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Preface

Research undertaken by modern chemical and biological engineers in-
corporates a wide range of mathematical principles and methods. This
book came about as the authors struggled to incorporate modern top-
ics into a one- or two-semester course sequence for new graduate stu-
dents, while not losing the essential aspects of traditional mathemati-
cal modeling syllabi. Topics that we decided are particularly important
but not represented in traditional texts include: matrix factorizations
such as the singular value decomposition, basic qualitative dynamics
of nonlinear differential equations, integral representations of partial
differential equations, probability and stochastic processes, and state
estimation. The reader will find many more in the book. These topics
are generally absent in many texts, which often have a bias toward the
mathematics of 19th- through early 20th-century physics. We also be-
lieve that the book will be of substantial interest to active researchers,
as it is in many respects a survey of the applied mathematics commonly
encountered by chemical and biological engineering practitioners, and
contains many topics that were almost certainly absent in their chemi-
cal engineering graduate coursework.

Due to the wide range of topics that we have incorporated, the level
of discussion in the book ranges from very detailed to broadly descrip-
tive, allowing us to focus on important core topics while also introduc-
ing the reader to more advanced or specialized ones. Some important
but technical subjects such as convergence of power series have been
treated only briefly, with references to more detailed sources. We en-
courage instructors and students to browse the exercises. Many of
these illustrate applications of the chapter material, for example, the
numerical stability of the Verlet algorithm used in molecular dynamics
simulation. Others deepen, complement, and extend the discussion in
the text.

During their undergraduate education in chemical and biological
engineering, students become very accomplished at numerical exam-
ples and problem solving. This is not a book with lots of numerical
examples. Engineering graduate students need to make the shift from
applying mathematical tools to developing and understanding them.
As such, substantial emphasis in this book is on derivations and some-
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times short proofs. We believe the text contains a healthy mix of fun-
damental mathematics, analytical solution techniques, and numerical
methods. Researchers in engineering must know mathematical struc-
tures, principles, and tools, because these guide analysis and under-
standing, and they also must be able to produce quantitative answers.
We hope this text will enable them to do both.

MDG JBR
Madison, Wisconsin Madison, Wisconsin

Added for the second edition. The second edition was printed as a
paperback to reduce the cost to the students.

MDG JBR
Madison, Wisconsin Santa Barbara, California
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1
Linear Algebra

1.1 Vectors and Linear Spaces

A vector is defined in introductory physics courses as a quantity hav-
ing magnitude and direction. For example, the position vector of an
object in three dimensions is the triple of Cartesian coordinates that
determine the position of the object relative to a chosen origin. Another
way of thinking of the position vector is as a point in three-dimensional
space, generally denotedR3. This view leads us to the more general and
abstract definition of a vector: A vector is an element of a linear
space:

Definition 1.1 (Linear space). A linear space is a set V whose elements
(vectors) satisfy the following properties: For all x, y , and z in V and
for all scalars α and β

x +y ∈ V closure under addition

αx ∈ V closure under multiplication

x +y = y + x
x + (y + z) = (x +y)+ z

x + 0 = x definition of the origin

x + (−x) = 0 definition of subtraction

α(βx) = (αβ)x
(α+ β)x = αx + βx
α(x +y) = αx +αy

1x = x,0x = 0

Naturally, these properties apply to vectors in normal 3-D space;
but they also apply to vectors in any finite number of dimensions as

1



2 Linear Algebra

well as to sets whose elements are, for example, 3 by 3 matrices or
trigonometric functions. This latter case is an example of a function
space; we will encounter these in Chapter 2. Not every set of vectors
forms a linear space, however. For example, consider vectors pointing
from the origin to a point on the unit sphere. The sum of two such
vectors will no longer lie on the unit sphere—vectors defining points
on the sphere do not form a linear space. Regarding notation, many
readers will be familiar with vectors expressed in boldface type, x, v,
etc. This notation is especially common in physics-based problems
where these are vectors in three-dimensional physical space. In the
applied mathematics literature, where a vector takes on a more general
definition, one more commonly finds vectors written in italic type as
we have done above and will do for most of the book.

1.1.1 Subspaces

Definition 1.2 (Subspace). A subspace S is a subset of a linear space
V whose elements satisfy the following properties: For every x,y ∈ S
and for all scalars α

x +y ∈ S closure under addition

αx ∈ S closure under multiplication (1.1)

For example, if V is the plane (R2), then any line through the origin
on that plane is a subspace.

1.1.2 Length, Distance, and Alignment

The idea of a norm generalizes the concept of length.

Definition 1.3 (Norm). A norm of a vector x, denoted ∥x∥, is a real
number that satisfies

∥αx∥ = |α| ∥x∥
∥x∥ > 0,∀x ≠ 0

∥x∥ = 0 if x = 0∥∥x +y∥∥ ≤ ∥x∥ + ∥∥y∥∥ triangle inequality

The Euclidean norm (or 2-norm) in Rn is our usual concept of length

∥x∥2 =
√∑n

i=1 |xi|2 in which xi is the ith component of the vector.
Unless otherwise noted, this is the norm that will be used throughout
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this book, and will generally be denoted simply as ∥x∥ rather than
∥x∥2. It should be noted, however, that this is not the only definition
of a norm, nor is it always the most useful. For example, the so-called
lp norms for vectors in Rn are defined, for 1 ≤ p <∞, by the equation

∥x∥p =
 n∑
i=1

|xi|p
1/p

Particularly useful are the cases p = 1, sometimes called the “taxicab
norm” (why?) and p →∞: ∥x∥∞ =maxi |xi|.

The inner product generalizes the dot product of elementary algebra
and measures the alignment of a pair of vectors.

Definition 1.4 (Inner product). An inner product of two vectors, de-
noted (x,y), is a scalar that satisfies

(x +y,z) = (x, z)+ (y, z)
(αx,y) = α(x,y)
(x,y) = (y,x)
(x,x) > 0, if x ≠ 0

The overbar denotes the complex conjugate. If (x,y) = 0, then x
and y are said to be orthogonal. Notice that the square root of the
inner product

√
(x,x) satisfies all the properties of a norm, so it is a

measure of the length of x. The usual inner product in Rn is

(x,y) =
n∑
i=1

xiyi

in which case
√
(x,x) = ∥x∥2. This is a straightforward generalization

of the formula for the dot product x · y in R2 or R3 and has the same
geometric meaning

(x,y) = ∥x∥
∥∥y∥∥ cosθ (1.2)

where θ is the angle between the vectors. See Exercise 1.1 for a deriva-
tion. If we are considering a space Cn of complex vectors rather than
real vectors, the usual inner product becomes

(x,y) =
n∑
i=1

xiyi
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An equally valid choice of inner product in the complex case is

(x,y) =
n∑
i=1

xiyi

(Either can be used, as long as one does not switch between definitions
within a derivation.)

The Cauchy-Schwartz inequality is an important result that gen-
eralizes (1.2). It states that for any vectors x and y ,∣∣(x,y)∣∣ ≤ ∥x∥∥∥y∥∥ (1.3)

This can be proven as follows. The result is clearly true if x or y is the
zero vector. If they are nonzero, then consider the vector x−αy , where
α = (x,y)/(y,y). We can interpret this vector geometrically as what
remains when the component of x that is parallel to y is subtracted
from x. That is, (x −αy,y) = 0. Taking the inner product of x −αy
with itself, and recalling that (x,y) = (y,x), we find

0 ≤ (x −αy,x −αy)

= (x,x)− (x,y)
(y,y)

(y,x)− (y,x)
(y,y)

(x,y)+ (x,y)
(y,y)

(y,x)
(y,y)

(y,y)

= ∥x∥2 − (x,y)(y,x)∥∥y∥∥2 = ∥x∥2 −
∣∣(x,y)∣∣2∥∥y∥∥2

Rearranging and taking the square root yields (1.3). With this inequality
in hand, we can readily establish that the Euclidean norm (or 2-norm)
satisfies the triangle inequality in Definition 1.3. Let x,y ∈ Cn and
use the definition of the 2-norm and the Cauchy-Schwartz inequality to
obtain∥∥x +y∥∥2 = (x +y,x +y) = (x,x)+ (x,y)+ (y,x)+ (y,y)

≤ ∥x∥2 + 2
∣∣(x,y)∣∣+ ∥∥y∥∥2

≤ ∥x∥2 + 2∥x∥
∥∥y∥∥+ ∥∥y∥∥2

= (∥x∥ +
∥∥y∥∥)2

Taking the square root of both sides then verifies the triangle inequality
for the 2-norm.

Finally, we can represent a vector x in Rn as a single column of
elements, a column vector, and define its transpose xT as a row
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vector

x =


x1
...
xn

 xT =
[
x1 · · · xn

]

Now the inner product (x,y) can be written xTy if x and y are real,
and xTy or alternately xTy if they are complex.

1.1.3 Linear Independence and Bases

If we have a set of vectors, say {x1, x2, x3}, in a space V , this set is said
to be linearly independent (LI) if the only solution to the equation

α1x1 +α2x2 +α3x3 = 0

is αi = 0 for all i. Otherwise the set is linearly dependent. A
space V is n-dimensional if it contains a set of n linearly independent
vectors, but no set of n+1 linearly independent vectors. If n LI vectors
can be found for anyn, no matter how large, then the space is infinite-
dimensional.

Everything said above holds independent of our choice of coordinate
system for a space. To actually compute anything, however, we need
a convenient way to represent vectors in a space. We define a basis
{e1, e2, e3 . . .} as a set of LI vectors that span the space of interest, i.e.,
every vector x in the space can be represented

x = α1e1 +α2e2 +α3e3 + · · ·

If a space is n-dimensional, then a basis for it has exactly n vectors
and vice versa. For example, in R3 the unit vectors in the x,y, and z
directions form a basis. But more generally, any three LI vectors form
a basis for R3.

Although any set of LI vectors that span a space form a basis, some
bases are more convenient than others. The elements of an orthonor-
mal (ON) basis satisfy these properties

(ei, ei) = 1 each basis vector has unit length
(ei, ej) = 0, i ≠ j the vectors are mutually orthogonal

These properties may be displayed more succinctly

(ei, ej) = δij ≡

1, i = j
0, i ≠ j
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The symbol δij is called the Kronecker delta. In an orthonormal
basis, any vector can be expressed

x =
∑
i
(x, ei)ei

1.2 Linear Operators and Matrices

An operator transforms one vector into another. Operators appear
everywhere in applied mathematics. For example, the operator d/dx
transforms a function f(x) into its derivative. More abstractly, an op-
erator A is a mapping that takes elements of one set (the domain of A)
and converts them into elements of another (the range of A). Linear
operators satisfy the following properties for all vectors u and v in
their domain and all scalars α

A(u+ v) = Au+Av
A(αu) = α(Au)

(1.4)

We focus here on operators on finite-dimensional vector spaces Rn;
operators on spaces of complex numbers are similar. (In Chapter 2 we
will look at an important class of operators in function spaces.) In these
spaces, and having chosen a coordinate system in which to represent
vectors, any linear operator can be expressed as multiplication by a
matrix. A matrix is an array of numbers

A =


A11 A12 . . . A1n
A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn


The first subscript of each element denotes its row, while the second
denotes its column. The transformation of a vector

x =


x1

x2
...
xn

 into another y =


y1

y2
...
ym


then occurs through matrix-vector multiplication. That is: y = Ax,
which means

yi =
n∑
j=1

Aijxj , i = 1,2, . . . ,m (1.5)
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In this example, the matrix A is m by n (rows by columns); it is an
element of the linear space Rm×n and multiplication by Amaps vectors
in Rn into vectors in Rm. That is, for the function defined by matrix
multiplication, f(x) = Ax, f : Rn → Rm. Some readers will be familiar
with matrices written in bold and the matrix-vector product between
matrix A and vector x written as either Ax or A · x.

If one thinks of each row of A as a vector, then the ith component
of y can be thought of as the dot product between the ith row of A
and the vector x. This is probably the best way to remember the actual
algebra of the matrix-vector multiplication formula. A more intuitive
and general geometric interpretation (which will be used extensively as
we proceed through the chapter) is enabled by considering each column
of A as a vector, and thinking of the vector y as a linear combination
of these vectors. That is, y is in the space spanned by the columns of
A. If we let the ith column of A be the vector ci, then

y = x1c1 + x2c2 + x3c3 + . . .

=
n∑
j=1

xjcj

(Note that in this equation xj is a scalar component of the vector x,
while cj is a vector.) This equation implies that the number of columns
of A must equal the length of x. That is, matrix-vector multiplication
only makes sense if the vector x is in the domain of the operator A.

1.2.1 Addition and Multiplication of Matrices

The following terminology is used to describe important classes of ma-
trices.

1. A is square if m = n.

2. A is diagonal if A is square and Aij = 0 for i ≠ j. This is
sometimes written as A = diag(a1, a2, ..., an) in which ai is the
element Aii for i = 1,2, . . . , n.

3. A is upper (lower) triangular if A is square and Aij = 0 for
i > j (i < j).

4. A is upper (lower) Hessenberg if A is square and Aij = 0 for
i > j + 1 (i < j − 1).

5. A is tridiagonal if it is both upper and lower Hessenberg.



8 Linear Algebra

6. A is symmetric if A is square and Aij = Aji, i, j = 1,2, . . . , n.

Addition of two matrices is straightforward: if A and B both have
the same domain and range, then

(A+ B)ij = Aij + Bij
Otherwise, the matrices cannot be added.
Scalar multiplication is simple

(αA)ij = α(Aij)

Suppose now that we have a vector z = Ay , where A is a matrix
and y a vector, and that furthermore y = Bz, where B and z are a
new matrix and vector, respectively. Let x,y and z have lengths q,n
and m. If A is m by n and B is n by q, then using the matrix-vector
multiplication formula (1.5) we can write

zi =
n∑
k=1

Aikyk =
n∑
k=1

Aik

 q∑
j=1

Bkjxj


=

q∑
j=1

 n∑
k=1

AikBkj

xj
Observe that this relationship between z and x can be written z =
A(Bx) = (AB)x as long as we take the matrix-matrix product AB to
obey the Matrix-matrix multiplication formula

(AB)ij =
n∑
k=1

AikBkj , i = 1, . . . ,m, j = 1, . . . q (1.6)

If A ∈ Rm×n and B ∈ Rp×q, then AB only exists if n = p, in which case
it is AB is an m by q matrix. Otherwise, the lengths of the rows of A
are incompatible with the columns of B.

A simple way to remember (1.6) is to note that if aTi represents the
ith row of A, and bj the jth column of B, then

(AB)ij = aTi bj , i = 1, . . . ,m, j = 1, . . . q

Another more geometrically intuitive representation of the matrix-matrix
product arises from the observation that, for example, the first column
of AB, whose elements we can denote (AB)i1, i = 1,2, . . .m, can be
written using (1.6), as

(AB)i1 =
n∑
k=1

AikBk1
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This is the matrix-vector multiplication betweenA and the first column,
b1, of B. More generally, (1.6) indicates that the jth column of AB is
the matrix-vector multiplication between A and the jth column of B,
and we can write

AB =
[
Ab1 Ab2 . . . Abq

]
Note that the existence of AB does not imply the existence of BA.

Both exist if and only if n = p and m = q. Even when both products
exist, AB is not generally equal to BA. In other words, the final result
of a sequence of operations on a vector generally depends on the order
of the operations, i.e., A(Bx) ≠ B(Ax): in general, matrix-matrix mul-
tiplication does not commute. One important exception to this rule is
when one of the matrices is the identity matrix I. The elements of I
are given by Iij = δij , so for example, in R3×3,

I =

1 0 0
0 1 0
0 0 1


For any vector x and matrix A, Ix = x and AI = IA.

Example 1.5: Common transformations do not commute

Let matrices A and B be given by

A =
√2

2 −
√

2
2√

2
2

√
2

2

 B =
[

2 0
0 1

2

]

The matrixA rotates a vector counterclockwise byπ/4, while B stretches
it by a factor of 2 in the “1” direction while compressing it by the same
factor in the “2” direction. Show that the operations of stretching and
rotating a vector do not commute.

Solution

The matrices AB and BA are

AB =
[√

2 − 1
2
√

2√
2 1

2
√

2

]
BA =

[ √
2 −

√
2

1
2
√

2
1

2
√

2

]

Since these are not equal, we conclude that the two vector operations
do not commute. □
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1.2.2 Transpose and Adjoint

For every matrix A there exists another matrix, called the transpose
of A and denoted AT , such that

(
AT
)
ij = Aji. The rows of A become

the columns of AT and vice versa. (We already saw this notion in the
context of vectors: viewing x as a matrix with one column, then xT

is a matrix with one row.) A matrix that equals its transpose satisfies
Aji = Aij and is said to be symmetric; this can occur only for square
matrices. Some properties of the transpose of a matrix are

(AT )T = A
(A+ B)T = AT + BT

(AB)T = BTAT

(ABC)T = CTBTAT

Properties involving matrix-vector products follow from the treatment
of a vector x as a matrix with only one column. For example

(Ax)T = xTAT

If A, x, and y are real, then the inner product between the vector Ax
and the vector y is given by

(Ax)Ty = xTATy (1.7)

One can generalize the idea of a transpose to more general opera-
tors. The adjoint of an operator L (not necessarily a matrix) is denoted
L∗ and is defined by this equation

(Lx,y) = (x, L∗y) (1.8)

If L is a real matrix A, then (Lx,y) becomes (Ax)Ty and comparison
of (1.7) and (1.8) shows that

A∗ = AT

Similarly, if L is a complex matrix A then we show in the following
section that

A∗ = AT

By analogy with this expression for matrices, we will use the notation
x∗ = xT for vectors as well. In this case we can write the inner product
xTy as x∗y .
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Some general properties of the adjoint of an operator are

(L∗)∗ = L
(L1 + L2)∗ = L∗1 + L∗2
(L1L2)∗ = L∗2 L∗1

(L1L2L3)∗ = L∗3 L∗2 L∗1

If L = L∗, then L is said to be self-adjoint or Hermitian. Self-adjoint
operators have special properties, as we shall see shortly, and show up
in many applications.

1.2.3 Einstein Summation Convention

Notice that when performing matrix-matrix or matrix-vector multipli-
cations, the index over which the sum is taken appears twice in the
formula, while the unsummed indices appear only once. For example,
in the formula

(ABC)ij =
N∑
k=1

N∑
l=1

AikBklClj

the indices k and l appear twice in the summations, while the indices i
and j only appear once. This observation suggests a simplified notation
for products, in which the presence of the repeated indices implies
summation, so that the explicit summation symbols do not need to
be written. Using this Einstein summation convention, the inner
product xTy is simply xiyi and the matrix-vector product y = Ax is
yi = Aijxj . This convention allows us to concisely derive many key
results.

Example 1.6: Matrix identities derived with index notation

Establish the following matrix identities using index notation

(a) (Ax,y) = (x,ATy) (b) (AB)T = BTAT (c) AAT = (AAT )T

(d) A+AT = (A+AT )T (e) ATA = (ATA)T
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Solution

(a) (Ax,y) = (x,ATy)

(Ax,y) = Aijxjyi
= xjAijyi
= xjATjiyi

= xjA
T
jiyi

= (x,ATy)

(b) (AB)T = BTAT

(AB)Tij = (AikBkj)T

= AjkBki
= BkiAjk
= BTikATkj
= (BTAT )ij

(c) AAT = (AAT )T

(AAT )ij = AikATkj
= AikAjk
= AjkAik
= AjkATki
= (AAT )ji
= (AAT )Tij

(d) A+AT = (A+AT )T

(A+AT )ij = Aij +Aji
= Aji +Aij
= (A+AT )ji
= (A+AT )Tij

(e) ATA = (ATA)T

(ATA)ij = ATikAkj
= AkiAkj
= ATjkAki
= (ATA)ji
= (ATA)Tij

□

1.2.4 Gram-Schmidt Orthogonalization and the QR Decomposition

We will encounter a number of situations where a linearly independent
set of vectors are available and it will be useful to construct from them a
set of orthogonal vectors. The classical approach to doing this is called
Gram-Schmidt orthogonalization. As a simple example, consider LI
vectors v1 and v2, from which we wish to find an orthogonal pair u1

and u2. Without loss of generality we can set

u1 = v1
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It is straightforward to find the component of v2 that is orthogonal to
u1—we just subtract from v2 the component that is parallel to u1 (the
projection of v2 onto u1)

u2 = v2 −
(v2, u1)
∥u1∥

u1

∥u1∥

In higher dimensions, where we have v3, v4, etc., we continue the pro-
cess, subtracting off the components parallel to the previously deter-
mined orthogonal vectors

u3 = v3 −
(v3, u1)
∥u1∥2 u1 −

(v3, u2)
∥u2∥2 u2

and so on.
We can apply Gram-Schmidt orthogonalization to the columns of

any m × n matrix A whose columns are linearly independent (which
implies that m ≥ n). Specifically, we can write

A = QR

where Q is an m × n matrix of orthonormal vectors formed from the
columns of A and R is an n×n upper triangular matrix. This result is
known as the QR decomposition. We have the following theorem.

Theorem 1.7 (QR decomposition). If A ∈ Rm×n has linearly indepen-
dent columns, then there exists Q ∈ Rm×n with orthonormal columns,
and upper triangular R such that

A = QR

See Exercise 1.38 for the proof. Because the columns of Q are or-
thonormal, QTQ = I.

1.2.5 The Outer Product, Dyads, and Projection Operators

Given two LI vectors v1 and v2 in Rn, Gram-Schmidt uses projection to
construct an orthogonal pair

u1 = v1

u2 = v2 − (vT2 û1)û1

where û1 = u1/∥u1∥ is a unit vector in the u1 direction, and now we
have used the inner product definition (u,v) = uTv . Observe that the
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right-hand side of the second equation is linear in v2, so we should be
able to put this equation in the form u2 = Av2, where A is a matrix.
The form of A illustrates some important concepts so we explicitly
construct it here. We can write A = I − P , where

Pv2 = (vT2 û1)û1

Noting that aTb = bTa for vectors a and b, this rearranges to

Pv2 = û1(ûT1v2)

which has the form we seek if we move the parentheses to have

Pv2 = (û1ûT1 )v2

That is, P is given by what we will call the outer product between
û1 and itself: û1ûT1 . More generally, the outer product uvT between
vectors u and v is a matrix, called a dyad, that satisfies the following
properties

(uvT )ij = uivj
(uvT )w = u(vTw)
wT (uvT ) = (wTu)vT

wherew is any vector. The outer product is sometimes denoted u⊗v .
When the notation u · v is used to represent the inner product, u ⊗ v
or uv is used to represent the outer.

Finally, returning to the specific case P = û1ûT1 , we can observe that
Pw = û1(ûT1w); the operation of P on w results in a vector that is the
projection of w in the û1 direction: P is a projection operator. The
operator I − P is also a projection—it takes a vector and produces the
projection of that vector in the direction(s) orthogonal to û1. We can
check that both û1ûT1 and I − û1ûT1 satisfy the general definition of a
projection operator

P2 = P

1.2.6 Partitioned Matrices and Matrix Operations

It is often convenient to consider a large matrix to be composed of other
matrices, rather than its scalar elements. We say the matrix is parti-
tioned into other smaller dimensional matrices. To make this explicit,
first we define a submatrix as follows. Let matrix A ∈ Rm×n, and define
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indices 1 ≤ i1 < i2 < · · · < ik ≤ m, and 1 ≤ j1 < j2 < · · · < jℓ ≤ m,
then the k× ℓ matrix S, whose (a, b) element is

Sab = Aia,jb
is called a submatrix of A.

A matrix A ∈ Rm×n is partitioned when it is written as

A =


A11 A12 · · · A1ℓ
A21 A22 · · · A2ℓ

...
...

. . .
...

Ak1 Ak2 · · · Akℓ


where each Aij is an mi × nj submatrix of A. Note that

∑k
i=1mi =m

and
∑ℓ
j=1nj = n. Two of the more useful matrix partitions are col-

umn partitioning and row partitioning. If we let the m-vectors ai, i =
1,2, . . . n denote the n column vectors of A, then the column partition-
ing of A is

A =
[
a1 a2 · · · an

]
If we let the row vectors (1×n matrices) aj , j = 1,2, . . . ,m denote the
m row vectors of A, then the row partitioning of A is

A =


a1

a2
...
am


The operations of matrix transpose, addition, and multiplication

become even more useful when we apply them to partitioned matrices.
Consider the two partitioned matrices

A =


A11 A12 · · · A1ℓ

...
...

. . .
...

Ak1 Ak2 · · · Akℓ

 B =


B11 B12 · · · B1n

...
...

. . .
...

Bm1 Bm2 · · · Bmn


in which Aij has dimension pi × qj and Bij has dimension ri × sj . We
then have the following formulas for scalar multiplication, transpose,
matrix addition, and matrix multiplication of partitioned matrices.

1. Scalar multiplication.

λA =


λA11 λA12 · · · λA1ℓ

...
...

. . .
...

λAk1 λAk2 · · · λAkℓ


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2. Transpose.

AT =


AT11 AT21 · · · ATk1

...
...

. . .
...

AT1ℓ AT2ℓ · · · ATkℓ


3. Matrix addition. If pi = ri and qj = sj for i = 1, . . . , k and j =

1, . . . , ℓ; and k =m and ℓ = n; then the partitioned matrices can
be added

A+ B =


C11 · · · C1ℓ

...
. . .

...
Ck1 · · · Ckℓ

 Cij = Aij + Bij

4. Matrix multiplication. If qi = ri for i = 1, . . . , ℓ, then we say the
partitioned matrices conform, and the matrices can be multiplied

AB =


C11 · · · C1ℓ

...
. . .

...
Ck1 · · · Ckℓ

 Cij =
ℓ∑
t=1

AitBtj

These formulas are all easily verified by reducing all the partitioned
matrices back to their scalar elements. Notice that we do not have to
remember any new formulas. These are the same formulas that we
learned for matrix operations when the submatrices Aij and Bij were
scalar elements (except we normally do not write the transpose for
scalars in the transpose formula). The conclusion is that all the usual
rules apply provided that the matrices are partitioned so that all the
implied operations are defined.

1.3 Systems of Linear Algebraic Equations

1.3.1 Introduction to Existence and Uniqueness

Any set ofm linear algebraic equations for n unknowns can be written
in the form

Ax = b
where A ∈ Rm×n, b ∈ Rn and x (∈ Rn) is the vector of unknowns.
Consider the vectors ci that form the columns of A. The solution x (if
it exists) is the linear combination of these columns that equals b

b = x1c1 + x2c2 + x3c3 + . . .+ xncn
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This view of Ax = b leads naturally to the following result. The system
of equations

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm

has at least one solution x if and only if the columns of A are not
linearly independent from b.

For example, ifm = n = 3 and the columns ofA form an LI set, then
they span R3. Therefore, no vector b ∈ R3 can be linearly independent
from the columns of A and therefore Ax = b has a solution for all
b ∈ R3. Conversely, if the column vectors of A are not LI, then they do
not span R3 so there will be some vectors b for which no solution x
exists.

Consider the case where there are the same number of equations
as unknowns: n = m. Here the above result leads to this general
theorem.

Theorem 1.8 (Existence and uniqueness of solutions for square sys-
tems). If A ∈ Rn×n, then

(a) If the columns of A are LI, then the matrix is invertible. The prob-
lem Ax = b has the following properties:

(a) Ax = 0 (the homogeneous problem) has only the trivial solution
x = 0,

(b) Ax = b (the inhomogeneous problem) has a unique nonzero solu-
tion for all b ≠ 0.

(b) If the columns of A are NOT LI, then the matrix is singular or
noninvertible. In this case:

(a) Ax = 0 has an infinite number of nonzero solutions. These solu-
tions comprise the null space of A.

(b) For b ≠ 0, Ax = b has either:

i. No solution, if b is LI of the columns of A. That is, b is not in
the range of A, or

ii. An infinite number of solutions, if b is in the range of A. These
solutions correspond to the superposition of a particular solu-
tion toAx = b and any combination of the solutions ofAx = 0,
i.e., x = xH + xP where AxP = b and AxH = 0.
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1.3.2 Solving Ax = b: LU Decomposition

We now turn to the issue of explicitly constructing solutions. For the
present, we restrict attention to n = m and to case (a) of the above
theorem. In this case, we can define the inverse of A, denoted A−1.
This is a matrix operator that satisfies

1. A−1A = I (definition of A−1)

2. AA−1 = I

3. (AB)−1 = B−1A−1

The first property implies that A−1Ax = A−1b reduces to x = A−1b,
so Ax = b can be solved by finding A−1. Finding A−1 is not necessary,
however, to solve Ax = b, nor is it particularly efficient. We describe a
widely used approach called LU decomposition.
LU decomposition is essentially a modification of Gaussian elimi-

nation, with which everyone should be familiar. It is based on the fact
that triangular systems of equations are easy to solve. For example,
this matrix is upper triangular1 2 3

0 4 8
0 0 7


All the elements below the diagonal are zero. Since the third row has
only one nonzero element, it corresponds to a single equation with a
single unknown. Once this equation is solved, the equation above it
has only a single unknown and is therefore easy to solve, and so on.
LU decomposition depends on the fact that a square matrix A can be
written A = LU , where L is lower triangular and U is upper triangular.
Using this fact, solvingAx = b consists of three steps, the first of which
takes the most computation:

1. Find L and U from A: LU factorization.

2. Solve Lc = b for c: forward substitution.

3. Solve Ux = c for x: back substitution.

The latter two steps are simple operations, because L and U are trian-
gular. Note that L and U are independent of b, so to solve Ax = b
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for many different values of b, then once A is factored, only the inex-
pensive steps 2 and 3 of the above process need be repeated. The LU
decomposition procedure (first step above) is illustrated on the matrix

A =

3 5 2
0 8 2
6 2 8


Step a. Replace row 2 with a linear combination of row 1 and row

2 that makes the first element zero. That is, r2 is replaced
by r2−L21r1, where L21 = A21/A11. For this example, A21 is
already zero, so L21 = 0 and r2 is unchanged.

Step b. Replace row 3 with a linear combination of row 1 and row
3 that makes the first element zero. That is, r3 is replaced
by r3 − L31r1, where L31 = A31/A11. So L31 = 6/3 = 2 and A
is modified to 3 5 2

0 8 2
0 −8 4


Step c. Now the first column of the matrix is zero below the diag-

onal. We move to the second column. Replace row 3 with a
linear combination of row 2 and row 3 that makes the sec-
ond element zero. That is, r(3) is replaced by r3 − L32r2,
where L32 = A32/A22. So L32 = −1 and A is modified to3 5 2

0 8 2
0 0 6

 = U
This matrix is now the upper triangular matrix U . For a ma-
trix in higher dimensions, the procedure would be continued
until all of the elements below the diagonal were zero. The
matrix L is simply composed of the multipliers Lij that were
computed at each step

L =

 1 0 0
L21 1 0
L31 L32 1

 =
1 0 0

0 1 0
2 −1 1


Note that all the diagonal elements of L are 1 and all above-
diagonal elements are zero. The elements on the diagonal
of U are called the pivots.
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Now, for any vector b the simple systems Lc = b and then Ux = c
can be solved to yield x. Notice that as written, the method will fail if
Aii = 0 at any step of the procedure. Modern computational routines
actually compute a slightly different factorization PA = LU where P
is a permutation matrix that exchanges rows to avoid the case Aii = 0
(see Exercise 1.9). With this modification, known as partial pivoting,
even singular or nonsquare (m > n) matrices can be factored. However,
the substitution steps will fail except for values of b in the range of A.
To see this, try to perform the back substitution step with a matrix U
that has a zero pivot.

1.3.3 The Determinant

In elementary discussions of the solution to Ax = b that are based
on Cramer’s rule, the determinant of the matrix A, denoted detA,
arises. One often finds a complicated definition based on submatri-
ces, but having the LU decomposition in hand a much simpler formula
emerges (Strang, 1980). For a square matrix A that can be decomposed
into LU , the determinant is the product of the pivots

detA =
n∏
i=1

Uii

Ifm permutations of rows must be performed to complete the decom-
position, then the decomposition has the form PA = LU , and

detA = (−1)m
n∏
i=1

Uii

The matrix A−1 exists if and only if detA ≠ 0, in which case detA−1 =
(detA)−1. Another key property of the determinant is that

detAB = detA detB

The most important use of the determinant that we will encounter in
this book is its use in the algebraic eigenvalue problem that appears
in Section 1.4.

1.3.4 Rank of a Matrix

Before we define the rank of a matrix, it is useful to establish the follow-
ing property of matrices: the number of linearly independent columns
of a matrix is equal to the number of linearly independent rows.
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Example 1.9: Linearly independent columns, rows of a matrix

Given A ∈ Rm×n. Assume A has c linearly independent columns and r
linearly independent rows. Show c = r .

Solution

Let {vi}ci=1 be the set of A’s linearly independent column vectors. Let
the ai be all of A’s column vectors and ai be all of A’s row vectors, so
the A matrix can be partitioned by its columns or rows as

A = m

n[
a1 a2 · · · an

]
A = m

n
a1

a2
...
am


Each column of the A matrix can be expressed as a linear combination
of the c linearly independent vi vectors. We denote this statement as
follows · · · aj · · ·


A:m×n

=

 v1 · · · vc


V :m×c

 · · · δj · · ·


∆:c×n

in which the column vector δj ∈ Rc contains the coefficients of the
linear combination of the vi representing the jth column vector of ma-
trix A. If we place all the δj , j = 1, . . . , n next to each other, we have
matrix ∆. Next comes the key step. Repartition the relationship above
as follows

...

ai
...


A:m×n

=


...

vi
...


V :m×c


δ1
...

δc


∆:c×n

and we see that the rows of A can be expressed as linear combinations
of the rows of ∆. The multipliers of the ith row of A are given by the
elements of the ith row of V , written as the row vector vi. We know
that all rows of A are expressible as linear combinations of the c rows
of ∆, but we do not know if the rows of ∆ are independent. So we can
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conclude that the number of linearly independent rows ofA is less than
or equal to the number of rows of ∆ or

r ≤ c

Thus, for any A, the number of linearly independent rows of A is less
than or equal to the number of linearly independent columns of A. But
if we apply that result to AT , we obtain c ≤ r because the linearly in-
dependent row (column) vectors of A are also the linearly independent
column (row) vectors of AT . Combining c ≤ r with r ≤ c, we conclude
that

c = r

and the result is established. The number of linearly independent
columns of a matrix is equal to the number of linearly independent
rows, and this number is called the rank of the matrix. □

Definition 1.10 (Rank of a matrix). The rank of a matrix is the number
of linearly independent rows, equivalently, columns, of the matrix.

We also see clearly why partitioned matrices are so useful. The proof
that the number of linearly independent rows of a matrix is equal to the
number of linearly independent columns consisted of little more than
partitioning a matrix by its columns and then repartitioning the same
matrix by its rows. For another example of why partitioned matrices are
useful, see Exercise 1.17 on deriving the partitioned matrix inversion
formula, which often arises in applications.

1.3.5 Range Space and Null Space of a Matrix

Given A ∈ Rm×n, we define the range of A as

R(A) = {y ∈ Rm | y = Ax, x ∈ Rn}

The range of a matrix is the set of all vectors that can be generated with
the product Ax for all x ∈ Rn. Equivalently, if vi ∈ Rn are the linearly
independent columns of A, then the range of A is the span of the vi.
The vi are a basis for the range of A. Given A ∈ Rm×n, we define the
null space of A as follows

N(A) = {x ∈ Rn | Ax = 0}
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Similarly the range and null spaces of AT are defined to be

R(AT ) = {x ∈ Rn | x = ATy, y ∈ Rm}
N(AT ) = {y ∈ Rm | ATy = 0}

A basis for R(AT ) is the set of linearly independent rows of A, trans-
posed to make column vectors. We can show that these four sets also
satisfy the two properties of a subspace, so they are also subspaces
(see Exercise 1.14).

Let r be the rank of matrix A. We know from the previous exam-
ple that r is equal to the number of linearly independent rows of A
and is also equal to the number of linearly independent columns of A.
Equivalently, the dimension of R(A) and R(AT ) is also r

dim(R(A)) = dim(R(AT )) = r = rank(A)

We also can demonstrate the following pair of orthogonality relations
among these four fundamental subspaces

R(A) ⊥ N(AT ) R(AT ) ⊥ N(A)

Consider the first orthogonality relationship. Let y be any element of
N(AT ). We know N(AT ) = {y ∈ Rm | ATy = 0}. Transposing this
relation and using column partitioning for A gives

yTA = 0

yT
[
a1 a2 · · ·an

]
= 0[

yTa1 yTa2 · · · yTan
]
= 0

The last equation gives yTai = 0, i = 1, . . . , n, or y is orthogonal to
every column of A. Since every element of the range of A is a linear
combination of the columns of A, y is orthogonal to every element of
R(A), which gives N(AT ) ⊥ R(A). The second orthogonality relation-
ship follows by switching the roles of A and AT in the preceding argu-
ment (see Exercise 1.15). Note that the range of a matrix is sometimes
called the image, and the null space is sometimes called the kernel.

1.3.6 Existence and Uniqueness in Terms of Rank and Null Space

We return now to the general case where A ∈ Rm×n. The fundamen-
tal theorem of linear algebra gives a complete characterization
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of the existence and uniqueness of solutions to Ax = b (Strang, 1980):
every matrix A decomposes the spaces Rn and Rm into the four funda-
mental subspaces depicted in Figure 1.1. The answer to the question of
existence and uniqueness of solutions to Ax = b can be summarized
as follows.

1. Existence. Solutions to Ax = b exist for all b if and only if the
rows of A are linearly independent (m = r ).

2. Uniqueness. A solution to Ax = b is unique if and only if the
columns of A are linearly independent (n = r ).

We can also state this result in terms of the null spaces. A solution
to Ax = b exists for all b if and only if N(AT ) = {0} and a solution
to Ax = b is unique if and only if N(A) = {0}. More generally, a
solution to Ax = b exists for a particular b if and only if b ∈ R(A), by
the definition of the range of A. From the fundamental theorem, that
means yTb = 0 for all y ∈ N(AT ). And if N(AT ) = {0} we recover
the existence condition 1 stated above. These statements provide a
succinct generalization of the results described in Section 1.3.1.

1.3.7 Least-Squares Solution for Overdetermined Systems

Now consider the overdetermined problem, Ax = b where A ∈ Rm×n
with m > n. In general, this problem has no exact solution, because
the n columns of A cannot span Rm, the space where b exists. This
problem arises naturally in fitting models to data. In general, the best
we can hope for is an approximate solution x that minimizes the resid-
ual (or error) r = Ax − b. In particular, the “least squares” method
attempts to minimize the square of the Euclidean norm of the residual,
∥r∥2 = rTr . Replacing r byAx−b, this quantity (divided by 2) reduces
to the function

P(x) = 1
2
xTATAx − xTATb + 1

2
bTb

P is a scalar function of x and the value of the vector x that minimizes
P is the solution we seek. That is, we now want to solve ∂P/∂xl = 0, l =
1, . . . , n, or in different notation, ∇P(x) = 0. Performing the gradient
operation yields

∂P
∂xl

= ATljAjkxk −ATljbj = 0
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N(A)

n− r
N(AT )
m− r

R(A)R(AT )

r r

AT A

RmRn
Ax = b

0 0

Figure 1.1: The four fundamental subspaces of matrix A (after
(Strang, 1980, p.88)). The dimension of the range of A
and AT is r , the rank of matrix A. The null space of A
and range of AT are orthogonal as are the null space of
AT and range of A. Solutions to Ax = b exist for all b
if and only if m = r (rows independent). A solution to
Ax = b is unique if and only if n = r (columns indepen-
dent).

or in matrix form

dP
dx
= ATAx −ATb = 0

Therefore, the condition that P be minimized is equivalent to solving

ATAx = ATb

These are called the normal equations. Notice that ATA is a square
matrix, so that we can solve this problem with LU decomposition,
provided ATA has full rank. QR decomposition also can be used:
ATA = RTQTQR = RTR. Since R is triangular, RTRx = ATb is as
easy to solve as LUx = ATb. In Exercise 1.41 you are asked to prove
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that ATA has full rank if and only if the columns of A are linearly in-
dependent.1

If ATA has full rank, the inverse is uniquely defined, and we can
write the least-squares solution to the normal equations as

xls = (ATA)−1ATb (1.9)

The matrix on the right-hand side is ubiquitous in least-squares prob-
lems; it is known as the pseudoinverse of A (or Moore-Penrose pseu-
doinverse in honor of mathematician E. H. Moore and mathematical
physicist Roger Penrose) and given the symbol A†. The least-squares
solution is then denoted

xls = A†b A† = (ATA)−1AT

The normal equations have a compelling geometric interpretation
that illustrates the origin of their name. Substituting r into the normal
equations gives the condition ATr = 0. That is, the residual r = Ax−b
is an element of the null space of AT , N(AT ), which means r is orthog-
onal, i.e., normal, to the range of A, R(A) (right side of Figure 1.1). This
is just a generalization of the fact that the shortest path (minimum ∥r∥)
connecting a plane and a point b not on that plane is perpendicular to
the plane. Note that this geometric insight is our second use of the
fundamental theorem of linear algebra. This geometric interpretation
is perhaps best reinforced by a simple example.

Example 1.11: The geometry of least squares

We are interested in solving Ax = b for the following A and b.

A =

1 1
2 1
0 0

 b =

1
1
1


(a) What is the rank of A? Justify your answer.

(b) Draw a sketch of the subspace R(A).

(c) Draw a sketch of the subspace R(AT ).
1Putting proof aside for a moment, the condition is at least easy to remember. The

A in the overdetermined system for which we apply least squares has more rows than
columns. So the rank ofA is at most the number of columns. The least-squares solution
is unique if and only if the rank is equal to this largest value, i.e., rank of A equals the
number of columns.
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(d) Draw a sketch of the subspace N(A).

(e) Draw a sketch of the subspace N(AT ).

(f) Is there a solution to Ax = b for all b? Justify your answer.

(g) Is there a solution for the particular b given above? Justify your
answer.

(h) Assume we give up on solving Ax = b and decide to solve instead
the least-squares problem

min
x
(Ax − b)T (Ax − b)

What is the solution to this problem, x0?

(i) Is this solution unique? Justify your answer.

(j) Sketch the location of the b0 for which this x0 does solve Ax = b.
In particular, sketch the relationship between this b0 and one of
the subspaces you sketched previously. Also on this same draw-
ing, sketch the residual r = Ax0 − b.

Solution

(a) The rank of A is 2. The two columns are linearly independent.

(b) R(A) is the xy plane in R3.

(c) R(AT ) isR2. Notice these are not the same subspaces, even though
they have the same dimension 2.

(d) N(A) is the zero element in R2.

(e) N(AT ) is the z axis in R3.

(f) No. The rows are not independent.

(g) No. The range of A does not have a nonzero third element and
this b does.

(h) The solution is

x0 = (ATA)−1ATb x0 =
[

0
1

]
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x

y

z

R(A)

b0

−r

b

N(AT )

Figure 1.2: Least-squares solution of Ax = b; projection of b into
R(A) and residual r = Ax0 − b in N(AT ).

(i) Yes, the least-squares solution is unique because the columns of
A are linearly independent.

(j) The vector b is decomposed into b0 ∈ R(A) and r = Ax0 − b ∈
N(AT ).

b = b0 + (−r) r ∈ N(AT ) b0 ∈ R(A)

We want Ax0 = b0, so b0 = A(ATA)−1ATb = Pb and the projec-
tion operator is P = A(ATA)−1AT . The residual is r = Ax0 − b =
(P − I)b and we have for this problem

P = A(ATA)−1AT =

1 0 0
0 1 0
0 0 0

 P − I =

0 0 0
0 0 0
0 0 −1


Substituting in the value for b gives

b0 =

1
1
0

 r =

 0
0
−1


The spaces R(A) and N(AT ) are orthogonal, and therefore so are
b0 and r . The method of least squares projects b into the range
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of A, giving b0, and then solves exactly Ax = b0 to obtain x0.
These relationships are shown in Figure 1.2. □

The above analysis is only the beginning of the story for parameter
estimation. We have not dealt with important issues such as errors in
the measurements, quantifying the uncertainty in parameters, choice
of model form, etc. Many of these issues will be studied in Chapter 4
as part of maximum-likelihood estimation.

1.3.8 Minimum Norm Solution of the Underdetermined Problem

Consider the case of solving Ax = b with fewer equations than un-
knowns, the so-called underdetermined problem. Assume that the
rows of A are linearly independent, so a solution exists for all b. But
we also know immediately that N(A) ≠ {0}, and there are infinitely
many solutions. One natural way to choose a specific solution from
the infinite number of possibilities is to seek the minimum-norm solu-
tion. That is, we minimize ∥x∥2 subject to the constraint that Ax = b.
By analogy with the approach taken above in constructing the least-
squares solution, we define an objective function

P(x) = 1
2
xTx − zT (Ax − b) = 1

2
xixi − zi(Aijxj − bi)

where now z is a vector of Lagrange multipliers. The minimization
condition ∂P/∂xk = 0 is thus

xk = zjAjk
or x = ATz. Inserting this into the equation Ax = b yields

AATz = b

Since the rows of A are linearly independent, AAT is full rank.2 We can
solve this equation for z and insert into the equation x = ATz that we
found above to deduce the minimum-norm solution

xmn = AT (AAT )−1b (1.10)

Note the similarity in the solution structure of the underdetermined,
minimum-norm problem to the overdetermined, least-squares problem
given in (1.9). The singular value decomposition, which we introduce
in Section 1.4.7, allows for a unified and general treatment of both the
underdetermined and overdetermined problems.

2Transpose the result of Exercise 1.41.
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1.3.9 Rank, Nullity, and the Buckingham Pi Theorem

As engineers, we often encounter situations where we have a number
of measurements or other quantities di and we expect there to be a
functional relationship Φd between them

Φd(d1, d2, . . . , dn) = 0

In general, we would like to have a dimensionless representation of this
relation, one that does not depend on the units of measurement, i.e.,

ΦΠ(Π1,Π2, . . . ,Πl) = 0

where each Πi has the form

Π = da1
1 d

a2
2 × . . .× d

an
n

and the exponents ai are chosen so that eachΠi is dimensionless. If the
set of n quantities di depend on m units (kilograms, meters, seconds,
amperes, . . . ), the key question is: what is the relationship between n,
m, and the number l of dimensionless variables Πi that is required to
characterize the relationship between the variables?

