.27: Mean and variance of a controller cost function

When controlling the state x of a system to the origin subject to random disturbances,

the best that a controller can do is usually obtain x � N�0; P� where the variance

P depends on the controller and the variance of the random disturbances. Given a

quadratic cost function for the controller, ` � xTQx, show that (Zagrobelny, Ji, and

Rawlings, 2013)

E�`� � tr�QP� var�`� � 2tr�QPQP�

Note that ` is distributed as a generalized chi-squared distribution. Hint: the result

in Exericse 4.32 may prove useful.
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A

Mathematical Tables

A.1 Laplace Transform Table

The Laplace transform pairs used in the text are collected in Table A.1

with a reference to the page in the text where they are derived or ®rst

stated.

f�t� f �s� Page

1 �f�t�� �g�t� �f�s�� �g�s� 106

2
df�t�

dt
sf �s�� f�0� 107

3
d2f�t�

dt2
s2f�s�� sf �0�� f 0�0� 107

4
dnf�t�

dtn
snf�s��

nX
i�1

sn�if �i�1��0� 107

5

Z t
0
f�t0�dt0

1

s
f �s� 107

6 tnf�t� ��1�n d
nf�s�

dsn
107, 228

7 f�t � a�H�t � a� e�asf�s� 108

8 eatf�t� f �s � a� 108

9

Z t
0
f�t0�g�t � t0�dt0 f�s�g�s� 108, 227

10 lim
t!0�

f�t� initial value theorem lim
s!1 sf �s� 108, 227

11 lim
t!1

f�t� ®nal value theorem lim
s!0

sf �s�y 108, 227

12 H�t�
1

s
109

13 ��t� 1 115

14 ��n��t� n � 0 sn 115

continued on next page

538
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continued from previous page

f�t� f �s� page

15 t
1

s2
109

16 tn n > �1 ��n� 1�

sn�1
109

17 eat
1

s � a
109

18 eAt A 2 Rn�n �sI �A��1 112

19 teat
1

�s � a�2
109

20 sin!t
!

s2 �!2
109

21 cos!t
s

s2 �!2
109

22 sinh!t
!

s2 �!2
109

23 cosh!t
s

s2 �!2
109

24 eat sin!t
!

�s � a�2 �!2
109

25 eat cos!t
s � a

�s � a�2 �!2
109

26

mX
n�1

p�sn�

q0�sn�
esnt q�sn� simple zero

p�s�

q�s�
315

27

mX
n�1

esnt
rnX
i�1

anit
i�1 q�sn� zero of order rn

p�s�

q�s�

�
316

28
k

2
p
�t3

e�
k2

4t e�k
p
s k > 0 337

29
1p
�t

e�
k2

4t
e�k

p
s

p
s

k > 0 337

30 erfc

�
k

2
p
t

�
e�k

p
s

s
k > 0 337

31
e�t

2
p
�

�
e�k

p
�erfc

�
k

2
p
t
�
p
�t

�
� ek

p
�erfc

�
k

2
p
t
�
p
�t

��
e�k

p
s

�s ���
p
s

k > 0 337

32
2p
�

p
te�

k2

4t � k erfc

�
k

2
p
t

�
e�k

p
s

s
p
s

k > 0 549

33
e�t

2

�
e�k

p
�erfc

�
k

2
p
t
�
p
�t

�
� ek

p
�erfc

�
k

2
p
t
�
p
�t

��
e�k

p
s

�s ���
k > 0 351

34
1

2t
e�

k2

4t K0�k
p
s� k > 0 338

35
1

k
e�

k2

4t
K1�k

p
s�p

s
k > 0 338

36
sinh�x

p
k�

sinh
p
k

� 2

1X
n�1

��1�n�1n�
n2�2 � k

sin�n�x� e��n
2�2�k�t sinh�x

p
s � k�

s sinh
p
s � k

340

37 1� 2

1X
n�1

��1�n�1
n�x

sin�n�x� e�n
2�2t sinh�x

p
s�

xs sinh
p
s

342

38 1� 2

1X
n�0

��1�n
�n� 1=2��

cos��n� 1=2��x� e���n�1=2���
2t cosh�x

p
s�

s cosh
p
s

340

39 1� 2

1X
n�1

1

�nJ1��n�
J0��nx� e

��2nt J0��n� � 0
I0�x

p
s�

sI0�
p
s�

342

continued on next page
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continued from previous page