We will address this issue with a specific example. Consider fluid
flow through a tube. The fluid has density ρ and viscosity η, and flows
with average velocity U through a tube with radius R and length L,
driven by a pressure drop ∆p. Defining [=] to mean “has dimensions
of,” we seek dimensionless quantities of the form

Π = ∆pa1Ua2ρa3ηa4Ra5La6

[ =]
(

kg m
s2m2

)a1 (m
s

)a2
(

kg
m3

)a3 (kg m s
m2s2

)a4

(m)a5 (m)a6

All the units must cancel, so we require that

kg : a1 + a3 + a4 = 0

m : − a1 + a2 − 3a3 − a4 + a5 + a6 = 0

s : − 2a1 − a2 − a4 = 0

This is a system of three equations with six unknowns and has the form
Ax = 0, where A ∈ Rm×n, m = 3, n = 6, and x = (a1, . . . , a6)T . We
know that A has at most three LI columns, so in six dimensions there
must be at least three dimensions that cannot be spanned by these
three columns. In this case it is easy show that A does have three LI
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columns, which means that there are 6 − 3 = 3 families of solutions
ai that will yield proper dimensionless quantities. By inspection, we
can find the solutions x = (0,1,1,−1,1,0)T , (1,−2,−1,0,0,0)T , and
(0,0,0,0,1,−1)T , yielding the three dimensionless groups

Π1 =
ρUR
η

Π2 =
∆p
ρU2

Π3 =
R
L

Readers with a background in fluid mechanics will recognize Π1 as the
Reynolds number (Bird, Stewart, and Lightfoot, 2002).

Because the solution to Ax = 0 is not unique, this choice of dimen-
sionless groups is not unique: each Πi can be replaced by any nonzero
power of it, and the Πis can be multiplied by one another and by any
constant to yield other equally valid dimensionless groups. For exam-
ple, Π2 can be replaced in this set by Π2Π3 = ∆pR

ρU2L ; fluid mechanicians
will recognize this quantity as the friction factor.

Now we return to the general case where we haven quantities andm
units. Because A has m LI rows (and thus m LI columns—see Example
1.9), it has a null space of n−m dimensions, and therefore there is an
n−m dimensional subspace of vectors x that will solve Ax = 0. This
result gives us the Buckingham Pi Theorem: given a problem with n
dimensional parameters containingm units, the problem can be recast
in terms of l = n−m dimensionless groups (Lin and Segel, 1974). This
theorem holds under the condition that rank(A) =m; in principle it is
possible for the rank of A to be less than m. One somewhat artificial
example where this issue arises is the following: if all units of length are
represented as hectares per meter, then the equations corresponding
to those two units would differ only by a sign. They would thus be
redundant and the rank of A would be one less than the number of
units. If m were replaced by rank(A), then the Pi theorem would still
hold.

A less trivial example in which the Buckingham Pi theorem can cause
confusion is the case of problems involving mixtures. One might ex-
pect that moles (or masses) of chemical species A and moles of chemical
species B (or mole or mass fractions of these species) would be inde-
pendent units, but they are not. Unlike kilograms and meters, which
cannot be added to one another, moles of A and moles of B can be added
to one another so they do not yield separate equations for exponents
the way that kilograms and meters do.
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xx+

f(x)

f(x+)

0

d

m = df
dx

∣∣∣∣
x

Figure 1.3: An iteration of the Newton-Raphson method for solving
f(x) = 0 in the scalar case.

1.3.10 Nonlinear Algebraic Equations: the Newton-Raphson Method

Many if not most of the mathematical problems encountered by engi-
neers are nonlinear: second-order reactions, fluid dynamics at finite
Reynolds number, and phase equilibrium are a few examples. We will
write a general nonlinear system of n equations and n unknowns as

f(x) = 0 (1.11)

where x ∈ Rn and f ∈ Rn. In contrast to the case with linear equations,
where LU decomposition will lead to an exact and unique solution (if
the problem is not singular), there is no general theory of existence and
uniqueness for nonlinear equations. In general, many solutions can
exist and there is no way of knowing a priori where they are or how
many there are. To find solutions to nonlinear equations, one almost
always needs to make an initial guess and use an iterative method to
find a solution. A powerful and general method for doing this is called
Newton-Raphson iteration.

Consider an initial guess x and assume for the moment that the
exact solution xe is given by x + d, where d is as yet unknown, but is
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assumed to be small, i.e., the initial guess is good. In this case

f(xe) = f(x + d) = 0

We next expand f(x + d) in a Taylor series around x. It is now con-
venient to switch to component notation to express the second-order
Taylor series approximation for vector f

fi(x + d) = fi(x)+
∂fi
∂xj

∣∣∣∣∣
x
dj +

1
2

∂2fi
∂xj∂xl

∣∣∣∣∣
x
djdl +O

(
∥d∥3

)
where the notation O(δp) denotes terms that are “of order δp,” which
means that they decay to zero at least as fast as δp in the limit δ → 0.
An approximate solution to this equation can be found if the terms
that are quadratic and higher degree in d are neglected, yielding the
linearized problem

f(x + d) = f(x)+ ∂f
∂x

∣∣∣∣
x
d

Setting f(x+d) = 0 and defining the Jacobian matrix Jij(x) = ∂fi
∂xj

∣∣∣
x

,

this can be rearranged into the linear system

J(x)d = −f(x)

This equation can be solved for d (e.g., by LU decomposition) to yield
a new guess for the solution x+ = x + d in which we use the notation
x+ to denote the variable x at the next iterate. Denoting the solution
by d = −J−1(x)f(x), the process can be summarized as

x+ = x − J−1(x)f(x) (1.12)

This equation is iterated until ∥x+ − x∥ or
∥∥f(x)∥∥ reaches a prescribed

error tolerance. One iteration of (1.12) is depicted for a scalar function
in Figure 1.3.

An important question for any iterative method is how rapidly it
converges. To address this issue for the Newton-Raphson method, let
ϵ = x−xe be the difference between the approximate solution and the
exact solution. Similarly, ϵ+ = x+ − xe and therefore ϵ+ − ϵ = x+ − x.
Using this result and (1.12), the evolution equation for the error is

ϵ+ = ϵ− J−1(xe + ϵ)f(xe + ϵ)
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Taylor expanding this equation around xe yields, again in index nota-
tion due to the Taylor series,

ϵ+i = ϵi −
J−1

ij |xe +
∂J−1
ij

∂xl

∣∣∣∣∣∣
xe

ϵl +O
(
∥ϵ∥2

) ·
0+ Jjk|xeϵk +

1
2

∂Jjk
∂xl

∣∣∣∣∣
xe
ϵkϵl +O

(
∥ϵ∥3

)
= ϵi −

J−1
ij Jjk

∣∣∣
xe
ϵk +

(∂J−1
ij

∂xl
Jjk +

1
2
J−1
ij
∂Jjk
∂xl

)∣∣∣∣∣∣
xe

ϵlϵk +O
(
∥ϵ∥3

)
= ϵi −

δikϵk + (∂J−1
ij

∂xl
Jjk +

1
2
J−1
ij
∂Jjk
∂xl

)∣∣∣∣∣∣
xe

ϵlϵk +O
(
∥ϵ∥3

)
= −

(∂J−1
ij

∂xl
Jjk +

1
2
J−1
ij
∂Jjk
∂xl

)∣∣∣∣∣∣
xe

ϵlϵk +O
(
∥ϵ∥3

)

= −
(
∂
∂xl

(
J−1
ij Jjk

)
− 1

2
J−1
ij
∂Jjk
∂xl

)∣∣∣∣∣
xe
ϵlϵk +O

(
∥ϵ∥3

)
= −

(
∂
∂xl
δik −

1
2
J−1
ij
∂Jjk
∂xl

)∣∣∣∣∣
xe
ϵlϵk +O

(
∥ϵ∥3

)
ϵ+i =

1
2
J−1
ij
∂Jjk
∂xl

∣∣∣∣∣
xe
ϵlϵk +O

(
∥ϵ∥3

)

This result, which we can summarize as ∥ϵ+∥ = O
(
∥ϵ∥2

)
, illustrates

that given a sufficiently good guess, the Newton-Raphson iteration con-
verges rapidly, specifically quadratically, to the exact solution.

For example, if the error in iteration (1.12) after step k is 10−2, the
error after step k+ 1 is ∼ 10−4 and after step k+ 2 is ∼ 10−8. Indeed,
a good check of whether a code for implementing Newton-Raphson is
correct is to verify the quadratic convergence. Of course, this result
holds only if a sufficiently good guess is given. If the initial guess is
poor, the iteration may not converge, or alternately may converge to a
solution far from the initial guess.

1.3.11 Linear Coordinate Transformations

As noted above, the components of a matrix operator depend on the
coordinate system in which it is expressed. Here we illustrate how the
components of a matrix operator change upon a change in coordinate
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system. Consider two vectors x and y and a matrix operator A, where
y = Ax. For example, we can take x and y to be two-dimensional, in
which case

x =
[
x1

x2

]
Now consider new variables x′1 and x′2, where

x′1 = T11x1 + T12x2

x′2 = T21x1 + T22x2

This can be written x′ = Tx. Here x and x′ are the same vector, but
represented in the original (unprimed) and new (primed) coordinate
systems, and T is the operator that generates the new coordinate val-
ues from the original ones. It must be invertible—otherwise there is
not a unique mapping between the coordinate systems. Therefore, we
can write x = T−1x′ and y = AT−1x′; the matrix AT−1 yields the
mapping between x′ and y . If we also consider a coordinate transfor-
mation of the vector y of the form y ′ = Wy , then y ′ = WAT−1x′.
The matrix WAT−1 provides the mapping from x′ to y ′. Some impor-
tant coordinate transformations that take advantage of the properties
of the operator A are described in Section 1.4.

1.4 The Algebraic Eigenvalue Problem

1.4.1 Introduction

Eigenvalue problems arise in a variety of contexts. One of the most
important is in the solution of systems of linear ordinary differential
equations. Consider the system of two ordinary differential equations

dz
dt
= Az (1.13)

Here z ∈ R2 and A ∈ R2×2. If we guess, based on what we know about
the scalar case, that solutions will have the form

z(t) = xeλt

then we have that
Ax = λx (1.14)

If we can find a solution to this equation, then we have a solution to
(1.13). (To obtain the general solution to (1.13) we must find two solu-
tions to this problem.) This is the algebraic version of the eigenvalue
problem.
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The eigenvalue problem can be rewritten as the homogeneous sys-
tem of equations

(A− λI)x = 0

As with any homogeneous system, this generally has only the trivial
solution x = 0. For special values of λ, known as the eigenvalues
of A, the equation has a nontrivial solution, however. The solutions
corresponding to these eigenvalues, which can be real or complex, are
the eigenvectors of A. Geometrically, the eigenvectors of A are those
vectors that change only a scalar multiple when operated on by A. This
property is of great importance because for the eigenvectors, matrix
multiplication reduces to simple scalar multiplication; Ax can be re-
placed by λx. Because of this property, the eigenvectors of a matrix
provide a natural coordinate system for working with that matrix. This
fact is used extensively in applied mathematics.

From the existence and uniqueness results for linear systems of
equations that we saw in Section 1.3.1, we know that the above ho-
mogeneous problem has a nontrivial solution if an only if A − λI is
noninvertible: that is, when

det(A− λI) = 0

This equation is called the characteristic equation forA, and det(A−
λI) is the characteristic polynomial. For an n×nmatrix, this poly-
nomial is always nth degree in λ; this can be seen by performing LU
decomposition onA−λI; therefore, the characteristic polynomial hasn
roots (not necessarily all real or distinct). Each root is an eigenvalue, so
an n×nmatrix has exactly n eigenvalues. Each distinct eigenvalue has
a distinct (i.e. linearly independent) eigenvector. Each set of repeated
roots will have at least one distinct eigenvector, but may have fewer
than the multiplicity of the root. So a matrix may have fewer than n
eigenvectors. The nature of the eigenvectors depends on the structure
of the matrix.

In principle, the eigenvalues of a matrix may be found by finding
the roots of its characteristic polynomial. Since polynomials of degree
greater than four cannot be factored analytically, approximate numeri-
cal methods must be used for virtually all matrix eigenvalue problems.
There are numerical methods for finding the roots of a polynomial, but
in practice, this procedure is difficult and inefficient. An extremely
robust iterative method, based on theQR factorization of a matrix (Ex-
ercise 1.38), is the most commonly used technique for general matrices.
In some cases, only the “dominant” eigenvalue (the eigenvalue with the
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largest magnitude) needs to be found. The power method (Exercise
1.57) is a rapid iterative technique for this problem. Generalizations of
the idea behind the power method form the basis of powerful Krylov
subspace methods for iterative solutions of many computational linear
algebra problems (Trefethen and Bau III, 1997).

1.4.2 Self-Adjoint Matrices

Consider the real symmetric (thus self-adjoint) matrix

A =
[

2 1
1 2

]

The characteristic equation for A is λ2 − 4λ + 3 = 0 and its solutions
are λ1 = 1, λ2 = 3. The corresponding eigenvectors x = v1 and x = v2

are solutions to [
2− λ 1

1 2− λ

]
x = 0

These solutions are (to within an arbitrary multiplicative constant)

v1 =
[

1
−1

]
v2 =

[
1
1

]

Note that these vectors, when normalized to have unit length, form an
ON basis for R2. Now let

Q =
[
v1 v2

]
= 1√

2

[
1 1
−1 1

]

A vector x in R2 can now be represented in two coordinate systems,
either the original basis or the eigenvector basis. A representation in
the eigenvector basis will be indicated by a ′, so x′ = [x′1 x′2]T is the
vector containing the coordinates of x expressed in the eigenvector
basis. It can be shown that the coordinate transformation between
these bases is defined byQ, so thatx = Qx′ andx′ = Q−1x. Remember
that A is defined in the original basis so Ax makes sense, but Ax′ does
not. However, we can write

Ax = A(x′1v1 + x′2v2)
= x′1Av1 + x′2Av2

= x′1λ1v1 + x′2λ2v2

= QΛx′
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where

Λ =
[
λ1 0
0 λ2

]
=
[

1 0
0 3

]
Therefore, Ax = QΛx′. Using the transformation x′ = Q−1x gives
that Ax = QΛQ−1x, or A = QΛQ−1 . This expression can be reduced
further by noting that since the columns of Q form an orthonormal
basis, QkiQkj = δij , or QTQ = I. Since Q−1Q = I by definition, it
follows that Q−1 = QT . Matrices for which this property holds are
called orthogonal. In the complex case, the property becomesQ−1 =
QT andQ is said to be unitary. Returning to the example, the property
means that A can be expressed

A = QΛQT

As an example of the usefulness of this result, consider the system
of equations

dx
dt
= Ax = QΛQTx

By multiplying both sides of the equation by QT and using the facts
that QTQ = I and x′ = QTx, the equation can be rewritten

dx′

dt
= Λx′ =

[
1 0
0 3

]
x′

or dx1/dt = x1, dx2/dt = 3x2. In the eigenvector basis, the differen-
tial equations are decoupled. They can be solved separately.

The above representation of A can be found for any matrix A that

satisfies the self-adjointness condition A = AT . We have the following
theorem.

Theorem 1.12 (Self-adjoint matrix decomposition). If A ∈ Cn×n is self-
adjoint, then there exists a unitary Q ∈ Cn×n and real, diagonal Λ ∈
Rn×n such that

A = QΛQ∗

The diagonal elements of Λ, Λii, are the eigenvalues λi of A. The
eigenvalues are all real, even if A is not. The columns of the matrix Q
are the (normalized) eigenvectors vi corresponding to the eigenvalues.
The eigenvectors are orthonormal and form a basis for Cn.

This result shows that for every self-adjoint matrix operator, there
is a natural orthogonal basis, in which the matrix becomes diagonal.
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That is, the transformation diagonalizes the matrix. Since the eigen-
values are all real, matrix multiplication reduces to simple contraction
or stretching along the (eigenvector) coordinate axes. In this basis, any
linear systems of algebraic or differential equations containing Ax re-
duce to n decoupled equations.

That the eigenvalues are real can be established as follows. We have
Av = λv and, by taking adjoints, v∗A = λv∗, after noting that A∗ = A.
Multiply the first on the left by v∗ and the second on the right by v
and subtract to obtain 0 = (λ − λ)v∗v . We have that v∗v is not zero
since v ≠ 0 is an eigenvector, and therefore λ = λ and λ is real.

IfA has distinct eigenvalues, the eigenvectors are orthogonal, which
is also readily established. Given an eigenvalue λi and corresponding
eigenvector vi, we have that Avi = λivi. Let (λj , vj) be another eigen-
pair so that Avj = λjvj . Multiplying Avi = λivi on the left by v∗j , and
Avj = λjvj on the left by v∗i and subtracting gives (λi−λj)(v∗i vj) = 0.
If the eigenvalues are distinct, λi ≠ λj this equation can hold only if
v∗i vj = 0, and therefore vi and vj are orthogonal.

For the case of repeated eigenvalues, since orthogonality holds for
eigenvalues that are arbitrarily close together but unequal, we might
expect intuitively that it continues to hold when the eigenvalues be-
come equal. This turns out to be true, and we delay the proof until we
have introduced the Schur decomposition in Section 1.4.6.

1.4.3 General (Square) Matrices

Although many matrices arising in applications are self-adjoint, many
others are not, so it is important to include the results for these cases.
Now the eigenvectors do not necessarily form an ON basis, nor can the
matrix always be diagonalized. But it is possible to come fairly close.
There are three cases:

1. IfA is not self-adjoint, but has distinct eigenvalues (λi ≠ λj , i ≠ j),
then A can be diagonalized

A = SΛS−1 (1.15)

As before, Λ = S−1AS is diagonal, and contains the eigenvalues
(not necessarily real) of A. The columns of S contain the corre-
sponding eigenvectors. The eigenvectors are LI, so they form a
basis, but are generally not orthogonal.

2. IfA is not self-adjoint and has repeated eigenvalues, it may still be
the case that the repeated eigenvalues have distinct eigenvectors –
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e.g. a root with multiplicity two that has two linearly independent
eigenvectors. Here A can be diagonalized as above.

3. If A is not self-adjoint and has repeated eigenvalues that do not
yield distinct eigenvectors, it cannot be completely diagonalized;
a matrix of this type is called defective. Nevertheless, it can
always be put into Jordan form J

A = MJM−1 (1.16)

where J = M−1AM is organized as follows: each distinct eigen-
value appears on the diagonal with the nondiagonal elements of
the corresponding row and column being zero, just as above.
However, repeated eigenvalues appear in Jordan blocks with
this structure (shown here for an eigenvalue of multiplicity three)λ 1 0

0 λ 1
0 0 λ


In the case of repeated eigenvalues, we can distinguish between
algebraic multiplicity and geometric multiplicity. Algebraic
multiplicity of an eigenvalue is simply its multiplicity as a root
of the characteristic equation. Geometric multiplicity is the num-
ber of distinct eigenvectors that correspond to the repeated eigen-
value. In case 2 above, the geometric multiplicity of each repeated
eigenvalue is equal to its algebraic multiplicity. In case 3, the al-
gebraic multiplicity exceeds the geometric multiplicity.

For a non-self-adjoint 5 by 5 matrix with repeated eigenvalues
λ2 = λ3 = λ4,

J =


λ1 0 0 0 0
0 λ2 1 0 0
0 0 λ3 1 0
0 0 0 λ4 0
0 0 0 0 λ5


The eigenvectors corresponding to the distinct eigenvalues are
the corresponding columns ofM . A distinct eigenvector does not
exist for each of the repeated eigenvalues, but a generalized
eigenvector can be found for each occurrence of the eigenvalue.
These vectors, along with the eigenvectors, form a basis for Rn.
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Example 1.13: A nonsymmetric matrix

Find the eigenvalues and eigenvectors of the nonsymmetric matrix

A =
[

1 2
0 3

]
and show that it can be put in the form of (1.15).

Solution

This matrix has characteristic equation (1−λ)(3−λ) = 0 and thus has
eigenvalues λ = 1, λ = 3. For λ = 1, the eigenvector solves[

1− λ 2
0 3− λ

][
x1

x2

]
=
[

0 2
0 2

][
x1

x2

]
=
[

0
0

]
and it is straightforward to see that this is satisfied by [x1, x2]T = v1 =
[1,0]T . For λ = 3 we have[

−2 2
0 0

][
x1

x2

]
=
[

0
0

]
which has solution v2 = [1,1]T . Here v1 and v2 are not orthogonal,
but they are LI, so they still form a basis. Letting

S =
[
v1 v2

]
=
[

1 1
0 1

]
one can determine that

S−1 =
[

1 −1
0 1

]
Since the columns of S are not orthogonal, they cannot be normalized
to form a matrix that satisfies S−1 = ST . Nevertheless, A can be diago-
nalized

S−1AS = Λ =
[

1 0
0 3

]
□

Example 1.14: A defective matrix

Find the eigenvalues and eigenvectors of the nonsymmetric matrix

A =
[

3 2
0 3

]
and show that it cannot be put in the form of (1.15), but can be put in
the form of (1.16).
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Solution

The characteristic equation for A is (3−λ)2 = 0, so A has the repeated
eigenvalue λ = 3. The eigenvector is determined from[

0 2
0 0

]
x =

[
0
0

]

which has solution x = v1 = [1,0]T . There is not another nontrivial
solution to this equation so the repeated eigenvalue λ = 3 has only one
eigenvector. We cannot diagonalize this A.

Nevertheless, we will seek to nearly diagonalize it, by finding a gen-
eralized eigenvector v2 that allows us to construct a matrix

M =
[
v1 v2

]
satisfying

M−1AM = J =
[
λ 1
0 λ

]
Multiplying both sides of this equation by M yields that

AM = MJ =
[
v1 v2

][λ 1
0 λ

]

which can be rearranged to

(A− λI)
[
v1 v2

]
=
[
0 v1

]
This equation can be rewritten as the pair of equations

(A− λI)v1 = 0,
(A− λI)v2 = v1

The first of these is simply the equation determining the true eigenvec-
tor v1, while the second will give us the generalized eigenvector v2. For
the present problem this equation is[

0 2
0 0

]
v2 =

[
1
0

]

A solution to this equation is v2 = [0,1/2]T . (Any solution v2 must be
LI from v1. Why?) Constructing the matrix

M =
[
v1 v2

]
=
[

1 0
0 1/2

]
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one can show that

M−1 =
[

1 0
0 2

]
and that

J = M−1AM =
[

3 1
0 3

]
Note that we can replace v2 by v2 +αv1 for any α and still obtain this
result. □

1.4.4 Positive Definite Matrices

Positive definite and positive semidefinite matrices show up often in
applications. Here are some basic facts about them. In the following, A
is real and symmetric and B is real. The matrix A is positive definite
(denoted A > 0), if

xTAx > 0, ∀ nonzero x ∈ Rn

The matrix A is positive semidefinite (denoted A ≥ 0), if

xTAx ≥ 0, ∀x ∈ Rn

You should be able to prove the following facts.

1. A > 0 ⇐⇒ λ > 0, λ ∈ eig(A)

2. A ≥ 0 ⇐⇒ λ ≥ 0, λ ∈ eig(A)

3. A ≥ 0 ⇐⇒ BTAB ≥ 0 ∀B

4. A > 0 and B nonsingular ⇐⇒ BTAB > 0

5. A > 0 and B full column rank =⇒ BTAB > 0

6. A1 > 0, A2 ≥ 0 =⇒ A = A1 +A2 > 0

7. A > 0 ⇐⇒ z∗Az > 0 ∀ nonzero z ∈ Cn

8. For A ≥ 0, xTAx = 0 ⇐⇒ Ax = 0

If symmetric matrixA is not positive semidefinite nor negative semidef-
inite, then it is termed indefinite. In this case A has both positive and
negative eigenvalues.
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1.4.5 Eigenvalues, Eigenvectors, and Coordinate Transformations

Under the general linear transformation

y = Ax (1.17)

all the components of the vector y are coupled to all the components
of the vector x via the elements ofA, all of which are generally nonzero.
We can always rewrite this transformation using the eigenvalue decom-
position as

y = MJM−1x

Now consider the coordinate transformation x′ = M−1x and y ′ =
M−1y . In this new coordinate system, the linear transformation, (1.17)
becomes

y ′ = Jx′

In the “worst case scenario,” J has eigenvalues on the diagonal, some
values of 1 just above the diagonal and is otherwise zero. In the more
usual scenario J = Λ and each component of y ′ is coupled only to one
component of x′—the coordinate transformation associated with the
eigenvectors of A provides a coordinate system in which the different
components are decoupled. This result is powerful and is used in a
wide variety of applications.

Further considering the idea of coordinate transformations leads
naturally to the question of the dependence of the eigenvalue problem
on the coordinate system that is used to set up the problem. Given that

Ax = λx

let us take x′ = Tx, where T is invertible but otherwise arbitrary; this
expression represents a coordinate transformation between unprimed
and primed coordinates, as we have already described in Section 1.3.11.
Now x = T−1x′, and thus

AT−1x′ = λT−1x′

Multiplying both sides by T to eliminate T−1 on the right-hand side
yields

TAT−1x′ = λx′

Recall that we have done nothing to the eigenvalues λ—they are the
same in the last equation of this sequence as the first. Thus the eigen-
values of TAT−1 are the same as the eigenvalues ofA. Therefore, if two
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matrices are related by a transformation B = TAT−1, which is called a
similarity transformation, their eigenvalues are the same. In other
words, eigenvalues of a matrix are invariant under similarity trans-
formations.

In many situations, invariants other than the eigenvalues are used.
These can be expressed in terms of the eigenvalues. The two most
common are the trace of a matrix A

tr A =
n∑
i=1

Aii =
n∑
i=1

λi

and the determinant

detA = (−1)m
n∏
i=1

Uii =
n∏
i=1

λi

Example 1.15: Vibrational modes of a molecule

The individual atoms that make up a molecule vibrate around their
equilibrium positions and orientations. These vibrations can be used
to characterize the molecule by spectroscopy and are important in de-
termining many of its properties, such as heat capacity and reactivity.
We examine here a simple model of a molecule to illustrate the origin
and nature of these vibrations.

Let theαth atom of a molecule be at position xα = [xα, yα, zα]T and
have massmα. The bond energy of the molecule is U(x1,x2,x3, . . . ,xN)
where N is the number of atoms in the molecule. Newton’s second law
for each atom is

mα
d2xα
dt2

= −∂U(x1, . . . ,xN)
∂xα

Let X = [x1, y1, z1, x2, y2, z2, . . . , xN , yN , zN]T and M be a 3N × 3N
diagonal matrix with the masses of each atom on the diagonals. That
is, M11 = M22 = M33 = m1, M44 = M55 = M66 = m2, M3N−2,3N−2 =
M3N−1,3N−1 = M3N,3N = mN . Now the equations of motion for the
coordinates of the atom become

Mij
d2Xj
dt2

= −∂U(X)
∂Xi

An equilibrium shape Xeq of the molecule is a minimum of the bond
energy U , and can be found by Newton-Raphson iteration on the prob-
lem ∂U

∂Xi = 0. Assume Xeq is known and characterize small-amplitude
vibrations around that shape.
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Solution

Let X̂ = X − Xeq be a small perturbation away from the equilibrium

shape. Because d2Xeq

dt2 = 0, this perturbation satisfies the equation

Mij
d2X̂j
dt2

= −∂U(Xeq + X̂)
∂Xi

Taylor expanding the right-hand side of this equation, using the fact
that ∂U

∂Xi

∣∣∣
Xeq
= 0, and neglecting terms of O(

∥∥X̂∥∥2) yield

∂U(Xeq + X̂)
∂Xi

≈ HikX̂k

where

Hik =
∂2U
∂Xi∂Xk

∣∣∣∣∣
Xeq

is called the Hessian matrix for the function U . Thus the governing
equation for the vibrations is given by

Mij
d2X̂j
dt2

= −HikX̂k

By definition, H is symmetric. Furthermore, rigidly translating the en-
tire molecule does not change its bond energy, so H has three zero
eigenvalues, with eigenvectors

V = [1,0,0, . . . ,1,0,0]T V = [0,1,0, . . . ,0,1,0]T

V = [0,0,1, . . . ,0,0,1]T

These correspond to moving the whole molecule in the x, y , and z
directions, respectively. Furthermore, because Xeq is a minimum of
the bond energy, H is also positive semidefinite.

We expect the molecule to vibrate, so we will seek oscillatory solu-
tions. A convenient way to do so is to let

X̂(t) = Zeiωt + Ze−iωt

recalling that for realω, eiωt = cosωt+ i sinωt. Substituting into the
governing equation yields

−ω2Mij(Zjeiωt + Zje−iωt) = −Hik(Zkeiωt + Zke−iωt)
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Gathering terms proportional to eiωt and e−iωt , we can see that this
equation will be satisfied at all times if and only if

ω2MijZj = HikZk (1.18)

This looks similar to the linear eigenvalue problem, (1.14), and reduces
exactly to one if all atoms have the same mass m (in which case M =
mI).

We can learn more about this problem by considering the proper-
ties of M and H. Since M is diagonal and the atomic masses are pos-
itive, M is clearly positive definite. Also recall that H is symmetric
positive semidefinite. Writing M = L2, where L is diagonal and its di-
agonal entries are the square roots of the masses, we can write that
ω2L2Z = HZ . Multiplying by L−1 on the left yields ω2LZ = L−1HZ
and letting Z̃ = LZ results in ω2Z̃ = L−1HL−1Z̃ . This has the form
of an eigenvalue problem H̃Z̃ = ω2Z̃ , where H̃ = L−1HL−1. Solving
this eigenvalue problem gives the frequenciesω at which the molecule
vibrates. The corresponding eigenvectors Z̃ , when transformed back
into the original coordinates via Z = L−1Z̃ , give the so-called “normal
modes.” Each frequency is associated with a mode of vibration that in
general involves different atoms of the molecule in different ways. Be-
cause H̃ is symmetric, these modes form an orthogonal basis in which
to describe the motions of the molecule. A further result can be ob-
tained by multiplying (1.18) on the left by ZT , yielding

ω2ZTMZ = ZTHZ

Because ZTMZ > 0 and ZTHZ ≥ 0, we can conclude that ω2 ≥ 0 with
equality only when Z is a zero eigenvector of H. This result shows
that the frequencies ω are real and thus that the dynamics are purely
oscillatory.

Observe that the quantityZTMZ arises naturally in this problem: via
the transformation Z̃ = LZ it is equivalent to the inner product Z̃T Z̃ .
It is straightforward to show that for any symmetric positive definite
W , the quantity xTWy satisfies all the conditions of an inner product
between real vectors x and y ; it is called a weighted inner product.
In the current case, the eigenvectors Z̃ are orthogonal under the usual
“unweighted” inner product, in which case the vectors Z = L−1Z̃ are
orthogonal under the weighted inner product with W = M . □
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1.4.6 Schur Decomposition

A major problem with using the Jordan form when doing calculations
on matrices that have repeated eigenvalues is that the Jordan form is
numerically unstable. For matrices with repeated eigenvalues, if di-
agonalization is not possible, it is usually better computationally to
use the Schur form instead of the Jordan form. The Schur form only
triangularizes the matrix. Triangularizing a matrix, even one with re-
peated eigenvalues, is numerically well conditioned. Golub and Van
Loan (1996, p.313) provide the following theorem.

Theorem 1.16 (Schur decomposition). If A ∈ Cn×n then there exists a
unitary Q ∈ Cn×n such that

Q∗AQ = T

in which T is upper triangular.

The proof of this theorem is discussed in Exercise 1.43. Note that
even though T is upper triangular instead of diagonal, its diagonal el-
ements are still its eigenvalues. The eigenvalues of T are also equal
to the eigenvalues of A because T is a the result of a similarity trans-
formation of A. Even if A is a real matrix, T can be complex because
the eigenvalues of a real matrix may come in complex conjugate pairs.
Recall a matrix Q is unitary if Q∗Q = I. You should also be able to
prove the following facts (Horn and Johnson, 1985, p.14,67).

1. If A ∈ Cn×n and BA = I for some B ∈ Cn×n, then

(a) A is nonsingular

(b) B is unique

(c) AB = I

2. The matrix Q is unitary if and only if

(a) Q is nonsingular and Q∗ = Q−1

(b) QQ∗ = I
(c) Q∗ is unitary

(d) The rows of Q form an orthonormal set

(e) The columns of Q form an orthonormal set
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If A is self-adjoint, then by taking adjoints of both sides of the Schur
decomposition equality, we have that T is real and diagonal, and the
columns of Q are the (normalized) eigenvectors of A, which is one way
to show that the eigenvectors of a self-adjoint matrix are orthogonal, re-
gardless of whether the eigenvalues are distinct. Recall that we delayed
the proof of this assertion in Section 1.4.2 until we had introduced the
Schur decomposition.

If A is real and symmetric, then not only is T real and diagonal, but
Q can be chosen real and orthogonal. This fact can be established by
specializing the results in Exercises 1.42 and 1.43 to real rather than
complex matrices and noting that the eigenvalues are real. The theo-
rem summarizing this case is the following (Golub and Van Loan, 1996,
p.393), where, again, it does not matter if the eigenvalues of A are re-
peated.

Theorem 1.17 (Symmetric Schur decomposition). If A ∈ Rn×n is sym-
metric, then there exists a real, orthogonal Q and a real, diagonal Λ
such that

QTAQ = Λ = diag(λ1, λ2, . . . , λn)

where diag(a, b, c, . . .) denotes a diagonal matrix with elementsa,b, c, . . .
on the diagonal.

Note that the {λi} are the eigenvalues of A and the columns of Q,
{qi}, are the corresponding (normalized) eigenvectors.

For real but not necessarily symmetric A, you can restrict yourself
to real matrices by using the real Schur decomposition (Golub and Van
Loan, 1996, p.341). But the price you pay is that you can achieve only
block upper triangular T , rather than strictly upper triangular T .

Theorem 1.18 (Real Schur decomposition). If A ∈ Rn×n then there ex-
ists a real, orthogonal Q such that

QTAQ =


R11 R12 · · · R1m
0 R22 · · · R2m
...

...
. . .

...
0 0 · · · Rmm


in which each Rii is either a real scalar or a 2×2 real matrix having com-
plex conjugate eigenvalues; the eigenvalues of Rii are the eigenvalues
of A.
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1.4.7 Singular Value Decomposition

Another highly useful matrix decomposition that can be applied to non-
square in addition to square matrices is the singular value decomposi-
tion (SVD). Any matrix A ∈ Cm×n has an SVD

A = USV∗

in which U ∈ Cm×m and V ∈ Cn×n are square and unitary

U∗U = UU∗ = Im V∗V = VV∗ = In

and S ∈ Rm×n is partitioned as

S =
[

Σr×r 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]

in which r is the rank of the A matrix. The matrix Σ is diagonal and
real

Σ =


σ1

. . .
σr

 σ1 ≥ σ2 ≥ · · · ≥ σr > 0

in which the diagonal elements, σi are known as the singular values of
matrix A. The singular values are real and positive and can be ordered
from largest to smallest as indicated above.

Connection of SVD and eigenvalue decomposition. GivenA ∈ Cm×n
with rank r , consider the Hermitian matrix AA∗ ∈ Rm×m, also of
rank r . We can deduce that the eigenvalues of AA∗ are real and non-
negative as follows. Given (λ, v) are an eigenpair of AA∗, we have
AA∗v = λv,v ≠ 0. Taking inner products of both sides with respect
to v and solving for λ gives λ = v∗AA∗v/v∗v . We know v∗v is
a real, positive scalar since v ≠ 0. Let y = A∗v and we have that
λ = y∗y/v∗v and we know that y∗y is a real scalar and y∗y ≥ 0.
Therefore λ is real and λ ≥ 0. And we can connect the eigenvalues and
eigenvectors of AA∗ to the singular values and vectors of A. The r
nonzero eigenvalues of AA∗ (λi) are the squares of the singular values
(σi) and the eigenvectors of AA∗ (qi) are the columns of U (ui)

λi(AA∗) = σ 2
i (A) i = 1, . . . r

qi = ui, i = 1, . . .m
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Next consider the Hermitian matrix A∗A ∈ Rn×n, also of rank r . The
r nonzero eigenvalues of A∗A (λi) are also the squares of the singular
values (σi) and the eigenvectors of A∗A (ri) are the columns of V (vi)

λi(A∗A) = σ 2
i (A) i = 1, . . . r

ri = vi, i = 1, . . . n

These results follow from substituting the SVD into both products and
comparing with the eigenvalue decomposition (Theorem 1.12)

AA∗ = (USV∗)(VS∗U∗) = USS∗U∗ = QΛQ∗

A∗A = (VS∗U∗)(USV∗) = VS∗SV∗ = RΛR∗

Real matrix with full row rank. Consider a real matrix A with more
columns than rows (wide matrix, m < n) and full row rank, r =m. In
this case both U and V are real and orthogonal, and the SVD takes the
form

A = U
[
Σ 0

][VT1
VT2

]
in which V1 contains the first m columns of V , and V2 contains the
remaining n−m columns. Multiplying the partitioned matrices gives

A = UΣVT1
and notice that we do not need to store the V2 matrix if we wish to
represent A. This fact is handy if A has many more columns than
rows, n≫m because V2 ∈ Rn−m×n requires a large amount of storage
compared to A.

Real matrix with full column rank. Next consider the case in which
real matrix A has more rows than columns (tall matrix,m > n) and full
column rank. In this case the SVD takes the form

A =
[
U1 U2

][Σ
0

]
VT

in which U1 contains the first n columns of U , and U2 contains the
remaining m−n columns. Multiplying the partitioned matrices gives

A = U1ΣVT

and notice that we do not need to store the U2 matrix if we wish to
represent A.
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N(A) N(AT )

R(A)R(AT )

AT A

RmRn
Ax = b

0 0

{vi}ri=1 {ui}ri=1

{ui}mi=r+1{vi}ni=r+1

Figure 1.4: The four fundamental subspaces of matrix A = USVT .
The range of A is spanned by the first r columns of
U , {u1, . . . , ur}. The range AT is spanned by the first
r columns of V , {v1, . . . , vr}. The null space of A is
spanned by {vr+1, . . . , vn}, and the null space of AT is
spanned by {ur+1, . . . , um}.

SVD and fundamental theorem of linear algebra. The SVD provides
an orthogonal decomposition of all four of the fundamental subspaces
of matrix A. Consider first the partitioned SVD for real-valued A

A =
[
U1 U2

][Σ 0
0 0

][
VT1
VT2

]
A = U1ΣVT1

Now consider Avk in which k ≥ r + 1. Because vk is orthogonal to
V1 = {v1, . . . , vr}, we have Avk = 0, and these n − r orthogonal vk
span the null space of A. Because the columns of V1 are orthogonal to
this set, they span the range of AT . Transposing the previous equation
gives

AT = V1ΣUT1
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and we have {ur+1, . . . , um} span the null space of AT . Because the
columns of U1 are orthogonal to this set, they span the range of A.
These results are summarized in Figure 1.4.

SVD and least-squares problems. We already have shown that if
A has independent columns, the unique least-squares solution to the
overdetermined problem

min
x
∥Ax − b∥2

is given by

xls = (ATA)−1ATb

xls = A†b

The SVD also provides a means to compute xls. For real A, the SVD
satisfies

A = U1ΣVT AT = VΣUT1
ATA = VΣUT1 U1ΣVT = VΣ2VT

The pseudoinverse is therefore given by

A† = VΣ−2VTVΣUT1
A† = VΣ−1UT1

and the least-squares solution is

xls = VΣ−1UT1 b

SVD and underdetermined problems. We already have shown that
if A has independent rows, the unique minimum-norm solution to the
underdetermined problem

min
x
∥x∥2 subject to Ax = b

is given by
xmn = AT (AAT )−1b

The SVD also provides a means to compute xmn. In this case we have
A = UΣVT1 and substituting this into the minimum-norm solution gives

xmn = V1Σ−1UTb

Note the similarity to the least-squares solution above.
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1.5 Functions of Matrices

1.5.1 Polynomial and Exponential

We have already defined some functions of square matrices using ma-
trix multiplication and addition. These operations create the class of
polynomial functions

p(A) = α0I +α1A+α2A2 + · · · +αmAm

withA ∈ Cn×n, αi ∈ C, i = 0, . . . ,m. We wish to expand this set of func-
tions so that we have convenient ways to express solutions to coupled
sets of differential equations, for example. Probably the most impor-
tant function for use in applications is the matrix exponential. The
standard exponential of a scalar can be defined in terms of its Taylor
series

ea = 1+ a+ 1
2!
a2 + 1

3!
a3 + · · · a ∈ C

This series converges for all a ∈ C. Notice that this expression is an
infinite-order series and therefore not a polynomial function. We can
proceed to define the matrix exponential analogously

eA = I +A+ 1
2!
A2 + 1

3!
A3 + · · · A ∈ Cn×n

and this series converges for all A ∈ Cn×n. Let’s see why the matrix
exponential is so useful. Consider first the scalar first-order linear dif-
ferential equation

dx
dt
= ax x(0) = x0 x ∈ R, a ∈ R

which arises in the simplest chemical kinetics models. The solution is
given by

x(t) = x0eat

and this is probably the first and most important differential equation
that is discussed in the introductory differential equations course. By
defining the matrix exponential we have the solution to all coupled sets
of linear first-order differential equations. Consider the coupled set of
linear first-order differential equations

d
dt


x1

x2
...
xn

 =

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann



x1

x2
...
xn


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with initial condition 
x1(0)
x2(0)

...
xn(0)

 =

x10

x20
...
xn0


which we express compactly as

dx
dt
= Ax x(0) = x0 x ∈ Rn, A ∈ Rn×n (1.19)

The payoff for knowing the solution to the scalar version is that we also
know the solution to the matrix version. We propose as the solution

x(t) = eAtx0 (1.20)

Notice that we must put the x0 after the eAt so that the matrix multi-
plication on the right-hand side is defined and gives the required n×1
column vector for x(t). Let’s establish that this proposed solution is
indeed the solution to (1.19). Substituting t = 0 to check the initial
condition gives

x(0) = eA0x0 = e0x0 = Ix0 = x0

and the initial condition is satisfied. Next differentiating the matrix
exponential with respect to scalar time gives

d
dt
eAt = d

dt
(I + tA+ t

2

2!
A2 + t

3

3!
A3 + · · · )

= 0+A+ t
1!
A2 + t

2

2!
A3 + · · ·

= A(I + t
1!
A1 + t

2

2!
A2 + · · · )

= AeAt

We have shown that the scalar derivative formula d/dt(eat) = aeat
also holds for the matrix case, d/dt(eAt) = AeAt . We also could have
factored theA to the right instead of the left side in the derivation above
to obtain d/dt(eAt) = eAtA. Note that although matrix multiplication
does not commute in general, it does commute for certain matrices,
such as eAt and powers of A. Finally, substituting the derivative result
into (1.19) gives

dx
dt
= d
dt
(eAtx0) = (AeAt)x0 = A(eAtx0) = Ax
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and we see that the differential equation also is satisfied.
Another insight into functions of matrices is obtained when we con-

sider their eigenvalue decomposition. Let A = SΛS−1 in which we as-
sume for simplicity that the eigenvalues of A are not repeated so that
Λ is diagonal. First we see that powers of A can be written as follows
for p ≥ 1

Ap = AA · · ·A︸ ︷︷ ︸
ptimes

= (SΛS−1)(SΛS−1) · · · (SΛS−1)

= S(ΛΛ · · ·Λ︸ ︷︷ ︸
ptimes

)S−1

= SΛpS−1

Substituting the eigenvalue decomposition into the definition of the
matrix exponential gives

eAt = I + tA+ t
2

2!
A2 + t

3

3!
A3 + · · ·

= SS−1 + tSΛS−1 + t
2

2!
SΛ2S−1 + t

3

3!
SΛ3S−1 + · · ·

= S(I + tΛ+ t
2

2!
Λ2 + t

3

3!
Λ3 + · · · )S−1

eAt = SeΛtS−1

Therefore, we can determine the time behavior of eAt by examining the
behavior of

eΛt =


eλ1t

eλ2t

. . .
eλnt


and we deduce that eAt asymptotically approaches zero as t →∞ if and
only if Re(λi) < 0, i = 1, . . . , n. We also know that eAt is oscillatory if
any eigenvalue has a nonzero imaginary part, and so on.

The matrix exponential is just one example of expanding scalar
functions to matrix functions. Any of the transcendental functions
(trigonometric functions, hyperbolic trigonometric functions, logarithm,
square root, etc.) can be extended to matrix arguments as was shown
here for the matrix exponential (Higham, 2008). For example, the square
root of a matrix A is any matrix B that satisfies B2 = A. If A =
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SΛS−1, then one solution (the principal square root) is B = SΛ1/2S−1,
where Λ1/2 = diag(λ1/2

1 , λ1/2
2 , . . .). More generally, Λ1/2 can be replaced

by diag(±λ1/2
1 ,±λ1/2

2 , . . .). Moreover, for any linear scalar differential
equation having solutions consisting of these scalar functions, coupled
sets of the corresponding linear differential equations are solved by the
matrix version of the function.

Bound on eAt . When analyzing solutions to dynamic models, we often
wish to bound the asymptotic behavior as time increases to infinity. For
linear differential equations, this means we wish to bound the asymp-
totic behavior of eAt as t →∞. We build up to a convenient bound in a
few steps. First, for scalar z ∈ C, we know that

|ez| =
∣∣∣eRe(z)+Im(z)i

∣∣∣ = ∣∣∣eRe(z)
∣∣∣∣∣∣eIm(z)i

∣∣∣ = eRe(z)

Similarly, if we have a diagonal matrix D ∈ Cn×n, D = diag(d1, . . . , dn),
then the matrix norm of eD is∥∥∥eD∥∥∥ =max

x≠0

∥∥eDx∥∥
∥x∥ = eλ

in which λ =maxi(Re(di)). In fact, if this max over the real parts of the
eigenvalues occurs for index i∗, then x = ei∗ achieves the maximum in∥∥eDx∥∥ /∥x∥. Given a real, nonnegative time argument t ≥ 0, we also
have that ∥∥∥eDt∥∥∥ = eλt t ≥ 0

Next, if the matrix A is diagonalizable, we can use A = SΛS−1 to obtain

eAt = SeΛtS−1

and we can obtain a bound by taking norms of both sides∥∥∥eAt∥∥∥ = ∥∥∥SeΛtS−1
∥∥∥ ≤ ∥S∥∥∥∥eΛt∥∥∥∥∥∥S−1

∥∥∥
For any nonsingular S, the product ∥S∥

∥∥S−1
∥∥ is defined as the con-

dition number of S, denoted κ(S). A bound on the norm of eAt is
therefore ∥∥∥eAt∥∥∥ ≤ κ(S)eλt t ≥ 0 A diagonalizable

in which λ = maxi Re(λi) = max(Re(eig(A))). So this leaves only the
case in which A is not diagonalizable. In the general case we use the
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Schur formA = QTQ∗, with T upper triangular. Van Loan (1977) shows
that3 ∥∥∥eAt∥∥∥ ≤ eλt n−1∑

k=0

∥Nt∥k
k!

t ≥ 0 (1.21)

in which N = T −Λ where Λ is the diagonal matrix of eigenvalues and
N is strictly upper triangular, i.e., has zeros on as well as below the
diagonal. Note that this bound holds for any A ∈ Cn×n. Van Loan
(1977) also shows that this is a fairly tight bound compared to some
popular alternatives. If we increase the value of λ by an arbitrarily small
amount, we can obtain a looser bound, but one that is more convenient
for analysis. For any λ′ satisfying

λ′ >max(Re(eig(A)))

there is a constant c > 0 such that∥∥∥eAt∥∥∥ ≤ ceλ′t t ≥ 0 (1.22)

This result holds also for any A ∈ Cn×n. Note that the constant c de-
pends on the matrix A. Establishing this result is discussed in Exercise
1.71. To demonstrate one useful consequence of this bound, consider
the case in which all eigenvalues of A have strictly negative real parts.
Then there exists λ′ such that Re(eig(A)) < λ′ < 0, and (1.22) tells us
that eAt → 0 exponentially fast as t →∞ for the entire class of “stable”
A matrices. We do not need to assume that A has distinct eigenvalues
or is diagonalizable, for example, to reach this conclusion.

1.5.2 Optimizing Quadratic Functions

Optimization is a large topic of fundamental importance in many engi-
neering activities such as process design, process control, and process
operations. Here we would like to introduce some of the important
concepts of optimization in the simple setting of quadratic functions.
You now have the required linear algebra tools to make this discussion
accessible.

Scalar argument. The reader is undoubtedly familiar with finding the
maximum and minimum of scalar functions by taking the first deriva-
tive and setting it to zero. For conciseness, we restrict attention to

3Note that there is a typo in (2.11) in Van Loan (1977), which is corrected here.
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(unconstrained) minimization, and we are interested in the problem4

min
x
f(x)

What do we expect of a solution to this problem? A point x0 is termed
a minimizer if f(x0) ≤ f(p) for all p. A minimizer x0 is unique if
no other point has this property. In other words, the minimizer x0 is
unique provided f(x0) < f(p) for all p ≠ x0. We call x0 the mini-
mizer and f 0 = f(x0) the (optimal) value function. Note that to avoid
confusion f 0 =minx f(x) is called the “solution” to the problem, even
though x0 is usually the item of most interest, and x0 = arg minx f(x)
is called the “argument of the solution.”

We wish to know when the minimizer exists and is unique, and how
to compute it. We consider first the real, scalar-valued quadratic func-
tion of the real, scalar argument x, f(x) = (1/2)ax2 + bx + c, with
a,b, c, x ∈ R. Putting the factor of 1/2 in front of the quadratic term
is a convention to simplify various formulas to be derived next. If we
take the derivative and set it to zero we obtain

f(x) = (1/2)ax2 + bx + c
d
dx
f(x) = ax + b = 0

x0 = −b/a

This last result for x0 is at least well defined provided a ≠ 0. But if
we are interested in minimization, we require more: a > 0 is required
for a unique solution to the problem minx f(x). Indeed, taking a sec-
ond derivative of f(·) gives d2/dx2f(x) = a. The condition a > 0 is
usually stated in beginning calculus courses as: the function is concave
upward. This idea is generalized to the condition that the function is
strictly convex, which we define next. Evaluating f(x) at the proposed
minimizer gives f 0 = f(x0) = −(1/2)b2/a+ c.

Convex functions. Generalizing the simple notion of a function hav-
ing positive curvature (or being concave upward) to obtain existence
and uniqueness of the minimizer leads to the concept of a convex func-
tion, which is defined as follows (Rockafellar and Wets, 1998, p. 38).

Definition 1.19 (Convex function). Let function f(·) be defined on all
reals. Consider two points x,y and a scalar α that satisfy 0 ≤ α ≤ 1.

4We do not lose generality with this choice; if the problem of interest is instead
maximization, use the following identity to translate: maxx f(x) =minx −f(x).
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1−α α

x αx + (1−α)y y

f(y)

αf(x)+ (1−α)f(y)

f(αx + (1−α)y)

f(x)

Figure 1.5: Convex function. The straight line connecting two points
on the function curve lies above the function; αf(x) +
(1−α)f(y) ≥ f(αx + (1−α)y) for all x,y.

The function f is convex if the following inequality holds for all x,y
and α ∈ [0,1]

f (αx + (1−α)y) ≤ αf(x)+ (1−α)f(y)

Figure 1.5 shows a convex function. Notice that if you draw a straight
line connecting any two points on the function curve, if the function
is convex the straight line lies above the function. We say the function
f(·) is strictly convex if the inequality is strict for all x ≠ y and
α ∈ (0,1)

f (αx + (1−α)y) < αf(x)+ (1−α)f(y)
Notice that x and y are restricted to be nonequal and α is restricted to
lie in the open interval (0,1) in the definition of strict convexity (or no
function would be strictly convex).

That strict convexity is sufficient for uniqueness of the minimizer is
established readily as follows. Assume that one has found a (possibly
nonunique) minimizer of f(·), denoted x0, and consider another point
p ≠ x0. We know that f(p) cannot be less than f(x0) or we contradict
optimality of x0. We wish to rule out f(p) = f(x0), also, because
equality implies that the minimizer is not unique. If f(·) is strictly
convex and f(p) = f(x0), we have that

f(αx0 + (1−α)p) < αf(x0)+ (1−α)f(p) = f(x0)
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Figure 1.6: Contours of constant f(x) = xTAx; (a) A > 0 (or A <
0), ellipses; (b) A ≥ 0 (or A ≤ 0), straight lines; (c) A
indefinite, hyperbolas. The coordinate axes are aligned
with the contours if and only if A is diagonal.

So for all z = αx0+ (1−α)p with α ∈ (0,1), z ≠ x0 and f(z) < f(x0),
which also contradicts optimality of x0. Therefore f(x0) < f(p) for
all p ≠ x0, and the minimizer is unique. Notice that the definition of
convexity does not require f(·) to have even a first derivative, let alone
a second derivative as required when using a curvature condition for
uniqueness. But if f(·) is quadratic, then strict convexity is equivalent
to positive curvature as discussed in Exercise 1.72.

Vector argument. We next take real-valued vector x ∈ Rn, and the
general real, scalar-valued, quadratic function is f(x) = (1/2)xTAx +
bTx + c with A ∈ Rn×n, b ∈ Rn, and c ∈ R. Without loss of generality,
we can assume A is symmetric.5 We know that the eigenvalues of a
symmetric matrix are real (see Theorem 1.17); the following cases are
of interest and cover all possibilities for symmetric A: (a) A > 0 (or

5If A is not symmetric, show that replacing A with the symmetric Ã = (1/2)(A+AT )
does not change the function f(·).
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A < 0), (b) A ≥ 0 (or A ≤ 0), and (c) A indefinite. Figure 1.6 shows
contours of the quadratic functions that these A generate for x ∈ R2.
Since A is the parameter of interest here, we set b = 0, c = 0.6 The
positive cost contours are concentric ellipses for the case A > 0. The
contour for f = 0 is the origin, and minimizing f for A > 0 has the
origin as a unique minimizer. This problem corresponds to finding the
bottom of a bowl. If A < 0, contours remain ellipses, but the sign of
the contour value changes. The case A < 0 has the origin as a unique
maximizer. This problem corresponds to finding the top of a mountain.

For the case A ≥ 0, the positive contours are straight lines. The
line through the origin corresponds to f = 0. All points on this line
are minimizers for f(·) in this case, and the minimizer is nonunique.
The quadratic function is convex but not strictly convex. The function
corresponds to a long valley. As before, if A ≤ 0, contours remain
straight lines, but the sign of the contour value changes. For A ≤ 0,
the maximizer exists, but is not unique. The function is now a ridge.
And some specialized techniques for numerically finding optima with
badly conditioned functions approaching this case are known as “ridge
regression.”

For indefinite A, Figure 1.6 shows that the contours are hyperbolas.
The origin is termed a saddle point in this case, because the function re-
sembles a horse’s saddle, or a mountain pass if one prefers to maintain
the topography metaphor. Note that f(·) increases without bound in
the northeast and southwest directions, but decreases without bound
in the southeast and northwest directions. So neither a minimizer nor
a maximizer exists for the indefinite case. But there is an important
class of problems for which the origin is the solution. These are the
minmax or maxmin problems. Consider the two problems

max
x1

min
x2
f(x) min

x2
max
x1
f(x) (1.23)

These kinds of problems are called noncooperative games, and players
one and two are optimizing over decision variables x1 and x2, respec-
tively. In this type of noncooperative problem, player one strives to
maximize function f while player two strives to minimize it. Nonco-
operative games arise in many fields, especially as models of economic
behavior. In fact, von Neumann and Morgenstern (1944) originally de-
veloped game theory for understanding economic behavior in addition

6Note that c merely shifts the function f(·) up and down, and b merely shifts the
origin, so they are not important to the shape of the contours of the quadratic function.
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to other features of classical games such as bluffing in poker. These
kinds of problems also are useful in worst-cases analysis and design.
For example, the outer problem can represent a standard design op-
timization while the inner problem finds the worst-case scenario over
some set of uncertain model parameters.

Another important engineering application of noncooperative games
arises in the introduction of Lagrange multipliers and the Lagrangian
function when solving constrained optimization problems. For the
quadratic function shown in Figure 1.6 (c), Exercise 1.74 asks you to
establish that the origin is the unique solution to both problems in
(1.23). The solution to a noncooperative game is known as a Nash
equilibrium or Nash point in honor of the mathematician John Nash
who established some of the early fundamental results of game theory
(Nash, 1951).

Finally, to complete the vector minimization problem, we restrict at-
tention to the case A > 0. Taking two derivatives in this case produces

f(x) = (1/2)xTAx + bTx + c
d
dx
f(x) = (1/2)(Ax +ATx)+ b = Ax + b

d2

dx2
f(x) = A

Setting df/dx = 0 and solving for x0, and then evaluating f(x0) gives

x0 = −A−1b f 0 = −(1/2)bTA−1b + c

These results for the scalar and vector cases are summarized in Table
1.1. Notice also in the last line of the table that one can reparameterize
the function f(·) in terms of x0 and f 0, in place of b and c, which is
often useful.

Revisiting linear least squares. Consider the linear least-squares prob-
lem of Section 1.3.7

min
x
(1/2)

∥∥∥Ãx − b̃∥∥∥2

where we have changed Ax − b to Ãx − b̃ to not conflict with the no-
tation of this section. We see that least squares is the special case of a
quadratic function with the parameters

A = ÃT Ã b = −ÃT b̃ c = (1/2)b̃T b̃

Obviously A is symmetric in the least-squares problem. We have al-
ready derived the fact that ÃT Ã > 0 if the columns of Ã are independent
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Scalar Vector

f(x) (1/2)ax2 + bx + c (1/2)xTAx + bTx + c

d
dx
f ax + b Ax + b

d2

dx2
f a A

x0 −b/a −A−1b

f 0 −(1/2)b2/a+ c −(1/2)bTA−1b + c

f(x) (1/2)a(x − x0)2 + f 0 (1/2)(x − x0)TA(x − x0)+ f 0

Table 1.1: Quadratic function of scalar and vector argument; a > 0,
A positive definite.

in the discussion of the SVD in Section 1.4.7. So independent columns
of Ã correspond to case (a) in Figure 1.6. If the columns of Ã are not
independent, then A ≥ 0, and we are in case (b) and lose uniqueness
of the least-squares solution. See Exercise 1.64 for a discussion of this
case. It is not possible for a least-squares problem to be in case (c),
which is good, because we are posing a minimization problem in least
squares. So the solution to a least-squares problem always exists.
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1.5.3 Vec Operator and Kronecker Product of Matrices

We introduce two final matrix operations that prove highly useful in
applications, but often are neglected in an introductory linear algebra
course. These are the vec operator and the Kronecker product of two
matrices.

The vec operator. For A ∈ Rm×n, the vec operator is defined as the
restacking of the matrix by its columns into a single large column vector

A =


A11 A12 · · · A1n
A21 A22 · · · A2n

. . .
Am1 Am2 · · · Amn

 vecA =



A11

A21
...

Am1

A12

A22
...

Am2
...
A1n
A2n

...
Amn


Note that vecA is a column vector in Rmn. If we denote the n column
vectors of A as ai, we can express the vec operator more compactly
using column partitioning as

A =
[
a1 a2 · · · an

]
vecA =


a1

a2
...
an


Matrix Kronecker product. For A ∈ Rm×n and B ∈ Rp×q, the Kro-
necker product of A and B, denoted A⊗ B, is defined as

A⊗ B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

. . .
Am1B Am2B · · · AmnB

 (1.24)
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Note that the Kronecker product is defined for all matricesA and B, and
the matrices do not have to conform as in normal matrix multiplication.
By counting the number of rows and columns in the definition above,
we see that matrix A ⊗ B ∈ Rmp×nq. Notice also that the vector outer
product, defined in Section 1.2.5, is a special case of this more general
matrix Kronecker product.

Some useful identities. We next establish four useful identities in-
volving the vec operator and Kronecker product.

vec(ABC) = (CT ⊗A)vecB (1.25)

(A⊗ B)(C ⊗D) = (AC)⊗ (BD) A,C conform, B,D conform (1.26)

(A⊗ B)T = (AT ⊗ BT ) (1.27)

(A⊗ B)−1 = A−1 ⊗ B−1 A and B invertible (1.28)

Establishing (1.25). Let A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rp×q. Let the
column partitions of matrices B and C be given by

B =
[
b1 b2 . . . bp

]
C =

[
c1 c2 . . . cq

]
We know from the rules of matrix multiplication that the jth column
of the product ABC = (AB)C is given by ABcj . So when we stack these
columns we obtain

vec(ABC) =


ABc1

ABc2
...

ABcq



Now we examine the right-hand side of (1.25). We have from the defi-
nitions of vec operator and Kronecker product

(CT ⊗A)vecB =


c11A c21A · · · cp1A
c12A c22A · · · cp2A

. . .
c1qA c2qA · · · cpqA



b1

b2
...
bp


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The jth row of this partitioned matrix multiplication can be rearranged
as follows

c1jAb1 + c2jAb2 + · · · + cpjAbp =
[
Ab1 Ab2 · · · Abp

]

c1j
c2j

...
cpj


= A

[
b1 b2 · · · bp

]
cj

= ABcj

Inserting this result into the previous equation gives

(CT ⊗A)vecB =


ABc1

ABc2
...

ABcq


which agrees with the expression for vec(ABC).

Establishing (1.26). Here we let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×r ,
D ∈ Rq×s so that A,C conform and B,D conform. Let c1, c2, . . . cr be
the column vectors of matrix C . We know from the rules of matrix
multiplication that the jth (block) column of the product (A⊗B)(C⊗D)
is given by A⊗ B times the jth (block) column of C ⊗D, which is

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB



C1jD

...
CnjD

 =

A11B · · · A1nB

...
. . .

...
Am1B · · · AmnB



C1j

...
Cnj

D
= (Acj ⊗ B)D
= (Acj)⊗ (BD)

Since this is the jth (block) column of (A⊗B)(C⊗D), the entire matrix
is

(A⊗ B)(C ⊗D) =
[
(Ac1)⊗ (BD) (Ac2)⊗ (BD) · · · (Acr )⊗ (BD)

]
=
[
Ac1 Ac2 · · · Acr

]
⊗ (BD)

= A
[
c1 c2 · · · cr

]
⊗ (BD)

= (AC)⊗ (BD)

and the result is established.
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Establishing (1.27). Given A ∈ Rm×n and B ∈ Rp×q, from the defini-
tion of transpose and cross product we have that

(A⊗ B)T =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

. . .
Am1B Am2B · · · AmnB


T

=


A11BT A21BT · · · Am1BT

A12BT A22BT · · · Am2BT
. . .

A1nBT A2nBT · · · AmnBT


= AT ⊗ BT

Establishing (1.28). Apply (1.26) to the following product and obtain

(A⊗ B)(A−1 ⊗ B−1) = (AA−1)⊗ (BB−1) = I ⊗ I = I

and therefore
(A⊗ B)−1 = A−1 ⊗ B−1

Eigenvalues, singular values, and rank of the Kronecker product.
When solving matrix equations, we will want to know about the rank
of the Kronecker product A⊗B. Since rank is closely tied to the singu-
lar values, and these are closely tied to the eigenvalues, the following
identities prove highly useful.

eig(A⊗ B) = eig(A)eig(B) A and B square (1.29)

σ(A⊗ B) = σ(A)σ(B) nonzero singular values (1.30)

rank(A⊗ B) = rank(A)rank(B) (1.31)

Given our previous identities, these three properties are readily estab-
lished. Let A and B be square of order m and n, respectively. Let
(λ, v) and (µ,w) be eigenpairs of A and B, respectively. We have that
Av⊗Bw = (λv)⊗ (µw) = (λµ)(v⊗w). Using (1.26) on Av⊗Bw then
gives

(A⊗ B)(v ⊗w) = (λµ)(v ⊗w)

and we conclude that (nonzero)mn-vector (v⊗w) is an eigenvector of
A⊗B with product λµ as the corresponding eigenvalue. This establishes
(1.29). For the nonzero singular values, recall that the squares of the
nonzero singular values of real, nonsquare matrix A are the nonzero
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eigenvalues of AAT (and ATA). We then have for σ(A) and λ(A) de-
noting nonzero singular and eigenvalues, respectively

σ 2(A⊗ B) = λ((A⊗ B)(A⊗ B)T )
= λ((A⊗ B)(AT ⊗ BT ))
= λ((AAT )⊗ (BBT ))
= λ(AAT )λ(BBT )
= σ 2(A)σ 2(B)

which establishes (1.30). Since the number of nonzero singular values
of a matrix is equal to the rank of the matrix, we then also have (1.31).

Properties (1.25)–(1.31) are all that we require for the material in
this text, but the interested reader may wish to consult Magnus and
Neudecker (1999) for a more detailed discussion of Kronecker prod-
ucts.

Solving linear matrix equations. We shall find the properties (1.25)–
(1.31) highly useful when dealing with complex maximum-likelihood
estimation problems in Chapter 4. But to provide here a small illustra-
tion of their utility, consider the following linear matrix equation for
the unknown matrix X

AXB = C
in which neither A nor B is invertible. The equations are linear in X, so
they should be solvable as some form of linear algebra problem. But
since we cannot operate with A−1 from the left, nor B−1 from the right,
it seems difficult to isolate X and solve for it. This is an example where
the linear equations are simply not packaged in a convenient form for
solving them. But if we apply the vec operator and use (1.25) we have

(BT ⊗A)vecX = vecC

Note that this is now a standard linear algebra problem for the unknown
vector vecX. We can examine the rank, and linear independence of the
rows and columns of BT ⊗ A, to determine the existence and unique-
ness of the solution vecX, and whether we should solve a least-squares
problem or minimum-norm problem. After solution, the vecX column
vector can then be restacked into its original matrix form X if desired.
Exercise 1.77 provides further discussion of solving AXB = C .

As a final example, in Chapter 2 we will derive the matrix Lyapunov
equation, which tells us about the stability of a linear dynamic system,

ATS + SA = −Q
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in which matrices A and Q are given, and S is the unknown. One way
to think about solving the matrix Lyapunov equation is to apply the vec
operator to obtain(

(I ⊗AT )+ (AT ⊗ I)
)
vecS = −vecQ

and then solve this linear algebra problem for vecS. Although this
approach is useful for characterizing the solution, given the special
structure of the Lyapunov equation, more efficient numerical solution
methods are available and coded in standard software. See the function
lyap(A’,Q) in Octave or MATLAB, for example. Exercise 1.78 asks you
to solve a numerical example using the Kronecker product approach
and compare your result to the lyap function.

1.6 Exercises

Exercise 1.1: Inner product and angle in R2

a

b

β
α

θ

a1 b1

a2

b2

Figure 1.7: Two vectors in R2

and the angle between them.

Consider the two vectors a,b ∈ R2

shown in Figure 1.7 and let θ denote
the angle between them. Show the
usual inner product and norm formu-
las

(a, b) =
∑
i
aibi ∥a∥ =

√
(a,a)

satisfy the following relationship with
the angle

cosθ = (a, b)
∥a∥∥b∥

This relationship allows us to gener-
alize the concept of an angle between
vectors to any inner product space.

Exercise 1.2: Scaling and vector norm

Consider the vector x ∈ R2, whose elements are the temperature (in K) and pressure

(in Pa) in a reactor. A typical value of x would be

[
300

1.0× 106

]
.

(a) Let y1 =
[

310
1.0× 106

]
and y2 =

[
300

1.2× 106

]
be two measurements of the state

of the reactor. Use the Euclidean norm to calculate the error
∥∥y − x∥∥ for the

two values of y . Do you think that the calculated errors give a meaningful idea
of the difference between y1 and y2?
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(b) A problem with the Euclidean norm is that it takes no account of different scales
for different elements of a vector. Consider the following formula

∥x∥w =

√√√√√ n∑
i=1

∣∣xi∣∣2wi

where xi is the ith component of the vector x. Show that this formula is a norm
if and only if wi > 0 for all i. This is known as a weighted norm, with weight
vector w.

(c) Propose a weight vector that is appropriate for the example in part (a). Justify
your choice.

Exercise 1.3: Linear independence

Verify that the following sets are LI.

(a) e1 = [0 1 0]T , e2 = [2 0 1]T , e3 = [1 1 1]T .

(b) e1 = [1+ i 1− i 0]T , e2 = [1+ 2i 1− i 0]T , e3 = [0 0 2]T .

Hint: Set α1e1 +α2e2 +α3e3 = 0, and show that the solution is αi = 0, i = 1,2,3.

Exercise 1.4: Gram-Schmidt procedure

Using Gram-Schmidt orthogonalization, obtain ON sets from the LI sets given in the
previous problem.

Exercise 1.5: Failure of Gram-Schmidt

The Gram-Schmidt process will fail if the initial set of vectors is not LI.

(a) Construct a set of three vectors in R3 that are not LI and apply Gram-Schmidt,
pinpointing where it fails.

(b) Similarly, in an n-dimensional space, no more than n LI vectors can be found.
Construct a set of four vectors in R3 and use Gram-Schmidt to show that if three
of the vectors are LI, then a fourth orthogonal vector cannot be found.

Exercise 1.6: Linear independence and expressing one vector as a linear
combination of others

We often hear that a set of vectors is linearly independent if none of the vectors in the
set can be expressed as a linear combination of the remaining vectors. Although the
statement is correct, as a definition of linear independence, this idea is a bit unwieldy
because we do not know a priori which vector(s) in a linearly dependent set is(are)
expressible as a linear combination of the others.

The following statement is a more precise variation on this theme. Given that the
vectors {xi}, i = 1, . . . , k, xi ∈ Rn are linearly independent and the vectors {xi, a} are
linearly dependent, the vector a can be expressed as a linear combination of the xi.

Using the definition of linear independence provided in the text, prove this state-
ment.
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Exercise 1.7: Some properties of subspaces

Establish the following properties

(a) The zero element is an element of every subspace.

(b) The span of any set of j elements of Rn is a subspace (of the linear space Rn).

(c) Except for the zero subspace, a subspace cannot have a finite, largest element.
Hence, every subspace, except the zero subspace, is unbounded.

Exercise 1.8: Some subspaces in 2-D and 3-D

(a) Consider the line in R2

S =
{
y | y = α

[
1
1

]
, α ∈ R

}
Draw a sketch of S. Show that S is a subspace.

(b) Next consider the shifted line

S′ =
{
y | y =

[
0
1

]
+α

[
1
1

]
, α ∈ R

}
Draw a sketch of S′. Show that S′ is not a subspace.

(c) Describe all of the subspaces of R3.

Exercise 1.9: Permutation matrices

(a) Given the matrix

P =

1 0 0
0 0 1
0 1 0


show that PA interchanges the second and third rows of A for any 3×3 matrix.
What does AP do?

(b) A general permutation matrix involving p row exchanges can be written P =
PpPp−1 . . . P2P1 where Pi corresponds to a simple row exchange as above. Show
that P is orthogonal.

Exercise 1.10: Special matrices

Consider operations on vectors in R2.

(a) Construct a matrix operator A that multiplies the horizontal (x1) component of
a vector by 2, but leaves its vertical component (x2) unchanged.

(b) Construct a matrix operator B that rotates a vector counterclockwise by an angle
of 2π/3.

(c) Compute and draw ABx and BAx for x =
[

1
2

]
.

(d) Show that B3 = I. With drawings, show how this makes geometric sense.
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Exercise 1.11: Integral operators and matrices

Many problems can be posed with the use of integral operators. Consider the integral
operator K defined by its action on the function x(s) by the following equation:

K
(
x(s)

)
=
∫ 1

0
k(t, s)x(s)ds

where k(t, s) is a known function called the kernel of the operator.

(a) Show that K is a linear operator.

(b) Read Section 2.4.1. Use the usual (i.e., unweighted) inner product on the interval
(0,1) and show that if k(t, s) = k(s, t), then K is self adjoint.

(c) An integral can be approximated as a sum, so the above integral operator can
be approximated like this:

Ka {x(i∆t)} =
N∑
j=1

k(i∆t, j∆t)x(j∆t)∆t, i = 1, N

where ∆t = 1/N. Show how this approximation can be rewritten as a standard
matrix-vector product. What is the matrix approximation to the integral opera-
tor?

Exercise 1.12: Projections and matrices

Given a unit vector n, use index notation (and the summation convention) to simplify
the following expressions:

(a) (nnT )(nnT )u for any vector u. Recalling that nnT is a projection operator,
what is the geometric interpretation of this result?

(b) (I − 2nnT )2. What is the geometric interpretation of this result?

Exercise 1.13: Use the source, Luke

Someone in your research group wrote a computer program that takes an n-vector
input, x ∈ Rn and returns an m-vector output, y ∈ Rm.

y = f(x)

All we know about the function f is that it is linear.
The code was compiled and now the source code has been lost; the author has

graduated and won’t respond to our email. We need to create the source code for
function f so we can compile it for our newly purchased hardware, which no longer
runs the old compiled code. To help us accomplish this task, all we can do is execute
the function on the old hardware.

(a) How many function calls do you need to make before you can write the source
code for this function?

(b) What inputs do you choose, and how do you construct the linear function f from
the resulting outputs?
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(c) To make matters worse, your advisor has a hot new project idea that requires
you to write a program to evaluate the inverse of this linear function,

x = f−1(y)

and has asked you if this is possible. How do you respond? Give a complete
answer about the existence and uniqueness of x given y .

Exercise 1.14: The range and null space of a matrix are subspaces

Given A ∈ Rm×n, show that the sets R(A) and N(A) satisfy the properties of a sub-
space, (1.1), and therefore R(A) and N(A) are subspaces.

Exercise 1.15: Null space of A is orthogonal to range of AT

Given A ∈ Rm×n show that N(A) ⊥ R(AT ).

Exercise 1.16: Rank of a dyad

What is the rank of the n×n dyad uvT ?

Exercise 1.17: Partitioned matrix inversion formula

(a) Let the matrix A be partitioned as

A =
[
B C
D E

]
in which B,C,D, E are suitably dimensioned matrices and B and E are square.
Derive a formula for A−1 in terms of B,C,D, E by block Gaussian elimination.
Check your answer with a math handbook.

(b) What if B−1 does not exist? What if E−1 does not exist? What if both B−1 and
E−1 do not exist?

Exercise 1.18: The four fundamental subspaces

Find bases for the four fundamental subspaces associated with the following matrices

A =
[

1 2
3 6

]
B =

[
0 0
0 0

]
C =

[
1 1 0 0
0 1 0 1

]

Exercise 1.19: Zero is orthogonal to many vectors

Prove that if
xTz = yTz for all z ∈ Rn

then
x = y

or, equivalently, prove that if

uTv = 0 for all v ∈ Rn

then
u = 0
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Figure 1.8: Experimental measurements of variable y versus x.

Exercise 1.20: Existence and uniqueness

Find matrices A for which the number of solutions to Ax = b is

(a) 0 or 1, depending on b.

(b) ∞, independent of b.

(c) 0 or ∞, depending on b.

(d) 1, independent of b.

Exercise 1.21: Fitting and overfitting functions with least squares

One of your friends has been spending endless hours in the laboratory collecting data
on some obscure process, and now wants to find a function to describe the variable
y ’s dependence on the independent variable, x.

x 0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.56 1.78 2.00

y 2.36 2.49 2.67 3.82 4.87 6.28 8.23 9.47 12.01 15.26

Not having a good theory to determine the form of this expression, your friend has
chosen a polynomial to fit the data.

(a) Consider the polynomial model

y(x) = a0 + a1x + a2x2 + . . .+ anxn

Express the normal equations for finding the coefficients ai that minimize the
sum of squares of errors in y .
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(b) Using the x- and y-data shown above and plotted in Figure 1.8, solve the least-
squares problem and find the a that minimize

Φ =
nd∑
i=1

(
yi −

n∑
j=0

ajx
j
i

)2

in whichnd is the number of measurements andn is the order of the polynomial.

Do this calculation for all polynomials of order 0 ≤ n ≤ 9.

(c) For each n, also calculate the least-squares objective Φn, and plot Φn versus n.

(d) Plot the data along with your fitted polynomial curves for each value of n. In
particular, plot the data and fits for n = 2 and n = 9 on one plot. Use the range
−0.25 ≤ x ≤ 2.25 to get an idea about how well the models extrapolate.

(e) Based on the values of Φn and the appearance of your plots, what degree poly-
nomial would you choose to fit these data? Why not choose n = 9 so that the
polynomial can pass through every point and Φ = 0?

Exercise 1.22: Least-squares estimation of activation energy

Assume you have measured a rate constant, k, at several different temperatures, T ,
and wish to find the activation energy (divided by the gas constant), E/R, and the
preexponential factor, k0, in the Arrhenius model

k = k0e−E/RT (1.32)

The data are shown in Figure 1.9 and listed here.

T(K) 300 325 350 375 400 425 450 475 500

k 1.82 1.89 2.02 2.14 2.12 2.17 2.15 2.21 2.26

(a) Take logarithms of (1.32) and write a model that is linear in the parameters
ln(k0) and E/R. Summarize the data and model with the linear algebra problem

Ax = b

in which x contains the parameters of the least-squares problem

x =
[

ln(k0)
E/R

]

What are A and b for this problem?

(b) Find the least-squares fit to the data. What are your least-squares estimates of
ln(k0) and E/R?

(c) Is your answer unique? How do you know?

(d) Plot the data and least-squares fit in the original variables k versus T . Do you
have a good fit to the data?
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Figure 1.9: Measured rate constant at several temperatures.

Exercise 1.23: Existence and uniqueness of linear equations

Consider the following partitioned A matrix, A ∈ Rm×n

A =
[
A1 0
0 0

]
in which A1 ∈ Rp×p is of rank p and p <min(m,n).

(a) What are the dimensions of the three zero matrices?

(b) What is the rank of A?

(c) What is the dimension of the null space of A? Compute a basis for the null space
of A.

(d) Repeat for AT .

(e) For what b can you solve Ax = b?

(f) Is the solution for these b unique? If not, given one solution x1, such that
Ax1 = b, specify all solutions.

Exercise 1.24: Reaction rates from production rates

Consider the following set of reactions.

CO+ 1
2

O2 -⇀↽- CO2

H2 +
1
2

O2 -⇀↽- H2O

CH4 + 2O2 -⇀↽- CO2 + 2H2O

CH4 +
3
2

O2 -⇀↽- CO+ 2H2O
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(a) Given the species list, A =
[
CO O2 CO2 H2 H2O CH4

]T
write out the

stoichiometric matrix, ν , for the reactions relating the four reaction rates to the
six production rates

R = νT r (1.33)

(b) How many of the reactions are linearly independent?

(c) In a laboratory experiment, you measured the production rates for all the species
and found

Rmeas =
[
−2 −2 3 2 0 −1

]T
Is there a set of reaction rates rex that satisfies (1.33) exactly? If not, how do you
know? If so, find an rex that satisfies Rmeas = νT rex.

(d) If there is an rex, is it unique? If so, how do you know? If not, characterize all
solutions.

Exercise 1.25: Least-squares estimation

A colleague has modeled the same system as only the following three reactions

CO+ 1
2

O2 -⇀↽- CO2

H2 +
1
2

O2 -⇀↽- H2O

CH4 + 2O2 -⇀↽- CO2 + 2H2O

(a) How many of these reactions are linearly independent?

(b) In another laboratory experiment, you measured the production rates for all the
species and found

Rmeas =
[
1 −4.5 1 −2 6 −2.5

]T
Is there a set of reaction rates rex in this second model that satisfies (1.33) ex-
actly? If so, find an rex that satisfies Rmeas = νT rex. If not, how do you know?

(c) If there is not an exact solution, find the least-squares solution, rest. What is the
least-squares objective value?

(d) Is this solution unique? If so, how do you know? If not, characterize all solutions
that achieve this value of the objective function.

Exercise 1.26: Controllability

Consider a linear discrete time system governed by the difference equation

x(k+ 1) = Ax(k)+ Bu(k) (1.34)

in which x(k), an n-vector, is the state of the system, and u(k), an m-vector, is the
manipulatable input at time k. The goal of the controller is to choose a sequence of
inputs that force the state to follow some desirable trajectory.

(a) What are the dimensions of the A and B matrices?
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(b) Not all systems can be controlled. Consider the case in which B is the zero
matrix. Then the input has no effect on the state and we cannot control it. We
should redesign the system before trying to design a controller for it. This is an
example of an uncontrollable system.

A system is said to be controllable if n input values exist

u(0),u(1),u(2), . . . , u(n− 1)

that can move the system from any initial condition, x0, to any final state x(n).
By using (1.34), show that x(n) can be expressed as

x(n) = Anx0 +An−1Bu(0)+An−2Bu(1)+ · · · +ABu(n− 2)+ Bu(n− 1)

Stack all of theu(k) on top of each other and rewrite this expression in partitioned-
matrix form,

x(n) = Anx0 +C


u(n− 1)
u(n− 2)

...
u(0)

 (1.35)

What is the C matrix and what are its dimensions?

(c) What must be true of the rank of C for a system to be controllable, i.e., for there
to be a solution to (1.35) for every x(0) and x(n)?

(d) Consider the following two systems with two states (n = 2) and one input (m = 1)

x(k+ 1) =
[

1 0
2 1

]
x(k)+

[
0
1

]
u(k)

x(k+ 1) =
[

1 0
2 1

]
x(k)+

[
1
0

]
u(k)

Notice that the input directly affects only one of the states in both of these
systems. Are either of these two systems controllable? If not, show which x(n)
cannot be reached with n input moves starting from x(0) = 0.

Exercise 1.27: A vector/matrix derivative

Consider the following derivative for A,C ∈ Rm×n, x, b ∈ Rn

C = d
dxT

(AxxTb)

Or expressed in component form

Cij =
∂
∂xj

(AxxTb)i i = 1, . . . ,m, j = 1, . . . , n

Take A and b to be independent of x. Find an expression for this derivative (C) in
terms of A,x,b.
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Exercise 1.28: Rank equality with matrix products

Given arbitrary B ∈ Rm×n, and full rank A ∈ Rm×m and C ∈ Rn×n, establish the
following two facts

rank(AB) = rank(B) rank(BC) = rank(B)

Use these to show
rank(ABC) = rank(B)

Exercise 1.29: More matrix products

Find examples of 2 by 2 matrices such that

(a) LU ≠ UL,

(b) A2 = −I, with A a real matrix,

(c) B2 = 0, with no zeros in B,

(d) CD = −DC , not allowing CD = 0.

Exercise 1.30: Programming LU decomposition

Write a program to solve Ax = b using LU decomposition. It should be able to handle
matrices up to n = 10, read in A and b from data files, and write the solution x to a
file. Using this program, solve the problem where

A =


1 1 1 1
2 −2 −1 2
3 −1 2 2
1 −1 −1 1

 b =


3
0
2
0



Exercise 1.31: Normal equations

Write the linear system of equations whose solution x = (x1, x2)T minimizes

P(x) = 1
2
(x2

1 + 2x1x2 + 2x2
2)− x1 + x2

Find the solution x and the corresponding value of P(x).

Exercise 1.32: Cholesky decomposition

A symmetric matrix A can be factorized into LDLT where L is lower triangular and D
is diagonal, i.e., only its diagonal elements are nonzero.

(a) Perform this factorization for the matrix 2 −1 0
−1 2 −1

0 −1 2


(b) If all the diagonal elements of D are positive, then we can write D = S2, where

S is also diagonal, and the matrix A can be further factorized into L̂L̂T—this is
called the Cholesky decomposition of A. Find L̂ for the matrix of part (a).
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Exercise 1.33: A singular matrix

For the system

A =
[

3 6
6 q

]
b =

[
1
4

]
(a) Find the value of q for which elimination fails (i.e., no solution to Ax = b exists).

If you are thoughtful, you won’t need to perform the elimination to find out.

(b) For this value of q what happens to the first geometrical interpretation of the
problem (intersecting lines)?

(c) What happens to the second (superpositions of column vectors)?

(d) What value should replace 4 in b to make the problem solvable for this q?

Exercise 1.34: LU factorization of nonsquare matrices

(a) Find the LU factorization of

A =

2 1
1 1
3 2


(b) If b = [1 p q]T , find a necessary and sufficient condition on p and q so that

Ax = b has a solution.

(c) Given values of p and q for which a solution exists, will the algorithm from
Section 1.3.2 solve it? If not, pinpoint the difficulty.

(d) Find the LU factorization of AT .

(e) Use this factorization to find two LI solutions of ATx = b, where b = [2 5]T .
Since there are fewer equations than unknowns in this case, there are infinitely
many solutions, forming a line in R2. Are there any values of b for which this
problem has no solution?

Exercise 1.35: An inverse

Under what conditions on u and v does (I − auvT ) = (I + auvT )−1? Here a is an
arbitrary nonzero scalar.

Exercise 1.36: LU decomposition

Write the first step of the LU decomposition process of a matrix A as A′ = (I−auvT )A.
In other words, what are a, u, and v so that A′21 = 0?

Exercise 1.37: Newton-Raphson

Write a program that uses the Newton-Raphson method to solve this pair of equations

y − (x − 1)2 = 0 (y + 4)2 − tanx = 0

Do not reduce the pair of equations to a single equation. With this program, find at
least one solution.
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Exercise 1.38: The QR decomposition

In this exercise, we construct the QR decomposition introduced in Section 1.2.4. Con-
sider an m × n matrix A with columns ai. Observe that if A = BC , with B an m × n
matrix and C and n×n matrix, where bi are the columns of B, then we can write each
column of A as a linear combination of the columns of B, as follows

[
ai

]
A

=
[
b1 b2 · · · bn

]
B


c1i
c2i

...
cni


C

The ith column of A is a linear combination of all the columns of B, and the coefficients
in the linear combination are the elements of the ith column of matrix C . This result
will be helpful in solving the following problem. Let A be an m × n matrix whose
columns ai are linearly independent (thus m ≥ n). We know that using the Gram-
Schmidt procedure allows us to construct an ON set of vectors from the ai. Define a
matrix Q whose columns are these basis vectors, qi, where qTi qj = δij .

(a) Express each ai in the basis formed by the qi. Hint: because the set of qi are
constructed from the set of ai by Gram-Schmidt, a1 has a component only in
the q1 direction, a2 has components only in the q1 and q2 directions, etc.

(b) Use the above result to write A = QR, i.e., find a square matrix R such that each
column of A is written in terms of the columns of Q. You should find that R is
upper triangular.

Exercise 1.39: Orthogonal subspace decomposition

Let S be an r ≤ n dimensional subspace of Rn with a basis {a1, a2, . . . , ar }. Consider
the subspace S⊥, the orthogonal complement to S.

(a) Prove that S⊥ has dimension n − r . Do not use the fundamental theorem of
linear algebra in this proof because this result is used to prove the fundamental
theorem.

(b) Show that any vector x ∈ Rn can be uniquely expressed as x = a + b in which
a ∈ S and b ∈ S⊥.

Exercise 1.40: The QR and thin QR decompositions

For A ∈ Rm×n with independent columns we have used in the text what is sometimes
called the “thin” QR with Q1 ∈ Rm×n and R1 ∈ Rn×n satisfying

A = Q1R1

It is possible to “fill out” Q1 by adding the remainingm−n columns that span Rm. In
this case A = QR and Q ∈ Rm×m is orthonormal, and R ∈ Rm×n. In the “thin” QR, Q1
is the shape of A and R1 is square (of the smaller dimension n), and in the full QR, Q
is square (of the larger dimension m) and R is the shape of A.

(a) Is the “thin” QR unique?

(b) Show how to construct the QR from the thin QR. Is the full QR unique?
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Exercise 1.41: Uniqueness of solutions to least-squares problems

Prove the following proposition

Proposition 1.20 (Full rank of ATA). Given matrix A ∈ Rm×n, the n × n matrix ATA
has full rank if and only if A has linearly independent columns.

Note that this proof requires our first use of the fundamental theorem of linear
algebra. Since most undergraduate engineers have limited experience doing proofs, we
provide a few hints.

1. The “if and only if” statement requires proof of two statements: (i) ATA having
full rank implies A has linearly independent columns and (ii) A having linearly
independent columns implies ATA has full rank.

2. The statement that S implies T is logically equivalent to the statement that not
T implies not S. So one could prove this proposition by showing (ii) and then
showing: (i’) A not having linearly independent columns implies that ATA is not
full rank.

3. The fundamental theorem of linear algebra is the starting point. It tells us
(among other things) that square matrix B has full rank if and only if B has
linearly independent rows and columns. Think about what that tells you about
the null space of B and BT . See also Figure 1.1.

Exercise 1.42: A useful decomposition

Let A ∈ Cn×n, B ∈ Cp×p , and X ∈ Cn×p satisfy

AX = XB rank(X) = p

Show that A can be decomposed as

Q∗AQ = T =
[ p n−p

p T11 T12
n−p 0 T22

]
in which eig(T11) = eig(B), and eig(T22) = eig(A) \ eig(B), i.e., the eigenvalues of T22
are the eigenvalues of A that are not eigenvalues of B. Also show that eig(B) ⊆ eig(A).

Hint: use the QR decomposition of X.

Exercise 1.43: The Schur decomposition

Prove that the Schur decomposition has the properties stated in Theorem 1.16.
Hint: the result is obviously true for n = 1. Use induction and the result of Exercise

1.42.

Exercise 1.44: Norm and matrix rotation

Given the following A matrix

A =
[

0.46287 0.11526
0.53244 0.34359

]
invoking [u,s,v]=svd(A) in MATLAB or Octave produces

u = s = v =
-0.59540 -0.80343 0.78328 0.00000 -0.89798 -0.44004
-0.80343 0.59540 0.00000 0.12469 -0.44004 0.89798
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(a) What vector x of unit norm maximizes ∥Ax∥? How large is ∥Ax∥ for this x?

(b) What vector x of unit norm minimizes ∥Ax∥? How large is ∥Ax∥ for this x?

(c) What is the definition of ∥A∥? What is the value of ∥A∥ for this A?

(d) Denote the columns of v by v1 and v2. Draw a sketch of the unit circle traced
by x as it travels from x = v1 to x = v2 and the corresponding curve traced by
Ax.

(e) Let’s find an A, if one exists, that rotates all x ∈ R2 counterclockwise by θ
radians. What do you choose for the singular values σ1 and σ2? Choose v1 = e1
and v2 = e2 for the V matrix in which ei, i = 1,2 is the ith unit vector. What
do you want u1 and u2 to be for this rotation by θ radians? Form the product
USVT and determine the A matrix that performs this rotation.

Exercise 1.45: Linear difference equation model

Consider the following discrete-time model

x(k+ 1) = Ax(k)

in which

A =
[

0.798 0.051
−0.715 1.088

]
x0 =

[
1
0

]
(a) Compute the eigenvalues and singular values of A. See the Octave or MATLAB

commands eig and svd. Are the magnitudes of the eigenvalues of A less than
one? Are the singular values less than one?

(b) What is the steady state of this system? Is the steady state asymptotically stable,
i.e., does x(k) converge to the steady state as k→∞?

(c) Make a two-dimensional plot of the two components of x(k) (phase portrait) as
you increase k from k = 0 to k = 200, starting from the x(0) given above. Is
x(1) bigger than x(0)? Why or why not?

(d) When the largest magnitude eigenvalue of A is less than one but the largest
singular value of A is greater than one, what happens to the evolution of x(k)?

(e) Now plot the values of x for 50 points uniformly distributed on a unit circle and
the corresponding Ax for these points. For the SVD corresponding to Octave
and MATLAB convention

A = USV∗

mark u1, u2, v1, v2, s1, and s2 on your plot. Figure 1.10 gives you an idea of the
appearance of the set of points for x and Ax to make sure you are on track.

Exercise 1.46: Is the SVD too good to be true?

Given A ∈ Rm×n with rank(A) = r and the SVD of A = UΣV∗, if we partition the first
r columns of U and V and call them U1 and V1 we have

A =
[
U1 U2

][Σr 0
0 0

][
V∗1
V∗2

]
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Figure 1.10: Plot of Ax as x moves around a unit circle.

and A = U1ΣrV∗1 .
Then to solve (possibly in the least-squares sense) Ax = b we have

U1ΣrV∗1 x = b

which motivates the pseudoinverse formula

A+ = V1Σ−1
r U

∗
1

and the “solution”
x = A+b

If we form the residual for this “solution”

r = Ax − b
= AA+b − b

= U1

Ir︷ ︸︸ ︷
Σr V∗1 V1︸ ︷︷ ︸

Ir

Σ−1
r U∗1

︸ ︷︷ ︸
Im

b − b

= Imb − b
r = 0
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which seems to show that r = 0. We know that we cannot solve Ax = b for every
b and every A matrix, so something must have gone wrong. What is wrong with this
argument leading to r = 0?

Exercise 1.47: SVD and worst-case analysis

Consider the process depicted in Figure 1.11 in which u is a manipulatable input and
d is a disturbance. At steady state, the effects of these two variables combine at the
measurement y in a linear relationship

y = Gu+Dd

The steady-state goal of the control system is to minimize the effect of d at the mea-
surement y by adjusting u.

For this problem we have 3 inputs, u ∈ R3, 2 disturbances, d ∈ R2, and 2 mea-
surements, y ∈ R2, and G and D are matrices of appropriate dimensions. We have the
following two singular value decompositions available

G =
[
U
] [
S 0

][VT1
VT2

]
D =

[
X
] [
Σ
] [
ZT
]

U =
[
−0.75 −0.66
−0.66 0.75

]
S =

[
1.57 0.00
0.00 0.21

]
V1 =

 −0.89 0.37
−0.45 −0.81
−0.085 0.46


X =

[
−0.98 −0.19
−0.19 0.98

]
Σ =

[
0.71 0.00
0.00 0.13

]
Z =

[
−0.94 −0.33
−0.33 0.94

]
(a) Can you exactly cancel the effect of d on y using u for all d? Why or why not?

(b) In terms of U, S, V1, X,Σ, Z , what input u minimizes the effect of d on y? In
other words, if you decide the answer is linear

u = Kd

What is K in terms of U, S, V1, X,Σ, Z? Give the symbolic and numerical results.