f�t� f �s� page

40 2

1X
n�1

��1�n�1 sin�n�a� sin�n�b� cos�n�t�
sinh�as� sinh�bs�

sinh s
322

41 2

1X
n�1

��1�n�1
n�

sin�n�a� sin�n�b� sin�n�t�
sinh�as� sinh�bs�

s sinh s
348

Table A.1: Larger table of Laplace transforms.

y Final value exists if and only if sf �s� is bounded for Re�s� � 0.
� ani � ��rn�i��sn�

�rn�i�!�i�1�! ��s� � �s � sn�rnp�s�=q�s�.
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A.2 Statistical Distributions

Distribution Density Page

uniform p�x� � 1=�b � a� x 2 �a; b� 391

normal p�x� � 1p
2��2

exp

�
� 1

2
�x�m�2

�2

�
360

multivariate p�x� � 1

�2��n=2jP j1=2 exp

�
� 1

2
�x �m�TP�1�x �m�

�
367

normal

exponential p�x� � �e��x x � 0; � > 0 488

Poisson p�n� � an

n! e
�a n � 0;1;2; : : : ; a > 0 491

chi p�x� � 2x

�
1
2

�n=2
��n=2� x

n�2e�
1
2
x2

450

chi-squared p�x� �
�
1
2

�n=2
��n=2� x

n=2�1e�x=2 x � 0; n � 1 450

generalized (no analytical expression) 535
chi-squared

F p�x� �

r
�xn�nmm

�xn�m�n�m

xB�n
2
; m
2
�

x � 0; n;m � 1 451

Student's t p�x� � �

�
n�1
2

�
p
n� �

�
n
2

�
�
1� x2

n

��n�1
2

450

multivariate t p�x� �
�

�n�p
2

��
1� 1

n �x�m�T ��1�x�m�

��n�p
2

�n��p=2 �

�
n
2

�
j�j1=2 455

Wishart p�X� � jXj
n�p�1

2

2

np
2 jRj

n
2 �p

�
n
2

� e� 1
2
tr�R�1X� X > 0 421

Maxwell p�x� � x2e�
1
2
x2

534

Maxwell- pu�ux ; uy ; uz� �
�

m
2�kBT

�3=2
e
� 1
2

m
kBT

�u2x�u2y�u2z�
534

Boltzmann

Table A.2: Statistical distributions de®ned and used in the text and

exercises.

The different probability distributions that have been discussed in

the text are summarized in Table A.2.

A.3 Vector and Matrix Derivatives

De®nition. First consider s�t�, a real-valued, scalar function1 of a real-

valued scalar, s : R ! R. Assume the derivative, ds�t�=dt exists. We

1All of the formulas in this section are readily extended to complex-valued functions

of a complex variable.
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wish to extend the de®nition of the derivative to vector and matrix-

valued functions of vector and matrix-valued arguments. Many of the

derivative operations, such as derivative of scalar-valued functions with

respect to scalars, vectors, andmatrices, can be conveniently expressed

using the rules of vector/matrix operations. Other derivative opera-

tions, such as the derivative of matrix-valued functions with respect to

vectors and matrices, produce tensors having more than two indices.

We summarize here themost important formulas that can be expressed

in matrix/vector calculus. To state how the derivatives are arranged

into vectors and matrices, we require a more precise notation than we

used in the text. Moreover, several different and con¯icting conven-

tions are in use in different ®elds; these are brie¯y described in Section

A.3.1. So we state here the main results in a descriptive notation, and

expect the reader can translate these results into the conventions of

other ®elds.