(c) What is the worst d of unit norm, i.e., what d requires the largest response in u?
What is the response u to this worst d?

Exercise 1.48: Worst-case disturbance

Consider the system depicted in Figure 1.11 in which we can manipulate an input u ∈
R2 to cancel the effect of a disturbance d ∈ R2 on an output y ∈ R2 of interest. The
steady-state relationship between the variables is modeled as a linear relationship

y = Gu+Dd

and y,u,d are in deviation variables from the steady state at which the system was
linearized. Experimental tests on the system have produced the following model pa-
rameters

G =
[

1 1
0 1

]
D =

[
2.857 3.125
0.991 2.134

]
If we have measurements of the disturbance d available, we would like to find the input
u that exactly cancels d’s effect on y , and we would like to know ahead of time what
is the worst-case disturbance that can hit the system.
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u
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y

Figure 1.11: Manipulated input u and disturbance d combine to af-
fect output y.

(a) Find the u that cancels d’s effect on y .

(b) For d on the unit circle, plot the corresponding value of u.

(c) What d of norm one requires the largest control action u? What d of norm one
requires the smallest control action u? Give the exact values of dmax and dmin,
and the corresponding umax and umin.

(d) Assume the input is constrained to be in the box[
−1
−1

]
≤ u ≤

[
1
1

]
(1.36)

What is the size of the disturbance so that all disturbances less than this size
can be rejected by the input without violating these constraints? In other words
find the largest scalar α such that

if ∥d∥ ≤ α then u satisfies (1.36)

Use your plot from the previous part to estimate α.

Exercise 1.49: Determinant, trace, and eigenvalues

Use the Schur decomposition of matrix A ∈ Cn×n to prove the following facts

detA =
n∏
i=1

λi (1.37)

trA =
n∑
i=1

λi (1.38)

in which λi ∈ eig(A), i = 1,2, . . . , n.
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Exercise 1.50: Repeated eigenvalues

The self-adjoint matrix

A =

2 0 0
0 1 1
0 1 1


has a repeated eigenvalue. Find the eigenvalues of the system and show that despite
the repeated eigenvalue the system has a complete orthogonal set of eigenvectors.

Exercise 1.51: More repeated eigenvalues

The non-self-adjoint matrix

A =


1 1 2 0
0 1 3 0
0 0 2 2
0 0 0 1


also has repeated eigenvalues.

(a) Find the eigenvalues and eigenvectors (there are only two) of A.

(b) Denote the eigenvector corresponding to the repeated eigenvalue as v1 and the
other eigenvector as v4. The generalized eigenvectors v2 and v3 can be
found by solving

(A− λ1I)v2 = v1

(A− λ1I)v3 = v2

where λ1 is the repeated eigenvalue. Show that {v1, . . . , v4} is necessarily an LI
set.

(c) Determine the set, construct the transformation matrix M , and show that J =
M−1AM is indeed in Jordan form.

Exercise 1.52: Solution to a singular linear system

Consider a square matrix A that has a complete set of LI eigenvectors and a single zero
eigenvalue.

(a) Write the solution to Ax = 0 in terms of the eigenvectors of A.

(b) In the problem Ax = b, use the eigenvectors to determine necessary and suffi-
cient conditions on b for existence of a solution.

Exercise 1.53: Example of a singular problem

Consider the problem Ax = b, where

A =

1 2 3
1 2 3
1 2 3


(a) Perform LU decomposition on this matrix. Give L and U .

(b) Find two linearly independent vectors in the null space of A.
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(c) Use the LU decomposition to find a solution when

b =

4
4
4


(d) This solution is not unique. Find another.

(e) Find the eigenvalues and eigenvectors of A. How are these related to your an-
swers to parts b and c above?

Exercise 1.54: Linearly independent eigenvectors

Show that if A has n distinct eigenvalues, its eigenvectors are linearly independent.
This result is required to ensure the existence of Q−1 in A = QΛQ−1 in (1.15).
Hint: set

∑n
i=1 αiqi = 0 and multiply by (A−λ1I)(A−λ2I) · · · (A−λn−1I) to establish

that αn = 0. With αn = 0 what can you do next to show that αn−1 = 0? Continue this
process.

Exercise 1.55: General results for eigenvalue problems

Prove the following statements:

(a) If A is nonsingular and has eigenvalues λi, the eigenvalues of A−1 are 1/λi.

(b) Let S be a matrix whose columns form a set of linearly independent but nonorthog-
onal basis vectors: the ith column is the vector ui. Find a matrix S′ whose
columns u′j satisfy uTi u

′
j = δij . A pair of basis sets whose vectors satisfy this

condition are said to be biorthogonal.

(c) Assume that A has a complete set of eigenvectors. Show that the eigenvectors
of A and AT are biorthogonal.

(d) Show that if the eigenvectors of A are orthogonal, then AAT = ATA. Such ma-
trices are called normal. (The converse is also true (Horn and Johnson, 1985).)

(e) Show that the eigenvalues of A = −AT are imaginary and that its eigenvectors
are orthogonal.

Exercise 1.56: Eigenvalues of a dyad

Let u and v be unit vectors in Rn, with uTv ≠ 0. What are the eigenvalues and eigen-
vectors of uvT ?

Exercise 1.57: The power method for finding largest eigenvalues

Consider the matrix

A =

0 0 1
0 0 1
1 1 1


(a) Let x0 = (1,0,0)T and consider the iteration procedure xi+1 = Axi. Perform

several steps of this procedure by hand and observe the result.
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(b) Can you understand what is happening here by writing x in the eigenvector
basis? In particular, show that for a self-adjoint matrix with distinct eigenvalues,
this iteration procedure yields the eigenvalue of largest absolute value and the
corresponding eigenvector.

(c) Write an Octave or MATLAB function to perform this process on a real symmetric
matrix, outputting the largest eigenvalue (to within a specified tolerance) of A
and the corresponding eigenvector, scaled so that its largest component is 1.
Present results for a test case. This is the power method. It is much faster than
finding all of the eigenvalues and can be generalized to other types of matrices.
Google’s “PageRank” algorithm is built around this method.

Exercise 1.58: Markov chain models

Imagine that there are three kinds of weather: sunny, rainy, and snowy. Thus a vector
w0 ∈ R3 defines today’s weather: w0 = [1,0,0]T is sunny, w0 = [0,1,0]T is rainy, and
w0 = [0,0,1]T is snowy. Imagine that tomorrow’s weather w1 is determined only by
today’s and more generally, the weather on day n+ 1 is determined by the weather on
day n. A probabilistic model for the weather then takes the form

wn+1 = Twn
where T is called a transition matrix and the elements of wn are the probabilities of
having a certain type of weather on that day. For example, ifw5 = [0.2,0.1,0.7]T , then
the probability of snow five days from now is 70%. The sequence of probability vectors
on subsequent days, {w0,w1,w2, . . .} is called a Markov chain. Becausew is a vector
of probabilities, its elements must sum to one, i.e.,

∑
i=1,3wn,i = 1 for all n.

(a) Given that
∑
i=1,3wn,i = 1, what condition must the elements of T satisfy such

that
∑
i=1,3wn+1,i is also 1?

(b) Assume that T is a constant matrix, i.e., it is independent of n. What conditions
of the eigenvalues of T must hold so that the Markov chain will reach a constant
state w∞ as n→∞? How is w∞ related to the eigenvectors of T?

Exercise 1.59: Real Jordan form for a real matrix with complex conjugate
eigenvalues

For a 2 × 2 real matrix A with a complex conjugate pair of eigenvalues λ1 = σ + iω,
λ2 = λ1 with eigenvectors v1 and v2:

(a) Derive the result that v1 = v2.

(b) Write the general solution to ẋ = Ax in terms of the real and imaginary parts of
v1 and sines and cosines, so that the only complex numbers in the solution are
the arbitrary constants.

(c) For the specific matrix

A =
[
−2 −2

2 1

]
show that the similarity transformation S−1AS, where the columns of S are the
real and imaginary parts of v1, has the form

S−1AS =
[
σ −ω
ω σ

]
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This result can be generalized, showing how a real matrix with complex eigen-
values can be put into Jordan form without introducing any imaginary numbers.

Exercise 1.60: Solving a boundary-value problem by eigenvalue decompo-
sition

Consider the reaction

A
k1-⇀↽-
k−1

B
k2-⇀↽-
k−2

C

occurring in a membrane. At steady state the appropriate reaction-diffusion equations
for this system are

DA
d2cA
dx2 − k1cA + k−1cB = 0

DB
d2cB
dx2 + k1cA − k−1cB − k2cB + k−2cC = 0

DC
d2cC
dx2 + k2cB − k−2cC = 0

where the ki, i = ±(1,2) are rate constants and the Dj , j = (A,B,C) are the species
diffusivities. The boundary conditions are

cA = 1 cB = cC = 0 at x = 1

dcA
dx

= dcB
dx

= dcC
dx

= 0 at x = 0

Convert this set of second-order equations into a set of first-order differential equa-
tions. Write a MATLAB or Octave code to find the solution to this problem in terms
of eigenvalues and eigenvectors of the relevant matrix for a given set of parameters.
Have the program plot the concentrations as functions of position. Show results for
parameter values DA = DB = DC = 20, k1 = k2 = 10, k−1 = k−2 = 0.1, and also for the
same rate constants but with the diffusivities set to 0.05.

Exercise 1.61: Null spaces of nonsquare matrices

Consider a nonsquare m×n matrix A. Show that ATA is symmetric positive semidef-
inite. If A were square we could determine its null space from the eigenvectors cor-
responding to zero eigenvalues. How can we determine the null space of a nonsquare
matrix A? What about the null space of AT ?

Exercise 1.62: Stability of an iteration

Consider the iteration procedure x(i+ 1) = Ax(i), where A is diagonalizable.

(a) What conditions must the eigenvalues of A satisfy so that x(i)→ 0 as i→∞?

(b) What conditions must the eigenvalues satisfy for this iteration to converge to a
nonzero steady state, i.e., so that x(i)→ xs ≠ 0 as i→∞?

Exercise 1.63: Cayley-Hamilton theorem

Suppose that A is an n×n diagonalizable matrix with characteristic equation

det(A− λI) = λn + an−1λn−1 + . . .+ a0 = 0
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(a) Show that
An + an−1An−1 + . . .+ a0I = 0

This result shows that A satisfies its own characteristic equation; it is known as
the Cayley-Hamilton theorem.

(b) Let

A =
[

1 2
2 1

]
Use the theorem to express A2, A3, and A−1 as linear combinations of A and I.

Exercise 1.64: Solving the nonunique least-squares problem

We have established that the least-squares solution to Ax = b is unique if and only if
A has linearly independent columns. Let’s treat the case in which the columns are not
linearly independent and the least-squares solution is not unique. Consider again the
SVD for real-valued A

A =
[
U1 U2

][Σ 0
0 0

][
VT1
VT2

]

(a) Show that all solutions to the least-squares problem are given by

xls = V1Σ−1UT1 b + V2α α ∈ Rn−r

in which α is an arbitrary vector.

(b) Show that the unique, minimum-norm solution to the least-squares problem is
given by

x0
ls = V1Σ−1UT1 b

This minimum-norm solution is the one returned by many standard linear alge-
bra packages. For example, this is the solution returned by Octave and MATLAB
when invoking the shorthand command x = A \ b.

Exercise 1.65: Propagating zeros in triangular matrices

When multiplying two partitioned (upper) triangular matrices, if the first one has k
leading columns of zeros, and the second one has a 0p×p matrix on the second element
of the diagonal, show that the product is a triangular matrix with k+p leading columns
of zeros. In pictures

k
p
r

k p r0 ∗ ∗
0 T1 ∗
0 0 T2


k p rT3 ∗ ∗

0 0 ∗
0 0 T4

 =
k p r0 0 ∗

0 0 ∗
0 0 T5

 k
p
r

in which Ti, i = 1, . . . ,4 are arbitrary triangular matrices, T5 is triangular, and ∗ rep-
resents arbitrary (full) matrices. This result is useful in proving the Cayley-Hamilton
theorem in the next exercise.
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Exercise 1.66: Cayley-Hamilton theorem holds for all matrices

Revisit Exercise 1.63 and establish that all matrices A ∈ Cn×n satisfy their charac-
teristic equation. We are removing the assumption that A is diagonalizable in the
Cayley-Hamilton theorem so that it holds also for defective matrices.

Hint: use the Schur form to represent A and the result of Exercise 1.65.

Exercise 1.67: Small matrix approximation

For x a scalar, consider the Taylor series for 1/(1+ x)
1

1+ x = 1− x + x2 − x3 + · · ·

which converges for |x| < 1.

(a) Using this scalar Taylor series, establish the analogous series for matrix X ∈
Rn×n

(I +X)−1 = I −X +X2 −X3 + · · ·
You may assume the eigenvalues of X are unique. For what matrix X does this
series converge?

(b) What is the corresponding series for

(R +X)−1

in whichR ∈ Rn×n is a full-rank matrix. What conditions onX andR are required
for the series to converge?

Exercise 1.68: Matrix exponential, determinant and trace

Use the Schur decomposition of matrix A ∈ Cn×n to prove the following fact

det eA = etr(A)

Exercise 1.69: Logarithm of a matrix

If A ∈ Cn×n is nonsingular, there exists a B ∈ Cn×n such that

A = eB

and B is known as the logarithm of A

B = lnA

If A is positive definite, B can be uniquely defined (the principal branch of the loga-
rithm).

Given this definition of the logarithm, if A ∈ Cn×n is nonsingular, show that

detA = etr(lnA) (1.39)

Exercise 1.70: Some differential equations, sines, cosines, and exponentials

(a) Solve the following vector, second-order ordinary differential equation with the
given initial conditions for y ∈ R2

d2y
dt2

+Ay = 0

A =
[

3 1
1 3

]
y(0) =

[
1

− 1
2

]
dy
dt
(0) =

[
0
0

]
Use the solution of the scalar version of this differential equation as your guide.
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(b) We can always reduce a high-order differential equation to a set of first-order
differential equations. Define x = dy/dt and let

z =
[
x
y

]

and show that the above equation can be written as a single first-order differen-
tial equation

dz
dt
+ B z = 0

with z ∈ R4. What are B and the appropriate initial conditions z(0)? What is
the solution to this problem?

(c) Plot, on a single graph, the trajectories of the two y components versus time for
the given initial conditions.

(d) Show that the result of (a) is the same as the result of (b), even though the
functions exp and cos are different.

Exercise 1.71: Bounding the matrix exponential

Given the bound for
∥∥∥eAt∥∥∥ in (1.21), establish the validity of the bound in (1.22).

Hints: first, for any k > 0 and ϵ > 0, show that there exists a c > 0 such that for all
t ≥ 0

ceϵt ≥ tk

Use this result to show that for any ϵ > 0, N ∈ Cn×n, there exists c > 0 such that for
all t ≥ 0

ceϵt ≥
n−1∑
k=0

∥Nt∥k
k!

Exercise 1.72: Strictly convex quadratic function and positive curvature

Consider the quadratic function

f(x) = (1/2)xTAx + bTx + c

(a) Show that f(·) is strictly convex if and only if A > 0.

(b) For the quadratic function, show that if a minimizer of f(·) exists, it is unique if
and only if A > 0. The text shows the “if” part for any strictly convex function.
So you are required to show the “only if” part with the additional restriction that
f(·) is quadratic.

(c) Show that f(·) is convex if and only if A ≥ 0.

Exercise 1.73: Concave functions and maximization

A function f(·) is defined to be (strictly) concave (concave downward) if −f(·) is
(strictly) convex (Rockafellar and Wets, 1998, p. 39). Show that a solution to maxx f(x)
is unique if f(·) is strictly concave.
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Exercise 1.74: Solutions to minmax and maxmin problems

Consider again the quadratic function f(x) = (1/2)xTAx and the two games given in
(1.23). Confirm that Figure 1.6 (c) corresponds to the A matrix

A =
√

2

[
−1 1

1 1

]

(a) Show that x1 = x2 = 0 is the unique solution to both games in (1.23). Hint: with
the outer variable fixed, solve the inner optimization problem and note that its
solution exists and is unique. Then substitute the solution for the inner problem,
solve the outer optimization problem, and note that its solution also exists and
is unique.

(b) Show that neither of the following problems has a solution

max
x2

min
x1
f(x) min

x1
max
x2
f(x)

in which we have interchanged the goals of the two players. So obviously the
goals of the players matter a great deal in the existence of solutions to the game.

Exercise 1.75: Games with nonunique solutions and different solution sets

Sketch the contours for f(x) = (1/2)xTAx with the following A matrix

A =
[

0 1
1 0

]

What are the eigenvalues of A?
Show that x1 = x2 = 0 is still a solution to both games in (1.23), but that it is not

unique. Find the complete solution sets for both games in (1.23). Establish that the
solution sets are not the same for the two games.

Exercise 1.76: Who plays first?

When the solutions to all optimizations exist, show that

max
x2

min
x1
f(x1, x2) ≤min

x1
max
x2
f(x1, x2)

This inequality verifies that the player who goes first, i.e., the inner optimizer, has the
advantage in this noncooperative game. Note that the function f(·) is arbitrary, so
long as the indicated optimizations all have solutions.

Exercise 1.77: Solving linear matrix equations

Consider the linear matrix equation

AXB = C (1.40)

in which A ∈ Rm×n, X ∈ Rn×p , B ∈ Rp×q , and C ∈ Rm×q . We consider A,B,C fixed
matrices and X is the unknown matrix. The number of equations is the number of
elements in C . The number of unknowns is the number of elements of X. Taking the
vec of both sides gives

(BT ⊗A)vecX = vecC (1.41)

We wish to explore how to solve this equation for vecX.
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(a) For the solution to exist for all vecC , and be unique, we require that (BT ⊗ A)
has linearly independent rows and columns, i.e., it is square and full rank. Using
the rank result (1.31) show that this is equivalent to A and B being square and
full rank.

(b) For this case show that the solution

vecX = (BT ⊗A)−1vecC

is equivalent to that obtained by multiplying (1.40) by A−1 on the left and B−1

on the right,
X = A−1CB−1

(c) If we have more equations than unknowns, we can solve (1.41) for vecX as a
least-squares problem. The least-squares solution is unique if and only if BT ⊗A
has linearly independent columns. Again, use the rank result to show that this
is equivalent to: (i) A has linearly independent columns, and (ii) B has linearly
independent rows.

(d) We know that A has linearly independent columns if and only if ATA has full
rank, and B has linearly independent rows if and only if BBT has full rank (see
Proposition 1.20 in Exercise 1.41). In this case, show that the least-squares so-
lution of (1.41)

vecXls = (BT ⊗A)†vecC

is equivalent to that obtained by multiplying (1.40) by A† on the left and B† on
the right,

Xls = A†CB†

The superscript † denotes the Moore-Penrose pseudoinverse discussed in Sec-
tion 1.3.7. Note that for a matrix (like A) with linearly independent columns,
the pseudoinverse is A† = (ATA)−1AT , but for a matrix (like B) with linearly
independent rows, the pseudoinverse is B† = BT (BBT )−1. The matrices A† and
B† are also known as left and right inverses, respectively.

Exercise 1.78: Solving the matrix Lyapunov equation

Write a function S = yourlyap(A,Q) using the Kronecker product to solve the matrix
Lyapunov equation

AT S + SA = −Q
Test your function with some A with negative eigenvalues and positive definite Q by
comparing to the function lyap in Octave or MATLAB.
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2
Ordinary Differential Equations

2.1 Introduction

Differential equations arise in all areas of chemical engineering. In this
chapter we consider ordinary differential equations (ODEs), that is,
equations that have only one independent variable. For example, for re-
actions in a stirred-tank reactor the independent variable is time, while
in a simple steady-state model of a plug-flow reactor, the independent
variable is position along the reactor. Typically, ODEs appear in one of
two forms

dx
dt
= f(x, t), x ∈ Rn (2.1)

or

an(x)
dny
dxn

+ an−1(x)
dn−1y
dxn−1

+ · · ·

+ a1(x)
dy
dx
+ a0(x)y = g(x), y ∈ R (2.2)

We have intentionally written the two forms in different notation, as
the first form typically (but not always) appears when the independent
variable is time, and the second form often appears when the indepen-
dent variable is spatial position. These two forms usually have different
boundary conditions. When t is the independent variable, we normally
know the conditions at t = 0 (e.g., initial reactant concentration) and
must solve for the behavior for all t > 0. This is called an initial-
value problem (IVP). In a transport problem, on the other hand, we
know the temperature, for example, at the boundaries and must find it
in the interior. This is a boundary-value problem (BVP).

99



100 Ordinary Differential Equations

2.2 First-Order Linear Systems

2.2.1 Superposition Principle for Linear Differential Equations

An arbitrary linear differential equation can be written

Lu = g

where L is a linear differential operator (e.g., L = d/dt − A, where
A is a matrix), u is the solution to be determined, and g is a known
function. Section 1.2 introduced the following general properties of
linear operators, which we now write in terms of L

L(u+ v) = Lu+ Lv
L(αu) = α(Lu)

Leaving aside for the moment the issue of boundary conditions, the
following two superposition properties follow directly from linearity

1. Homogeneous problem. Let g = 0. Ifu1 andu2 are both solutions
to Lu = 0, then αu1 + βu2 is also a solution, for any scalars α
and β.

2. Inhomogeneous problem. Let u1 be a solution to Lu = g1 and
u2 be a solution to Lu = g2. Then αu1 + βu2 is a solution to
Lu = αg1 + βg2.

With regard to boundary conditions, linearity also implies the fol-
lowing.

3. Let u1 be a solution to Lu = g1 with boundary condition Bu = h1

on a particular boundary, where B is an appropriate operator, e.g.,
a constant for a Dirichlet boundary condition, a first derivative
d/dx for a Neumann boundary condition, or a combination B =
γ + δ d/dx for a Robin boundary condition. Let u2 solve Lu =
g2 with boundary condition Bu = h2. Then αu1 + βu2 satisfies
Lu = αg1 + βg2 with boundary condition Bu = αh1 + βh2.

These simple results are very powerful and will be implicitly and ex-
plicitly used throughout the book, as they allow complex solutions to
be constructed as sums (or integrals) of simple ones.
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2.2.2 Homogeneous Linear Systems with Constant Coefficients—
General Results for the Initial-Value Problem

Consider (2.1), where t denotes time. The function f is often called a
vector field; for each point x in the phase space or state space
of the system, f(x) defines a vector giving the rate of change of x at
that point. The system is called autonomous if f is not an explicit
function of t. The trajectory x(t) traces out a curve in the state space,
starting from the initial condition x(0) = x0.

The most general linear first-order system can be written

dx
dt
= A(t)x + g(t), x ∈ Rn (2.3)

In the present section we further narrow the focus and consider only
the linear, autonomous, homogeneous system

ẋ = Ax x ∈ Rn A ∈ Rn×n (2.4)

where A is a constant matrix. Note that many dynamics problems are
posed as second-order problems: if x is a position variable then New-
ton’s second law takes the form ẍ = F(x). Letting u1 = x,u2 = ẋ, we
recover a first-order system

u̇1 = u2

u̇2 = F(u1)

More generally, a single high-order differential equation can always be
written as a system of first-order equations.

Unless A is diagonal, all of the individual scalar equations in the
system (2.4) are coupled. The only practical way to find a solution to
the system is to try to decouple it. But we already know how to do
this—we use the eigenvector decomposition A = MJM−1, where J is
the Jordan form for A (Section 1.4). Letting y = M−1x be the solution
vector in the eigenvector coordinate system, we write

ẏ = Jy

IfA can be completely diagonalized, then J = Λ = diag(λ1, λ2, . . . , λn)
and the equations in the y coordinates are completely decoupled. The
solution is

yi(t) = eλitci
or

y = eΛtc
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where c is a vector of arbitrary constants. For an initial-value problem
where x(0) is a known vector x0, c = y(0) = M−1x0. Recall from
Section 1.5 that the matrix eΛt is called the matrix exponential of Λ.
It is defined for a general matrix A as

eAt = I +At + 1
2!
A2t + 1

3!
A3t + · · ·

and we also show in Section 1.5 that the solution to (2.4) with initial
condition x(0) = x0 is given by x(t) = eAtx0.

For the diagonal matrix Λ, eΛt is simply a diagonal matrix with en-
tries eλit . Since yi(t) = eλitci, we see that the eigenvalues of A deter-
mine the growth or decay rates λi and the eigenvectors (columns of
M) determine the directions vi along which this growth or decay oc-
curs. Converting back to the original coordinates, we have the general
solution

x(t) = MeΛtc =
∑
i
cieλitvi

where vi is the eigenvector corresponding to λi. This expression shows
explicitly that the solution when A has a complete LI set of eigenvec-
tors is a simple combination of exponential growth and decay in the
directions defined by the eigenvectors.

An important general consequence of this result is that an initial
condition x0 that lies on the line defined by the kth eigenvector leads
to ci = αδik and thus to a solution x(t) = αeλktvk. This solution
will never leave the line defined by the eigenvector vk. This line is
thus an invariant subspace for the dynamics: an initial condition
that starts in an invariant subspace never leaves it. Similarly, each pair
of eigenvectors defines a plane that is invariant, each triple defines a
three-dimensional space that is invariant and so on.

A particularly relevant special case of an invariant plane arises when
A has a complex conjugate pair of eigenvalues σ±iω with correspond-
ing eigenvectors v and v ; see Exercise 1.59. A solution with initial
conditions in this subspace has the form

x(t) = c1eσteiωtv + c2eσte−iωtv

If the initial conditions are real, then c2 = c1 (to cancel out the imagi-
nary parts of the two terms in this equation). Equivalently, we can write
that

x(t) = 2Re
(
c1eσteiωtv

)
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where Re denotes the real part of an expression. Now writing c1 =
cr + ici, v = vr + ivi and eiωt = cosωt + i sinωt, this can be written
in real form as

x(t) = eσt(cr cosωt − ci sinωt)vr − eσt(ci cosωt + cr sinωt)vi

Thus for real initial conditions, the invariant subspace corresponding
to a pair of complex conjugate eigenvalues is the plane spanned by vr
and vi.

If A cannot be diagonalized the situation is not as simple, but is
still not really very complicated. We still have that ẏ = Jy , but J
is triangular rather than diagonal. Triangular systems have one-way
coupling, so we can solve from the bottom up, back substituting as we
go. To illustrate, we consider the case

J =
[
λ 1
0 λ

]

We can solve the equation ẏ2 = λy first and then back substitute,
getting an inhomogeneous problem for y1. The inhomogeneous term
prevents the behavior from being purely exponential, and the general
solution becomes (after converting back to the original coordinates)

x(t) = c1eλtv1 + c2eλt(v2 + tv1) (2.5)

where v1 is the eigenvector corresponding to λ and v2 is the general-
ized eigenvector; compare with Example 1.14. The line defined by the
eigenvector v1 is an invariant subspace, as is the plane defined by v1

and v2. However, the line defined by the generalized eigenvector v2 is
not invariant.

Note the teλt term that appears in (2.5). In initial-value problems,
this term allows solutions to grow initially even when all of the eigenval-
ues have negative real parts. As t → ∞, though, the exponential factor
dominates. Thus even when A is defective, its eigenvalues determine
the long-time dynamics and, in particular, the stability. The issue of
stability is addressed at length in Section 2.5; for the present we note
that the steady state x = 0 of (2.4) is asymptotically stable—initial
conditions approach it as t → ∞ if and only if all the eigenvalues of A
have negative real parts.

To summarize, the above results show that every homogeneous
constant-coefficient problem ẋ = Ax can be rewritten as ẏ = Jy ,
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where J has a block diagonal structure exemplified by the following
template

J =



λ1 0 . . .
0 λ2 0 . . .
. . . 0 σ −ω 0 . . .
. . . 0 σ ω 0 . . .

. . . 0 λ5 1 0 . . .
. . . 0 λ5 0 . . .

. . . 0 λ7 0
. . . 0 λ8


The dynamics corresponding to each block are decoupled from those
of all the others and the associated eigenvectors define invariant sub-
spaces; the dynamics in each invariant subspace are decoupled from
those in all the others.

2.2.3 Qualitative Dynamics of Planar Systems

In a general n-dimensional system, there is a large range of possible
combinations of eigenvalues, real and complex, with positive or neg-
ative real parts. For n = 2, a simple and general classification of the
possible dynamics is possible. Such systems are called planar, be-
cause all of the dynamics occur on a simple plane (sometimes called
the phase plane) defined by two eigenvectors (or an eigenvector and
generalized eigenvector, if A is defective). Writing

ẋ = Ax =
[
a b
c d

]
x

the characteristic equation for A is

λ2 − (a+ d)λ+ (ad− bc) = 0

Notice that a + d = trA and ad − bc = detA, which we call T and D,
respectively. Recall that T = λ1+λ2 and D = λ1λ2. In two dimensions,
the eigenvalues are determined only by the trace and determinant of
the matrix. When Re(λ1) < 0 and Re(λ2) < 0, any initial condition de-
cays exponentially to the origin—the origin is asymptotically stable.
These conditions are equivalent to T < 0,D > 0.

Figure 2.1 shows the dynamical regimes that are possible for the pla-
nar system as characterized by T and D; asymptotically stable steady-
state solutions occupy the second quadrant, excluding the axes. Each
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regime on Figure 2.1 shows a small plot of the dynamics on the phase
plane in that regime; the axes correspond to the eigenvectors (or real
and imaginary parts of the eigenvectors in the case of complex con-
jugates) and trajectories x(t) on this plane are shown with time as
the parameter. The arrows on the trajectories indicate the direction of
time. An important curve on this diagram is T 2 − 4D = 0, where the
two eigenvalues are equal. This parabola is also the boundary between
oscillatory solutions (spirals on the phase plane) and exponential ones
(nodes); a spiral arises from a complex conjugate pair of eigenvalues
while a node arises from the case of two real eigenvalues with the same
sign. In the lower half of the figure, D < 0, the eigenvalues are real and
with opposite signs. The steady states in this regime are called sad-
dle points, because they have one stable direction and one unstable.
Figure 2.2 shows the dynamic behavior that occurs on the boundaries
between the different regions. Trajectories on the boundary between
stable and unstable spirals, i.e. where T = 0,D > 0, are purely oscilla-
tory. On the phase plane they take the form of closed ellipses called
centers whose size is determined by the initial condition.

2.2.4 Laplace Transform Methods for Solving the Inhomogeneous
Constant-Coefficient Problem

Inhomogeneous constant-coefficient systems also can be decoupled by
transformation into Jordan form: ẋ = Ax + g(t) becomes ẏ = Jy +
h(t), where h(t) = M−1g(t). Accordingly, once we understand how
to solve the scalar inhomogeneous problem, we will have learned what
we need to know to address the vector case. A powerful approach to
solving inhomogeneous problems relies on the Laplace transform.

Definition

Consider functions of time f(t) that vanish for t < 0. If there exists a
real constant c > 0 such that f(t)e−ct → 0 sufficiently fast as t →∞, we
can define the Laplace transform of f(t), denoted f(s), for all complex-
valued s such that Re(s) ≥ c

L(f (t)) =
∫∞

0
e−stf(t)dt Re(s) ≥ c (2.6)

= f(s)
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trace

determinant

λ1 = λ2
–or– (tra

ce)2 = 4 det

+ definite− definite

indefinite indefinite

Re(λ) < 0 Re(λ) > 0

λ < 0 λ > 0

λ1 < 0 and λ2 > 0

stable spiral

▲

unstable spiral

▲

stable node

▲

▲
▲

▲

unstable node

▲

▲
▲

▲

unstable saddle

▲▲ ▲▲
▲▲ ▲

▲

Figure 2.1: Dynamical regimes for the planar system dx/dt = Ax,
A ∈ R2×2 parametrized in the determinant and trace of
A; see also Strang (1986, Fig. 6.7).

The inverse formula is given by

L−1(f (s)) = 1
2πi

∫ c+i∞
c−i∞

est f(s)ds t ≥ 0 (2.7)

= f(t)

Properties

1. The Laplace transform operator is linear. For every scalar α,β
and functions f(t), g(t), the following holds

L
{
αf(t)+ βg(t)

}
= αf(s)+ βg(s)

The inverse transform is also linear

L−1
{
αf(s)+ βg(s)

}
= αf(t)+ βg(t)
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trace

determinant

node or star

λ = ±iω

λ1 = λ2 > 0λ1 = λ2 < 0

or or

λ1 = 0 λ2 < 0 λ1 = 0 λ2 > 0

neutral center

▲▲

stable node

▲▲
▲ ▲

stable star

▲▲

▲ ▲

unstable node

▲

▲

▲

▲

unstable star

▲▲
▲▲

Figure 2.2: Dynamical behavior on the region boundaries for the pla-
nar system dx/dt = Ax, A ∈ R2×2; see also Strang
(1986, Fig. 6.10).

2. Transform of derivatives

L
(
df(t)
dt

)
= sf (s)− f(0)

L
(
d2f(t)
dt2

)
= s2f(s)− sf (0)− f ′(0)

L
(
dnf(t)
dtn

)
= snf(s)− sn−1f(0)− sn−2f ′(0)− · · ·

− sf (n−2)(0)− f (n−1)(0)

3. Transform of integral

L
(∫ t

0
f(t′)dt′

)
= 1
s
f (s)



108 Ordinary Differential Equations

4. Derivative of transform with respect to s

L(tnf(t)) = (−1)n
dnf(s)
dsn

5. Time delay and s delay

L(f (t − a)H(t − a)) = e−asf(s)
L(eatf(t)) = f(s − a)

where the Heaviside or unit step function is defined as

H(t) =

0 t < 0

1 0 < t

6. Laplace convolution theorem

L
(∫ t

0
f(t′)g(t − t′)dt′

)
= f(s)g(s)

L
(∫ t

0
f(t − t′)g(t′)dt′

)
= f(s)g(s)

7. Final value theorem

lim
s→0
sf (s) = lim

t→∞
f(t)

if and only if sf (s) is bounded for all Re(s) ≥ 0

8. Initial-value theorem

lim
s→∞

sf (s) = lim
t→0+

f(t)

We can readily compute the Laplace transform of many simple f(t)
by using the definition and performing the integral. In this fashion we
can construct Table 2.1 of Laplace transform pairs. Such tables prove
useful in solving differential equations. We next solve a few examples
using the Laplace transform.
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f(t) f (s)

δ(t) 1

1
1
s

t
1
s2

tn − 1 < n
Γ(n+ 1)
sn+1

cosωt
s

s2 +ω2

sinωt
ω

s2 +ω2

sinhωt
ω

s2 −ω2

coshωt
s

s2 −ω2

eat
1

s − a
teat

1
(s − a)2

eat cosωt
s − a

(s − a)2 +ω2

eat sinωt
ω

(s − a)2 +ω2

Table 2.1: Small table of Laplace transform pairs. A more extensive
table is found in Appendix A.

−Ky

m

F(t)

y

Figure 2.3: Particle of massm at position y experiences spring force
−Ky and applied force F(t).
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Example 2.1: Particle motion

Consider the motion of a particle of massm connected to a spring with
spring constant K and experiencing an applied force F(t) as depicted
in Figure 2.3.

Let y denote the displacement from the origin and model the spring
as applying force Fs = −Ky . Newton’s equation of motion for this
system is then

m
d2y
dt2

= F −Ky

We require two boundary conditions for this second-order differential
equation. If we assume the particle is initially at rest at the origin, then
the boundary conditions are both specified at t = 0 and these initial
conditions are

y(0) = 0
dy
dt
(0) = 0

If we divide by the mass of the particle we can express the model as

d2y
dt2

+ k2y = f

y(t) = 0 t = 0

dy(t)
dt

= 0 t = 0

in which k2 = K/m and f = F/m. Take the Laplace transform of
the model and find the position of the particle versus time y(t), for
arbitrary applied force f(t).

Solution

Taking the Laplace transform of the equation of motion and substitut-
ing in the two initial conditions gives

s2y(s)− sy(0)−y ′(0)+ k2y(s) = f(s)
s2y(s)+ k2y(s) = f(s)

Solving this equation for y(s) gives

y(s) = f(s)
s2 + k2
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We see the transform is the product of two functions of s. The inverse
of each of these is available

L−1(f (s)) = f(t) L−1
(

1
s2 + k2

)
= 1
k

sinkt

The first follows by the definition of f(s) and the second follows from
Table 2.1. Using the convolution theorem then gives

y(t) = 1
k

∫ t
0
f(t′) sink(t − t′)dt′

and we have the complete solution. We see that the particle position
is a convolution integral of the applied force with the sine function.
The reader may wish to check that this solution indeed satisfies the
differential equation and both initial conditions as claimed. □

Example 2.2: A forced first-order differential equation

Consider the first-order differential equation with forcing term

dx
dt
= ax + bu(t)

x(0) = x0

Use the Laplace transform to find x(t) for any forcing u(t).

Solution

Taking the Laplace transform, substituting the initial condition, and
solving for x(s), give

sx(s)− x0 = ax(s)+ bu(s)

x(s) = x0

s − a + b
u(s)
s − a

We can invert the first term directly using Table 2.1, and the second
term using the table and the convolution theorem giving

x(t) = x0eat + b
∫ t

0
ea(t−t

′)u(t′)dt′

We see the effect of the initial condition x0 and the forcing term u(t).
If a < 0 so the system is asymptotically stable, the effect of the initial
condition decays exponentially with time. The forcing term affects the
solution through the convolution of u with the time-shifted exponen-
tial. □
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Example 2.3: Sets of coupled first-order differential equations

Consider next the inhomogeneous constant coefficient system (2.3),
with g(t) = Bu(t)

dx
dt
= Ax + Bu(t)

x(0) = x0

in which x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m. In systems and control
applications, x is known as the state vector and u is the manipulated
variable vector. Use Laplace transforms to find x(t) for this problem.

Solution

Again taking the Laplace transform, substituting the initial condition,
and solving for x(s) gives

sx(s)− x0 = Ax(s)+ Bu(s)
(sI −A)x(s) = x0 + Bu(s)

x(s) = (sI −A)−1x0 + (sI −A)−1Bu(s)

We next require the matrix version of the Laplace transform pair

f(t) f (s)

eat a ∈ R 1
s − a

eAt A ∈ Rn×n (sI −A)−1

which can be checked by applying the definition of the Laplace trans-
form. Using this result and the convolution theorem gives

x(t) = eAtx0 +
∫ t

0
eA(t−t

′)Bu(t′)dt′

Notice we cannot move the constant matrix B outside the integral as we
did in the scalar case because the indices in the matrix multiplications
must conform as shown below

x(t)︸ ︷︷ ︸
n×1

= eAt︸︷︷︸
n×n

x0︸︷︷︸
n×1

+
∫ t

0
eA(t−t

′)︸ ︷︷ ︸
n×n

B︸︷︷︸
n×m

u(t′)︸ ︷︷ ︸
m×1

dt′

□
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2.2.5 Delta Function

The delta function, also known as the Dirac delta function (Dirac,
1958, pp. 58-61) or the unit impulse, is an idealization of a narrow and
tall “spike.” Two examples of such functions are

gα(x) =
1√

4πα
e−x

2/4α (2.8)

gα(x) =
α

π (α2 + x2)
(2.9)

where α > 0. Setting x = 0 and then taking the limit α → 0 shows that
limα→0 gα(0) → ∞, while setting x = x0 ≠ 0 and taking the same limit
shows that for any nonzero x0, limα→0 gα(x0) = 0. These functions
become infinitely high and infinitely narrow. Furthermore, they both
have unit area ∫∞

−∞
gα(x) dx = 1

A set of functions depending on a parameter and obeying the above
properties is called a delta family. The delta function δ(x) is the
limiting case of a delta family as α → 0. It has infinite height, zero
width, and unit area. It is most properly thought of as a generalized
function or distribution; the mathematical theory of these objects
is described in Stakgold (1998).

Operationally, the key feature of the delta function is that when
integrated against a “normal” function f(x) the delta function extracts
the value of f at the x value where the delta function has its singularity∫∞

−∞
f(x)δ(x) dx = lim

α→0

∫∞
−∞
f(x)gα(x) dx = f(0) (2.10)

The delta function also can be viewed as the generalized derivative of
the discontinuous unit step or Heaviside function H(x)

δ(x) = dH(x)
dx

Also note that the interval of integration in (2.10) does not have to be
(−∞,∞). The integral over any interval containing the point of singu-
larity for the delta function produces the value of f(x) at the point of
singularity. For example∫ a+ϵ

a−ϵ
f(x)δ(x − a)dx = f(a) for all ϵ > 0 for all a ∈ R
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Finally, by changing the variable of integration we can show that the
delta function is an even function

δ(−x) = δ(x)

Derivatives of the Delta Function

Doublet. An interesting property of the delta function is that it is
also differentiable. The first derivative is termed the doublet or dipole,
usually denoted δ′(x)

δ′(x) = dδ(x)
dx

Sometimes we see the dot notation δ̇(x) to denote the doublet instead
of δ′(x). If we perform integration by parts on the integral∫∞

−∞
f(x)δ′(x)dx

we find that the doublet selects the negative of the first derivative of f
evaluated at the location of the doublet’s singularity∫∞

−∞
f(x)δ′(x)dx = −f ′(0) (2.11)

Note the sign in this equation. We also find by changing the variable of
integration that, unlike the delta function, or singlet, which is an even
function, the doublet is odd

δ′(x) = −δ′(−x)

Higher-order derivatives. Repeated integration by parts produces the
following higher-order formulas for triplets, quadruplets, etc.∫∞

−∞
f(x)δ(n)(x)dx = (−1)nf (n)(0) n ≥ 0

As with the singlet and doublet, we can change the variable of inte-
gration and shift the location of the singularity to obtain the general
formula∫∞

−∞
f(x)δ(n)(x − a)dx = (−1)nf (n)(a) n ≥ 0 a ∈ R

Finally we can use the definition of the Laplace transform to take the
transform of the delta function and its derivatives to obtain the trans-
form pairs listed in Table 2.2.
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f(t) f (s)

H(t)
1
s

δ(t) 1

δ′(t) s

δ′′(t) s2

δ(n)(t) sn

Table 2.2: Laplace transform pairs involving δ and its derivatives.

2.3 Linear Equations with Variable Coefficients

2.3.1 Introduction

In many chemical engineering applications, equations like this one are
encountered

x2d2y
dx2

+ xdy
dx
+ (x2 − ν2)y = 0 (2.12)

This is called Bessel’s equation of order ν , and arises in the study of
diffusion and wave propagation via the Laplacian operator in cylindrical
coordinates. Since the coefficients in front of the derivative terms are
not constant, the exponential functions that solved constant-coefficient
problems does not work here. Typically, variable-coefficient problems
must be solved by power series methods or by numerical methods, as
they have no simple closed-form solution. We focus here on second-
order equations, as they arise most commonly in applications.

2.3.2 The Cauchy-Euler Equation

The Cauchy-Euler equation, also called the equidimensional equa-
tion, has a simple exact solution that illustrates many important fea-
tures of variable-coefficient problems and arises during the solution of
many problems. The second-order Cauchy-Euler equation has the form

a0x2y ′′ + a1xy ′ + a2y = 0 (2.13)

where y ′ = dy/dx. Its defining feature is that the term containing the
nth derivative is multiplied by the nth power of x. Because of this,
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guessing that the form of the solution is y = xα yields the quadratic
equation a0α(α−1)+a1α+a2 = 0. If this equation has distinct roots
α1 and α2, then each root leads to a solution and thus the general
solution is found

y = c1xα1 + c2xα2 (2.14)

For example, let a0 = 1, a1 = 1, a2 = −9, yielding the equation α2−9 =
0, which has solutions α = ±3. Thus the equation has two solutions
of the form y = xα: the general solution is y = c1x3 + c2x−3. Notice
that this solution can blow up at x = 0; this singular behavior does not
arise in constant-coefficient (linear) problems, but is frequently found
in variable-coefficient and nonlinear problems.

In the case of a repeated root, the general solution does not have
the form given above. Instead, the technique of reduction of order,
also called variation of parameters, can be used. In this technique,
given one solution to a second-order linear problem y1(x), the second
can be found in the form y2(x) = A(x)y1(x). For example, let a0 =
1, a1 = −1, a2 = 1, yielding the repeated root α = 1. Thus y1 = x, and
y2 = A(x)x, which, upon substitution into the differential equation,
yields

A′′x3 + 2A′x2 −A′x2 −Ax +Ax = 0

which simplifies to
A′′x +A′ = 0

Letting A′ = w leads to a simple first-order equation for w

w′x +w = 0

so that w = c/x and thus A = c lnx + d, where c and d are arbitrary
constants. Thus the general solution for this problem can be written

y(x) = c1x + c2x lnx = x(c1 + c2 lnx)

It can be shown in general that (second-order) Cauchy-Euler equations
with repeated roots have the general solution

y(x) = xα(c1 + c2 lnx) (2.15)

2.3.3 Series Solutions and the Method of Frobenius

A general linear second-order problem can be written

p(x)y ′′ + q(x)y ′ + r(x)y = 0 (2.16)
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or

y ′′ + q(x)
p(x)

y ′ + r(x)
p(x)

y = 0 (2.17)

If q(x)
p(x) and r(x)

p(x) are analytic, i.e., they have a convergent Taylor se-
ries expansion, at some point x = a, then a is an ordinary point.
Otherwise, x = a is a singular point.

If x = a is an ordinary point, there exist solutions in the form of
power series

y(x) =
∞∑
n=0

cn(x − a)n (2.18)

Two such solutions can be found, thus yielding the general solution.
Letting ρ be the distance between a and the nearest singular point of
the differential equation, which might be at a complex rather than a
real value of x, the series converge1 for |x − a| < ρ. Accordingly ρ is
called the radius of convergence of the series. The exception to this
is when a series solution truncates after a finite number of terms, i.e.,
cM = 0 for M > M0; in this case the sum is always finite for finite x.

Example 2.4: Power series solution for a constant-coefficient equa-
tion

Let p(x) = 1, q(x) = 0 and r(x) = k2, resulting in the equation

y ′′ + k2y = 0

Solve this by power series expansion.

Solution

We seek a solution by expanding around the ordinary point a = 0. For
this simple example, every point is an ordinary point. Inserting the
solution form, (2.18), into this equation yields

∞∑
n=2

n(n− 1)cnxn−2 + k2
∞∑
n=0

cnxn = 0

The two sums can be combined if we can make their lower limits the
same and the powers of x the same in each sum. To do so we set
n =m+ 2 in the first series and n =m in the second, obtaining

∞∑
m=0

[
(m+ 2)(m+ 1)cm+2 + k2cm

]
xm = 0

1A full understanding of convergence of power series requires knowledge of func-
tions of complex variables, see, e.g., Ablowitz and Fokas (2003).
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For arbitrary x, this can only hold if the term inside the square brackets
is zero for all m, requiring that

cn+2 =
−cnk2

(n+ 2)(n+ 1)

(where we have now reverted to using n as the index). Leaving c0 and
c1 arbitrary, we find that

c2 =
−c0k2

2!

c3 =
−c1k2

3!

c4 =
−c2k2

4 · 3
= c0k4

4!

c5 =
−c3k2

5 · 4
= c1k4

5!
...

Absorbing a factor of 1/k into c1 (recall that it is arbitrary), the series
solution becomes

y(x) = c0

(
1− k

2x2

2!
+ k

4x4

4!
− . . .

)
+ c1

(
kx − k

3x3

3!
+ k

5x5

5!
− . . .

)

Note that this has two arbitrary constants c0 and c1, so it is the gen-
eral solution. The two infinite series can be recognized as the Taylor
expansions of two familiar functions, and we can thus rewrite the gen-
eral solution as

y(x) = c0 coskx + c1 sinkx

□

If p(x)→ 0 at some point x = a, the situation is more complex. We
seta = 0 from now on for convenience. Now q(x)/p(x) and r(x)/p(x)
are not analytic andx = 0 is called a singular point. Ifx (q(x)/p(x))
and x2 (r(x)/p(x)) are analytic, i.e., the singularity in p(x) is not
very strong, then the point is a regular singular point. Observe
that x = 0 is a regular singular point for the Cauchy-Euler equation. In
fact, by multiplying (2.17) by x2 and Taylor-expanding the coefficients,
one can see that when the conditions for a regular singular point are
satisfied, this general case reduces precisely to a Cauchy-Euler equation
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asx → 0. This observation motivates the method of Frobenius, which
seeks solutions of the form

y(x) = xα
∞∑
n=0

cnxn (2.19)

The power series has the same convergence properties as described
above for ordinary points.

Example 2.5: Frobenius solution for Bessel’s equation of order zero

Bessel’s equation (2.12) with ν = 0 is

xy ′′ +y ′ + xy = 0 (2.20)

Here x = 0 is a regular singular point. Solve by the method of Frobe-
nius.

Solution

Observe that this equation can be written x2y ′′+xy ′+(0+x2)y = 0 so
the corresponding Cauchy-Euler equation is thus x2y ′′+xy ′+0y = 0.
Seeking a solution y = xα yields the repeated root α = 0 and thus a
general solution y(x) = c1 + c2 lnx. As we will see, this structure is
reflected in the form of the solution to Bessel’s equation.

Inserting the Frobenius solution form, (2.19) into (2.20) yields that

∞∑
n=0

(n+α)(n+α−1)cnxn+α−1+
∞∑
n=0

(n+α)cnxn+α−1+
∞∑
n=0

cnxn+α+1 = 0

To simplify this series, set n =m+ 2 in the first two sums and m = n
in the third. Then set all the ms back to n. This yields a summation
starting at n = −2, which is fine as long as we make c−2 = c−1 = 0. The
formula becomes

∞∑
n=−2

[
(n+α+ 2)2cn+2 + cn

]
xn+α+1 = 0

Since x can vary, the equality can only hold if the terms in the brackets
are all zero. This is the recursion formula for the coefficients cn. The
first term (n = −2) picks out the Cauchy-Euler behavior and is called the
indicial equation. Since c−2 = 0, it reduces to (n+α+2)2 = α2 = 0.
As we anticipated above with the corresponding Cauchy-Euler equation,



120 Ordinary Differential Equations

this has the repeated root α = 0. The general recursion relation for the
coefficients reads

cn+2 = −
cn

(n+ 2)2

Since c−1 = 0, all the coefficients with n odd are zero. Therefore, only
one of the two solutions to the problem has the form of (2.19), again,
in parallel with the Cauchy-Euler analysis. With some rearrangements,
this solution becomes

y1(x) =
∞∑
n=0

(−1)n

(n!)2

(
x
2

)2n

This function has the special symbol J0(x) and is called the “Bessel
function of the first kind and order zero.” For general ν , the solutions
are denoted Jν(x). A second solution can be found for this problem
by variation of parameters; see Exercise 2.31. It is not of Frobenius
form, having a logarithmic singularity as x → 0 (again as anticipated
from the solution to the corresponding Cauchy-Euler equation). It is
called Y0(x) and is the “Bessel function of the second kind and order
zero.” Singular solutions for general ν are denoted Yν(x). The general
solution is

y(x) = c1J0(x)+ c2Y0(x) (2.21)

□

See Table 2.3 for a graph of functions J0 and Y0. Note that for com-
parison purposes, the table also shows the solution for the radial part
of ∇2y ±y = 0 in rectangular, cylindrical, and spherical coordinates.

In the previous example, the indicial equation yielded a single re-
peated root for α and one solution of Frobenius form. Other cases are
possible. Here are the possibilities and their consequences.

1. If the indicial roots are equal, only one Frobenius solution is ob-
tained. This is what occurred in the above example.

2. If the roots differ by a noninteger constant, then each root leads
to a solution and the general solution is obtained.

3. If the roots differ by an integer then the (algebraically) larger root
leads to a Frobenius solution and either

(a) the smaller root also leads to a Frobenius solution and the
general solution is obtained, or
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Rectangular Cylindrical Spherical

Coordinates Coordinates Coordinates

d2y
dx2 ±y = 0

1
r
d
dr
(r
dy
dr
)±y = 0

1
r2

d
dr
(r2 dy

dr
)±y = 0

+
-1

0

1

0 2 4 6 8 10 12 14

cosx

-1

0

1

0 2 4 6 8 10 12 14

J0(r)

-1

0

1

0 2 4 6 8 10 12 14

cos r
r

-1

0

1

0 2 4 6 8 10 12 14

sinx

-1

0

1

0 2 4 6 8 10 12 14

Y0(r)

-1

0

1

0 2 4 6 8 10 12 14

sin r
r

−
0

2

4

6

8

10

0 1 2 3

ex

0

2

4

6

8

10

0 1 2 3

I0(r)

0

2

4

6

8

10

0 1 2 3

er

r

0

1

0 1 2 3

e−x

0

1

0 1 2 3

K0(r)

0

1

0 1 2 3

e−r

r

Table 2.3: The linear differential equations arising from the radial
part of∇2y±y = 0 in rectangular, cylindrical, and spher-
ical coordinates. Bessel functions (J0, Y0) and modified
Bessel functions (I0, K0) are two linearly independent so-
lutions in cylindrical coordinates for the plus and minus
signs, respectively. The solutions in spherical coordinates
are called spherical Bessel functions.
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(b) the smaller root does not lead to a second solution of Frobe-
nius form. A second solution can be found by reduction
of order and have a logarithmic singularity just as in the
Cauchy-Euler case.

2.4 Function Spaces and Differential Operators

2.4.1 Functions as Vectors

One of the main tasks of mathematical modeling is the exact or approx-
imate representation of functions. Here we extend the ideas of vectors
and bases into the regime where each vector is a function, so the space
the vectors live in is a Function Space.

In the finite-dimensional space Cn, the usual inner product of vec-
tors u and v is simply the n-dimensional version of the dot product

(u,v) =
n∑
i=1

uivi

For functions u(x) and v(x) in a domain a ≤ x ≤ b, a natural analog
to this relation is

(u(x), v(x)) =
∫ b
a
u(x)v(x) dx

This is the usual inner product for functions defined on the interval
[a, b]. From this inner product, we can obtain a norm

∥u(x)∥ =
√
(u,u) =

[∫ b
a
u(x)u(x) dx

]1/2

Another inner product, which plays an important role shortly, is given
by the formula

(u(x), v(x))w =
∫ b
a
u(x)v(x)w(x) dx

where w(x) is a so-called weight function and must be positive in
(a, b). Finally, with these definitions, a bounded function is one that
satisfies ∫ b

a
|u(x)|2w(x) dx = ∥u∥2

w <∞
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With these definitions in hand, we can define an important function
space. The set of functionsu(x) that satisfy (u,u) = ∥u∥ <∞with the
usual inner product (w = 1) is the Lebesgue space L2(a, b). If we had
used a nonunit weight function w(x) in the inner product, we would
have L2,w(a, b). Lebesgue spaces are examples of Hilbert spaces. A
Hilbert space is essentially identical to a space of vectors with infinitely
many components, so that all of our intuition about directions, lengths
and angles carries over from two dimensions into an infinite number of
dimensions!

Basis Sets and Fourier Series

In a finite-dimensional space, any vector can be represented in an or-
thonormal basis {e1, e2, . . . , en} as

u =
n∑
i=1

(u, ei)ei

The same is true in a Hilbert space, except that each basis vector is now
a function φi(x) and the sum is infinite2, e.g.,

u(x) =
∞∑
i=1

(u(x),φi(x))φi(x)

Two of the most important basis sets for L2 are the trigonometric func-
tions and the Legendre polynomials.

Consider the space L2(−π,π), i.e., the Lebesgue space defined as
above, except on the interval3 from −π to π . The functions

eikx = coskx + i sinkx, k = −∞, . . . ,−2,−1,0,1,2, . . . ,∞

are in this space. In addition, they are orthogonal and can be normal-
ized

(eikx, eilx) = 2πδkl φk(x) =
eikx√

2π
A natural question, then, is whether this set can be used as a basis for
L2(−π,π). Specifically, we examine the proposition that every function
in L2(−π,π) can be represented as

f(x) =
∞∑

k=−∞
ck
eikx√

2π
(2.22)

2Depending on the specific situation, the sum’s lower limit might be 0,1, or −∞.
3The interval (0,2π) might also be used.
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This is the trigonometric Fourier Series representation of f(x). The
ck are the Fourier coefficients and are given by the standard formula
for expansion of a vector in an orthonormal basis

ck = (f ,φk) =
1√
2π

∫ π
−π
f(x)e−ikxdx (2.23)

The equality (2.22) cannot possibly hold at every point x for every
function f(x) ∈ L2(−π,π), simply because trigonometric functions
are continuous and smooth, and functions in L2(−π,π) are allowed
to have discontinuities. Distance in L2(−π,π) is not measured point-
wise, however, but rather via the L2 norm. To address the issue of
the distance between a function and its Fourier series representation,
consider the finite trigonometric series expansion

pK(x) =
K∑

k=−K
gk
eikx√

2π

and define the residual or approximation error to be the difference
r(x) = f(x) −

∑K
k=−K gkφk(x). We can now ask the question: given

integer K what coefficients gk minimize the L2 norm of the residual?
Using the definition of norm and the orthogonality of theφk, we obtain

∥r∥2 = (f −
∑
k
gkφk, f −

∑
j
gjφj)

= (f , f )−
∑
k
(f ,φk)gk −

∑
k
gk(φk, f )+

∑
k
gkgk

Note that
∣∣gk − (f ,φk)∣∣2 = gkgk−gk(φk, f )−(f ,φk)gk+

∣∣(f ,φk)∣∣2.
Summing this result and substituting into the previous expression gives

∥r∥2 =
∥∥f∥∥2 +

∑
k
|gk − (f ,φk)|2 − |(f ,φk)|2

By inspection, the minimizer is achieved by gk = (f ,φk), k ∈ [−K,K]
so gk = ck defined in (2.23), and we see that the Fourier coefficients
minimize the L2 norm of the residual. Because the ck do not depend
on the number of terms, K, if we decide to increase the order of the
approximation, we do not need to recalculate the lower-order coeffi-
cients.

Now consider the truncated Fourier series fK(x) =
∑K
k=−K ckeikx .

The question of convergence of this series to the function f is nontriv-
ial; we state without proof that for functions in L2(−π,π)∥∥f(x)− fK(x)∥∥2 → 0 as K →∞
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The rate of convergence of fK to f depends on the behavior of the
Fourier coefficients ck as |k| → ∞. A simple analysis sheds light on this
behavior. Consider functions f(x) ∈ L2(π,π) whose jth derivatives
f (j) exist in (−π,π) for all (positive) j but which may have discontinu-
ities at the boundaries. Integrating (2.23) by parts yields

√
2πck =

∫ π
−π
f(x)e−ikx dx

= −1
ik
(f (π)− f(−π)) (−1)k + 1

ik

∫ π
−π
f ′(x)e−ikx dx (2.24)

Since (f (π)− f(−π)) is independent of k, the first term in this expres-
sion clearly decays as k−1 as k → ∞. To characterize the second term,
we observe that it can be written as

1
ik
(f ′(x), eikx)

The Cauchy-Schwartz inequality (1.3) can now be applied, giving∣∣∣(f ′(x), eikx)∣∣∣ ≤ ∥∥f ′(x)∥∥∥∥∥eikx∥∥∥ = ∥∥f ′(x)∥∥√2π

By the conditions imposed on f(x) above, f ′(x) is in L2(−π,π); thus
this inner product is finite and bounded from above by a constant in-
dependent of k. Therefore ck decays at least as fast as k−1 as k → ∞.
This dependence can written as ck = O(k−1): “ck is order k−1.”4 Before
continuing, we note as an aside that this analysis has just established
the Riemann-Lebesgue lemma: For functions f(x) ∈ L2(−π,π),

lim
k→∞

∫ π
−π
f(x)e−ikx dx = 0

If, additionally, f(π) = f(−π), then the first term in (2.24) van-
ishes and we can repeat the integration by parts procedure and Cauchy-
Schwartz argument on the remaining integral to conclude that ck =
O(k−2). If f (j)(π) = f (j)(−π) for all j (i.e. f(x) and all its derivatives
are smooth and periodic), this process can be repeated ad infinitum,
and we can conclude that the Fourier coefficients ck decay faster than
any finite power of k−1. This is called exponential or spectral conver-
gence. Alternately, if the firstm−2 derivatives, but not the (m−1)th,
are continuous at the boundaries, then afterm iterations, the boundary

4Notation for asymptotic relationships between expressions is described in more
detail in Section 2.6.
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Figure 2.4: Function f(x) = exp
(
− 8

( x
π
)2)

and truncated trigono-
metric Fourier series approximations with K = 2,5,10.
The approximations with K = 5 and K = 10 are visually
indistinguishable from the exact function.

terms in the integration by parts process will no longer vanish, yielding
that

|ck| = C(k)k−m (2.25)

where C(k) = O(1). Above we saw this directly for the case m = 1,
where the zeroth derivative (i.e. the function value itself) is discontin-
uous. This result can be generalized to the case of functions that are
continuous and smooth at the boundaries but have discontinuities in
the interior. For further discussion of the convergence of Fourier series
see Gasquet and Witomski (1999); and Canuto, Hussaini, Quarteroni,
and Zang (2006). We now turn to some examples of rapidly and slowly
converging Fourier series representations.

Figure 2.4 shows truncated Fourier series approximations to the
function f(x) = exp

(
− 8

( x
π
)2) with several values of K. Although

this function is not exactly periodic, its function values and derivatives
at x = ±π are extremely small, so convergence is rapid.

If f(x) is discontinuous or f(−π) ≠ f(π), then ck decays as k−1

and convergence is very slow. The most obvious characteristic of Fourier
series representations of discontinuous functions is the Gibbs phe-



2.4 Function Spaces and Differential Operators 127

nomenon, the rapid oscillation of the truncated series fK in the vicinity
of the discontinuity.

Example 2.6: Fourier series of a nonperiodic function and the Gibbs
phenomenon

What is the Fourier series expansion of f(x) = x?

Solution

Application of (2.24) yields that

ck√
2π

=

0 k = 0
(−1)k
k i k ≠ 0

Observe that c−k = ck (see Exercise 2.5), so we can write the Fourier
series as

fK(x) = c0 +
2√
2π

K∑
k=1

(Re(ck) coskx − Im(ck) sinkx)

which in the present case reduces to

fK(x) =
K∑
k=1

−2(−1)k

k
sinkx

This series contains only sines, not cosines, reflecting the fact that the
function f(x) = x is odd. Figure 2.5 shows the approximation for
K = 5,10, and 50, which exhibits Gibbs phenomenon as expected for a
nonperiodic function.

The plot remains essentially the same if the discontinuity is in the
interior rather than on the boundary. For example, the function

f(x) =

x +π −π ≤ x < 0

x −π 0 ≤ x < π

is periodic (along with all its derivatives) but has a discontinuity at the
origin. The Fourier series of this function is the same as that for the
previous, except shifted by π

fK(x) =
K∑
k=1

−2(−1)k

k
sink(x +π) =

K∑
k=1

−2
k

sinkx
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Figure 2.5: Truncated trigonometric Fourier series approximation to
f(x) = x, using K = 5,10,50. The wiggles get finer as
K increases.

For trigonometric Fourier series, Gibbs phenomenon occurs whether
the discontinuity occurs on the boundary or in the interior of the do-
main. □

Implicitly, the trigonometric basis assumes that the function is pe-
riodic, with the period being the length of the interval. This is why the
Gibbs phenomenon occurs if the boundary values of the function are
not the same. Another basis that does not make this implicit assump-
tion is given by the so-called Legendre polynomials. This basis can
be constructed by performing Gram-Schmidt orthogonalization on the
set {1, x,x2, x3, . . .}. The first several of these polynomials, now in the
space L2(−1,1), the usual setting for polynomial basis functions, are

P0(x) = 1 (2.26)

P1(x) = x (2.27)

P2(x) = (3x2 − 1)/2 (2.28)
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Pj+1(x) =
2j + 1
j + 1

xPj(x)−
j

j + 1
Pj−1(x) (2.29)

and the Legendre-Fourier series representation of a function is

f(x) =
∞∑
i=0

(f (x), Pi(x))
(Pi(x), Pi(x))

Pi(x)

Note that the sum starts with the index i = 0, which is conventional for
polynomial bases.

As written, this basis is not orthonormal; instead each polynomial
has been scaled so that its value is 1 at x = 1. The function f(x) = x
can be represented exactly, since P1(x) = x. Convergence for Fourier
series based on Legendre polynomials is analogous to that for trigono-
metric functions; in particular, spectral convergence is found for func-
tions that have infinitely many derivatives, whether they are periodic or
not. We refer the interested reader to Canuto et al. (2006) for detailed
analysis.

Figure 2.6 shows Legendre-Fourier series approximations to the func-
tion f(x) = exp

(
− 8x2

)
truncated at n+ 1 terms, i.e., including poly-

nomials up to degree n. As with the trigonometric Fourier series ap-
proximation of this function, convergence is rapid. Figure 2.7 shows
Legendre-Fourier Series approximations to the unit step function f(x) =
H(x); because this function is discontinuous, the Legendre-Fourier se-
ries also displays Gibbs phenomenon.

The trigonometric and Legendre basis sets are very important, but
there are many others that also are important and widely seen in appli-
cations. The following section introduces an entire class of equations,
each of whose members generates a basis set.

2.4.2 Self-Adjoint Differential Operators and Sturm-Liouville Equa-
tions

When we studied linear algebra, we learned that self-adjoint matrix
operators in Rn have special properties, namely that their eigenvalues
are real and their eigenvectors form an orthogonal basis for Rn. Self-
adjoint differential operators also generate basis vectors (functions).

Recall the definition of the adjoint L∗ of an operator L

(Lu,v) = (u, L∗v)
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Fourier series approximations with n = 2,5,10.

Let us apply this definition to the operator L = d/dx in the interval
[0,1] and the usual, i.e., uniformly weighted, inner product

(Lu,v) =
∫ 1

0
u′(x)v(x)dx

= u(1)v(1)−u(0)v(0)−
∫ 1

0
u(x)v′(x)dx

Since L is here a first derivative, any differential equation involving it
requires specification of one boundary condition. As an example, we
require that u(0) = 0. Now the boundary term at x = 0 vanishes. Now
observe that if we require that v(1) = 0, the boundary term at x = 1
also vanishes, leaving the result

(Lu,v) = −
∫ 1

0
u(x)v′(x)dx

= (u, L∗v)

where L∗ = −d/dx. Therefore, if L isd/dx, operating on functions that
vanish at x = 0, then from the above equation, L∗ = −d/dx, operating
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Figure 2.7: Function f(x) = H(x) and truncated Legendre-Fourier
series approximations with n = 10,50,100.

on functions that vanish at x = 1. The first derivative operator is not
self-adjoint.

If, however, we let L = d2/dx2 and require that u(0) = u(1) = 0,
then the same procedure (but using integration by parts twice) shows
that L∗ is also d2/dx2 operating on the same domain. The second-
derivative operator, therefore, with appropriate boundary conditions,
is self-adjoint. More generally, consider a class of second-order differ-
ential operators called Sturm-Liouville operators. These operators
have the general form

Lu = 1
w(x)

(
d
dx

[
p(x)

du
dx

]
+ r(x)u

)
(2.30)

in the domain a < x < b, with homogeneous boundary conditions

αu(a)+ βu′(a) = 0, γu(b)+ δu′(b) = 0

To avoid the possibility of singular points, p(x)must be positive in the
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domain. Furthermore, take the inner product to be

(u,v)w =
∫ b
a
u(x)v(x)w(x) dx

The function w(x) here is the same as in (2.30). For this integral to be
a proper inner product, we must require that w(x) > 0 in the domain.

We now show that Sturm-Liouville operators are self-adjoint. Re-
peated integration by parts yields

(Lu,v)w =
∫ b
a

1
w(x)

(
d
dx

[
p(x)

du
dx

]
+ r(x)u

)
v w dx (2.31)

= p(b)
(
u′(b)v(b)−u(b)v′(b)

)
− p(a)

(
u′(a)v(a)−u(a)v′(a)

)
+
∫ b
a
u

1
w(x)

(
d
dx

[
p(x)

dv
dx

]
+ r(x)v

)
w dx (2.32)

If the boundary terms vanish, then this expression satisfies the self-
adjointness condition (Lu,v) = (u, Lv). This is the case if the above
boundary conditions apply on both u and v . The restriction on the
boundary conditions can be relaxed if p(x) vanishes at one or both
boundaries, in which case only boundedness of the function and its
derivative is required at that boundary. The latter case is called a sin-
gular Sturm-Liouville operator, because it has a singular point at the
boundary or boundaries where p vanishes. Finally, the boundary terms
also vanish if p(a) = p(b) and periodic boundary conditions are
imposed: u(a) = u(b),u′(a) = u′(b) and likewise for v .

Next consider the eigenvalue problem associated with the Sturm-
Liouville operator5

Lu+ λu = 0

As with all self-adjoint operators, the eigenvalues λ are real and the
eigenvectors—now called eigenfunctions because they are elements of
a function space—are orthogonal with respect to the inner product
weighted by w(x). Furthermore, and very importantly, there are an
infinite number of eigenfunctions and they form a complete basis for
L2,w(a, b). We next consider three Sturm-Liouville operators that pro-
duce some famous eigenfunctions that are popular choices for use as
basis functions.

5This is the conventional form for writing differential eigenvalue problems. Unfor-
tunately, it is different from the convention for algebraic problems.
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Example 2.7: Generating trigonometric basis functions

Consider the operator L = d2/dx2, with boundary conditions u(0) =
u(l) = 0. The eigenvalue problem for this operator is

u′′ + λu = 0 (2.33)

What are the eigenvalues and eigenfunctions?

Solution

This equation has the general solution

u(x) = c1 sin
√
λx + c2 cos

√
λx

We have thus taken λ ≥ 0: a negative value of λ would lead to a gen-
eral solution consisting of growing and decaying exponentials, which
cannot satisfy homogeneous boundary conditions on both boundaries,
as can be easily checked. The boundary condition u(0) = 0 requires
that c2 = 0. Setting c1 = 0 leaves only the trivial solution u = 0, so to
satisfy the remaining boundary condition, we require that

sin
√
λl = 0

This is the characteristic equation for this eigenvalue problem; it has
infinitely many roots λ = n2π2/l2 for n = 1,2,3, . . . ,∞. The case n = 0
does not result in an eigenvalue since sin 0 = 0. Thus the eigenfunc-
tions are

un(x) = sin
nπx
l

with (um, un) = l
2δmn. The result that Sturm-Liouville eigenfunctions

form a basis for functions in L2(0, l) implies that we can write any
function in that space as a Fourier series

f(x) =
∞∑
n=1

cn(x) sin
nπx
l

where

cn =

(
f(x), sin nπx

l

)
(

sin nπx
l , sin nπx

l

) = 2
l

(
f(x), sin

nπx
l

)
This is the Fourier Sine series of f(x).

Now consider the same operator but with periodic boundary con-
ditions u(0) = u(l),u′(0) = u′(l). The boundary terms in (2.32) also
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vanish in this case, because here p(a) = p(b) = 1. Now the solution to
(2.33) is

u = exp i
√
λx

which satisfies the periodicity requirement if λ =
(

2nπ
l

)2
for any in-

teger n. Thus the eigenfunctions of d2/dx2 with periodic boundary
conditions in (0, l) are

un = exp i
2nπx
l

Taking l = 2π , we recover the first set of basis functions we considered
in Section 2.4.1. □

Example 2.8: Bessel’s equation revisited

The operator

Lu = 1
x
d
dx

(
x
d
dx

)
arises in many differential equations originating in problems in polar
coordinates, e.g., diffusion in a cylinder. It has Sturm-Liouville form
with w = p = x, r = 0. The eigenvalue problem for this operator can
be written

u′′ + 1
x
u′ + λu = 0

or, multiplying through by x2, as

x2u′′ + xu′ + λx2u = 0

What are its eigenfunctions and eigenvalues?

Solution

This is a variable-coefficient problem with a regular singular point at
x = 0, so we can seek solutions by the method of Frobenius. Alter-
nately, in the present case we can make the substitution z = x

√
λ, thus

rewriting the equation as

z2d2u
dz2

+ zdu
dz
+ z2u = 0

which is in fact Bessel’s equation of order zero. We already found that
this equation has the general solution u(z) = c1J0(z) + c2Y0(z), or,
reverting to the original independent variable,

u(x) = c1J0(
√
λx)+ c2Y0(

√
λx)
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To complete the specification of the eigenvalue problem requires choos-
ing the domain and imposing specific boundary conditions. Consider
the domain 0 < x < l. We require that u(0) be bounded; this is all that
is required, since p(0) = 0 and u(l) = 0. Boundedness requires that
c2 = 0, because Y0 diverges logarithmically at the origin. Satisfaction
of u(l) = 0 requires that

J0(
√
λl) = 0

The top center plot of Table 2.3 shows J0(x); the positions of its zeros
determine the eigenvalues λ. The first several of these are at approxi-
mately x = 2.4,5.5,8.7,11.8, . . . and are tabulated in many places, in-
cluding Abramowitz and Stegun (1970). Thus λ1 ≈ (2.4/l)2, etc. The
functions

un(x) = J0(
√
λnx)

form an orthogonal basis for L2,w(0, l). Referring again to Table 2.3,
u1 is the function J0 scaled so that its first zero is at x = l, u2 is the
same function, but scaled so that its second zero is at x = l, etc.

Other boundary conditions could be chosen. For example, one could
requireu(a) = 0, u(b) = 0. In this case the eigenfunctions involve both
J0 and Y0, and the eigenfunctions and eigenvalues are determined by
the solution to the coupled nonlinear equations

J0(
√
λa)+ c2Y0(

√
λa) = 0

J0(
√
λb)+ c2Y0(

√
λb) = 0

Since c1 is arbitrary, it has been set to unity for convenience. Here c2

and λ are the unknowns. Solution of these highly nonlinear equations
is nontrivial. □

Example 2.9: Legendre’s differential equation and Legendre polyno-
mials

Consider the Sturm-Liouville eigenvalue problem with p(x) = 1 − x2,
w(x) = 1, r(x) = 0 in the domain −1 < x < 1(

1− x2
)
u′′ − 2xu′ + λu = 0

It has regular singular points at x = ±1 while the origin is an ordi-
nary point. Because p(x) = 0 at x = ±1, only boundedness at these
points is required of the eigenfunctions. What are the eigenvalues and
eigenfunctions?
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Solution

Seeking a series solution around x = 0 reveals that, if λ = l(l+ 1) with
l ≥ 0 an integer, then one of the solutions is a Legendre polynomial
of degree l (Exercise 2.35) and using the method of Frobenius one can
learn that the other has logarithmic singularities at x = ±1. Otherwise,
because the radius of convergence of a power series solution is given by
the distance to the nearest singular point(Ablowitz and Fokas, 2003),
there is no solution that is bounded at both x = 1 and x = −1. There-
fore, the eigenvalues of (2.9) are λ = l(l + 1) with l = 0,1,2, . . . and
the corresponding eigenfunctions are the Legendre polynomials Pl(x).
Legendre polynomials are the simplest of a broad class of orthogonal
polynomials that come from Sturm-Liouville eigenvalue problems and
are orthogonal with respect to various weighted inner products. Some
examples are given in the exercises. □

2.4.3 Existence and Uniqueness of Solutions

Homogeneous Boundary Conditions

Consider the nonhomogeneous second-order differential equation with
the homogeneous boundary conditions

Lu = f
B1u = 0 B2u = 0 (2.34)

Define the null space of the operator

N(L) = {u | Lu = 0, B1u = 0, B2u = 0}

and the null space of the adjoint operator

N(L∗) = {v | L∗v = 0, B∗1 v = 0, B∗2 v = 0}

then the following theorem characterizes existence and uniqueness of
solutions to (2.34) (Stakgold, 1998, p. 210–211).

Theorem 2.10 (Alternative theorem). For the boundary-value problem
in (2.34), we have the following two alternatives.

(a) Either—
N(L) contains only the zero function in which case N(L∗) contains only
the zero function and (2.34) has exactly one solution for every f .
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(b) Or—
N(L) contains n linearly independent functions, in which case N(L∗)
contains n linearly independent functions

N(L) = {u1, u2, . . . , un} N(L∗) = {v1, v2, . . . , vn}

and (2.34) has a solution if and only if

(f , vk) = 0, k = 1,2, . . . , n

and the general solution is

u(x) = up(x)+
n∑
k=1

αkuk(x)

in which up(x) is any particular solution and αk are arbitrary scalars.

Next we present two heat-conduction problems that display the two
alternatives.

Example 2.11: Steady-state temperature profile with fixed end tem-
peratures

Apply the alternative theorem to the steady-state heat-conduction prob-
lem with heat generation f̂ (x) and specified end-temperature boundary
conditions

−kd
2T(x)
dx2

= f̂ (x)

T(x) = T0 x = 0

T(x) = T1 x = 1

What can you conclude about existence and uniqueness of the steady-
state temperature profile?

Solution

First it is convenient to make the boundary conditions homogeneous
by defining

u(x) = T(x)− T0(1− x)− T1x

and dividing by the thermal conductivity to give

Lu = f
B1u = 0 B2u = 0



138 Ordinary Differential Equations

in which f = −f̂ /k and

L = d2

dx2
B1u = u(0) B2u = u(1)

Next we compute N(L). Setting Lu = 0 gives

u(x) = ax + b

Applying the boundary conditions gives

B1u = u(0) = b = 0 B2u = u(1) = a = 0

and we see thatu = 0 is the only element ofN(L). We can therefore con-
clude that N(L∗) also contains only the zero element, and the steady-
state temperature profile exists and is unique for any heat-removal rate
f . □

Example 2.11 illustrates the first alternative in Theorem 2.10. The
following example illustrates the second alternative.

Example 2.12: Steady-state temperature profile with insulated ends

Replace the fixed-temperature boundary conditions in Example 2.11
with insulated-end boundary conditions. What can you conclude about
existence and uniqueness of the steady-state temperature profile for
these boundary conditions? What is the physical interpretation of the
existence condition. Why is the solution not unique?

Solution

The boundary conditions for insulated ends are

Tx(x) = 0 x = 0

Tx(x) = 0 x = 1

and since the boundary conditions already are homogeneous, we have

LT = f
B1T = 0 B2T = 0

in which f = −f̂ /k and

L = d2

dx2
B1T = Tx(0) B2T = Tx(1)
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Next we compute N(L). Setting LT = 0 gives

T(x) = ax + b

as before. Applying the boundary conditions gives

B1T = Tx(0) = a = 0 B2T = Tx(1) = a = 0

and now we have that T(x) = b is in N(L). With these boundary con-
ditions L has a one-dimensional null space consisting of the constant
function. Normalizing this element gives {1} as the basis function for
N(L) and the one-dimensional nullspace

N(L) = α · 1 α ∈ R

Since the problem is self-adjoint, N(L∗) is identical to N(L). Applying
the alternative theorem, we conclude that a steady-state temperature
exists only if

(f ,1) =
∫ 1

0
f(x)dx = 0

and the general solution is

T(x) = Tp(x)+α

where Tp is any particular solution. Since f corresponds to a rate of
heat removal (or addition when f < 0) to the domain, the restriction on
f provides the physically intuitive fact that if the ends are insulated,
just as much heat must be removed from the domain as is added for a
steady-state temperature to exist. For f satisfying this restriction, the
general solution indicates that a constant can be added to any steady-
state solution to provide another steady-state solution. □

Nonhomogeneous Boundary Conditions

Next consider the nonhomogeneous second-order problem foru(x) on
x ∈ [a, b] with the nonhomogeneous boundary conditions

Lu = f
B1u = γ1 B2u = γ2 (2.35)

The null spaces of the operator and the adjoint are defined as in the
case with homogeneous boundary conditions

N(L) = {u | Lu = 0, B1u = 0, B2u = 0}
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N(L∗) = {v | L∗v = 0, B∗1 v = 0, B∗2 v = 0}
When we define the adjoint operator, we perform integration by parts

(Lu,v)− (u, L∗v) = J(u,v)
∣∣b
a

From the integration by parts, we have that J(u,v) is linear in both
u(x) and v(x) and involves lower-order derivatives of u,v evaluated
at the two ends of the interval. Setting J(u,v)

∣∣b
a to zero is what deter-

mines the adjoint boundary functionals

J(u,v)
∣∣b
a = 0

∀u such that B1u = 0, B2u = 0
∀v such that B∗1 v = 0, B∗2 v = 0

To find the solvability condition for the nonhomogeneous boundary
conditions, we take the difference

(Lu,vk)− (u, L∗vk) = J(u,vk)
∣∣b
a

in which vk is any element of the null space of the adjoint and u is the
solution to (2.35). Then, because Lu = f and L∗vk = 0, we have

(f , vk) = J(u,vk)
∣∣b
a (2.36)

Evaluating J(u,vk) for u satisfying B1u = γ1 and B2u = γ2, and vk
satisfying B∗1 vk = 0, B∗2 vk = 0, gives the solvability conditions for
the nonhomogeneous problem. The next example and Exercise 2.40
derive the solvability conditions for problems with nonhomogeneous
boundary conditions.

Example 2.13: Steady-state temperature profile with fixed flux

Consider again Example 2.12, but replace the insulated ends with fixed,
nonzero fluxes at the ends

Tx(x) = γ1 x = 0

Tx(x) = γ2 x = 1

For what f does the solution exist?

Solution

This fully nonhomogeneous problem can be written as

LT = f
B1T = γ1 B2T = γ2
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in which f = −f̂ /k and

L = d2

dx2
B1T = Tx(0) B2T = Tx(1)

The null space N(L) is unchanged, so the constant function {1} is a
basis function and

N(L) = α · 1 α ∈ R

The problem was shown to be self-adjoint so N(L∗) is one dimensional
and vk(x) = 1. Next we compute J(u,v) for this problem. Integration
by parts gives

(Lu,v)− (u, L∗v) = J(u,v)
∣∣1

0

= v(1)ux(1)− v(0)ux(0)− vx(1)u(1)+ vx(0)u(0)

For T satisfying the boundary conditions and vk in N(L∗), we have

B1T = Tx(0) = γ1 B2T = Tx(1) = γ2

B∗1 v1 =
dv1

dx
(0) = 0 B∗2 v1 =

dv1

dx
(1) = 0

Substituting these into J gives

J(T , v1)
∣∣1

0 = v1(1)︸ ︷︷ ︸
1

Tx(1)︸ ︷︷ ︸
γ2

−v1(0)︸ ︷︷ ︸
1

Tx(0)︸ ︷︷ ︸
γ1

− dv1

dx
(1)︸ ︷︷ ︸

0

T(1)+ dv1

dx
(0)︸ ︷︷ ︸

0

T(0)

= γ2 − γ1

Substituting this into the solvability condition, (2.36), gives

(f ,1) =
∫ 1

0
f(x)dx = γ2 − γ1

and the general solution remains

T(x) = Tp(x)+α

The restriction on f now stipulates that the net heat generation must
exactly balance the heat removed through the two ends. Again, for f
satisfying this restriction, a constant can be added to any steady-state
solution to provide another steady-state solution. □
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γδ(t)

0− 0

γ

0− 0

t

t

f (t)

u(t)

du(t)
dt

f̂ (t) = f(t)+ γδ(t)

Figure 2.8: Solution to the initial-value problem with nonhomoge-
neous boundary conditions; top figure shows u(t) with
step introduced at t = 0, and bottom figure shows re-
sulting du/dt with impulse at t = 0.

Nonhomogeneous Boundary Conditions Revisited

We can use the delta function and its derivatives introduced in Section
2.2.5 to streamline the treatment of the nonhomogeneous case. Basi-
cally we replace the nonhomogeneous boundary conditions with homo-
geneous ones, but then compensate for this change by adding appro-
priate impulsive terms to the forcing term of the differential equation.
In this way, we have to recall only how to solve problems with homoge-
neous boundary conditions, and we can use Theorem 2.10 to analyze
existence and uniqueness even when a problem has nonhomogeneous
boundary conditions.

It is perhaps easiest to introduce the approach with an example.
Let’s say we are interested in solving the first-order nonhomogeneous
differential equation, with forcing term f(t), and nonhomogeneous
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boundary (initial) condition

du
dt
= f(t)

u(0) = γ γ ≠ 0

The solution is sketched in Figure 2.8. Imagine instead that we solve
the problem with the homogeneous boundary conditionu(0−) = 0, and
we push the boundary at t = 0 slightly to the left of zero. Now we wish
to make the solution jump to value u(0) = γ just after time 0− so
that it agrees with the solution to the problem with nonhomogeneous
boundary condition at t = 0. This idea is also sketched in Figure 2.8.
To make u(t) jump discontinuously by amount γ at t = 0, we require
du/dt to have an impulse of strength γ at t = 0, which is γδ(t). Since
du/dt = f(t), we introduce a modified forcing term f̂ and choose it
to be

f̂ (t) = f(t)+ γδ(t)

We conjecture that solving the problem with this modified forcing term
f̂ and homogeneous boundary condition should give us the solution to
the problem with the original f and nonhomogeneous boundary con-
dition. Let’s check this conjecture. By inspection, the solution to the
differential equation is obtained by integration

du
dt
= f̂ (t)

du = f̂ (t)dt

u(t)
∣∣t

0− =
∫ t

0−
f̂ (τ)dτ

u(t)−u(0−) =
∫ t

0−
f̂ (τ)dτ

u(t) =
∫ t

0−
f̂ (τ)dτ

Note that this solution satisfies the homogeneous boundary condition
u(0−) = 0 as desired. Now we substitute the definition of f̂ to obtain
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the solution of the original problem

u(t) =
∫ t

0−

(
f(τ)+ γδ(τ)

)
dτ

=
∫ t

0−
f(τ)dτ +

∫ t
0−
γδ(τ)dτ

= γ
∫ t

0−
δ(τ)dτ +

∫ t
0
f(τ)dτ

u(t) = γ +
∫ t

0
f(τ)dτ t ≥ 0

By inspection, the last equation is indeed the solution to the original
problem with forcing term f and nonhomogeneous boundary condition
u(0) = γ.

We can generalize this approach to cover any nonhomogeneity in the
boundary conditions by adding appropriate impulsive forcing terms to
the original problem’s differential equation. We revisit Example 2.13
to illustrate this technique.

Example 2.14: Fixed flux revisited

Rederive the existence and uniqueness conditions for Example 2.13 us-
ing the alternative theorem, which applies only to homogeneous prob-
lems.

Solution

We replace the nonhomogeneous boundary conditions of Example 2.13
with the homogeneous version

B1T = Tx(0−) = 0

B2T = Tx(1+) = 0

In this example we require that Tx jump from zero to value γ1 at the
left boundary, x = 0. That requires an impulse to be added to f so
that Txx sees an impulse and Tx sees a jump at x = 0. We also require
for Tx to jump from value γ2 to zero as x passes through x = 1 at the
right boundary. We add −γ2δ(x − 1) to f to cause Tx to jump by this
amount. The modified f̂ is therefore6

f̂ (x) = f(x)+ γ1δ(x)− γ2δ(x − 1)
6Note that if we had nonhomogeneous boundary conditions on T rather than Tx , we

would required Tx to have an impulse and Txx to have a doublet, and we would add
γ1δ′(x)− γ2δ′(x − 1) to f .
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Next we apply the alternative theorem. We have already computed
the null space of L for this problem. It is N(L) = 1. The problem is
self-adjoint so this is also N(L∗). The solvability condition applied to
f̂ gives

0 = (f̂ ,1)

=
∫ 1+

0−
f̂ (x)dx

=
∫ 1+

0−

(
f(x)+ γ1δ(x)− γ2δ(x − 1)

)
dx

0 =
∫ 1

0
f(x)dx + γ1 − γ2

The last equation implies the solution exists for f satisfying∫ 1

0
f(x)dx = γ2 − γ1

and the general solution remains

T(x) = Tp(x)+α □

We see that we have reached the same solvability condition found
in Example 2.13. By introducing f̂ and using homogeneous boundary
conditions, we avoid the additional complication of introducing and
evaluating J(u,v) as explained in Section 2.4.3. Evaluating J(u,v) is
about the same work as determining the appropriate f̂ . But using delta
functions expands the applicability of Theorem 2.10, and allows this
one theorem to cover both homogeneous and nonhomogeneous bound-
ary condition cases, which is not an insignificant benefit.

Example 2.15: Nonhomogeneous boundary-value problem and the
Green’s function

The following second-order nonhomogeneous boundary-value problem
arises in solving the transient wave equation for propagation of sound.
We wish to solve the following BVP for u(x), x ∈ [0,1]

Lu = f
B1u = 0 B2u = 0
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in which the second-order differential operator is Lu = d2u/dx2 −
k2u, and the two boundary functionals are B1u = u(0), B2u = u(1).
The constant k is real and the function f(x) is an arbitrary forcing
function.

(a) Take the Laplace transform of the BVP with the x variable playing
the role of time. Note that the values of u(0) and ux(0) show up
in the transform. Evaluate u(0) and leave ux(0) as an unknown
constant.

(b) Invert the transform to obtain u(x).

(c) Solve for ux(0) using the solution in the previous part and the
other boundary condition. Plug the expression for ux(0) back
into your solution to obtain the complete solution to the problem.

(d) Next express the solution as

u(x) =
∫ 1

0
G(x, ξ)f(ξ)dξ

The functionG(x, ξ) is known as the Green’s function for the non-
homogeneous problem.7 Write out the Green’s function G(x, ξ)
for this problem.

(e) Establish that the Green’s function G(x, ξ) is symmetric for this
boundary-value problem, i.e., G(x, ξ) = G(ξ,x).
Hint: you may find the hyperbolic difference formula useful:
sinh(a− b) = sinha coshb − cosha sinhb.

Solution

(a) Taking the Laplace transform of the differential equation gives

s2u(s)− su(0)−ux(0)− k2u(s) = f
(s2 − k2)u(s) = f +ux(0)

u(s) = f
s2 − k2

+ ux(0)
s2 − k2

7The Green’s function concept is explored in greater detail in Chapter 3, Section
3.3.5.
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(b) Using the transform pair

L−1
(

1
s2 − k2

)
= 1
k

sinhkx

and the convolution theorem gives

u(x) = 1
k

∫ x
0

sinh(k(x − ξ))f (ξ)dξ + ux(0)
k

sinhkx

(c) Evaluating the solution at x = 1 and solving for the unknown
ux(0) gives

0 = u(1)

= 1
k

∫ 1

0
sinh(k(1− ξ))f (ξ)dξ + ux(0)

k
sinhk

ux(0) =
−1

sinhk

∫ 1

0
sinh(k(1− ξ))f (ξ)dξ

Substituting ux(0) into the previous solution gives

u(x) = 1
k

∫ x
0

sinh(k(x − ξ))f (ξ)dξ − sinhkx
k sinhk

∫ 1

0
sinh(k(1− ξ))f (ξ)dξ

(d) Combining these two integrals into one gives

u(x) =
∫ 1

0
G(x, ξ)f(ξ)dξ

with

G(x, ξ) =


1
k

sinh(k(x − ξ))− sinhkx
k sinhk

sinh(k(1− ξ)) ξ < x

−sinhkx sinhk(1− ξ)
k sinhk

ξ > x

(e) We work on the first part of G(x, ξ) using the sinh difference
formula

sinh(a− b) = sinha coshb − cosha sinhb

We have for ξ < x that

G(x, ξ) = 1
k

sinh(k(x − ξ))− sinhkx
k sinhk

sinh(k(1− ξ))

= 1
k sinhk

(
sinhk sinh(k(x − ξ))− sinhkx sinh(k(1− ξ))

)
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Using the sinh difference formula on the term in parentheses
gives

sinhk sinh(k(x − ξ))− sinhkx sinh(k(1− ξ)) =
sinhk(sinhkx coshkξ − coshkx sinhkξ)−

sinhkx(sinhk coshkξ − coshk sinhkξ)

Canceling the coshkξ terms gives

sinhk sinh(k(x − ξ))− sinhkx sinh(k(1− ξ)) =
− sinhk coshkx sinhkξ + sinhkx coshk sinhkξ

Factoring out the sinhkξ term and using the difference formula
again gives

sinhk sinh(k(x − ξ))− sinhkx sinh(k(1− ξ))
= sinhkξ

(
sinhkx coshk− coshk sinhk

)
= sinhkξ sinh(kx − k)
= − sinhkξ sinh(k(1− x))

Substituting this result into the equation for G(x, ξ) gives

G(x, ξ) =


−sinhkξ sinh(k(1− x))

k sinhk
ξ < x

−sinhkx sinhk(1− ξ)
k sinhk

ξ > x

and we have established that G(x, ξ) = G(ξ,x); the Green’s func-
tion for this operator is symmetric, a consequence of the self-
adjointness of L in this case. □

2.5 Lyapunov Functions and Stability

2.5.1 Types of Stability

Consider a system model of interest to be an autonomous initial-value
problem

dx
dt
= f(x) x(0) = x0 (2.37)

We are interested in the behavior of solutions to this system. Since
the solution depends on the initial condition, we denote by φ(t;x) the
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Figure 2.9: Solution behavior; stability (left) and asymptotic stability
(right).

solution to the initial-value problem at time t ≥ 0, which has value x at
time t = 0. So the solution to the initial-value problem above is given
by φ(t;x0), t ≥ 0. But we are also interested in the solution as we vary
the initial value x. Steady-state solutions to the model, if any exist,
satisfy

f(xs) = 0

We can always shift a steady state of interest to the origin by defining
a new coordinate, x̃ = x − xs , and f̃ (x̃) = f(x̃ + xs) so that

dx̃
dt
= dx
dt
= f(x) = f(x̃ + xs)

dx̃
dt
= f̃ (x̃) f̃ (0) = 0

So we assume without loss of generality that xs = 0, i.e., the origin is
the steady state of interest. Unlike a linear system, when dealing with
a nonlinear system, stability depends on the solution of interest, and
we may have some solutions that are stable, while others are unstable.
For a given linear system, the stability of all solutions are identical, and
to reflect this special situation, we often refer to stability of the system,
rather than stability of a solution.