We require a few preliminaries. Now let s�x� be a scalar-valued

function of vector x, s : Rn ! R. Assume that all partial derivatives,

@s=@xi; i � 1;2; : : : ; n exist. The derivative ds=dx is then de®ned as

the column vector

ds

dx
�

26666666664

@s

@x1
@s

@x2
...
@s

@xn

37777777775
scalar-vector derivative

The derivative ds=dxT is de®ned as the corresponding row vector

ds

dxT
�
�
@s

@x1

@s

@x2
� � � @s

@xn

�
and note that �ds=dx�T � dsT=dxT � ds=dxT . Next let s�A� be a

scalar-valued function of matrix A, s : Rm�n ! R. Again, assuming all

partial derivatives exist, the derivative ds=dA is then de®ned as

ds

dA
�

26666666664

@s

@A11

@s

@A12

� � � @s

@A1n
@s

@A21

@s

@A22

� � � @s

@A2n
...

...
. . .

...
@s

@Am1

@s

@Am2

� � � @s

@Amn

37777777775
scalar-matrix derivative
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As in the vector case, we de®ne ds=dAT as the transpose of this result,

or ds=dAT � �ds=dA�T . These more general matrix derivatives do

specialize to the two vector derivatives previously de®ned.

Next up is the vector-valued function of a vector, f�x�. Let f : Rn !
Rm. The quantity of most interest is usually the Jacobian matrix, which

we denote by df=dxT , de®ned by

df

dxT
�

26666666664

@f1
@x1

@f1
@x2

� � � @f1
@xn

@f2
@x1

@f2
@x2

� � � @f2
@xn

...
...

. . .
...

@fm
@x1

@fm
@x2

� � � @fm
@xn

37777777775
vector-vector derivative

(Jacobian matrix)

The notation df=dxT serves as a convenient reminder that the col-

umn vector f is distributed down the column and the row vector xT

is distributed across the row in the entries in the Jacobian matrix. The

transpose of the Jacobian is simply df T=dx � �df=dxT �T , which is

easy to remember. Note that df=dx is a long column vector withmn

entries coming from stacking the columns of the Jacobian matrix. This

is the vec operator, so we have

df

dx
� vec

�
df

dxT

�
The transpose, denoted df T=dxT , is a long row vector. These vector

arrangements of the derivatives are not usually of much interest com-

pared to the Jacobian matrix, as we shall see when we discuss the chain

rule.

Inner product. The inner product of two vectors was de®ned in Chap-

ter 1

�a; b� � aTb �
nX
i�1
aibi a;b 2 Rn

We can extend this de®nition to linear spaces of matrices as follows

�
A;B

� � tr�ATB� �
mX
i�1

nX
j�1
AijBij A;B 2 Rm�n

Because tr�C� � tr�CT � for any square matrix C , the matrix inner prod-

uct can also be expressed as
�
A;B

� � tr�BTA�, which is valid also in the

vector case.
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Chain rules. One of the most important uses of these derivative for-

mulas is a convenient expression of the chain rule. For scalar-valued

functions we have two common forms.

ds � � ds
dx
; dx

� � ds

dxT
dx scalar-vector (A.1)

ds � � ds
dA
; dA

� � tr

�
ds

dAT
dA

�
scalar-matrix (A.2)

Notice that when written with inner products, these two formulas are

identical. The vector chain rule can be considered a special case of

the matrix chain rule, but since the vector case arises frequently in

applications and doesn't require the trace, we state it separately. For

vector-valued functions we have one additional form of the chain rule

df � df

dxT
dx vector-vector (A.3)

which is a matrix-vector multiplication of the Jacobian matrix of f with

respect to x with the column vector dx. Because df is a vector, this

chain rule is not expressible by an inner product as in the scalar case.

But notice the similarity of the vector chain rule with the second equal-

ities of the two scalar chain rules. Because of this similarity, all three

important versions of the chain rule are easy to remember using this

notation. There is no chain rule for matrix-valued functions that does

not involve tensors.