There are several aspects to stability, and we define these next. The
first most basic characteristic of interest is whether a small perturba-
tion to x away from the steady-state solution results in a small subse-
quent deviation for all future times. The general term stability is com-
monly reserved for this most basic notion; we use the more precise
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term Lyapunov stability or stable in the sense of Lyapunov if we need
to ensure that there is no confusion. The definition is as follows.

Definition 2.16 ((Lyapunov) Stability). The origin is (Lyapunov) stable
if for every ϵ > 0, there exists δ > 0 such that ∥x∥ ≤ δ implies∥∥φ(t;x)∥∥ ≤ ϵ for all t ≥ 0.

The stability concept is illustrated on the left side of Figure 2.9. A
solution that is not stable is termed unstable. The next characteristic
of interest is whether small perturbations to the initial state die away
as time increases. The idea here is whether the origin attracts solutions
starting nearby.

Definition 2.17 (Attractivity). The origin is attractive if there exists δ >
0 such that ∥x∥ ≤ δ implies that

lim
t→∞

∥∥φ(t;x)∥∥ = 0

Asymptotic stability is then the combination of these two proper-
ties.

Definition 2.18 (Asymptotic stability). The origin is asymptotically sta-
ble if it is (i) stable and (ii) attractive.

The right side of Figure 2.9 shows a representative solution tra-
jectory when the origin is asymptotically stable.8 One might wonder
why Lyapunov stability is a requirement of asymptotic stability, or even
whether the origin can be attractive, and not Lyapunov stable. The an-
swer is yes, the origin in a nonlinear system may be globally attrac-
tive and still not Lyapunov stable. The problem with these systems is
that there exist starting points, arbitrarily close to the origin, for which
the resulting trajectories become large before they asymptotically ap-
proach zero as time tends to infinity. Because we cannot bound how
large the solution transient becomes by constraining the size of its ini-
tial value, we classify the origin as unstable.9 Note that the system must

8Asymptotic stability is probably the most common notion of stability that people
have in mind, and sometimes it is referred to simply as stability. Of course, this usage
may cause confusion because now the term stability is being used in two ways: as
Lyapunov stability and as asymptotic stability; and one is stronger than the other.

9One is obviously free to define words as one pleases, but defining asymptotic sta-
bility in this way precludes a possible solution behavior that is not expected of “nice”
or “stable” solutions. Regardless of terminology, the important point is to be aware
that solutions can be globally attractive and not Lyapunov stable.
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be nonlinear for a solution to be attractive and unstable. For linear sys-
tems, attractivity and asymptotic stability are identical; see Exercise
2.60.

A stronger form of asymptotic stability known as exponential sta-
bility is often useful, especially when dealing with linear dynamics. It
is defined as follows.

Definition 2.19 (Exponential stability). The origin is exponentially sta-
ble if there exists δ > 0 such that ∥x∥ ≤ δ implies that there exist
c, λ > 0 for which∥∥φ(t;x)∥∥ ≤ c ∥x∥ e−λt for all t ≥ 0

We leave it as an exercise for the reader to show that the definition
of exponential stability implies also Lyapunov stability.

2.5.2 Lyapunov Functions

Now we consider a scalar function of x, denoted V(x), whose char-
acteristics are going to enable us to analyze the stability of the origin
without requiring us to first solve completely the model ẋ = f(x). The
motivation for this class of functions is the role that mechanical en-
ergy plays in a mechanical system. Consider mechanical energy to be
the sum of kinetic and potential energies, T and K, and let total energy
be the sum of mechanical energy and internal energy

E = U + EM EM = T +K

If we start an isolated mechanical system, such as the particle on a track
depicted in Figure 2.10, at some system temperature with some initial
kinetic and potential energies, and monitor the mechanical energy with
time, we observe that although the total energy E is conserved, the
mechanical energy EM steadily drops as some of that form of energy is
converted into heat by friction.10 The temperature of the system slowly
increases due to the conversion of energy into heat, and the internal
energy U of the system increases to maintain the total energy constant.
If we define the height of the track at its lowest point as h = 0, we then
have EM = (1/2)mv2 +mgh, and since h ≥ 0, m > 0, and v2 ≥ 0, we
have that EM ≥ 0. The mechanical energy is therefore a scalar function
satisfying

EM ≥ 0 ĖM ≤ 0

10This conversion of mechanical energy into heat is what causes the system’s entropy
to increase.
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h = 0

v

m

g

Figure 2.10: A simple mechanical system with total energy E, inter-
nal energy U , kinetic energy T = (1/2)mv2, and po-
tential energy K = mgh. The mechanical energy is
EM = T +K, and the total energy is E = EM +U .

Because EM decreases with time and is bounded below by zero, we
expect that its only possible steady state is EM = 0, and EM = 0 implies
both v = 0 and h = 0. So by analyzing the energy function EM in this
fashion, we conclude that the marble at rest at the bottom of the track
is an asymptotically stable steady state, and we do not have to solve
the complicated equations of motion of the system to deduce this fact.

We wish to generalize this concept, and the key idea is to defineV(x)
to be a nonnegative scalar function V : Rn → R≥0, with a negative time
derivative V̇ (x(t)) ≤ 0. To compute the time derivative of V(x(t)), we
apply the chain rule giving11

V̇ (x) =
(
∂V
∂x

)T dx
dt

V̇(x) =
(
∂V
∂x

)T
f(x) (2.38)

This generalization of mechanical energy is the concept of a Lyapunov
function for the system ẋ = f(x). A precise definition is as follows.

Definition 2.20 (Lyapunov function). Consider a compact (closed and
bounded) set D ⊂ Rn containing the origin in its interior and let func-

11See Appendix A for various notations for derivatives with respect to vectors. Some
readers may be more familiar with this equation in the form V̇ (x) = ∇V · ẋ or V̇ (x) =
(∇V)T ẋ or V̇ (x) = ∂V

∂xi
ẋi.
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tion V : Rn → R≥0 be continuously differentiable and satisfy12

V(0) = 0 and V(x) > 0 for x ∈ D \ 0 (2.39)

V̇ (x) ≤ 0 for x ∈ D (2.40)

Then V(·) is a Lyapunov function for the system ẋ = f(x).
The big payoff for having a Lyapunov function for a system is the im-

mediate stability analysis that it provides. We present next a few repre-
sentative theorems stating these results. We mainly follow Khalil (2002)
in the following presentation, and the interested reader may wish to
consult that reference for further results on Lyapunov functions and
stability theory. We require two fundamental results from real analysis
to prove the Lyapunov stability theorems. The first concerns a nonin-
creasing function of time that is bounded below, which is a property
we shall establish for V(x(t)) considered as a function of time. One
of the fundamental results from real analysis is that such a function
converges as time tends to infinity (Bartle and Sherbert, 2000, Theo-
rems 3.3.2 and 4.3.11). The second result is that a continuous function
defined on a compact (closed and bounded) set achieves its minimum
and maximum values on the set. For scalar functions, i.e., f : R→ R≥0,
this “extreme-value” or “maximum-minimum” theorem is a fundamen-
tal result in real analysis (Bartle and Sherbert, 2000, p. 130), and is
often associated with Weierstrass or Bolzano. The result also holds for
multivariate functions like the Lyapunov function V : Rn → R≥0, which
we require here, and is a highly useful tool in optimization theory (Man-
gasarian, 1994, p. 198) (Polak, 1997, Corollary 5.1.25) (Rockafellar and
Wets, 1998, p. 11) (Rawlings, Mayne, and Diehl, 2020, Proposition A.7).

Theorem 2.21 (Lyapunov stability). Let V(·) be a Lyapunov function
for the system ẋ = f(x). Then the origin is (Lyapunov) stable.

Proof. Given ϵ > 0 choose r ∈ (0, ϵ] such that

Br = {x ∈ Rn | ∥x∥ ≤ r} ⊆ D

The symbol Br denotes a ball of radius r . Such an r > 0 exists since
D contains the origin in its interior. The sets D and Br are depicted in
Figure 2.11. Define α by

α = min
x∈D,∥x∥≥r

V(x)

12For two sets A and B, the notation A \ B is defined to be the elements of A that
are not elements of B, or, equivalently, the elements of A remaining after removing the
elements of B.
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D

Bδ

Vβ

Br

Figure 2.11: The origin and sets D, Br , Vβ (shaded), and Bδ.

Note that α is well defined because it is the minimization of a contin-
uous function on a compact set, and α > 0 because of (2.39). Choose
β ∈ (0, α) and consider the sublevel set

Vβ = {x | V(x) ≤ β}

Note that, as shown in Figure 2.11, sublevel sets do not need to be
connected. Regardless, we can readily establish that Vβ is contained in
the interior of Br as follows. A point p not in the interior of Br has∥∥p∥∥ ≥ r and therefore satisfies V(p) ≥ α due to α’s definition, and is
therefore not in the set Vβ since β < α. Notice also that any solution
starting in Vβ remains in Vβ for all t ≥ 0, which follows from (2.40)
since V̇ (x(t)) ≤ 0 implies that V(x(t)) ≤ V(x(0)) ≤ β for all t ≥ 0.
A set with this property is called an invariant set, or sometimes a
positive invariant set, to indicate that the set is invariant for time
running in the positive direction. Next notice that Vβ contains the origin
in its interior since β > 0. Therefore we can choose δ > 0 such that the
ball Bδ is contained in Vβ. Therefore, if we choose initial x ∈ Bδ, we
have for all t ≥ 0

∥x∥ ≤ δ =⇒ x ∈ Vβ =⇒
φ(t;x) ∈ Vβ =⇒ φ(t;x) ∈ Br =⇒

∥∥φ(t;x)∥∥ ≤ ϵ
and Lyapunov stability is established. ■

Theorem 2.22 (Asymptotic stability). Let V(·) be a Lyapunov function
for the system ẋ = f(x). Moreover, let V(·) satisfy

V̇ (x) < 0 for x ∈ D \ 0 (2.41)

Then the origin is asymptotically stable.
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Proof. We conclude that the origin is stable from the previous theorem.
So to prove asymptotic stability we need to show only that the origin
is attractive. Since V(·) is continuous and vanishes only at zero, it is
sufficient to establish that V(φ(t;x)) goes to zero as t → ∞ for all x
satisfying ∥x∥ ≤ η. We choose η as in the proof of Lyapunov stability so
Bη ⊆ D. Since V̇ (x(t)) ≤ 0 for all x(t), V(x(t)) is a nonincreasing func-
tion of time, and it is bounded below by zero. Therefore it converges.
We need to show that it converges to zero. Assume the contrary, that
V(x(t)) converges to some c > 0, and we establish a contradiction.
Consider the level set Vc = {x | V(x) = c}. This level set does not con-
tain the origin, so we can choose d > 0 such that max∥x∥≤d V(x) < c.
Since V(x(t)) is nonincreasing and approaches c as t → ∞, we have
that x(t) is outside Bd for all t ≥ 0. Next define γ as

γ = − max
d≤∥x∥≤η

V̇ (x)

Note that γ is well defined because V̇ (x) is continuous due to (2.38)
and the fact that ∂V(x)/∂x and f(x) are continuous. We know γ > 0
due to (2.41). Therefore

V(x(t)) = V(x(0))+
∫ t

0
V̇ (x(τ))dτ ≤ V(x(0))− γt

The right-hand side becomes negative for finite t for any x(0) ∈ Bη,
which contradicts nonnegativity of V(·), and we conclude c = 0 and
V(x(t))→ 0, and hence x(t)→ 0, as t →∞. ■

Under the stronger assumption of Theorem 2.22, i.e., (2.41), estab-
lishing continuity of the solution φ(t;x) in t for all t ≥ 0 and all x
in a level set Vβ contained in Bη also implies that the level set Vβ is
connected. This follows because every point x ∈ Vβ is then connected
to the origin by a continuous curve φ(t;x) that remains in the positive
invariant set Vβ for all t ≥ 0.

Next we consider a further strengthening of the properties of the
Lyapunov function to ensure exponential stability. We have the follow-
ing result.

Theorem 2.23 (Exponential stability). Let V(·) be a Lyapunov function
for the system ẋ = f(x). Moreover, let V(·) satisfy for all x ∈ D

a∥x∥σ ≤ V(x) ≤ b ∥x∥σ (2.42)

V̇ (x) ≤ −c ∥x∥σ (2.43)

for some a,b, c,σ > 0. Then the origin is exponentially stable.
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Proof. Consider an arbitrary r > 0 and define function β(·) by β(r) =
max∥x∥≤r V(x). We have that β(·) is positive definite and β(0) = 0.
Now choose r > 0 small enough so that Vβ(r) ⊆ D. Such an r ex-
ists since V(·) is continuous and V(0) = 0. We know that trajectories
starting in Vβ remain in Vβ and hence D, so the inequalities stated in
the theorem hold for solutions φ(t;x) for all t ≥ 0 and x ∈ Vβ. The
upper-bounding inequality on V(·) implies that ∥x∥σ ≥ V(x)/b, which
combined with the bound on the time derivative of V(x(t)) gives

V̇ ≤ − c
b
V

Notice that the scalar time function v(t) = V(x(t)) satisfies the ODE
v̇ ≤ −(c/b)v and therefore v(t) ≤ v(0)e−(c/b)t . Translating this
statement back to V(·) gives V(φ(t;x)) ≤ V(x)e−(c/b)t for all t ≥
0 and x ∈ Vβ. Using the lower-bounding inequality for V(·) gives∥∥φ(t;x)∥∥σ ≤ V(x)/a e−(c/b)t . Using the upper-bounding inequality
again gives for all x ∈ Vβ and all t ≥ 0

∥∥φ(t;x)∥∥ ≤ (b
a

)1/σ
∥x∥ e−(c/(bσ))t

We can choose δ > 0 such that the ball Bδ is contained in Vβ as shown
in Figure 2.11. We then have that for all ∥x∥ ≤ δ∥∥φ(t;x)∥∥ ≤ c ∥x∥ e−λt for all t ≥ 0

in which c = (b/a)1/σ > 0 and λ = c/(bσ) > 0, and exponential
stability of the origin is established. ■

2.5.3 Application to Linear Systems

Lyapunov function analysis of stability can of course be applied to lin-
ear systems, but this is mainly for illustrative purposes. We have many
ways to analyze stability of linear systems because we have the ana-
lytical solution available. The true value of Lyapunov functions lies in
analysis of nonlinear systems, for which we have few general purpose
alternatives. To build up some expertise in using Lyapunov functions,
we consider again the linear continuous time differential equation

dx
dt
= Ax x(0) = x0 (2.44)

in which x ∈ Rn and A ∈ Rn×n. We have already discussed in Sec-
tion 2.2.2 the stability of this system and shown that x(t) = 0 is an
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asymptotically stable steady state if and only if Re(eig(A)) < 0, i.e,
all eigenvalues of A have strictly negative real parts. Let’s see how we
construct a Lyapunov function for this system. Consider as a candidate
Lyapunov function

V(x) = xTSx

in which S ∈ Rn×n is positive definite, denoted S > 0. With this choice
we have that V : Rn → R≥0, which is the first requirement, i.e., V(0) = 0
and V(x) > 0 for x ≠ 0. We wish to evaluate the evolution of V(x(t))
with time as x evolves according to (2.44). Taking the time derivative
of V gives

d
dt
V(x(t)) = d

dt
xTSx

= dx
T

dt
Sx + xTS dx

dt
= xTATSx + xTSAx

d
dt
V(x(t)) = xT (ATS + SA)x

and the initial condition is V(0) = xT0 Sx0. One means to ensure that
V(x(t)) is decreasing with time whenx ≠ 0 is to enforce that the matrix
ATS+SA is negative definite. We choose some positive definite matrix
Q > 0 and attempt to find a positive definite S that satisfies

ATS + SA = −Q (2.45)

so that
d
dt
V = −xTQx

Equation (2.45) is known as the matrix Lyapunov equation. It says that
given aQ > 0, if we can find a positive definite solution S > 0 of (2.45),
then V(x) = xTSx is a Lyapunov function for linear system (2.44), and
the steady-state solution x = 0 is asymptotically (in fact, exponentially)
stable. This requirement can be shown to be also necessary for the sys-
tem to be asymptotically (exponentially) stable, which we verify shortly.
We seem to have exactly characterized the stability of the linear system
(2.44) without any reference to the eigenvalues of matrix A. Of course,
since the condition on the eigenvalues as well as the condition on the
matrix Lyapunov equation are both necessary and sufficient conditions
for asymptotic stability, they must be equivalent. Indeed, we have the
following result stating this equivalence.



158 Ordinary Differential Equations

Theorem 2.24 (Lyapunov function for linear systems). The following
statements are equivalent (Sontag, 1998, p. 231).

(a) A is asymptotically stable, i.e., Re(eig(A)) < 0.

(b) For each Q ∈ Rn×n, there is a unique solution S of the matrix Lya-
punov equation

ATS + SA = −Q

and if Q > 0 then S > 0.

(c) There is some S > 0 such that ATS + SA < 0.

(d) There is some S > 0 such that V(x) = xTSx is a Lyapunov function
for the system ẋ = Ax.

Exercise 2.62 asks you to establish the equivalence of (a) and (b).

2.5.4 Discrete Time Systems

Next we consider discrete time systems modeled by

x(k+ 1) = f(x(k)) x(0) = x0

in which the sample time k is an integer k = 0,1,2, . . .. To streamline
the presentation we assume throughout that f(·) is continuous on its
domain of definition. Steady states are now given by solutions to the
equation xs = f(xs), and we again assume without loss of generality
that f(0) = 0 so that the origin is a steady state of the discrete time
model. Discrete time models arise when time is discretized, as in digital
control systems for chemical plants. But discrete time models also
arise when representing the behavior of an iterative algorithm, such as
the Newton-Raphson method for solving nonlinear algebraic equations
discussed in Chapter 1. In these cases, the integer k represents the
algorithm iteration number rather than time. We compress notation by
defining the superscript + operator to denote the variable at the next
sample time (or iteration), giving

x+ = f(x) x(0) = x0 (2.46)

Notice that this notation also emphasizes the similarity with the con-
tinuous time model ẋ = f(x) in (2.37). We again denote solutions to
(2.46) by φ(k;x) with k ≥ 0 that start at state x at k = 0. The discrete
time definitions of stability, attractivity, and asymptotic stability of the
origin are then identical to their continuous time counterparts given in
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Definitions 2.16, 2.17, and 2.18, respectively, with integer k ≥ 0 replac-
ing real-valued time t ≥ 0. In discrete time, the definition of exponential
stability is modified slightly to the following.

Definition 2.25 (Exponential stability (discrete time)). The origin is ex-
ponentially stable if there exists δ > 0 such that ∥x∥ ≤ δ implies that
there exist c > 0, λ ∈ (0,1) for which∥∥φ(k;x)

∥∥ ≤ c ∥x∥λk for all k ≥ 0

We see that λk with λ < 1 is the characteristic rate of solution decay
for exponentially stable discrete time systems.

Lyapunov functions. The main difference in constructing Lyapunov
functions for discrete time systems compared to those for continuous
time systems is that we compare the value of V at two successive sam-
ple times, i.e., V(x(k + 1)) − V(x(k)). If this change is negative, then
we have the analogous behavior in discrete time that we have when V̇ is
negative in continuous time, i.e., V(x(k)) is decreasing when evaluated
along the solution x(k). We define the ∆V notation

∆V(x) = V(f(x))− V(x) = V(x+)− V(x)

to denote the change in V starting at state x and proceeding to suc-
cessor state x+ = f(x). Another significant change is that we do not
require differentiability of the Lyapunov function V(·) in discrete time
since we do not require the chain rule to compute the time derivative.
We do require continuity of V(·) at the origin, however. For consistency
with the earlier continuous time results, we assume here that V(·) is
continuous everywhere on its domain of definition.13 The definition of
the (continuous) Lyapunov function for discrete time is as follows.

Definition 2.26 (Lyapunov function (discrete time)). Consider a com-
pact (closed and bounded) set D ⊂ Rn containing the origin in its inte-
rior and let V : Rn → R≥0 be continuous on D and satisfy

V(0) = 0 and V(x) > 0 for x ∈ D \ 0 (2.47)

∆V(x) ≤ 0 for x ∈ D (2.48)

Then V(·) is a Lyapunov function for the system x+ = f(x).
13For those needing discontinuous V(·) for discrete time systems, see Rawlings et al.

(2020, Appendix B) for the required extension.
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Notice that ∆V(x) also is continuous on its domain of definition
since both V(·) and f(·) are assumed continuous.

Theorem 2.27 (Lyapunov stability (discrete time)). Let V(·) be a Lya-
punov function for the system x+ = f(x). Then the origin is (Lyapunov)
stable.

Theorem 2.28 (Asymptotic stability (discrete time)). Let V(·) be a Lya-
punov function for the system x+ = f(x). Moreover, let V(·) satisfy

∆V(x) < 0 for x ∈ D \ 0 (2.49)

Then the origin is asymptotically stable.

Theorem 2.29 (Exponential stability (discrete time)). Let V(·) be a Lya-
punov function for the system x+ = f(x). Moreover, let V(·) satisfy for
all x ∈ D

a∥x∥σ ≤ V(x) ≤ b ∥x∥σ (2.50)

∆V(x) ≤ −c ∥x∥σ (2.51)

for some a,b, c,σ > 0. Then the origin is exponentially stable.

The proofs of Theorems 2.27, 2.28, and 2.29 are essentially iden-
tical to their continuous time counterparts, Theorems 2.21, 2.22, and
2.23, respectively, with integer k replacing real t and the difference ∆V
replacing the derivative V̇ . An essential difference between continu-
ous and discrete time cases is that the solution of the continuous time
model φ(t;x) is continuous in t, and the solution of the discrete time
model φ(k;x) has no continuity with index k since k takes on discrete
values. Notice that in the proofs of the continuous time results, we did
not follow the common practice of appealing to continuity ofφ(t;x) in
t, so the supplied arguments are valid for both continuous and discrete
cases.

Linear systems. The time-invariant discrete time linear model is

x+ = Ax x(0) = x0

and in analogy with the continuous time development, we try to find a
Lyapunov function of the form V(x) = xTSx for some positive definite
matrix S > 0. Computing the change in the Lyapunov function at state
x gives

∆V(x) = V(x+)− V(x) = (Ax)TS(Ax)− xTSx
= xT (ATSA− S)x
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Choosing a positive definite Q > 0, if we can find S > 0 that satisfies

ATSA− S = −Q (2.52)

then we have succeeded in finding a V(·) with the desired properties:
V(x) = xTSx ≥ 0 and ∆V(x) = −xTQx ≤ 0 for all x. Equation
(2.52) is known as the discrete matrix Lyapunov equation. Exercise 2.63
asks you to state the discrete time version of Theorem 2.24, listing the
connections between the solution of the discrete Lyapunov equation
and the eigenvalues ofA. These connections often come in handy when
analyzing the stability of discrete linear systems.

2.6 Asymptotic Analysis and Perturbation Methods

2.6.1 Introduction

Typical mathematical models have a number of explicit parameters.
Often we are interested in how the solution to a problem depends on a
certain parameter. Asymptotic analysis is the branch of applied math-
ematics that deals with the construction of precise approximate solu-
tions to problems in asymptotic cases, i.e., when a parameter of the
problem is large or small. In chemical engineering problems, small pa-
rameters often arise as ratios of time or length scales. Important lim-
iting cases arise for example in the limits of large or small Reynolds,
Péclet, or Damköhler numbers. In many cases, an analytical solution
can be found, even if the problem is nonlinear. In others, the scaling
behavior of the solution (e.g., the correct exponent for the power-law
dependence of one quantity on another) can be found without even
solving the problem. In still others, the asymptotic analysis yields an
equation that must be solved numerically, but is much less complicated
than the original model. The goal here is to provide a background on
the basic concepts and techniques of asymptotic analysis, beginning
with some notation and basic ideas about series approximations.

2.6.2 Series Approximations: Convergence, Asymptoticness, Uni-
formity

As this section deals extensively with how one function approximates
another, we begin by introducing symbols that describe degrees of iden-
tification between different functions.
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a = b a is equal to b
a ∼ b a is asymptotically equal to b (in some given/implied limit)
a ≈ b a is approximately equal to b (in any useful sense)
a∝ b a is proportional to b

It is important to note that ∼ implies a limit process, while ≈ does
not. In this section we will be careful to use the symbol “∼” in the
precise manner defined here, though one must be aware that it often
means different things in different contexts (and different parts of this
book). Closely related to these symbols are order symbols, which
provide a qualitative description of the relationships between functions
in limiting cases. Consider a function f(ϵ) whose behavior we wish to
describe relative to another function (a gauge function) δ(ϵ). The
order symbols “O”, “o” and “ord” describe the relationships

f(ϵ) = O(δ(ϵ)) as ϵ → 0 if lim
ϵ→0

f(ϵ)
δ(ϵ)

<∞

f(ϵ) = o(δ(ϵ)) as ϵ → 0 if lim
ϵ→0

f(ϵ)
δ(ϵ)

= 0

f(ϵ) = ord(δ(ϵ)) as ϵ → 0 if f(ϵ) = O(δ(ϵ)) but not o(δ(ϵ))

In the latter case, f is said to be strictly order δ. Often, authors write
“f(ϵ) ∼ δ(ϵ)” to mean “f(ϵ) = O(δ(ϵ))”, though the latter only implies
equality to within a multiplicative constant as ϵ → 0, while as defined
here the former implies equality.

Asymptotic approximations take the form of series, the most famil-
iar of which is the truncated Taylor series approximation that forms
the basis of many engineering approximations. An infinite series

f(x) =
∞∑
n=0

fn(x)

converges at a particular value of x if and only if, for every ϵ > 0,
there exists N0 such that∣∣∣∣∣∣

N∑
n=M

fn(x)

∣∣∣∣∣∣ < ϵ for all M,N > N0

In contrast, an asymptotic series

f(ϵ) ≈
N∑
n=0

fn(ϵ)
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satisfies

lim
ϵ→0

f(ϵ)−
∑M
n=0 fn(ϵ)

fM(ϵ)
= 0 for each M ≤ N

In words, the remainder is much smaller than the last term kept. This
property is the source of the usefulness of asymptotic series. If this
property is satisfied, we write

f(ϵ) ∼
N∑
n=0

fn(ϵ) as ϵ → 0

In general, we do not care whether the series converges if we letN →∞.
Often it does not. The important point is that the finite sum—often the
first term or two—provides a useful approximation to a function for
small ϵ. This is in stark contrast to convergent infinite series, which,
although they converge, often require a large number of terms to be
evaluated to obtain a reasonably accurate approximation.

We typically construct asymptotic series in this form

f(ϵ) ∼
∑
n
anδn(ϵ) (2.53)

where
δ0(ϵ)≫ δ1(ϵ)≫ δ2(ϵ)≫ ·· ·

for small ϵ. We also require that δn+1(ϵ) = o(δn(ϵ)) as ϵ → 0. In prac-
tice, the δs are not generally known a priori, but must be determined as
part of the solution procedure to satisfy the requirement that the coef-
ficients an be ord(1). This procedure is best illustrated by example as
we do in several instances below. In principle, we can construct a se-
ries approximation with N as large as we like, as long as the an remain
ord(1) and δN−1(ϵ)≪ δN(ϵ) at the value of ϵ of interest. However, the
most common application of asymptotic analysis is to the construction
of a one- or two-term approximation that captures the most important
behavior as ϵ → 0.

As an example of the difference between convergent and asymptotic
series, we look at the error function erf (z), written here as

erf (x) = 1− 2√
π

∫∞
x
e−t

2
dt

By Taylor expanding the integrand around the origin and integrating
term by term, a power series convergent for all x can be constructed
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for this function

erf (x) = 2√
π

∞∑
0

(−1)nx2n+1

(2n+ 1)n!

Although convergent, this expression may require many terms for rea-
sonable accuracy to be obtained, especially when x is large. One could
try setting w = 1/x and Taylor expanding e−1/w2

around w = 0. This
leads to immediate difficulty because

lim
w→0

dn

dwn
e−1/w2 = 0

for all n; the Taylor expansion is identically zero! This difficulty arises
because e−x2

decays to zero faster than any negative power of x as
x →∞.

On the other hand, for x≫ 1, an asymptotic series for the function
may be constructed by repeated integration by parts (a common trick
for the asymptotic approximation of integrals). This approximation is

erf (x) = 1− 2√
π

∫∞
x
e−t

2
dt

= 1− 2√
π

(∫∞
x

−1
2t
de−t

2
)

= 1− 2√
π

(
e−x2

2x
−
∫∞
x

1
2t2
e−t

2
dt
)

= 1− 2√
π

(
e−x2

2x
−
∫∞
x

−1
4t3

de−t
2

)

= 1− 2√
π

(
e−x2

2x
− e

−x2

4x3
+
∫∞
x

3
4t4
e−t

2
dt
)

erf (x) ∼ 1− e
−x2

x
√
π

(
1− 1

2x2
+ 1 · 3
(2x2)2

+O(x−6)
)

If continued indefinitely, this series would diverge. The truncated se-

ries, however, is useful. In particular, the “leading order” term 1− e−x2

x
√
π ,

the expression that includes the first correction for finite but large x,
precisely indicates the behavior of erf (x) for large values ofx. Further-
more, the truncated series can be used to provide accurate numerical
values and is the basis of modern algorithms for doing so (Cody, 1969).

Now consider a function f of ϵ and some other parameter or vari-
able, x

f(x, ϵ) ∼
∑
anδn(ϵ)
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If the approximation is asymptotic as ϵ → 0 for each fixed x, then we
say it is pointwise asymptotic. Now consider the particular case

f(x, ϵ) ∼ δ1(ϵ)+ δ2(ϵ) = 1+ ϵ/
√
x

This is pointwise asymptotic, but for fixed ϵ, the second term blows up
as x → 0. So obviously, it cannot remain much smaller than the first
term, which is our requirement for asymptoticness. The approximation
is not uniformly valid. Put another way

lim
ϵ→0

lim
x→0

ϵ/
√
x ≠ lim

x→0
lim
ϵ→0
ϵ/
√
x

To be precise, a function u(x, ϵ) converges uniformly to u(x,0) on
the interval x ∈ [0, a], if, given E > 0, there is a D > 0 such that

|u(x, ϵ)−u(x,0)| < E, for ϵ < D and all x ∈ [0, a]

Nonuniformity is a feature of many practical singular perturbation prob-
lems. A major challenge of asymptotic analysis is the construction of
uniformly valid approximations. We shall see a number of tech-
niques for doing this. They all have a general structure that looks like
this

f(x, ϵ) ∼
∑
an(x, ϵ)δn(ϵ)

2.6.3 Scaling, and Regular and Singular Perturbations

Before proceeding to discuss perturbation methods for differential equa-
tions, we introduce some important concepts in the context of algebraic
equations. First, consider the quadratic equation

x2 + ϵx − 1 = 0, ϵ≪ 1 (2.54)

If ϵ = 0, x = ±1. We would like to characterize how these solutions are
perturbed when 0 < ϵ ≪ 1. To to so, we posit a solution of the form
(2.53)

x(ϵ) = δ0x0 + δ1(ϵ)x1 + δ2(ϵ)x2 + o(δ2) (2.55)

where xi = ord(1) (independent of ϵ) and the functional forms of δ1(ϵ)
and δ2(ϵ) remain to be determined. Substituting into the quadratic and
neglecting the small o(δ2) terms yields

(δ0x0+δ1(ϵ)x1+δ2(ϵ)x2)2+ϵ(δ0x0+δ1(ϵ)x1+δ2(ϵ)x2)−1 = 0 (2.56)
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At ϵ = 0, the solution is x = x0 = ±1. So we let δ0 = 1 and for the
moment consider the root x0 = 1. Now (2.56) becomes

ϵ+2δ1x1+δ1ϵx1+δ2
1x

2
1+2δ2x2+δ2ϵx2+2δ1δ2x1x2+δ2

2x
2
2 = 0 (2.57)

Observe that all but the first two terms are o(ϵ) or o(δ1). Neglecting
these, we would find that

ϵ+ 2δ1x1 = 0 (2.58)

Since x1 is independent of ϵ, we set δ1 = ϵ, in which case x1 = −1
2 .

Now (2.57) becomes

−ϵ
2

4
+ 2δ2x2 + δ2

2x
2
2 = 0 (2.59)

Now, since δ2
2 = o(δ2), we neglect the term containing it to get

−ϵ
2

4
+ 2δ2x2 = 0 (2.60)

for which there is a solution if δ2(ϵ) = ϵ2 and x2 = 1
8 . Thus we have

constructed an asymptotic approximation

x = 1− 1
2
ϵ+ 1

8
ϵ2 + o(ϵ2) (2.61)

Observe that to determine δ1(ϵ) and δ2(ϵ), we have found a dominant
balance: a self-consistent choice of δk(ϵ), where it is comparable in
size to the largest term not containing a δk and where all the terms
containing δks and ϵs are smaller as ϵ → 0.

To find how the second root x0 = −1 depends on ϵ, we use the
lessons learned in the previous paragraph to streamline the solution
process. That analysis suggests that δk(ϵ) = ϵk so we seek a solution

x = −1+ ϵx1 + ϵ2x2 +O(ϵ3)

which upon substitution into (2.54) yields

−ϵ− 2ϵx1 + ϵ2x1 + ϵ2x2
1 − 2ϵ2x2 +O(ϵ3) = 0

Since by assumption the xk are independent of ϵ, this expression can
only hold in general if it holds power by power in ϵ. We have already
zeroed out the ϵ0 term by setting x0 = −1. The ϵ1 and ϵ2 terms yield

ϵ1 : −2x1 − 1 = 0

ϵ2 : −2x2 + x2
1 + x1 = 0
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There is one-way coupling between these equations: the equation for
xk depends on xl with l < k. The solutions to these are x1 = −1

2 and

x2 = −1
8 , so the second root is

x = −1− 1
2
ϵ− 1

8
ϵ2 +O(ϵ3) (2.62)

In the limit ϵ → 0 both solutions (2.61) and (2.62) reduce to the solutions
when ϵ = 0. Cases such as this are called regular perturbation
problems.

The situation is much more interesting when ϵ = 0 is qualitatively
different from ϵ ≪ 1. Cases like this are called singular perturba-
tion problems. Consider the equation

ϵx2 + x − 1 = 0 (2.63)

When ϵ = 0, this has the unique exact solution x = 1, while for any
ϵ ≠ 0, it has two solutions. This problem is singular because the
small parameter multiplies the highest power in the equation – when
the parameter is zero the polynomial becomes lower degree so it has
one fewer root. To analyze this problem, we define a scaled variable
X = x/δ where δ = δ0 and

X ∼ x0 +
δ1

δ0
x1 +

δ2

δ0
x2 = ord(1)

Thus δ measures the size of x as ϵ → 0. Substitution into (2.63) yields

ϵδ2X2 + δX − 1 = 0

Now we examine the possibility of finding a dominant balance between
different terms with various guesses for δ. If we let δ = 1, then the
second and third of these terms balance as ϵ → 0 while the first is
small. This scaling gives the root x = 1 + O(ϵ). If we let δ = o(1)
then the first and second terms are small, while the third term is still
ord(1). There is no balance of terms for this scaling. On the other hand
if we let δ = ϵ−1 then we can get the first and second terms to balance.
Applying this scaling yields

X2 +X + ϵ = 0

which clearly has the solution X = 1 + O(ϵ) or x = 1
ϵ + O(1). As

ϵ → 0 the root goes off to infinity. Although the first term in (2.63)
contains the small parameter, it can multiply a large number so that
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the term overall is not small. This characteristic is typical of singular
perturbation problems.

A more subtle singular perturbation problem is

(1− ϵ)x2 − 2x + 1 = 0 (2.64)

When ϵ = 0 this has double root x = 1. When ϵ < 0 there are no real
solution whereas when ϵ > 0 there are two. Clearly δ0 = 0, x0 = 1 so
we seek a solution

x = 1+ δ1x1 + δ2x2 + o(δ2)

Substitution into (2.64) gives

δ2
1x

2
1 + 2δ1δ2x1x2 + δ2

2x
2
2 − ϵ− 2ϵδ1x1 − ϵδ2

1x
2
1 − 2ϵδ2x2 + . . . = 0

Since 1 ≫ δ1 ≫ δ2, we can conclude that δ2
1x

2
1 and ϵ are the largest

(dominant) terms. These balance if δ2
1 = O(ϵ). Thus we set δ1 = ϵ1/2,

which implies that x1 = ±1. So the solutions are

x = 1± ϵ1/2 +O(δ2) (2.65)

As an exercise, find that δ2 = ϵ and that the solutions to (2.64) can be
written as an asymptotic series in powers of ϵ1/2.

2.6.4 Regular Perturbation Analysis of an ODE

One attractive feature of perturbation methods is their capacity to pro-
vide analytical, albeit approximate solutions to complex problems. For
regular perturbation problems, the approach is rather straightforward.
As an illustration we consider the problem of second-order reaction
occurring in a spherical catalyst pellet, which we can model at steady
state by

0 = 1
r 2

d
dr
r 2 dc
dr
−Da c2 (2.66)

with c = 1 at r = 1 and c bounded at the origin. If D,R, k, and cB
are the diffusivity, particle radius, rate constant, and dimensional sur-
face concentration respectively, then Da = kcBR2/D is the Damköhler
number. The problem is nonlinear, so a simple analytical solution is
unavailable. An approximate solution for Da ≪ 1 can be constructed,
however, using a regular perturbation approach.
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Let ϵ = Da. We seek a solution of the form c(r) = c0 + ϵc1 + ϵ2c2 +
O(ϵ3). Substituting into (2.66) and equating like powers yields

ϵ0 : 0 = 1
r 2

d
dr
r 2dc0

dr
, c0(1) = 1

ϵ1 : 0 = 1
r 2

d
dr
r 2dc1

dr
− c2

0 , c1(1) = 0

ϵ2 : 0 = 1
r 2

d
dr
r 2dc2

dr
− 2c1c0, c2(1) = 0

Observe that the solution at each order has the same operator but dif-
ferent “forcing” from the solution at lower order. This structure is
typical of regular perturbation problems. The solution at ϵ0 is trivial:
c0 = 1 for all r . At ϵ1, we have

0 = 1
r 2

d
dr
r 2dc1

dr
− 1, c1(1) = 0

The solution to this equation is c1 =
(
r 2 − 1

)
/6. The solution to the

ϵ2 problem is left to Exercise 2.66. Although this problem is nonlinear,
the regular perturbation method provides a simple approximate closed-
form solution.

2.6.5 Matched Asymptotic Expansions

The regular perturbation approach above provided an approximate so-
lution for Da ≪ 1. We can also pursue a perturbation solution in the
opposite limit, Da≫ 1. Now letting ϵ = Da−1 we have

0 = ϵ 1
r 2

d
dr
r 2 dc
dr
− c2 (2.67)

If we naively seek a regular perturbation solution c = c0 + ϵc1 +O(ϵ2),
the leading-order equation will be

0 = c2
0

This has solution c0 = 0, which satisfies the boundedness condition
at r = 0 and makes physical sense for the interior of the domain be-
cause when Da ≫ 1, reaction is fast compared to diffusion so we ex-
pect the concentration in the particle to be very small. On the other
hand, this solution cannot be complete, as it cannot satisfy the bound-
ary condition c = 1 at r = 1. The inability of the solution to satisfy
the boundary condition arises from the fact that the small parameter
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ϵ multiplies the highest derivative in the equation. It is thus absent
from the leading-order problem, so the arbitrary constants required to
satisfy the boundary conditions are not available.

The resolution to this issue lies in proper scaling. Although ϵ is
small, it multiplies a second derivative. If the gradient of the solution
is large in some region, then the product of the small parameter and
large gradient may result in a term that is not small. In the present case,
we can use physical intuition to guess where the gradients are large. At
high Da the reaction occurs rapidly, so we expect the concentration to
be small in most of the catalyst particle. Near r = 1, however, reactant
is diffusing in from the surroundings and indeed right at r = 1 the
concentration must be unity. Thus we define a new spatial variable
η = (1− r)/ζ(ϵ) where ζ is a length scale that is yet to be determined.
Applying this change of variable to (2.67) yields

0 = ϵ
ζ2

2
(1− ζη)2

d
dη
(1− ζη)2 dc

dη
− c2 (2.68)

The first term contains ϵζ−2. If we takeζ = ϵ1/2 then this term is ord(1)
as ϵ → 0 and can balance the term c2 to yield a nontrivial solution.
This scaling implies that near r = 1 the steepness of the concentration
gradient scales as ζ−1 = ϵ−1/2. Proceeding with this scaling, (2.68)
becomes

0 = 1

(1− ϵ1/2η)2
d
dη
(1− ϵ1/2η)2

dc
dη
− c2 (2.69)

Now we seek a perturbation solution of this rescaled problem: c(η) =
c0 + ϵ1/2c1 +O(ϵ). The choice of ϵ1/2 comes from the observation that
the Taylor expansion of

(
1− ϵ1/2η

)±2 = 1 ∓ 2ϵ1/2η +O(ϵ). This gives
the leading-order problem

0 = d
2c0

dη2
− c2

0 (2.70)

Although this equation is nonlinear, it has a special form that facilitates
solution.14 Let w = c′ where ′ denotes d/dη. Now we can write

w′ = c2
0 = −

∂H
∂c0

c′0 = w =
∂H
∂w

with

H = 1
2
w2 − 1

3
c3

0

14If we had considered first-order kinetics instead, the solution would be simple.
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As constructed, this system has the special property that

dH
dη

= ∂H
∂w
w′ + ∂H

∂c0
c′0 =

∂H
∂w

(
− ∂H
∂c0

)
+ ∂H
∂c0

∂H
∂w

= 0

Therefore, curves of H = 1
2c
′2 − 1

3c
3
0 = K, where K is a constant, are

solutions. As η becomes large, i.e., at positions much larger than a
distance ϵ1/2 from the interface, we expect the concentration and its
gradient to go to zero, we take K = 0, so

c′0 = ±
√

2
3
c3/2

0

The negative sign must be chosen so that c0 decays with increasing η.
This equation can be integrated and the boundary condition c0(η =
0) = 1 applied to yield

c0(η) =
(

1+
√

1
6
η
)−2

In terms of the original variables this becomes

c0(r) =
(

1+
√

1
6ϵ
(1− r)

)−2

(2.71)

This decays to zero once 1 − r is larger than O(ϵ1/2). Thus the con-
centration changes rapidly in a boundary layer with thickness of
O(ϵ1/2) that is located near the catalyst particle surface. Outside this
thin boundary layer, in the interior of the particle, the concentration is
very small, going to zero as ϵ → 0. One can carry this analysis to higher
order terms. For example, the first effects of the particle shape on the
result appear at O(ϵ1/2) but it should be clear that the primary struc-
ture of the solution behavior has been captured by this leading-order
solution.

This example is a simple instance of a singular perturbation method.
The solution c0 = 0 that we obtained before rescaling is called the
outer solution. It is valid away from the boundary r = 1. The so-
lution (2.71) that we obtained after rescaling is called the inner solu-
tion. In this simple example the inner solution decays to zero, auto-
matically matching the outer solution. In general, the outer solution is
not simply a constant, and a matching condition must be imposed
to properly connect the two solutions to one another. This process is
the origin of the term matched asymptotic expansions.
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Matching can be accomplished with a number of different proce-
dures. We describe here a simple approach that works for many prob-
lems. More sophisticated and general approaches are described in
Hinch (1991). In the simple approach, we denote the outer solution
with terms up to δP as uP(x) and the inner solution as UP(ξ) where x
and ξ = x/ϵ are the outer and inner variables, respectively. The simple
matching procedure just requires that at each order n = 0,1, . . . ,N

lim
x→0

un(x) = lim
ξ→∞

Un(ξ) (2.72)

In words, the inner limit of the outer solution equals the outer limit of
the inner solution. In the above case, taking the outer variable x as 1−r
and the inner variable ξ as η, this expression is satisfied trivially. In
general, neither the inner nor the outer solution is valid throughout the
entire domain, but the matching procedure provides a means to con-
struct a uniformly valid solution. This so-called composite solution
is given by

unc(x) = un(x)+Un(ξ)− lim
ξ→∞

Un(ξ) (2.73)

The last term avoids double counting of the overlapping parts of the
two solutions. These ideas are illustrated in the following example.

Example 2.30: Matched asymptotic expansion analysis of the reac-
tion equilibrium assumption

Consider the following reactions

A
k1-⇀↽-
k−1

B, B
k2-→ C

in which rate constants k1, k−1 are much larger than the rate constant
k2, so the first reaction equilibrates quickly. In a batch system where
cA, cB , and cC are the concentrations, the governing equations are

dcA
dt

= −k1cA + k−1cB

dcB
dt

= k1cA − k−1cB − k2cB

dcC
dt

= k2cB

The reaction equilibrium assumption takes cA and cB to be in equilib-
rium so that cB = KcA where K = k1/k−1. Further assume that k−1

is the largest rate constant. Initial concentrations in the reactor are
cA(0) = cA0, cB(0) = cC(0) = 0.
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(a) Find a proper nondimensionalization so that a systematic pertur-
bation expansion can be performed.

(b) Use matched asymptotic expansions to show that the reaction
equilibrium approximation corresponds to the leading-order outer
solution of the kinetic equations. Also find the equations for the
O(ϵ1) terms in the outer solution.

(c) Find the leading-order inner solution for the dynamics on the fast
time scale 1/k−1, match the inner and outer solutions, and find a
composite solution that is uniformly valid for all time.

Solution

(a) Letu = cAcA(0), v = cB/cA(0),w = cC/cA(0), sou(0) = 1, v(0) =
w(0) = 0. Define a scaled “slow” time variable ts = k2t so that
an O(1) change in t1 corresponds to a time interval of O(1/k2),
and define the small parameter ϵ = k2/k−1. In these variables,
the rate equations are

du
dts

= −K
ϵ
u+ 1

ϵ
v

dv
dts

= K
ϵ
u− 1

ϵ
v −w

dw
dts

= v

Since cC is determined completely by cB we do not include its
evolution in the following development.

(b) Multiplying the dimensionless equations by ϵ yields

ϵ
du
dts

= −Ku+ v ϵ
dv
dts

= Ku− v − ϵv

Assuming a power series form, the outer solution is obtained by
letting

u(ts) = u0(ts)+ ϵu1(ts)+O(ϵ2)

v(ts) = v0(ts)+ ϵv1(ts)+O(ϵ2)
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Substituting and considering only the terms of O(ϵ0) yields

Ku0 = v0

for both of these equations. This is the reaction equilibrium as-
sumption in dimensionless form. Although physically reasonable,
observe that this assumption is not consistent with the initial con-
ditionsu(0) = 1, v(0) = 0. Similarly, because the time derivatives
are multiplied by ϵ, they do not appear in the leading-order outer
problem, so we do not have differential equations whose solu-
tions include the arbitrary constants that are determined by the
initial conditions. Keeping this issue in mind, we collect O(ϵ1)
terms to yield

du0

dts
= −Ku1 + v1

dv0

dts
= Ku1 − v1 − v0

Although this equation is valid, it is not yet useful because we do
not know the values of u0 and v0. To obtain these we consider
the inner solution.

(c) The problem with the outer solution can be traced to the loss of
the time-derivative terms. Recognizing that the derivatives can be
large at short times because k1 and k−1 and much larger than k2,
we define a new fast time scale tf = k−1t = ts/ϵ. Now tf changes
an O(1) amount in a dimensional time of about 1/k−1. Rewriting
the equations with this new time scaling yields

du
dtf

= −Ku+ v dv
dtf

= Ku− v − ϵv

Now we seek an inner solution

u(tf ) = U0(tf )+ ϵU1(tf )+O(ϵ2)

v(tf ) = V0(tf )+ ϵV1(tf )+O(ϵ2)

Substituting and extracting the O(ϵ0) terms yields

dU0

dtf
= −KU0 + V0

dV
dtf

= KU0 − V0

with initial condition U0(0) = 1, V0(0) = 0. This coupled pair of
equations could be solved, for example, by Laplace transforms or
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by rewriting as a system dx/dtf = Ax and diagonalizingA, but in
this case we can use the observation that dU0/dtf +dV0/dtf = 0
so U0 + V0 = 1 to just solve for U0

dU0

dtf
= −KU0 + 1−U0

which has solution

U0 = e−(1+K)tf +
1

1+K
(

1− e−(1+K)tf
)

Using this, we obtain

V0 = 1−U0 =
K

1+K
(

1− e−(1+K)tf
)

By analogy with the reaction-diffusion example above, this inner
solution corresponds to a boundary layer in time, rather than
space.

With inner and outer solutions in hand, we can use (2.72) to match
them. The “outer limit” of the inner solution is

lim
tf→∞

U0 =
1

1+K lim
tf→∞

V0 =
K

1+K

which satisfies the equilibrium assumption Ku = v . The inner
limit of the outer solution is simply u0(0), v0(0) and using the
previous result yields

u0(0) =
1

1+K v0(0) =
K

1+K
Now we have initial conditions for the outer solution. Adding the
two differential equations at O(ϵ1) and differentiating the alge-
braic equation (reaction equilibrium result) at O(ϵ0) give

du0

dts
+ dv0

dts
= −v0 −Kdu0

dts
+ dv0

dts
= 0

Solving these two equations for the two time derivatives gives

du0

dts
= − K

1+Ku0
dv0

dts
= − K

1+Kv0

Solving these with their respective initial (matching) conditions
u0(0) = 1, v0(0) = 0 gives the full leading-order outer solution

u0 =
1

1+Ke
− K

1+K ts v0 =
K

1+Ke
− K

1+K ts
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Figure 2.12: Leading-order inner U0, outer u0, and composite solu-
tions u0c , for Example 2.30 with ϵ = 0.2, K = 1, and
k2 = 1.

or, reverting to dimensional form

cA(t) =
1

1+Ke
− K

1+K k2t cB(t) =
K

1+Ke
− K

1+K k2t

This is precisely the solution that would be obtained via uncritical
application of the reaction equilibrium approximation. Now we
see this approximation in more precise terms.

Finally, we construct a uniformly valid composite solution via
(2.73). To leading order in dimensional variables

cA(t)
cA0

= 1
1+Ke

− K
1+K k2t +

(
1− 1

1+K

)
e−(1+K)k2t/ϵ

cB(t)
cA0

= K
1+K

(
e−

K
1+K k2t − e−(1+K)k2t/ϵ

)
Figure 2.12 shows the leading-order inner, outer and composite
solutions for u(t) = cA(t)/cA0 for ϵ = 0.2, K = 1 and k2 = 1. □
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2.6.6 Method of Multiple Scales

The method of matched asymptotic expansions deals with problems
in which different time or length scales dominate in distinct regions
of the solution domain. In many problems, however, processes occur
concurrently on disparate scales, a situation that requires a different
approach, the method of multiple scales. Problems amenable to this
approach include dynamical systems with multiple natural frequencies
or decay times15, nonlinear systems with widely separated timescales
and problems of propagation (wavelike or diffusive) in inhomogeneous
media.

As an introduction to this approach, we consider a weakly damped
oscillator modeled by the linear equation

ẍ + ϵẋ +ω2x = 0, x(0) = 1, ẋ(0) = 0

On physical grounds, we expect two time scales to act simultaneously
in this problem: harmonic oscillation, with natural period 2π/ω (as-
sumed to be ord(1)), and the exponential decay, with time scale of
ord(ϵ). If we proceed naively, looking for a regular perturbation solu-
tion x(t) = x0(t)+ ϵx1(t)+O(ϵ2), we find that

ẍ0 +ω2x0 = 0, x0(0) = 1, ẋ0(0) = 0

ẍ1 +ω2x1 = −ẋ0, x1(0) = ẋ1(0) = 0

with solution

x(t) ∼ cosωt + ϵ
(

1
2ω

sinωt − 1
2
t cosωt

)
The equation at O(ϵ) has the same differential operator as does the

zeroth order problem, but has a resonant forcing term ẋ0 = cosωt that
leads to the t cosωt secular term in the solution. When t = ord(1/ϵ),
this term destroys the asymptoticness of the expansion; the approx-
imation is not uniformly valid, failing at large times. The method of
multiple scales avoids this nonuniformity by explicitly recognizing the
existence of two time scales in the problem, by letting t0 = t, t1 = ϵt
and looking for a solution of the form x(t0, t1; ϵ). Now

dx
dt
= ∂x
∂t0
+ ϵ ∂x
∂t1

15For extensive application of the method in this context, see: Nayfeh and Mook
(1979).
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and we look for a solution of the form

x(t0, t1; ϵ) ∼ x0(t0, t1)+ ϵx1(t0, t1)

Defining D0 = ∂/∂t0 and D1 = ∂/∂t1, the leading-order equation be-
comes a partial differential equation

D2
0x0 +ω2x0 = 0, x0(0) = 1,D0x0(0) = 0

This has the solution x0 = A(t1) cosωt0, where A(0) = 1, but is as yet
otherwise undetermined. At the next order, we have

D2
0x1 +ω2x1 = 2D1A(t1)ω sinωt0 +A(t1)ω sinωt0

x1(0) = 0 D0x1(0) = 0

Again, a resonant forcing term is present on the right-hand side. Un-
less this is zero, a secular term again shows up in the equation and
the approximation will not be asymptotic. However, we now have the
possibility of eliminating this term. Notice that if

dA
dt1

= −1
2
A

the resonant term vanishes. This equation is called the solvability
condition or secularity condition or integrability condition. It is an
amplitude equation, determining the evolution of the amplitude of the
solution over the slow time scale t1. From the leading-order result, we
have that A(0) = 1, so A = exp(−1

2t1). At leading order, the solution
is therefore

x0 = e−
1
2 ϵt cosωt

This is the type of solution we expect intuitively: a very slowly decaying
harmonic oscillation. A couple final comments on this example: the
solution x1 is identically zero, but another resonance term shows up
in the equation for x2. This nonuniformity does not show up until
t = ord(1/ϵ2), by which time the amplitude has nearly decayed to zero,
but if desired, it could be eliminated by including a “superslow” scale
t2 = ϵ2t. This time scale arises because the damping causes a very
small (O(ϵ2)) change in the frequency of oscillation.

This simple example illustrates the procedure and resulting struc-
ture. The recurring theme is the existence of a secularity condition,
whose satisfaction requires the solution of an amplitude equation. This
amplitude equation determines the evolution of the system at its largest



2.6 Asymptotic Analysis and Perturbation Methods 179

scale. If the underlying problem is linear, so is the amplitude equation;
a nonlinear equation leads to a nonlinear amplitude equation. The fol-
lowing example illustrates this.

Example 2.31: Oscillatory dynamics of a nonlinear system

From Section 2.2.2, we have a complete understanding of the linear
system ẋ = Ax. When A has complex conjugate eigenvalues λ = σ ±
iω, the origin is a stable or unstable spiral depending on the sign of
σ . When |σ | ≪ |ω|, the growth or decay of solutions occurs on a
time scale much longer than the period of oscillation. In this situation,
the method of multiple scales can be used to show very generally the
dynamics of the nonlinear system ẋ = Ax+N(x), whereN(x) contains
no linear part. In this example we apply the method of multiple scales
to the system of equations

dx
dt
=
[
ϵµ −ω
ω ϵµ

]
x +

[
x2

1 − x1x2 + x3
1

x2
1x2

]

where σ = ϵµ, with ϵ≪ 1, while µ and ω are ord(1). The steady state
x = 0 of this system is very weakly stable or unstable, depending on
the sign of µ. Since the problem is nonlinear, finding the proper scaling
of x is an important part of the solution procedure. The oscillatory
nature of the linearized equation suggests that a solution can be found
in terms of amplitude ∥x∥ and phase φ.

Solution

Although we consider here a specific form for the nonlinearity, the
multiple-scales solution will lead to equations for r and φ whose gen-
eral structure is both extremely simple and extremely general. The time
scaling of this problem is similar to that of the linear example above,
so we consider a multiple-scales expansion with t0 = t, t1 = ϵt. The
scale t0 reflects the time scale of the oscillation, while the scale t1 re-
flects the scale for growth or decay of the amplitude of the solution. To
determine the proper scaling of the solution amplitude, we let x = δX,
where X = ord(1) as ϵ → 0. Now the equation becomes

δD0X + δϵD1X = δ
[

0 −ω
ω 0

]
X + δϵ

[
µ 0
0 µ

]
X

+ δ2N2(X,X)+ δ3N3(X,X,X)
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whereN2(X,X) andN3(X,X,X) are the quadratic and cubic terms writ-
ten in a form convenient for perturbation expansions. For general vec-
tors u = [u1, u2]T , v = [v1, v2]T ,w = [w1,w2]T , the nonlinear terms
for this problem are

N2(u,v) =
[
u1u1 −u1v2

0

]
N3(u,v,w) =

[
u1v1w1

u1v1w2

]

Any polynomial nonlinearity can be written as a sum of terms with this
structure.

If we tentatively let δ = ϵ and X = X0 + ϵX1 +O(ϵ2) then the prob-
lems at O(ϵ0) and O(ϵ1) become, respectively,

D0X0 −
[

0 −ω
ω 0

]
X0 = 0

and

D0X1 −
[

0 −ω
ω 0

]
X1 =

[
µ 0
0 µ

]
X0 −D1X0 +N2(X0)

The solution at O(ϵ0) is

X0(t0, t1) = r(t1)
[

cos(ωt0 −φ(t1))
sin(ωt0 −φ(t1))

]

Turning to the O(ϵ) equation, the term N2(X0, X0) does not lead to
resonance because it is quadratic and thus contains no terms with fre-
quency ω. The solvability condition for this choice of scaling is thus

D1X0 =
[
µ 0
0 µ

]
X0

This equation is linear, leading to exponential growth on the time scale
t1 when µ > 0 and eventually violating the scaling assumption x =
O(ϵ). Thus the choice δ = ϵ is not self consistent.

We need a different guess for δ. The term N2 does not lead to res-
onance at leading order, but the term N3 can. For example sin3ωt0 =
(3 sinωt0 − sin 3ωt0)/4. A balance between the linear term, which is
O(ϵδ) and this cubic term, which is O(δ3) would imply that δ = ϵ1/2.
Thus we seek a solution of the form x = ϵ1/2(X0 + ϵ1/2X1 + ϵX2 +
O(ϵ3/2)). With this scaling the O(ϵ0) problem and its solution remain
the same as above, while the O(ϵ1/2) equation becomes

LX1 = N2(X0, X0)
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where

L = D0 −
[

0 −ω
ω 0

]
As noted above, N2(X0, X0) contains no resonant terms. A particular
solution can be found

X1(t0, t1) =
r(t1)2

ω

 1
3 (cos 2θ + sin 2θ)

1
2

(
1− 1

3 (cos 2θ + sin 2θ)
)

where θ =ωt0 −φ(t1). Observe that X1 has frequency 2ω.
The leading-order amplitude and phase, r(t1) and φ(t1), have not

yet been determined, so we turn to the equation at O(ϵ), which deter-
mines X2

LX2 = N2(X0, X1)+N2(X1, X0)+N3(X0, X0, X0)+
[
µ 0
0 µ

]
X0 −D1X0

For brevity, we denote the right-hand side as R. Resonance will occur
if it has terms of the form [sinωt0,− cosωt0]T or [cosωt0, sinωt0]T ,
which in general it does. To obtain the solvability conditions, we thus
require that R be orthogonal to these terms∫ 2π/ω

0
RT

[
sinωt0
− cosωt0

]
dt0 =

∫ 2π/ω

0
RT

[
cosωt0
sinωt0

]
dt0 = 0

Omitting the detailed calculation, which involves elementary but exten-
sive trigonometric manipulations, we find that

dr
dt1

= µr + ar 3

dφ
dt1

= br 2

where for the nonlinearity given here

a = 4ω− 1
8ω

b = 5
24ω

This is a remarkably general result. These simple differential equa-
tions govern the leading-order behavior for small ϵ and their form
is completely insensitive to the nature of the nonlinearity—the entire
structure of N2 and N3 is distilled into the constants a and b. Further-
more, even for a more general nonlinearity containing higher powers,
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only the quadratic and cubic terms contribute. For example, a quartic
term does not appear until O(ϵ2) and thus does not contribute to R.
Because of its generality, it is known as the normal or canonical form
for this class of nonlinear problems16.

The equation for the oscillation amplitude r is the most important.
It has steady-state solutions r = 0 and r =

√
−µ/a. Including the

scaling δ = ϵ1/2, the latter solution becomes ∥x∥ =
√
−µϵ/a. Therefore

real nontrivial solutions exist if µϵ/a < 0. We return to this example
and related ones in a more general context in Section 2.7.5.

□

2.7 Qualitative Dynamics of Nonlinear Initial-Value Prob-
lems

2.7.1 Introduction

The dynamics of nonlinear differential equations can be extremely com-
plex. In this section we introduce a number of the issues that arise in
these systems. Questions that we address include

• How do nonlinear systems differ from linear ones?

• What general qualitative (geometrical) structure can be found in
nonlinear systems?

• What kinds of steady-state and time-dependent behaviors are typ-
ical?

• How do solutions change as parameters change?

2.7.2 Invariant Subspaces and Manifolds

We begin with an introduction to the geometry of differential equations,
by describing invariant manifolds, regions of phase space in which solu-
tions to an equation remain for all time. We shall see that these regions
organize the dynamics of initial-value problems. For linear constant-
coefficient systems, thinking of the solution to ẋ = Ax in terms of the
eigenvectors leads toward a geometric view of solutions to differential
equations. An important point to notice is this: a point lying on a line

16Guckenheimer and Holmes (1983) give a general formula for construction of the
normal form, including explicit formulas for a and b, derived using a rigorous and
elegant method of nonlinear coordinate transformations.
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defined by one of the eigenvectors vi of A never leaves this line and
never has left. These lines are invariant under the solution operator
eAt . Recall from Section 2.2.2 that if x(0) = cvi, then

x(t) = eAtcvi = ceλitvi ∀t

Thus we call the line defined by vi an invariant subspace of the phase
space. The most important invariant subspaces of a linear system are
defined as follows. Let u1, . . . , uns be the (possibly generalized) eigen-
vectors whose eigenvalues have negative real parts; v1, . . . , vnu be those
whose eigenvalues have positive real parts andw1, . . . ,wnc those whose
eigenvalues have zero real parts. Now we can define three invariant
subspaces

Es = span{u1, . . . uns} stable subspace

Eu = span{v1, . . . vnu} unstable subspace

Ec = span{w1, . . .wnc} center subspace

An initial condition in Es will remain in Es and eventually decay to
zero, one in Eu will remain in Eu and grow exponentially with time,
and one in Ec will remain in Ec , staying the same magnitude or growing
with at most a polynomial time dependence. Figure 2.13 shows some
examples of these invariant subspaces in linear systems. In general,
a system with eigenvalues with zero real parts is not robust: a small
change in the system, e.g., the parameters, moves the eigenvalues off
the imaginary axis and the invariant subspace Ec vanishes. A system
like this, for which an arbitrarily small change in the system changes
the qualitative behavior, is said to be structurally unstable. In
contrast, if all the eigenvalues have nonzero real parts, no qualitative
change occurs if the system is changed slightly. Such a system is said
to be structurally stable. Similarly, if a system linearized around
a steady state has no eigenvalues with zero real parts, the steady state
is said to be hyperbolic. Otherwise it is nonhyperbolic.

So what happens when we allow nonlinearity to creep in? Consider a
nonlinear system in the vicinity of a steady state xs . Letting z = x−xs ,
we can write the system ẋ = f(x) as

żi =
∂fi
∂zj

∣∣∣∣∣
z=0

zj +
1
2

∂2fi
∂zj∂zk

∣∣∣∣∣
z=0

zjzk +O(∥z∥3)

or
ż = Jz +N2(z, z)+O(∥z∥3)
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Figure 2.13: Examples of invariant subspaces for linear systems:
(a) λ1 = −1, λ2 = 0; (b) λ1,2 = −1± i, λ3 = 1.

where Jij = ∂fi/∂xj
∣∣∣
z=0

is the Jacobian of f(xs) andN2(z, z) contains

all terms that are quadratic in z. Since Jz = O(z) andN2(z, z) = O(z2),
the leading-order behavior for small z is determined by the linearized
system, as long as all the eigenvalues of J have nonzero real parts, i.e.,
the steady state xs is hyperbolic. The rigorous and general statement
of this fact is called the Hartman-Grobman theorem (Guckenheimer
and Holmes, 1983). If there is an eigenvalue with zero real part, then
the linearized problem gives that

d
dt
∥z∥2 = 0

for some values of z, in which case the quadratic termN2(z, z) appears
at leading order.

Restricting ourselves to the usual situation, when xs is hyperbolic,
we now generalize the ideas of the stable and unstable subspaces to
the nonlinear case. We define the stable and unstable manifolds17

of xs as follows:

• The stable manifold W s(xs) is the set of points that tend to xs as
t → +∞.

• The unstable manifoldWu(xs) is the set of points that tend to xs
as t → −∞.

These have the same dimensionsns andnu as the subspaces Es and
Eu of the linearized system, and are tangent to them at x = xs . The

17A manifold for our purposes is simply a curve or surface. We use the term because
W s and Wu are not generally linear subspaces of Rn, while Es and Eu are.
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Es

(a)

Wu
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Figure 2.14: Invariant subspaces of the linearized system (a) and in-
variant manifolds of the nonlinear system (b).

relationship between them is shown in Figure 2.14. Convince yourself
that the definitions of W s and Wu are equivalent to those given above
for Es and Eu for a hyperbolic linear system.

For many interesting situations, a steady state of interest is stable;
there is no unstable manifold. Recall, however, that in the linear case
each individual eigendirection defines an invariant manifold so Es con-
tains within it further invariant subspaces. This fact gives us a tool
for understanding the approach to a steady state and possibly for con-
structing simplified models of the dynamics near a steady state. As
an example, consider the following pair of differential equations, with
ϵ≪ 1

ϵẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

Let [x1, x2]T = (0,0) be a stable steady state. Furthermore, assume
that we have written the equation in coordinates where

L =
[
−ϵ−1 0

0 −1

]

Thus the eigenvalues are −ϵ−1 and −1, with corresponding eigenvec-
tors uf = [1,0]T and us = [0,1]T . The “s” and “f” stand for “slow” and
“fast” respectively, because the dynamics in the us direction occur on
an O(1) time scale, while those in the uf direction occur on an O(ϵ)
time scale. We can thus define a “slow” subspace Ess and a fast sub-
space Esf , with nonlinear extensions W ss and W sf . Initial conditions
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(sufficiently close to the origin) approach W ss in a time of O(ϵ) so af-
ter this transient all the dynamics are along the slow manifold W ss . To
leading order in ϵ,W ss is defined by the equation f1(x1, x2) = 0. This is
the result we would get by just setting ϵ to zero above and can be found
as an outer solution in a matched asymptotic expansions analysis.

Close to the origin, this equation can be rewritten x1 = h(x2), so
we can reduce the pair of equations to a single equation

ẋ2 = f2(h(x2), x2)

What we have just done is a form of the quasi-steady-state approxima-
tion used in all areas of chemical engineering analysis. It illustrates a
very important and general property of initial-value problems: beyond
initial transients, solutions often evolve on a subspace or manifold that
has many fewer dimensions than the entire phase space. This fact is
both conceptually and computationally important. It means that the
behavior of large systems can often be understood by only consider-
ing a few dimensions, and also that computations might be performed
with many fewer degrees of freedom than formally required.

2.7.3 Some Special Nonlinear Systems

Gradient Systems

Imagine a small particle suspended in a viscous fluid, and moving under
the influence of a force that can be written as the gradient of a scalar
potential function U(x). This situation is described by

ẋ = −∇U (2.74)

In general, systems of this form are called gradient systems. Recall
that the vector ∇U is always normal to surfaces of constant U so tra-
jectories of this type of system are always moving “downhill” on the
“energy landscape” defined by U . In other words, the potential U is a
Lyapunov function for (2.74). The only steady states of gradient sys-
tems are sources, saddle points, and sinks (can you show this?). A
two-dimensional example is shown in Figure 2.15. Some more insight
into the behavior of a gradient system is gained by asking how the “po-
tential energy” of a trajectory evolves with time. The rate of change of
U on a trajectory is

dU(x(t))
dt

= ∂U
∂xi

dxi
dt

= − ∂U
∂xi

∂U
∂xi

= −∥∇U∥2 ≤ 0
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Figure 2.15: Contours of an energy function V(x1, x2) or H(x1, x2).
Black arrows denote directions of motion on the energy
surface for a gradient system, while gray ones denote
motion for a Hamiltonian system; V(x1, x2) = 0.2x2

1 −
2 cos(π/2)x + 10x2
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with equality only at steady states, where ∇U = 0. So whatever the
trajectory of the vector equation for ẋ, it satisfies this scalar equation
showing that the rate of change of potential energy is the square of the
gradient of the potential. Trajectories roll downhill until they reach a
minimum in U . In a high-dimensional problem, the potential surface
can be very complex, with many minima, and saddle points where there
are many “downhill” directions for the system to choose from.

Hamiltonian Systems

Consider again the landscape of Figure 2.15. Call the energy functionH
rather than V . Now imagine a dynamical system where trajectories are
not normal to H, but are tangent to them. So we modify the gradient
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system by rotating ∇H by π/2 to get

ẋ =
[

0 −1
1 0

]
∇H =


− ∂H
∂x2

∂H
∂x1

 (2.75)

By the same exercise we performed above for U along trajectories, we
can show that for (2.75), trajectories satisfy

dH(x, t)
dt

= 0

so the energy functionH is conserved on trajectories that follow (2.75).
The above situation is a special case of a very general and important

class of equations. Consider a system of particles, e.g., molecules. For
each particle, there is a number of coordinates (typically three) that
describes the position of the particle, and for each coordinate there is
an associated momentum. We denote the full set of coordinates as q
and the momenta as p. The total (kinetic plus potential) energy H of
the system is a function of the positions and momenta and is called
the Hamiltonian. In the absence of friction (always true at the atomic
level), the sum of kinetic and potential energy is conserved, so

dH
dt
= ∂H
∂pi

dpi
dt
+ ∂H
∂qi

dqi
dt
= 0

In general, this holds only if

q̇i =
∂H
∂pi

ṗi = −
∂H
∂qi

These equations are called Hamilton’s equations. A system whose
dynamics are described by a model of this form is said to be Hamilto-
nian (Goldstein, 1980).

In addition to the property that H is constant along trajectories,
Hamiltonian systems have another important attribute: phase space
volume is conserved along trajectories. In other words, a “blob” of
initial conditions may deform and rotate with time, but it cannot shrink.
We can see this by looking at the divergence18 in phase space of the

18See Section 3.2.
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vector field for a Hamiltonian system

∇ · f =
[ ∂
∂qi

∂
∂pi

]
∂H
∂pi

− ∂H
∂qi

 = 0

This result is known as Liouville’s theorem. In general vector fields
with ∇ · f = 0 are said to be conservative; if ∇ · f < 0 the system is
dissipative.19 What is ∇ · f for a gradient system?

An important class of conservative vector fields is the velocity fields
of incompressible flows. In two dimensions, equations for motion of
a fluid element are Hamiltonian, with the Hamiltonian function being
simply the stream function. A three-dimensional incompressible flow
field, although conservative, cannot generally be Hamiltonian. Why
not?

Single Degree-of-Freedom Hamiltonian Systems

A mechanical system with only one degree of freedom, such as a par-
ticle moving along a line or a pendulum restricted to swing in a single
plane, illustrates some of the important features of nonlinear differen-
tial equations. In this case p and q are scalars. Often the Hamiltonian
can be written in this simple form

H(p,q) = 1
2
p2 + V(q)

Along any trajectory, H is constant, so we can solve for the momentum
in terms of the position

p = ±
√

2(H − V(q))

Trajectories in phase space are thus symmetric across p = 0. Further-
more, this formula can be used to construct the energy landscape, the
curves ofH = constant on the (q,p) plane. From Hamilton’s equations
and the expression for p, we can see that steady states occur when
H = V(q) and ∂V/∂q = 0. For the pendulum, V(q) = −κ cosq, where
κ is a constant; the energy landscape and phase-plane trajectories are
shown in Figure 2.16 for κ = 2. Note in particular the trajectories

19Grmela and Öttinger (1997) have developed a formalism for continuum models of
materials, in which the vector field is simply a sum of a Hamiltonian part and a gradient
part.
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that round the “hill” or “valleys,” connecting two saddle points. These
special trajectories are called heteroclinic orbits. Denoting the two
steady states involved as P and Q, the heteroclinic orbit is part of both
the unstable manifold of P and the stable manifold of Q. If the po-
tential energy is changed to V(q) = −1

2q
2 + 1

4q
4, the landscape and

trajectories are as shown in Figure 2.17. Now we have two trajectories
connecting a saddle point to itself, called homoclinic orbits. The
homoclinic orbit is part of both the unstable and stable manifold of
the steady state. Homoclinic and heteroclinic orbits are examples of
global features of a dynamical system, because their existence cannot
be deduced by only looking at behavior in a small neighborhood of a
particular point. Hamiltonian systems are not structurally stable; phys-
ically we can understand this by noting that any dissipation of energy
leads to “downhill” motion on the energy landscape and the special
properties that H = constant on trajectories and ∇ · f = 0 are lost.
Similarly, homoclinic and heteroclinic orbits are not structurally sta-
ble features, but they remain important for general systems because
they can arise at particular points in parameter space, called global
bifurcations (Guckenheimer and Holmes, 1983).

2.7.4 Long-Time Behavior and Attractors

A question of significant practical interest when studying a mathemat-
ical model of a process is: what happens to the dynamics after a long
time, i.e., as t →∞? In one- or two-dimensional phase spaces, the pos-
sibilities are quite limited and we describe them essentially completely.
In three or more dimensions, very complex behavior is possible and we
shall only touch on the topic.

One Dimension

If x is a scalar, then the autonomous equation

ẋ = f(x)

can always be written in gradient system form

ẋ = −dV
dx

where V(x) =
∫
f(x′) dx′. All initial conditions must end up at a

steady state, or roll downhill forever toward ±∞.
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Figure 2.16: Energy landscape for a pendulum; H = 1
2p

2 − κ cosq;
κ = 2.

Two Dimensions—Planar Systems

Not every two-dimensional vector field can be written as the gradi-
ent of a potential, so two-dimensional (or planar20) systems are not
quite as restricted as one-dimensional ones. Nevertheless, they are
still fairly constrained by the topology of the plane. Let us write a two-
dimensional system as

ẋ1 = f1(x1, x2) ẋ2 = f2(x1, x2)

where (x1, x2)T ∈ R2. The steady states of this system are simply the
intersections of the curves f1(x1, x2) = 0 and f2(x1, x2) = 0. Near
these steady states, the behavior is described by the linearizations, if

20Not all two-dimensional systems are planar. For example, consider a system whose
trajectories are restricted to the surface of a torus, i.e., a doughnut with a hole. This
surface cannot be mapped onto an unbounded plane. We discuss this case when con-
sidering three-dimensional systems. On the other hand, it turns out that the surface of
a sphere can be mapped onto a plane, but the mapping is singular. Another nontrivial
two-dimensional surface is a Möbius strip.
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the eigenvalues have nonzero real parts. In addition to steady states,
we know that closed trajectories (oscillations) can arise, as we saw in
the Hamiltonian examples described previously. Can anything else hap-
pen as t → ∞? Can, for example, a periodic orbit have a figure-eight
shape? The answer to this is no; for trajectories in phase space to cross
would require two values of the vector field (f1, f2)T for the same point
(x1, x2)T , which cannot occur. This prohibition on trajectories crossing
applies in any number of dimensions, but in two dimensions it severely
constrains the possible behavior. One very important consequence of
the constraint is the Poincaré-Bendixson Theorem

Theorem 2.32 (Poincaré-Bendixson). If D is a closed region of R2 and
a solution (x1(t), x2(t))T ∈ D for all t > t0, then the solution either is a
closed path, approaches a closed path as t → ∞, or approaches a fixed
point (steady state).

As an application of this theorem, consider the system

ẋ = x −y − x(x2 + 2y2)

ẏ = x +y −y(x2 +y2)



2.7 Qualitative Dynamics of Nonlinear Initial-Value Problems 193

Transforming to polar coordinates gives

θ̇ = 1+ 1
2
r 2 sin2 θ sin 2θ

ṙ = r(1− r 2(1+ 1
4

sin2 2θ))

From this form of the equations we see that the origin is the only steady
state and that it is unstable. So where do the trajectories go? Note that
ṙ < 0 for all r > 1 so the trajectories must be bounded. Furthermore,
ṙ ≥ 0 for all θ on the circle r = r1 = 2/

√
5 and ṙ ≤ 0 on the circle

r = r2 = 1. So all trajectories entering this annulus (let us call it D)
never leave it. This region is the area between the two gray circles on
Figure 2.18. Since θ̇ > 0 throughout D, there can be no steady states in
this region. The Poincaré-Bendixson theorem thus requires that there
be at least one closed path (periodic orbit) in this region. Numerical
integration reveals that for this problem there is one asymptotically
stable periodic orbit, which is also known as a limit cycle. Part of
a trajectory that starts near the origin, as well as the limit cycle it ap-
proaches, are shown in Figure 2.18.

At this point we have seen two types of behavior that trajectories
may tend to as t →∞: a steady state and a limit cycle. These are simple
examples of attractors. A good working definition of an attractor is
the following.

An attractor A of a dynamical system is a set of points that
is invariant under time evolution of the system, and that is
the ultimate destination as t → ∞ of all initial conditions
that begin sufficiently near it, i.e., in a neighborhood U .21

For planar systems, the Poincaré-Bendixson theorem dictates that the
only attractors are steady states and limit cycles. Note that the two-
dimensional Hamiltonian systems discussed above also have periodic
orbits; these are not attractors because an initial condition close to one
such orbit does not approach it as t → ∞. The fact that trajectories of
Hamiltonian systems lie on constant energy surfaces precludes them
from having attractors.

Three Dimensions

Trajectories in the three-dimensional phase space R3 are much less
topologically constrained than are those in one or two dimensions.

21See, for example, Guckenheimer and Holmes (1983) for a discussion of various def-
initions of attractors and the difficulties in developing a satisfactory general definition.
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Figure 2.18: A limit cycle (thick dashed curve) and a trajectory (thin
solid curve) approaching it. The region D is bounded
by the two gray curves.

There is no three-dimensional analog of the Poincaré-Bendixson the-
orem and thus no restriction that all attractors be either steady states
or periodic orbits. We look first at a simple, geometrically defined ex-
ample. Consider a torus (a donut-shaped surface) floating in three di-
mensions and assume that all trajectories asymptotically approach the
surface of the torus, so that we only need consider what happens on
the torus itself. Further assume that there are no steady states on the
torus. Now any point on the torus can be represented by two angu-
lar positions, θ ∈ [0,2π) and φ ∈ [0,2π), so we can represent the
phase space by a square—any trajectory that leaves one side of the
square reenters on the opposite side. Consider a very simple evolution
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Figure 2.19: Periodic (left) and quasiperiodic (right) orbits on the sur-
face of a torus. The orbit on the right eventually passes
through every point in the domain.

of these variables
θ̇ = p φ̇ = q

where p and q are constants. Eliminating time and integrating we find
an explicit solution for the trajectories: θ = p

q (φ − φ0) + θ0, where
(θ0,φ0) is the value of (θ,φ) at a chosen value of t. Now since θ
and φ are in [0,2π), the trajectory will return to (θ0,φ0) if θ − θ0 =
2πm when φ − φ0 = 2πn, where m and n are (as yet unspecified)
integers. This requires that qm = pn, which can only hold if p/q =
m/n for some pair of integersm and n. That is, p/qmust be a rational
number; this situation is a form of resonance. Otherwise, the trajectory
will never repeat and will eventually pass through every point on the
torus! Such an orbit is called quasiperiodic, because θ(t) and φ(t)
are individually time periodic, but the pair (θ(t),φ(t)) is not. Figure
2.19 shows trajectories for the cases p/q = 9/7 (left) and p/q =

√
2

(right). The qualitative distinction should be clear. From this example
we see a new type of dynamical behavior, the quasiperiodic orbit.

Finally, we present one example of an even more complex type of
attractor that can occur in phase spaces of dimension 3 or higher. Con-
sider the system

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)
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known as the Rössler system. If a = b = 0.2, c = 1, the system
displays a limit cycle, as shown in Figure 2.20. If c = 5.7, however,
the system has the attractor shown in Figure 2.21. This attractor is
neither periodic nor quasiperiodic; in fact, nearby initial conditions will
not follow similar paths but will eventually diverge from one another.
This property is known as sensitivity to initial conditions and
is characteristic of chaotic dynamics. Loosely speaking, an attractor
on which the dynamics are chaotic is called a strange attractor
(Guckenheimer and Holmes, 1983; Strogatz, 1994).

2.7.5 The Fundamental Local Bifurcations of Steady States

We now have seen a variety of possible behaviors for nonlinear dy-
namical systems: steady states, periodic orbits, quasiperiodic orbits,
strange attractors, heteroclinic orbits, homoclinic orbits. . . . Our focus
now shifts to understanding the ways in which the qualitative behav-
ior of a system changes as we change parameters. This branch of the
theory of differential equations is called bifurcation theory(Iooss
and Joseph, 1990).

We begin the discussion just by thinking generally about the steady
states of

ẋ = f(x;µ)

where we now explicitly indicated the dependence of the vector field f
on the parameter µ. For definiteness, assume that derivatives of f of all
orders exist. Let xs(µ) be a steady state, i.e., f(xs(µ);µ) = 0. We can
determine from the linearization of f at xs whether this steady state is
hyperbolic. If it is, then we know, from the Hartman-Grobman theorem,
that a small change in µ does not change the qualitative behavior near
xs . Thus our attention focuses on behavior near values of µ where xs
is not hyperbolic—where the linearization has eigenvalues with zero
real part. This is where qualitative changes in the local behavior near
xs can occur.22 We denote a value µ0 where xs is not hyperbolic as a
bifurcation point.

It will be productive to begin our examination of bifurcations with
one-dimensional systems: x ∈ R1, µ ∈ R1. We shall see later how this
discussion generalizes to higher-dimensional systems. Without loss of
generality, we can specify that the bifurcation point is at µ0 = 0 and

22If the system has a special structure, like a Hamiltonian, then additional conditions
must be satisfied for bifurcation to occur.
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Figure 2.20: A limit cycle for the Rössler system, a = b = 0.2, c = 1.
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Figure 2.21: A strange attractor for the Rössler system, a = b = 0.2,
c = 5.7.



198 Ordinary Differential Equations

define a new dependent variable y = x − xs(µ0). Taylor expanding
about y = 0, µ = 0 and using the facts that f = fx = 0 give

ẏ = fµµ +
1
2

(
fxxy2 + 2fxµµy + fµµµ2

)
+

1
6

(
fxxxy3 + 3fxxµy2µ + 3fxµµyµ2 + fµµµµ3

)
+ · · · (2.76)

Here the subscript denotes partial derivative, fµ = (∂f/∂µ)
∣∣
µ=0,y=0,

etc. We now examine the structure of solutions to this in the most
important cases.

Saddle-Node Bifurcation

We begin with the most general case: the partial derivatives of f (other
than fx) involved in the leading-order behavior are nonzero at the bifur-
cation point. This gives the generic bifurcation behavior; the behavior
that arises in the absence of special conditions on f . For small µ and
y , the dominant balance in (2.76) is

ẏ = fµµ +
1
2
fxxy2 (2.77)

This has steady states

y = ±
√
−2fµµ
fxx

(To see this, check that when y = O(√µ) the terms in (2.76) that we
neglected to get (2.77) are small compared to the ones that we kept.)
Therefore, depending on the sign of fµ/fxx , there are two real solutions
for µ > 0 and none for µ < 0 or vice versa. The point µ = 0 is thus
quite special in that on one side of it there are no steady states near
y = 0 and on the other there are two. This type of bifurcation point
is called variously a limit point, turning point, or saddle-node
bifurcation point. It arises when the conditions fx = 0, fµ ≠ 0, fxx ≠ 0
are satisfied. By rescaling, we can write the normal form for this
bifurcation as

ẏ = µ −y2 (2.78)

Now the steady states are simply y = ±√µ; the positive root is stable
and the negative unstable. When µ = 0, there is a single (repeated) root,
which is stable from the right but not the left, and when µ < 0 there
is no steady state, although trajectories that pass close to y = 0 move
very slowly through that region. The time spent in the interval [−1,1]
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Figure 2.22: Bifurcation diagram for the saddle-node bifurcation. Ev-
ery bifurcation of this type looks like this modulo a ver-
tical and/or horizontal reflection across y = 0, µ = 0.
The branch of stable solutions is the solid curve, the
unstable branch is dashed.

is π√−µ . The bifurcation diagram associated with the saddle-node
bifurcation is shown in Figure 2.22. It summarizes the position and
stability of the steady states as µ changes.

Transcritical Bifurcation

In the above scenario, steady states exist only on one side or the other of
the bifurcation point. What type of bifurcation do we expect to see if we
know, on physical grounds, for example, that solutions exist on both
sides of the bifurcation point? To capture this situation, we impose
the additional condition that fµ = 0 at the bifurcation point. Now we
find that y = O(µ) and the leading-order equation for the dynamics
becomes

ẏ = 1
2

(
fxxy2 + 2fxµµy + fµµµ2

)
This has steady states

y = 1
fxx

(
−fxµ ±

√
f 2
xµ − fxxfµµ

)
µ
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Figure 2.23: Bifurcation diagram for the transcritical bifurcation. Ev-
ery bifurcation of this type looks like this modulo a ver-
tical and/or horizontal reflection across y = 0, µ = 0.
The stable branch is solid, and the unstable branch is
dashed.

So the steady states are (locally) lines in the (y, µ) space, which cross
at (y, µ) = (0,0). Since steady states persist on both sides of the bi-
furcation point, this scenario is called transcritical bifurcation. It
arises when the conditions fx = 0, fµ = 0, fxµ ≠ 0, fxx ≠ 0 are satis-
fied. We can make the presentation simpler without loss of generality
by setting fµµ = 0 and rescaling, which gives us the normal form for
the transcritical bifurcation

ẏ = y(µ + ay), a = ±1 (2.79)

We can show that the steady state y = 0 is stable when µ < 0 and
unstable when µ > 0, and the nontrivial steady state y = −µ/a has the
opposite stability characteristics. The solutions are sometimes said to
“exchange stability” at the bifurcation point. The bifurcation diagram
for the transcritical bifurcation is shown for a < 0 in Figure 2.23.

Pitchfork Bifurcation

Many physical problems have some symmetry that constrains the type
of bifurcation that can occur. For example, for problems with a reflec-
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Figure 2.24: Bifurcation diagrams for the pitchfork bifurcation. Top:
supercritical bifurcation, a = −1. Bottom: subcritical
bifurcation, a = 1. The stable branches are solid, the
unstable are dashed.

tion symmetry, a one-dimensional model may satisfy the condition

f(x − xs ;µ) = −f(−(x − xs);µ)

for all values of µ. With y = x − xs we have that f(y ;µ) = −f(−y ;µ)
so y = 0 is always a solution and f is odd with respect to y = 0.
Therefore, at a bifurcation point y = 0, µ = 0 we have that 0 = f =
fxx = fxxxx = . . . and 0 = fµ = fµµ = fµµµ = . . .. Our Taylor expansion
thus becomes

ẏ = fxµµy +
1
6
fxxxy3

with y = O(µ1/2). Rescaling, we find the normal form

ẏ = y(µ + ay2), a = ±1 (2.80)
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This has steady states y = 0, y = ±
√
−µ/a. The steady states and

stability for this bifurcation are shown in Figure 2.24. For obvious rea-
sons, this scenario is called pitchfork bifurcation. It arises when
the conditions fx = 0, f (y ;µ) = −f(−y ;µ), fxµ ≠ 0, fxx = 0, fxxx ≠ 0
are satisfied. If a = −1, then the nontrivial steady-state branch exists
only for µ > 0 and is stable; this case is said to be supercritical. If
a = +1, the nontrivial branch exists for µ < 0 and is unstable; this is
the subcritical case. Note that in the latter case, the linearly stable
trivial branch will not be approached by initial conditions with mag-
nitude

∣∣y(0)∣∣ > √
−µ/a; so although small perturbations from the

steady state y = 0 decay, larger ones grow.

Hopf Bifurcation

In all of the above scenarios, solutions either monotonically approach
a steady state or go off to ∞ (or more precisely, to where higher-order
terms in the Taylor expansion are important). We now consider the
case where we expect oscillatory behavior, i.e., where the linearized
version of the problem has complex conjugate eigenvalues λ = σ ± iω.
Obviously, we must move from one- to two-dimensional systems for
this behavior to occur. As above, we expect a bifurcation when the
steady state is nonhyperbolic, so σ = 0 and the eigenvalues of J are
purely imaginary. In this instance, the steady-state solution persists on
both sides of the bifurcation point, as long as ω ≠ 0 when σ is small.
We let σ = µϵ with µ = O(1) and write the model as

ẋ =
[
µϵ −ω
ω µϵ

]
x +N2(x,x)+N3(x,x,x)+O(|x|4)

The behavior of the linearized system is characterized by oscillation
on a time scale of ω−1 (which we assume remains finite as ϵ → 0), and
slow growth or decay on an O(ϵ−1) scale. In Example 2.31, we used the
method of multiple scales to show that for small ϵ, balancing the linear
growth terms with the nonlinearity requires that x = O(ϵ1/2), as in the
pitchfork and saddle-node cases above, and that the solution has the
form

x(t) = ϵ1/2r(t)
[

cos(ωt −φ(t))
sin(ωt −φ(t))

]
where the amplitude r and phase φ of the solution are given by

ṙ = ϵµr + aϵr 3 (2.81)

φ̇ = bϵr 2 (2.82)
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The constants a and b are functions of the nonlinearity and ofω (Guck-
enheimer and Holmes, 1983; Iooss and Joseph, 1990). These equations
comprise the normal form for the so-called Hopf bifurcation, the
generic bifurcation connecting steady states (r = 0) to periodic orbits
(r ≠ 0). Notice that the equation for r is identical in form to that for
the pitchfork bifurcation. So if a < 0, we have a supercritical Hopf
bifurcation, a transition with increasing µ from a stable steady state to
a stable limit cycle whose amplitude is ϵ1/2r =

√
−µϵ/a. For the sub-

critical case a > 0 there is a periodic solution, but it exists for µ < 0
and is unstable. Turning to the phase equation, we see that on the limit
cycle, φ = −µϵbt/a, so the frequency of the solution is ω+ bµϵ/a. It
changes linearly as µ increases from zero, with a rate determined by
b/a.

2.8 Numerical Solutions of Initial-Value Problems

We have seen that for linear constant-coefficient problems, a complete
theory exists and the general solution can be found in terms of eigenval-
ues and eigenvectors. For systems of order greater than four, however,
there is no general, exact way to find the eigenvalues. So even in the
most well-understood case, numerical approximations must be intro-
duced to find actual solutions. The situation is worse in general, be-
cause no simple quantitative theory exists for nonlinear systems. Most
of them need to be treated numerically right from the start. Therefore
it is important to understand how numerical solutions of ODEs are con-
structed. Here we consider initial-value problems (IVPs). We focus on
the solution of a single first-order equation, because the generalization
to a system is usually apparent. The equation

ẋ = f(x, t)

can be formally integrated from a time t to a future time t+∆t to read

x(t +∆t) = x(t)+
∫ t+∆t
t

f(x(t′), t′)dt′ (2.83)

The central issue in the numerical solution of IVPs is the approximate
evaluation of the integral on the right-hand side of this equation. With
a good approximation and a small enough time step ∆t, the above for-
mula can be applied repeatedly for as long a time interval as we like,
i.e., x(∆t) is obtained from x(0), x(2∆t) is obtained from x(∆t), etc.
We use the shorthand notation x(k) = x(k∆t).
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2.8.1 Euler Methods: Accuracy and Stability

The three key issues in the numerical solution of IVPs are simplicity,
accuracy, and stability. We introduce each of these issues in turn,
in the context of the so-called Euler methods.

The simplest formula to approximate the integral in (2.83) is the
rectangle rule. This can be evaluated at either t or t +∆t, giving these
two approximations for x(t +∆t)

x(k+1) ≈ x(k) +∆tf (x(k), t(k)) (2.84)

x(k+1) ≈ x(k) +∆tf (x(k+1), t(k+1)) (2.85)

The first of these approximations is the explicit or forward Euler
scheme, and the second is the implicit or backward Euler scheme.
The explicit Euler scheme is the simplest integration scheme that can be
obtained. It simply requires one evaluation of f at each time step. The
implicit scheme is not as simple, requiring the solution to an algebraic
equation (or system of equations) at each step. Both of these schemes
are examples of single-step schemes, as they involve quantities at the
beginning and end of only one time step.