Finally, we collect here the different matrix and vector differentia-

tion formulas that have been used in the text and exercises. These are

summarized in Table A.3, with a reference to the page in the text where

they are ®rst mentioned or derived.

Derivative Formula Page

1 ds � ds

dxT
dx (chain rule 1)

2 ds � tr

�
ds

dAT
dA

�
(chain rule 2)

continued on next page
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continued from previous page

Derivative Formula Page

3 df � df

dxT
dx (chain rule 3)

4
d

dx
f Tg � df T

dx
g � dgT

dx
f (product rule)

5
d

dx
xTb � b

6
d

dxT
bTx � bT

7
d

dx
xTAx � Ax �ATx

8
d

dxT
Bx � B

9
d

dx
xTBT � BT

10
d

dt
p�A� � q�A�

d

dt
A; q��� � d

d���p��� 335

11
d

dt
detA � det�A� tr

�
A�1

d

dt
A

�
; detA � 0 335

12
d

dA
tr�p�A�� � q�AT �; q��� � d

d���p��� 440

13
d

dA
detA � �A�1�T detA; detA � 0 440

14
d

dA
ln�detA� � �A�1�T ; detA � 0 440

15
d

dA
tr�AB� � d

dA
tr�BA� � BT

16
d

dA
tr�ATB� � d

dA
tr�BAT � � B

17
d

dA
tr�ABAT � � A�BT � B�

18
d

dA
tr�ATBA� � �B � BT �A

continued on next page
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continued from previous page

Derivative Formula Page

19
d

dA
tr�A�1B� � ��A�1�TBT �A�1�T 420

20
d

dA
xTA�1x � ��A�1�TxxT �A�1�T

Table A.3: Summary of vector and matrix derivatives de®ned and

used in the text and exercises; s; t 2 R, x;b 2 R
n,

A 2 R
m�n, B 2 R

m�n, f��� and g��� are any differen-

tiable functions, and p��� is any matrix function de®ned

as a power series.

A.3.1 Derivatives: Other Conventions

Given the many scienti®c ®elds requiring vector/matrix derivatives,

chain rules, and so on, a correspondingly large number of different

and con¯icting notations have also arisen. We point out here some of

the other popular conventions and show how to translate them into the

notation used in this section.

Optimization. The dominant convention in the optimization ®eld is

to de®ne the scalar-vector derivative ds=dx as a row vector instead of

a column vector. The nabla notation for gradient, rs, is then used to

denote the corresponding column vector. The Jacobian matrix is then

denoted df=dx. So the vector chain rule reads in the optimization

literature

df � df
dx

dx optimization convention

Given that ds=dx is a row vector in the optimization notation, the ®rst

scalar chain rule reads

ds � �� ds
dx

�T
; dx

� � ds
dx
dx optimization convention



A.3 Vector and Matrix Derivatives 547

The biggest problemwith adopting the optimization ®eld's conventions

arises when considering the scalar-matrix derivative. The derivative

ds=dA has the samemeaning in the optimization literature as that used

in this text. So the second scalar chain rule is also the same as in this

text

ds � � ds
dA
;dA

� � tr

�
ds

dAT
dA

�
optimization convention

Notice the inconsistency in the chain rules: the scalar-matrix version

directly above contains a transpose and the scalar-vector and vector-

vector versions do not. The burden rests on the reader to recall these

different forms of the chain rule and remember which ones require the

transpose. The advantage of the notation used in this section is that all

chain rules appear with a transpose, which is what one might anticipate

due to the chain rule's required summation over an index. Also, in the

notation used in this section, the r operator is identical to d=dx and

neither implies a transpose should be taken. Finally, there is no hint

in the optimization ®eld's notation ds=dx and rs as to which should

be a column vector and which a row vector. The notation used in this

section, ds=dx and ds=dxT , makes that distinction clear.

Field theories of physics (transport phenomena, electromagnetism)

As noted in Chapter 3, the literature in these areas primarily uses Gibbs

vector-tensor notation and index notation. For example, the derivative

of a scalar function s with regard to a vector argument x is

rs or
@s

@x

In Cartesian coordinates �
@s

@x

�
i
� @s

@xi

The derivative of a scalar s with respect to a tensor argument is similar�
@s

@A

�
ij
� @s

@Aij

The derivative of a vector function f with respect to a vector x is

rf or
@f

@x

where

�rf �ij �
�
@f

@x

�
ij
� @fj
@xi
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so
�
@f
@x

�
is the transpose of the Jacobian. Therefore, the chain rule

becomes

df � dx �rf � �rf �T � dx
Consistent with this notation, one can write the Taylor-series expan-

sion of a vector ®eld f around the origin as

f �x� � f �0�� x �rf � 1

2
xx :rrf � : : :

where derivatives are evaluated at the origin and

�rrf �jki �
@2fi
@xj@xk

One must beware, however, that this ordering of indices is not used

universally, primarily because some authors write the Taylor expansion

as

f �x� � f �0�� J � x � 1

2
K : xx � : : :

where

Jij � @fi
@xj

Kijk � @2fi
@xj@xk

A.4 Exercises

Exercise A.1: Simple and repeated zeros

Assume all the zeros of q�s� are ®rst-order zeros, rn � 1; n � 1;2; : : : ;m, in entry 27

of Table A.1, and show that it reduces to entry 26.

Exercise A.2: Deriving the Heaviside expansion theorem for repeated roots

Establish the Heaviside expansion theorem for repeated roots, entry 27 in Table A.1.

Hints: Close the contour of the inverse transform Bromwich integral in (2.7) to the

left side of the complex plane. Show that the integral along the closed contour except

for the Bromwich line goes to zero, leaving only the residues at the singularities, i.e.,

the poles s � sn, n � 1;2; : : : ;m. Since ��s� has no singularities, expand it in a

Taylor series about the root s � sn. Find the Laurent series for f�s� and show that

the residues are the coef®cients ain given in the expansion formula. Note that this

procedure remains valid if there are an in®nite number of poles, such as the case with

a transcendental function for q�s�.

Exercise A.3: Laplace transform relations

Take the limit k! 0 in entry 36 of Table A.1 and show that it produces entry 37.
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Exercise A.4: More connections of Laplace transforms

Check entry 32 in Table A.1 in two ways.

(a) Take the limit � ! 0 in entry 31 and show that produces entry 32.

(b) Notice that

f32�t� � 2tf29�t�� kf30�t�
for entries 29, 30, and 32 in Table A.1. Using entry 6, that can be true if and only

if

f 32�s� � �2
d

ds
f 29�s�� kf 30�s�

so check that this relationship holds for the transforms of these entries.

Exercise A.5: Some invalid derivative formulas

Notice that entry 5 in Table A.3 is a special case of entry 9 with BT � b. Also, entry 6

is a special case of entry 8 with B � bT . Consider the following derivatives that could

be included in Table A.3 in place of entries 5 and 6

d

dx
bTx � b d

dxT
xTb � bT

These can be derived by transposing the scalar numerators in entries 5 and 6, respec-

tively. But notice that we do not ®nd companion forms for these listed in Table A.3

with general matrix B replacing column vector b. Compute the following matrix deriva-

tives and show that simply replacing b with general matrix B above does not generate

correct formulas
d

dx
BTx � B

d

dxT
xTB � BT

Note that you may want to use the vec operator to express the correct formulas. Next

show that the correct matrix versions of these derivatives do reduce to the above for-

mulas for B � b, a column vector.

Exercise A.6: Companion trace derivatives

(a) Use the fact that tr�AB� � tr�BA� to establish that Formulas 15 and 16 in Table

A.3 are equivalent formulas, i.e., assuming one of them allows you to establish

the other one.

(b) On the other hand, show that Formulas 17 and 18 are equivalent by taking trans-

poses of one of them to produce the other one.

Exercise A.7: Derivative of matrix inverse

Derive Formula 19 in Table A.3.

Hint: First derive the following component formula for differentiating the inverse

of a matrix with respect to the matrix

d�A�1�ij
dAab

� �A�1ia A�1bj

This result can be derived by differentiating the product AA�1 � I which in component

form is Aij�A
�1�jk � �ik. Then differentiate the product to obtain 19.
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535

Generalized function, 113

Gibbs phenomenon, 126

Gradient, 260, 266

Gradient dynamical system, 186

Gram-Schmidt orthogonalization, 12,

128
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tities

Green's formula, see Green's identi-

ties

Green's function, 146, 304

Free-space, 308
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Green's second identity, see Green's
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tion, 278

IID, see Independent, identically dis-

tributed
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weighted, 47, 122

Integrated white-noise process, 466

Invariant set, 154
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Invariant subspace, 102

ItÃo stochastic chain rule, 476

ItÃo stochastic integral, 475

ItÃo's formula, 476

multidimensional, 525

IVP, see Initial-value probem

Jacobian, 33

Kalman ®lter, 516

Kronecker delta, 6

Krylov subspace, 37

Laguerre's equation, 233

Laplace convolution, 108

Laplace equation, 279

Laplace transform, 105

Laplacian, 262, 266

Lax-Friedrichs method, 329

Lax-Wendroff method, 329

Lebesgue space, 123

Legendre polynomial, 128, 218, 291

Legendre polynomials, 235

Legendre's equation, 136, 235, 291

Leibniz's rule, 272

Levi-Civita symbol, 259

LI, see Vector

Limit cycle, 193

Linear algebraic equations, 16

existence and uniqueness, 17, 24

least-squares solution, 26

minimum-norm solution, 29

overdetermined, 24

underdetermined, 29

Liouville's theorem, 189

Local truncation error, 204

Lyapunov function, 153

Marginal density, 366

Markov chain, 90

Master equation, see Chemical mas-

ter equation

Matched asymptotic expansions, 169

composite solution, 172

inner solution, 171

outer solution, 171

Mathieu equation, 252

Matrix

addition, 8

characteristic equation, 36

characteristic polynomial, 36

defective, 40

determinant, 20, 87, 93, 440

diagonal, 7

diagonalization, 39

eigenvalue, 35

eigenvector, 35

exponential, 54

generalized eigenvector, 40

Gram-Schmidt procedure, 12

identity, 9

image, 23

inverse, 18

kernel, 23

Kronecker product, 65

multiplication, 8

orthogonal, 38

partitioned, 14

positive de®nite, 43

positive semide®nite, 43

pseudoinverse, 26, 96

similarity transformation, 45

singular, 17

sparse, 216

square, 7

submatrix, 15
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symmetric, 8, 10

trace, 45, 87, 93, 440, 442

transpose, 10

tridiagonal, 7

unitary, 38

upper (lower) Hessenberg, 7

upper (lower) triangular, 7, 13

vec operator, 65

Matrix decomposition

Jordan form, 40

LU, 18

QR, 13

Schur, 48

SVD, 50, 52, 53, 410, 427, 429

Matrix exponential, 102

Maximum-likelihood estimation, 401,

424

Mesoscopic scale, 502

Method of Frobenius, 119

Method of images, 309, 314

Method of multiple scales, 177

Method of weighted residuals, 212

collocation method, 214, 221

®nite element method, 214

Galerkin method, 214

MWR, see Method of weighted resid-

uals

Newton-Raphson iteration, 32

Next reaction method, 494

Node, 105

Normal density

characteristic function, 364

conditional, 398, 400

degenerate, 384

singular, 384

Normal distribution, see Probability

distributions

Normal equations, 25

Null space, 17

Numerical stability, 205, 325

absolute stability, 206

Courant condition, 328

Courant-Friedrichs-Lewy condition,

328

diffusive Courant condition, 327

growth factor, 205

stiff systems, 207

Observability, 517

Observable, 517

ODE, see Ordinary differential equa-

tion

Omega expansion, 502, 506

ON, see Orthonormal

Operator, 6

adjoint, 10, 130

domain, 6

Hermitian, 11

linear, 6, 100

range, 6

self-adjoint, 11, 131

Operator splitting, 331

Order symbols, 162

Ordinary differential equation, 99

autonomous, 101

Ordinary point, 117

Orthogonal, 3

Orthogonal polynomials, 136

Orthonormal, 5, 37, 39

Outer product, 14, 258

Parabolic partial differential equation,

279

Parseval's equality, 225

Parseval's theorem, 225

Partial differential equation, 257, 278

Partial least squares, 426

PCA, see Principal components anal-

ysis

PCR, see Principal components regres-

sion

PDE, see Partial differential equation

Permutation tensor, 259

Phase plane, 104

Phase space, 101

Pivot, pivoting, 19
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Planar dynamical system, 104, 191

Plancherel's formula, 343

PLS, see Projection on latent struc-

tures

PLSR, see Projection on latent struc-

tures regression

PoincarÂe-Bendixson theorem, 192

Poisson equation, 279

Poisson process, 487

nonhomogeneous, 491

Posterior, 425

Power method, 37

Predictor-corrector method, 209

Principal components analysis, 426

Principal components regression, 429

Prior, 425

uniform, 425

Probability

axioms, 355

Probability distribution

chi, 411

chi-squared, 411

exponential, 488

F, 411, 456

generalized chi-squared, 535

multivariate normal, 367

multivariate t, 455, 456

normal, 360

Poisson, 491

Student's t, 450

uniform, 390, 425, 488

Wishart, 421

Projection on latent structures, 426,

429

Projection operator, 14

Propagator, 305

Pseudotensor, see Pseudovector

Pseudovector, 259

QR decomposition, 82

thin QR, 82

QSSA, seeQuasi-steady-state assump-

tion

Quasi-steady-state assumption, 245,

247, 249

Quasiperiodic orbit, 195

Radius of convergence, 117

Random time change representation,

492

Random variable

expectation, 359

mean, 359

moments, 360

variance, 360

Random variables

correlated, 379

independent, 379

Range, 17

Rank, 22

Reaction equilibrium assumption, 172,

249

Reduction of order, 116

Regular perturbation, 167

Reynolds number, 31

Riccati equation, 517, 521

RK, see Runge-Kutta method

Runge-Kutta method, 209, 211

Saddle point, 105

Sampling, 383

sample mean, 388

sample variance, 388

standard error, 388

SchrÈodinger's equation, 294

Schur decomposition, 48

real, 49

symmetric, 49

SDE, see Stochastic differential equa-

tion

Sensitivity to initial conditions, 195

Separation of variables, 279

Similarity solution, 345

Single-step scheme, 204

Singular perturbation, 167

Singular point, 117, 118

Space
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dimension, 5

linear, 1

subspace, 2

Spectral convergence, 126

Spectral methods, 220

Spherical Bessel function, 121, 290

Spherical Bessel's equation, 290

Spherical harmonics, 294

solid spherical harmonics, 297

surface spherical harmonics, 296

Spiral, 105

SSA, see Stochastic simulation algo-

rithm

Stable manifold, 184

Standard error, 389

State estimation, 508

State estimator gain, 516

State estimator stability, 520

State space, 101

Stochastic difference equation, 466

Stochastic differential equation, 473±

476, 480, 482, 506

Stochastic simulation algorithm, 495

Stokes's theorem, see Green's identi-

ties

Structural stability, 183

Sturm-Liouville operator, 131

Superposition, 100

SVD, see Matrix decomposition

Synchronization, 253

Tensor, 257

Test function, 213

Trace, see Matrix

Transpose, 5

Trial function, 212

Tridiagonal matrix, 216

Unbiased, 388

Uniformity, 161

Unstable manifold, 184

Variation of parameters, 116

Vector

basis, 5

column, 5

linearly independent, 5

norm, 2

row, 5

span, 5

Vector ®eld, 101

Velocity Verlet algorithm, 241

Wave equation, 312

Weight function, 213

White noise, 467

Wiener process, 469

continuity, 524

Wishart distribution, 458