To examine the accuracy of the forward Euler method, we introduce
the local truncation error ϵ. This is the error incurred in a single
time step given a known solution x(k), and is defined by

ϵ =
x(k+1)

exact − x(k+1)
approximate

∆t
For forward Euler, this expression becomes

ϵ =
x(k+1)

exact −
(
x(k) +∆tf (x(k), t(k))

)
∆t

(2.86)

We estimate the exact solution by Taylor expanding and using the fact
that ẋ(k) = f(x(k), t(k)):

x(k+1)
exact = x(k) + ẋ(k)∆t +

1
2
ẍ(k)∆t2 +O(∆t3)

= x(k) + f(x(k), t(k))∆t + 1
2
ẍ(k)∆t2 +O(∆t3)

(For the present analysis it suffices to keep the O(∆t2) terms, but in
general higher order terms may need to be retained.) Plugging back
into (2.86) yields

ϵ =
x(k) + f(x(k), t(k))∆t + 1

2 ẍ
(k)∆t2 −

(
x(k) +∆tf (x(k), t(k))

)
+O(∆t3)

∆t
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Observe that the first two terms in the Taylor expansion of x(k+1)
exact

cancel out the terms from the forward Euler step to yield

ϵ = 1
2
ẍ(k)∆t +O(∆t2)

Thus ϵ scales as ∆t1 as ∆t → 0. The implicit Euler method obeys the
same scaling. Thus the Euler methods are said to be “first-order accu-
rate.” Since the explicit method is simpler, is there any reason to use
the implicit method? The answer is yes and arises when we look at the
third issue mentioned above, stability.

Consider a single linear equation ẋ = λx, so f(x, t) = λx. If
Re(λ) < 0, then x(t) → 0 as t → ∞. It is not asking too much that
a numerical approximation maintain the same property. The Euler ap-
proximations for this special case are

x(k+1) = x(k) + λ∆tx(k)

x(k+1) = x(k) + λ∆tx(k+1)

For the explicit Euler scheme, the iteration formula can be written in
the general form x(k+1) = Gx(k), where in the present case G = (1 +
λ∆t). We call G the growth factor or amplification factor for
the approximation. By applying this equation recursively from k =
0, we see that x(k) = Gkx(0), so if |G| > 1, then x(k) → ∞ as k →
∞. Conversely, if |G| < 1, then x(k) → 0 as k → 0. Thus there is
a numerical stability criterion: |G| < 1. This is equivalent to
G2
R+G2

I < 1, where subscripts R and I denote real and imaginary parts,
respectively. For explicit Euler, GR = 1 + λR∆t,GI = λI∆t, yielding
stability when

(1+ λR∆t)2 + (λI∆t)2 < 1

On a plane with axes λR∆t and λI∆t, this region is the interior of a circle
centered at λR∆t = −1, λI∆t = 0. If∆t is chosen to be within this circle,
the time-integration process is numerically stable; otherwise it is not.
If λ is real, instability occurs if λ > 0; this is as it should be, because
the exact solution also blows up. But it also happens if λ < 0 but ∆t <
−2/λ, which leads to G < −1. This is pathological, because the exact
solution decays. This situation is known as numerical instability.
A numerically unstable solution is not a faithful approximation of the
true behavior of the system.

For a system of equations ẋ = Ax, numerical stability is obtained
only if the time step satisfies the |G| < 1 criterion for all of the eigen-
values λi. Observe that for systems with purely imaginary eigenvalues,
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Figure 2.25: Approximate solutions to ẋ = −x using explicit and
implicit Euler methods with ∆t = 2.1, along with the
exact solution x(t) = e−t.

i.e., purely oscillatory solutions, the explicit Euler method is never nu-
merically stable.

Now consider the same analysis for the implicit Euler scheme. We
can again write x(k+1) = Gx(k), but now G = (1− λ∆t)−1. Therefore

|G|2 = GG =
(

1− 2λR∆t + |λ|2∆t2
)−1

< 1

whenever λR < 0. That is, if the exact solution decays, so does the
approximation. The stability of this method is independent of ∆t, so it
is said to be absolutely stable or A-stable.

Figure 2.25 shows plots of x(t) for the case λ = −1 starting from
initial condition x0 = 1 using explicit and implicit Euler methods with
∆t = 2.1, along with the exact solution x(t) = e−t . The implicit Euler
solution is not particularly accurate because the time step is not small
relative to the natural time scale of the system (∼min (|1/λR| , |1/λI|)),
while the explicit Euler solution displays numerical instability.
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2.8.2 Stability, Accuracy, and Stiff Systems

Say we have a differential equation model whose shortest time scale
of interest is tint . Obviously, we cannot choose a time step ∆t that is
greater than tint , or our approximate solution will jump right over the
interesting behavior. So accuracy requires that ∆t < tint . But if we
use an explicit method, stability requires a time step smaller than tmin,
which is the smallest time scale of the entire problem. For example,
in a kinetics problem, this might be the reaction time for a free-radical
intermediate whose kinetics are so fast that its concentration always
remains near equilibrium. Problems where tmin ≪ tint are said to be
stiff. Implicit methods are always used to solve such problems, as
explicit methods require unreasonably small time steps.

In general, for the problem

ẋ = Ax

we can write a single-step scheme as

x(k+1) = Gx(k)

For example, consider the system

ẋ = Ax =
[
−3 1
0 −100

]
x

The matrix A has eigenvalues -3 and -100, so its characteristic time
scales are 1/3 and 1/100. In fact x2(t) ∼ e−100t , so it is negligible after
only a very short time. The explicit Euler method must capture this time
scale to remain stable. Specifically, G = I+∆tA, whose eigenvalues are
1 − 3∆t and 1 − 100δt, giving a stability limit ∆t < 2/100. If implicit
Euler is used instead,G = (I−∆tA)−1x(k), whose eigenvalues are 1/(1+
3∆t) and 1/(1 + 100∆t), which are both always less than one. Again,
the implicit Euler method is always stable.

2.8.3 Higher-Order Methods

The Euler methods are simple to implement and convenient for intro-
ducing the concepts of simplicity, accuracy, and stability, but they are
not necessarily the most efficient for solving real problems. For ex-
ample, if an implicit method is required, the Adams-Moulton second-
order formula (AM2) is much preferable. This formula uses the trape-
zoid rule rather than the rectangle rule to evaluate the integral and
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therefore has second-order accuracy. The accuracy of IVP methods
is usually given by a number p, the exponent in the expression ϵ =
O(∆tp). Therefore, the Euler methods have p = 1 and AM2 has p = 2.
The formula for this method is

x(k+1) = x(k) + ∆t
2

(
f(x(k+1), t(k+1))+ f(x(k), t(k))

)
Like the backward Euler method, this formula requires the solution
of an algebraic equation for x(k+1) at each time step. Also like the
backward Euler method, it is A-stable. It is preferable to the back-
ward Euler method because it has higher accuracy, the same stability,
and requires no more work. AM2 is widely used for stiff problems.
Adams-Moulton formulas of arbitrary order are available. The third-
order formula, for example, uses f (k+1), f (k), f (k−1), and f (k−2) (where
f (k) = f(x(k), t(k))), to estimate the integral in (2.83) by polynomial ap-
proximation. These methods are not A-stable, however, and since they
are expensive, are rarely used (except in the context described later in
this section).

The second-order Adams-Bashforth (AB2) method is an explicit
method that also uses the trapezoid rule, but it extrapolates to the point
f (k+1), using current and past values of f . AB2 approximates f (k+1) by
f (k) +∆t

(
(f (k) − f (k−1))/∆t

)
(linear extrapolation), so it is a two-step

scheme. Using this approximation in the trapezoid rule formula above
yields

x(k+1) = x(k) + ∆t
2

(
3f (k) − f (k−1)

)
The price that is paid for higher accuracy without more work is a sta-
bility limit that is twice as restrictive as the forward Euler limit, e.g.,
for real λ the stability limit is λ∆t < −1 instead of −2. This stricter
limit arises from the extrapolation that Adams-Bashforth uses, as seen
in Figure 2.26. Adams-Bashforth formulas of arbitrary order also are
available. The third-order formula, for example, uses f (k), f (k−1), and
f (k−2).

Stability can be improved by combining an explicit method for “pre-
dicting” x(k+1) with an implicit method for “correcting” it. Such ap-
proaches are called predictor-corrector methods. Often the order
of the predictor is chosen to be one less than that of the corrector. We
denote APCn as the n − 1 order predictor combined with the n-order
corrector. For example, APC3 has the following steps:

1. A predicted value of the solution at the next time step is denoted
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by x(∗) and computed by the AB2 formula

x(∗) = x(k) + ∆t
2

(
3f (k) − f (k−1)

)
2. This value is now corrected, using the implicit third-order Adams-

Moulton formula

x(k+1) = x(k) + ∆t
12

(
5f (∗) + 8f (k) − f (k−1)

)
where f (∗) = f(x(∗), t(k+1))

APC3 displays third-order accuracy with only one more function eval-
uation than explicit Euler and comparable stability. Figure 2.27 shows
the stability regions for the APC2, APC3, and APC4 methods. If λ∆t for
each eigenvalue of the Jacobian of f (k) is within the region, the method
is stable. If the solutions are expected to be very smooth and function
evaluations are expensive, the APC methods are very economical, be-
cause of their high-order accuracy with only two function evaluations
per time step.

Adams predictor-corrector methods are multistep methods because
they use information from prior time steps. Runge-Kutta (RK) meth-
ods also have higher-degree accuracy than Euler, but are one-step meth-
ods, a useful feature in situations where one may want to change the
time-step during the course of the integration. The simplest of these,
RK2, uses the trapezoid rule to obtain second-order accuracy, extrap-
olating to f (k+1) using a simple forward Euler step: f (k+1) ≈ f (k) +
∆tf (k). Letting

k1 = f
(
x(k), t(k)

)
k2 = f

(
x(k) +∆tk1, t +∆t

)
the trapezoid rule formula becomes

x(k+1) = x(k) + ∆t
2
(k1 + k2)

RK2 is in fact identical to APC2 (because a first-order Adams-Bashforth
formula is simply an explicit Euler step), but RK4, the fourth-order
Runge-Kutta formula, has a larger stability limit than the corresponding
APC4 method; see Figure 2.28. The RK4 formula is

x(k+1) = x(k) + ∆t
6
(k1 + 2k2 + 2k3 + k4)
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Figure 2.26: Stability regions for Adams-Bashforth methods; ẋ = λx;
see also Canuto et al. (2006, Fig. D.1).

in which

k1 = f
(
x(k), t(k)

)
k2 = f

(
x(k) + 1

2
∆tk1, t(k) +

1
2
∆t
)

k3 = f
(
x(k) + 1

2
∆tk2, t(k) +

1
2
∆t
)

k4 = f
(
x(k) +∆tk3, t(k) +∆t

)
If f were independent of x, this would reduce to the Simpson’s rule
formula. RK4 requires four function evaluations. Because they have
better stability properties than APC formulas, Runge-Kutta methods
are generally preferable for nonstiff problems unless evaluation of f is
expensive. If f is stiff, AM2 is the method of choice.

2.9 Numerical Solutions of Boundary-Value Problems

2.9.1 The Method of Weighted Residuals

There are basically two ways to make a continuous problem, like an
ODE, discrete. One is to choose a finite number of points (values of
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4.7).

the independent variable) and find an approximate solution at those
points. This is what we did to solve initial-value problems (IVPs). We
picked a point a distance ∆t from the current time step, and used var-
ious approximate integration techniques to find the solution at that
point. This is a natural approach for IVPs, because the solution at each
time depends only on the solution at the immediately previous time.
The situation with boundary-value problems (BVPs) is different. In this
case, the solution at any point is coupled to the solution at all other
points in the interval because the boundary conditions are imposed
at both ends of the interval (think of a diffusion problem). So if the
solution at a point changes, so does the solution at the neighboring
points. A natural way to take this fact into account is to approximate
the solution as the sum of a finite number of functions, i.e., to choose a
set of functions over the interval and represent the solution as a linear
combination of those functions. A general and systematic approach
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to this approximation process is given by the Method of Weighted
Residuals (MWR).

Consider the linear ODE

Lu = f(x) x ∈ [a, b]

We choose a set of trial functions {φi(x)} in which to represent the
solution u(x) and let un(x) be the approximate solution

un(x) =
n∑
j=1

cjφj(x)

For the moment we require that the solution u(x) and the trial func-
tions satisfy homogeneous boundary conditions, though it is easy to
relax this requirement. As n→∞, we expect un to approach the exact
solution. For finite n, we expect a finite error, or residual, R, which we
define pointwise as

R = Lun − f
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Obviously, if un = u, then Lun = f , the equation is solved and R = 0.
In any case, we want R to be as small as possible. In what sense do we
want R to be small? We choose a second set of functions, the weight
functions or test functions {ψi(x)}, and require that

(R,ψi) = 0, i = 1,2, . . . , n (2.87)

This condition is equivalent to requiring that the residual be orthogonal
to all of the test functions, with respect to the chosen inner product.
We expect that an approximate solution un(x) that satisfies these con-
ditions will converge to the exact solution as n→∞ because a function
that is orthogonal to infinitely many basis functions must be zero. Us-
ing the expressions for R and un, the condition becomes

n∑
j=1

(Lφj(x),ψi(x))cj = (f (x),ψi(x)), i = 1,2, . . . , n

Setting
Aij = (Lφj(x),ψi(x)) (2.88)

and
bi = (f (x),ψi(x)) (2.89)

results in the linear algebraic system Aijcj = bi. We know, of course,
how to solve this. Once we have done so, we have the coefficients cj in
the series for un and therefore we have our solution.

As yet, the trial and test functions have been left unspecified. We
already have introduced several examples of trial functions and shall
shortly see another. As for test functions, there are two common
choices, which lead to two types of formulations:

1. Galerkin: ψi(x) = φi(x). If the trial functions are orthogonal,
this approach simply forces the firstn terms in the representation
of R in the trial function basis to vanish.

2. Collocation: ψi(x) = δ(x − xi), where {xi}, i = 1,2, . . . , n is a
set of collocation points. Since (R, δ(x − xi)) = R(xi), the
collocation method simply requires the residual to be zero at the
chosen set of points.

We introduce a number of specific MWR implementations using the
model problem

y ′′ +y = x − 1 y(0) = −1 y(1) = 1 (2.90)
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Figure 2.29: Hat functions for N = 2.

Since the boundary conditions are not homogeneous, let u = y−(2x−
1). Now u(0) = u(1) = 0 and the equation becomes

u′′ +u = −x (2.91)

Galerkin Method

Finite element Galerkin method. In this method, the trial functions
are low-order piecewise polynomials localized to small subsets of the
domain, known as the elements, and are zero elsewhere. Consider the
space L2(0,1) and the set of functions φi(x) where

φ0(x) =

1− x
h , 0 ≤ x ≤ x1

0, otherwise

φj(x) =


1− j + x

h , xj−1 ≤ x ≤ xj
1+ j − x

h , xj ≤ x ≤ xj+1

0, otherwise

j = 1, N − 1

φN(x) =

1−N + x
h , xN−1 ≤ x ≤ xN

0, otherwise

with xj = jh and h = 1/N. These functions are called “hat” functions
and are shown in Fig. 2.29 for N = 2. Observe that φj(x) and φj+1

are nonzero in overlapping regions—these regions are the “elements”
to which the name of the method alludes. These functions are not
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orthogonal. Attractive features of this set are that the functions are
spatially localized (important for multidimensional problems in com-
plicated domains) and simple, and that the coefficients cj are the actual
values of the (approximate) solution at the points xj : cj = un(xj).

For (2.91), the boundary conditions u(0) = u(1) = 0 obviate the
use of φ0 and φN in the basis, since they do not satisfy the boundary
conditions. In the Galerkin approach, ψi(x) = φi(x), so the weighted
residual conditions become

(R,ψi) =
n∑
j=1

∫ 1

0
(φ′′j +φj)φidx cj −

∫ 1

0
−xφidx = 0, i = 1,2, . . . , n

where n = N − 1. Thus

Aij =
∫ 1

0
(φ′′j +φj)φidx

= φ′jφi
∣∣∣1

0
+
∫ 1

0
(−φ′jφ′i +φjφi)dx

=


− 2
h +

2h
3 , i = j

1
h +

h
6 , j = i± 1

0, otherwise

and

bi =
∫ 1

0
−xφidx = −ih2

Note that integrating by parts is unnecessary if we are willing to deal
with the delta function nature of φ′′ for the hat functions. Now we
have a linear algebra problem Aijcj = bi, which can be solved by LU
decomposition, for example. For this particular choice of basis, A has a
special structure: only the diagonal elements and those just above and
below the diagonal are nonzero. Such a matrix is called tridiagonal
and can be LU decomposed quickly, i.e., inO(n) operations, since most
of its entries are already zero. In general, an n×nmatrix that only has
∼ n nonzero elements is said to be sparse. Because the trial functions
in this case are piecewise linear, the L2 norm of the error ∥un −u∥2

decays rather slowly as n increases: ∥un −u∥2 = O( 1
n2 ) as n → ∞.

The maximum (L∞) error decays even more slowly: ∥un −u∥∞ = O( 1
n1 )

as n → ∞ (Hughes, 2000; Strang and Fix, 2008). Figure 2.30 shows
finite element solutions for this problem, as well as the exact solution
u(x) = −x + csc(1) sinx.
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Figure 2.30: Approximate solutions to (2.91) using the finite ele-
ment method with hat functions for N = 6 and N = 12.
The exact solution also is shown.

The finite element method bears some similarities to finite differ-
ence methods, which instead of expanding solutions in basis functions,
considers function values at distinct grid points in a domain and re-
places derivatives by difference formulas (Press, Teukolsky, Vetterling,
and Flannery, 1992). For example, u′(x) can be approximated as

u′f (xj) =
u(xj+1)−u(xj)

h
+O(h) (2.92)

or

u′b(xj) ≈
u(xj)−u(xj−1)

h
+O(h) (2.93)

where xj and h are defined as above. These two equations are known
as forward and backward difference formulas, respectively. The
central difference formula for the first derivative is given by

u′c(xj) =
u(xj+ 1

2
)−u(xj− 1

2
)

h
+O(h2) (2.94)
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These formulas are easily verified by Taylor expansion. Applying this
formula twice gives the central difference formula for the second deriva-
tive

u′′c (xj) =
u(xj+1)− 2u(xj)+u(xj−1)

h2
+O(h2) (2.95)

Using this formula to approximate the second derivative in (2.91) yields
the following set of equations

u(xj+1)− 2u(xj)+u(xj−1)
h2

+u(xj) = −jh, j = 1,2, . . . , n

with u(x0) = u(xn+1) = 0. For comparison, writing the finite element
formulation above in the same format gives

u(xj+1)− 2u(xj)+u(xj−1)
h2

+ 4u(xj−1)+u(xj)+ 4u(xj+1)
6

= −jh j = 1,2, . . . , n

Observe that the term corresponding to the second derivative is iden-
tical in the two cases, as is the right-hand side. In many situations,
finite difference and finite element formulations lead to similar sets of
discretized equations. A great advantage of the finite element method,
however, is its flexibility in dealing with multidimensional problems in
complex geometries, as one does not need to develop multidimensional
analogues of the difference formulas.

Fourier-Galerkin method and eigenfunction expansion. Here, in-
stead of the hat functions, we use the sine functions as trial and test
functions, i.e., φj(x) = sin jπx; we seek a solution in the form of a
truncated Fourier sine series. In the present case these trial functions
are eigenfunctions of L. Choosing the trial functions to be the eigen-
functions of the linear operator is called eigenfunction expansion
and in this situation the matrix A defined by (2.88) becomes diagonal.
For the example

Aij =
∫ 1

0
(φ′′j +φj)φidx =

−j2π2 + 1
2

δij

bi =
∫ 1

0
−xφidx =

(−1)i−1

iπ

The diagonal nature of A makes the solution procedure for c simple
once the above integrals have been performed

cj =
2(−1)j−1

(1− j2π2)jπ
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Because cj ∼ j−3 for large j, the L2 error scales as 1/n3. This error
is smaller than for the finite element method, but not as small as it
could be, because the solution to the problem is not a smooth periodic
function, as the use of the Fourier basis implicitly assumes.

Legendre-Galerkin method. The trigonometric functions used in the
previous example were the eigenfunctions of a regular Sturm-Liouville
problem. What happens if we instead use the eigenfunctions of a sin-
gular Sturm-Liouville problem, for example the Legendre polynomials?
Our example problem is set in the domain (0,1), while the natural do-
main for Legendre polynomials is (−1,1), so we change coordinates,
letting z = 2x − 1, which gives the new equation

4
d2u
dz2

+u = −1
2
(z + 1), u(−1) = u(1) = 0

We let φj(z) = Pj−1(z), so

un(z) =
n−1∑
j=0

cj+1Pj(z)

The Legendre polynomials do not satisfy the boundary conditions, so
we need to use a slightly modified approach, called the Galerkin tau
method:

1. Impose the weighted residual conditions only for i = 1,2, . . . , n−2

(R,φi) = 0, i = 1, . . . , n− 2

This gives n− 2 equation for the n unknowns cj .

2. Supplement these equations with the expressions for the bound-
ary conditions on un

un(−1) = 0 =⇒
n−1∑
j=0

Pj(−1)cj+1 = 0

un(1) = 0 =⇒
n−1∑
j=0

Pj(1)cj+1 = 0

Now the first n − 2 rows of A and b contain the weighted residual
equations, and the last two rows the equations needed to satisfy the
boundary conditions.
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To construct the equations resulting from the weighted residual
conditions, the following properties of Legendre polynomials are rele-
vant∫ 1

−1
Pn(x)Pm(x) dx =

2
2n+ 1

δmn

P ′j(x) =
j−1∑

k=0,j−k even

(2k+ 1)Pk(x)

P ′′j (x) =
j−1∑

k=0,j−k odd

1
2
(2k+ 1)(j − k)(j + k+ 1)Pk(x)

These can be derived from (2.26)–(2.29).dz For the sample problem,
these results can be used to yield

Ai+1,j+1 = 4
∫ 1

−1

( j−1∑
k=0
j−k odd

1
2
(2k+ 1)(j − k)(j + k+ 1)Pk(z)+ Pj(z)

)
Pi(z) dz

= 4
j−1∑
k=0
j−k odd

1
2
(2k+ 1)(j − k)(j + k+ 1)

2
2k+ 1

δik +
2

2i+ 1
δij

for i = 0, n− 3, j = 0, n− 1 and

bi+1 =
∫ 1

−1

−1
2
(z + 1)Pi(z) dz

=
∫ 1

−1

−1
2
(P0(z)+ P1(z))Pi(z) dz

= −δi0 −
1
3
δi1

for i = 0, n− 3. The expressions for the boundary conditions lead to

An−1,j+1 = (−1)j An,j+1 = 1 bn−1 = 0 bn = 0

We do not plot the comparison between approximate and exact so-
lutions for this case, because even for n = 5, the two are visually in-
distinguishable. Rather, Figure 2.31 shows |cj| versus j for n = 10.
For j ≥ 4, the plot is nearly a straight line on a semilog plot, indicat-
ing that cj decays exponentially with j. This exponential or spectral
convergence is characteristic of MWR methods that use trial functions
chosen to be eigenfunctions of a singular Sturm-Liouville problem (Got-
tlieb and Orszag, 1977). For this reason these methods are often called



220 Ordinary Differential Equations

10−11

10−9

10−7

10−5

10−3

10−1

1 2 3 4 5 6 7 8 9 10

∣∣c(j)∣∣

j

Figure 2.31: Dependence of
∣∣c(j)∣∣ on j for the Legendre-Galerkin

approximation of (2.91) with n = 10.

spectral methods. The rapid convergence reflects the fact that the
Galerkin approximation yields a solution very close to the truncated
Fourier series of the solution in the trial function basis. The very high
accuracy of spectral methods does come at a cost—the matrix A is not
sparse so it cannot generally be factorized in O(N) operations.

Collocation Method

Galerkin methods require evaluation of many integrals of products of
trial functions. This fact is particularly cumbersome in nonlinear prob-
lems. In the collocation method, the integrals of (2.87) are simplified
greatly by the fact that the test functions are delta functions. Another
attractive feature of the collocation approach is that the solution can be
directly represented by its values at the collocation points, rather than
as coefficients in a series. To illustrate the structure of a collocation
formulation, consider the trial function set {φ1(x),φ2(x),φ3(x)} and
three collocation points x1, x2, x3. The approximate solution is thus
un(x) = c1φ1(x) + c2φ2(x) + c3φ3(x). The coefficients c1 − c3 are
uniquely determined if the values of un are known at three points, as
we can see by writing in matrix form the equations for the values of un
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at the collocation pointsφ1(x1) φ2(x1) φ3(x1)
φ1(x2) φ2(x2) φ3(x2)
φ1(x3) φ2(x3) φ3(x3)


c1

c2

c3

 =
un(x1)
un(x2)
un(x3)


This equation can be written Sc = U , where S is the (invertible) transfor-
mation that relates the coefficient vector c, with the vector of solution
values at the collocation points U

c =
[
c1 c2 c3

]T
U =

[
un(x1) un(x2) un(x3)

]T
We also can write the equations for dun/dx at the collocation pointsφ

′
1(x1) φ′2(x1) φ′3(x1)
φ′1(x2) φ′2(x2) φ′3(x2)
φ′1(x3) φ′2(x3) φ′3(x3)


c1

c2

c3

 =
u′n(x1)
u′n(x2)
u′n(x3)


or Sdc = U ′. Using the fact that c = S−1U , we can write U ′ = SdS−1U
or U ′ = DnU , where Dn = SdS−1 is called the collocation differen-
tiation matrix. With this formula, we can compute the derivative of
the function un (evaluated at the collocation points) directly from the
function values at the collocation points. All of the information about
what basis functions have been used is absorbed into the operator Dn.
Similarly, the second derivative matrix is simply D2

n. Note that within
the space of functions that are spanned by the set of trial functions,
the differentiation is exact. For example, if we use a polynomial ba-
sis, the derivative of any quadratic function is evaluated exactly by the
collocation differentiation operator constructed above.

The choice of collocation points depends on the basis functions and
is based on the following idea. A weighted integral (inner product) of
functions

(u,v)w =
∫ b
a
u(x)v(x)w(x) dx

can be approximated as a sum

(u,v)w ≈
n∑
j=0

u(xj)v(xj)wj (2.96)

where wj ≠ w(xj) in general. It can be shown that for certain choices
of u(x) and v(x), the points xj and weights wj can be chosen so that
(2.96) is exact. These points are the ideal choice for collocation points.
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For example, let u and v be periodic functions that can be written
as truncated Fourier series

u(x) =
n/2−1∑
k=−n/2

ûkeikx, v(x) =
n/2−1∑
k=−n/2

v̂keikx

in the domain 0 < x < 2π . Equation (2.96), modified to exclude the
term j = n, which is redundant due to periodicity, yields the exact
integral if xj = 2πj/n and wj = 2π/n. Similarly, if u and v are poly-
nomials of degree ≤ n, (2.96) can be made exact using the Gaussian
integration formulas. Canuto et al. (2006) provide a detailed dis-
cussion.

Chebyshev collocation. Chebyshev polynomials are a particularly pop-
ular choice as trial functions for the collocation method. These func-
tions are the solutions to the Sturm-Liouville equation

(1− x2)
d2y
dx2

− xdy
dx
+ ν2y = 0 (2.97)

When ν is an integer, this equation always has a polynomial solution
called a Chebyshev polynomial (of the first kind) Tν(x); see Exercise
2.36. These polynomials form an orthogonal basis in the domain −1 <
x < 1 with the weight functionw(x) =

(
1− x2

)−1/2
and have the form

T0(x) = 1

T1(x) = x
Tν+1 = 2xTν(x)− Tν−1(x)

As with Legendre polynomials, Chebyshev polynomials also arise from
Gram-Schmidt orthogonalization of the set {1, x,x2, . . .}, but now us-
ing the weighted inner product. A particularly important property of
Chebyshev’s equation is that when using the coordinate transformation
x = cosθ, it reduces to

d2y
dθ2

+ ν2y = 0

and the Chebyshev polynomials become

Tν(θ) = cos (νθ)

in the domain −π < θ < π . In this domain, the optimal collocation
points are uniformly spaced, which in the original domain −1 < x < 1
results in the points

xj = cos
πj
n
, j = 0, . . . , n
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These points are very closely spaced near x = ±1, making Chebyshev
collocation an attractive approach for problems in which sharp gra-
dients near boundaries are expected. The differentiation operator is
given by

Dn,lj =



cl
cj
(−1)l+j
xl−xj , l ≠ j
−xj

2(1−x2
j )
, 1 ≤ l = j ≤ n− 1

2n2+1
6 , l = j = 0

−2n2+1
6 , l = j = n

where cj = 1+ δj0 + δjn.
As with the Legendre-Galerkin method, the natural setting for Cheby-

shev collocation is the domain (−1,1). For our example problem, (2.91)
transformed into this domain, the equations of the Chebyshev colloca-
tion approximation are

4(D2
n)ijUj +Uj = −

1
2
(zi + 1), i = 1, . . . , n− 1

This gives n−1 equations; the additional two equations come from the
boundary conditions: U0 = Un = 0. This is a set ofn+1 algebraic equa-
tions in n + 1 unknowns and can be solved in the usual way. Because
it uses orthogonal polynomials as trial functions, the Chebyshev collo-
cation method also achieves the exponential convergence illustrated in
the Legendre-Galerkin example.

2.10 Exercises

Exercise 2.1: A linear constant coefficient problem

Find the general solution to
ẋ = Ax

where

A =

−1 −1 0
1 −1 −1
0 0 2


Express it so that only the arbitrary constants are (possibly) complex. You should be
able to solve the problem without explicitly performing any similarity transformations,
i.e., you should not need to invert any matrices.

Exercise 2.2: Phase plane dynamics of a linear problem

Find the general solution to
ẋ = Ax
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where

A =
[

19 −14
14 −16

]
Sketch the dynamics on the phase plane in the original coordinate system, being careful

to show the invariant directions and the stability along those directions.

Exercise 2.3: Members of function spaces

Determine which of the following functions are in the linear space spanned by the set
{1, cos 2x, sin 2x}.

(a) cos2 x

(b) cosx(cosx + sinx)

(c) 1+ sin2 x

(d) 1+ cosx

Hint: remember to look at the basic trigonometric identities.

Exercise 2.4: Weighted inner products and approximation of singular func-
tions

Consider the function f(t) = 1/t in the interval (0,1].

(a) Show that f(t) is not in L2(0,1), but that it is in the Hilbert space L2,w(0,1),
where the inner product is given by

(x,y)w =
∫ 1

0
x(t)y(t)w(t)dt and w(t) = t2

(b) From the set {1, t, t2, t3, t4}, construct a set of ON basis functions for L2,w(0,1).
These are the first five Jacobi polynomials (Abramowitz and Stegun, 1970).

(c) Find a five-term approximation to 1/t with this inner product and basis. Plot
the exact function and five-term approximation. Compute the error between the
exact and approximate solutions using the inner product above to define a norm.
This type of inner product is sometimes used in problems where the solution
is known to show a singularity. As your analysis will show, polynomials can be
used to get a fairly good approximation except very near the singularity.

Hint: this problem is a good excuse to begin using a symbolic manipulation program
like Mathematica. The calculations are not hard, but they are tedious and that is exactly
the kind of problem Mathematica is good at.

Exercise 2.5: Fourier series of a real function

For a real function f(x) with Fourier series representation
∑∞
k=−∞ ckeikx , show that

the Fourier coefficients satisfy ck = c−k.

Exercise 2.6: Fourier series of a sawtooth function

Consider the “sawtooth” function in the domain 0 < x ≤ 2π

f(x) =

x if x < π
2π − x if x ≥ π
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Find the Fourier coefficients ck for this function using the basis functions eikx . Show
that they decay as 1/k2 as |k| → ∞.

Exercise 2.7: Fourier series of a square wave

Repeat the above exercise, but for the “square wave” function

f(x) =

1 if x < π
−1 if x ≥ π

Avoid redoing all of the integrals by using the fact that this function is simply the
derivative of the sawtooth (so its Fourier series is the derivative of that of the sawtooth).
Show specifically that the Fourier coefficients decay as 1/k as |k| → ∞. Use Octave or
MATLAB to plot the 10-term approximation to this function, i.e., −10 ≤ k ≤ 10.

Exercise 2.8: Basis functions of the finite element method

Consider the hat functions described in Section 2.9.1.

(a) For N = 2, find the inner products (φk(x),φl(x)), k = 0, . . . ,N, l = 0, . . . ,N. Is
the set orthogonal?

(b) Approximate (in L2(0,1)) the function f(x) = 1+ x(1− x) in terms of the hat
functions with N = 2. That is, find and solve a linear system for the coefficients
ci in the expression f(x) ≈

∑2
i=0 ciφi(x).

Hint: use symmetry to save time evaluating integrals.

Exercise 2.9: Bessel’s inequality and Parseval’s theorem

Consider a function f(x), represented in a (complete) orthonormal basis as a general-
ized Fourier series: f(x) =

∑∞
i=0 ciφi(x), with ci = (f (x),φi(x)).

(a) Show that the Fourier coefficients satisfy for any K,
∑K
i=0

∣∣ci∣∣2 ≤
∥∥f∥∥2

2. This
result is known as Bessel’s inequality.

(b) Since the series converges to f(x) as K →∞, show that

∞∑
i=0

∣∣ci∣∣2 =
∥∥f∥∥2

2

This result is known as Parseval’s equality or Parseval’s theorem.

Exercise 2.10: Fourier series of a triangle wave

Consider the Fourier sine series approximation for the triangle wave depicted in Fig-
ure 2.32.

fM(x) =
M∑
n=1

an sin(nπx) x ∈ [0,1]

(a) Find the coefficients an, n = 1,2, . . .. To save time you may find the following
integral formulas useful∫

(mx + b) sin(nπx)dx = −mx + b
nπ

cos(nπx)+ m
(nπ)2

sin(nπx)∫ 1

0
sin(nπx) sin(mπx)dx = 1

2
δnm, n,m = 1,2, . . .
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Figure 2.32: Triangle wave on [0,1].

(b) Plot the function fM(x) forM = 5,10,50 with parameter a = 0.1 to demonstrate
convergence to f(x). How many terms are required to obtain good accuracy?

Exercise 2.11: Differentiating integrals

Use the Leibniz rule for differentiating integrals to solve the following two problems.

(a) Check that the solution to the differential equation

dy
dt
+ p(t)y = q(t)

with initial condition y(0) = y0 is

y(t) = e−
∫ t
0 p(t′)dt′

[∫ t
0
q(t′′)e

∫ t′′
0 p(τ)dτdt′′ +y0

]
Remember to show the solution satisfies both the differential equation and initial
condition.

(b) Derive a Leibniz rule for differentiating the double integral

f(t) =
∫ b(t)
a(t)

∫ d(t,p)
c(t,p)

h(t,p, s)dsdp

Your answer should not contain the derivatives of any integrals.

Exercise 2.12: Convolution theorem

(a) Use the definition of the Laplace transform to derive the convolution theorem

L
{∫ t

0
f(t′)g(t − t′)dt′

}
= f(s)g(s)

(b) Use the definition of the inverse Laplace transform to derive the convolution
theorem going in the other direction

L−1{f(s)g(s)} = ∫ t
0
f(t′)g(t − t′)dt′

Which direction do you prefer and why?
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Exercise 2.13: Final-value and initial-value theorems

Two useful theorems are the final and initial-value theorems

lim
t→∞

f(t) = lim
s→0

sf (s)

if and only if sf (s) <∞ for all s such that Re(s) ≥ 0

otherwise lim
t→∞

f(t) does not exist

and
lim
t→0+

f(t) = lim
s→∞ sf (s)

(a) The conditions on sf (s) for the final-value theorem are crucial. For the functions
below, state which satisfy the conditions and give their final values.

1.
1
s

2.
1
s2

3.
1

s(s − a) Re(a) > 0

4.
1

s(s + a) Re(a) > 0

(b) What are the initial values, f(0+)?

(c) Invert each of the transforms to get f(t) and check your results.

Exercise 2.14: Network of four isomerization reactions

Consider the set of reversible, first-order reactions

A
k1-⇀↽-
k−1

B
k2-⇀↽-
k−2

C
k3-⇀↽-
k−3

D
k4-⇀↽-
k−4

E

taking place in a well-mixed, batch reactor. The reactions are all elementary reactions
with corresponding first-order rate expressions. Let the concentration of the species
be arranged in a column vector

c =
[
cA cB cC cD cE

]T
(a) Write the mass balance for the well-mixed, batch reactor of constant volume

dc
dt
= Kc

What is K for this problem?

(b) What is the solution of this mass balance for initial condition c(0) = c0? What
calculation do you do to find out if this solution is stable?

(c) Determine the rank of matrix K. Hint: focus on the rows of K. Justify your
answer. From the fundamental theorem of linear algebra, what is the dimension
of the null space of K?

(d) What is the condition for a steady-state solution of the model? Is the steady
state unique? Why or why not?
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Exercise 2.15: Network of first-order chemical reactions

Consider the generalization of Exercise 2.14 to the following set of n reversible, first-
order reactions

A1
k1-⇀↽-
k−1

A2
k2-⇀↽-
k−2

A3
k3-⇀↽-
k−3

· · ·
kn−1-⇀↽-
k−(n−1)

An

taking place in a well-mixed, batch reactor. The reaction rate for the ith reaction is

ri = kiAi − k−iAi+1

Let the concentration of the species be arranged in a column vector

c =
[
cA1 cA2 · · · cAn

]T
(a) Write the mass balance for the well-mixed, batch reactor of constant volume

dc
dt
= · · ·

(b) What is the solution of this mass balance for initial condition c(0) = c0?

(c) What is the steady-state solution of the model? Is the steady state unique? Why
or why not?

(d) What calculation would you do to decide if the steady state is stable?

Exercise 2.16: Using the inverse Laplace transform formula

Establish property 4 of the Laplace transform pair given in Section 2.2.4, which states
for n = 1

df(s)
ds

= −L(tf (t))

This formula proves useful in Exercise 3.19.

Exercise 2.17: ODE review

Solve the following ODEs: unless boundary conditions are given, find the general solu-
tion:

(a) y′ = ex+2y (separable)

(b) ẏ = y2, y(0) = 1 (separable)

(c) (y − 2x)dy − (2y − x)dx = 0 (exact)

(d) (x2 −y2)dy = 2xydx (integrating factor)

(e) xdy + (y + ex)dx = 0 (integrating factor)

Exercise 2.18: General solution to a first-order linear system of ODEs

Find the general solution to ẏ = Jy , where

J =

λ 1 0
0 λ 1
0 0 λ





2.10 Exercises 229

Exercise 2.19: A linear system—dynamics on the phase plane

Consider the system

ẋ =
[
−1 1

1 −1

]
x + h(t)

(a) Find the general solution to the homogeneous problem, i.e., with h(t) = 0. Char-
acterize its stability.

(b) Sketch the qualitative behavior of solutions on the x1 − x2 plane. Where does
this system fit on Figs. 2.1-2.2?

(c) Now solve the inhomogeneous problem with h(t) = (1,1)T and characterize its
stability.

Exercise 2.20: Dynamics of a freely rotating rigid body

Consider the system of equations

I1ω̇1 =ω2ω3(I2 − I3)
I2ω̇2 =ω3ω1(I3 − I1)
I3ω̇3 =ω1ω2(I1 − I2)

with I1 > I2 > I3 > 0. This set of equations describes the motion of a rigid body freely
rotating in space. The Is are the moments of inertia of the body relative to each of the
principal axes of the body and the ωs are the angular velocities with respect to those
axes.

(a) Ifω = (ω1,ω2,ω3) is a steady state of this system, find the linearized equation
for deviations ω̂ = (ω̂1, ω̂2, ω̂3) from the steady state.

(b) Find three steady states of the system that satisfy I21ω
2
1 + I22ω2

2 + I23ω2
3 = 1.

Which are linearly stable?

(c) Sketch, in the (ω̂1, ω̂2, ω̂3) phase space, the qualitative behavior of trajectories
that begin near each of the steady states, using the linearized equations as your
guide.

(d) Your results can be tested experimentally. The principal axes of a book are, in
order of decreasing moment of inertia, the axis passing through the front and
back covers, the right and left sides, and the top and bottom. Experimentally
assess the stability of free rotation of a book with respect to these three axes.
(You have to do something to keep the covers from flying open while the book
spins.) Do the theory and experiment agree?

Exercise 2.21: Duffing’s equation

Duffing’s Equation describes the dynamics of an undamped beam

ẍ − βx + x3 = 0

where x is proportional to the displacement of the middle of the beam. When β > 0
the beam buckles: the “unbuckled” state x = ẋ = 0, is unstable.

(a) The two nontrivial steady states are x = ±
√
β, ẋ = 0. Find the eigenvalues of the

linearizations around those states.
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(b) In this model there is no friction so the total energy (kinetic plus elastic) is
conserved. The total energy is given by

H = ẋ
2

2
− βx

2

2
+ x

4

4

A given initial condition will have a specified value ofH, and the resulting trajec-
tory must have the same value of H for all time, so a trajectory in phase space is
a curve of constant H. Show that the trajectories near the two nontrivial steady
states are closed curves and thus that the linearized equations give the correct
qualitative behavior in this case.

Exercise 2.22: Predator-prey model

The following model describes a “predator-prey” system: species 1 eats the grass and
species 2 eats species 1

ẋ1 = x1(1− x1 − βx2)

ẋ2 = x2(αx1 − 1)

In this model, β > 0 and α > 1, and x1 and x2 represent the sizes of the prey and
predator populations.

(a) There are three steady states to this model. Find them.

(b) Find the linear stability of each of the steady states. Since this is a 2-dimensional
system, the trace and determinant criterion can be used.

(c) Draw the phase-plane behavior near each of these steady states.

Exercise 2.23: Cell in shear flow

The following differential equation arises from a model of a cell moving in a shear flow

θ̇ = −A+ cos 2θ

where θ is the orientation angle of the cell with respect to the flow direction and A is
a parameter that is determined by the geometry and mechanics of the cell (Keller and
Skalak, 1982).

(a) For A = 0, there are four steady states in the domain 0 < θ ≤ 2π . Find them
and determine which ones are linearly stable.

(b) Draw the trajectories in phase space for A = 0, along with the steady states.
Here phase space is simply the line, and since θ is periodic can alternately be
considered to be just a circle with unit radius.

(c) For A larger than a certain value, this equation has no steady-state solutions.
What is that value? What do the phase-space dynamics look like, i.e., draw a
picture, when A exceeds that critical value?

Exercise 2.24: Steady-state heat conduction in an annulus

Consider the steady-state conduction of heat in a solid annular region shown in Fig-
ure 2.33. There is uniform heat generation in the solid. The heat-generation rate is
given by

Q̇ = S0(1+α(T − T0))



2.10 Exercises 231

Q̇ κR

R

qr = 0

T = T0

Figure 2.33: Annulus with heat generation in the solid.

in which α is a dimensional constant. The inner wall of the annulus is insulated and
the outer wall is at constant temperature T0. The material has thermal conductivity k.

(a) Write the steady-state heat equation with the source term.

(b) Define dimensionless variables

ξ = r
R

Θ = k(T − T0)
S0R2 β2 = αS0R2

k

Show that the model reduces to

1
ξ
d
dξ

(
ξ
dΘ
dξ

)
+ β2Θ = −1

with boundary conditions

Θ = 0 ξ = 1

dΘ
dξ
= 0 ξ = κ

(c) What is the complementary function?

(d) By inspection, what is a particular solution?

(e) Using the two boundary conditions, specify the two unknowns in the comple-
mentary function.

(f) Plot Θ(ξ) for the following values

κ = 0.8 β = [1,3,5,7,7.5]

Exercise 2.25: Existence of a positive steady-state temperature profile

Consider Exercise 2.24 again.

(a) Plot and compare the solution Θ(ξ) if you set κ = 0.8 and β = 7.5,8.0,8.5,10?
What happens as you increase β in this problem?

(b) Look again at how you solve for the constants c1, c2. What are you assuming for
this solution to exist?
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(c) For κ values ranging from 0 to 0.99, find and plot the critical value of β such
that the solution for c1, c2 does not exist. If you exceed this critical value of β,
what do you think happens in the transient heat-conduction problem?

Exercise 2.26: Flow through a porous medium in a tube

Brinkman’s modification of Darcy’s law for flow in porous media is

−∇P −
(
µ
κ

)
v+ µ∇2v = 0

For axial flow in a tube containing a porous medium this becomes

1
r
d
dr

(
r
dvz
dr

)
− vz
κ
= −∆P

µL

in which
κ = permeability of the porous medium
µ = viscosity of the fluid
∆P = pressure difference + gravity driving force
vz = z-component of the “superficial velocity” v
R = radius of tube
L = length of tube

Reasonable boundary conditions are vz(R) = 0 and vz(0) <∞.

(a) Introduce a dimensionless velocity and radius

φ = vzµL
∆PR2 ρ = r

R

and rewrite the differential equation and the boundary conditions in terms of
the dimensionless variables. How many dimensionless parameters does the new
differential equation contain?

(b) Obtain a particular solution of the differential equation obtained in (a) by inspec-
tion.

(c) Obtain the solution of the homogeneous equation; it should contain two con-
stants. One constant can be immediately evaluated from the boundary condition
at ρ = 0. Why?

(d) Evaluate the remaining constant using the boundary condition at ρ = 1. Write
the full solution φ(ρ) to the differential equation. Plot φ(ρ) for permeability
κ/R2 = 0.01,0.1,0.3,1.0. Also include on this plot the velocity profile for Hagen-
Poiseuille flow.

(e) Evaluate the average dimensionless velocity ⟨φ⟩ and show that

⟨φ⟩ =
∫ 1
0 ρφ(ρ)dρ∫ 1

0 ρdρ

= κ
R2

1− 2
√
κ
R

I1
(
R√
κ

)
I0
(
R√
κ

)


Plot ⟨φ⟩ versus κ/R2 with a log scale for the x-axis for 10−4 ≤ κ/R2 ≤ 102.
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(f) Show that in the limit of small permeability, κ, the result in (e) simplifies to
⟨φ⟩ = κ

R2 (which is exactly the result from Darcy’s law).

(g) Show that in the limit as κ → ∞, ⟨φ⟩ = 1
8 (which is exactly the result for flow in

an empty tube).

Exercise 2.27: Laguerre’s equation

The ODE
xy′′ + (1− x)y′ + λy = 0

where λ is a constant, is called Laguerre’s equation. It arises in determining the wave
function for the electrons of a hydrogen atom—the orbitals that you learn about in
quantum mechanics (and thus the structure of the periodic table) emerge in part from
the solutions to this equation.

(a) Show that x = 0 is a regular singular point.

(b) Determine the roots of the indicial equation and one solution to this problem
(for x > 0) using the method of Frobenius.

(c) Show that when λ is a positive integer, this solution reduces to a polynomial.
These polynomials are called the Laguerre polynomials.

Exercise 2.28: Hermite’s equation

Hermite’s differential equation is

u′′ − 2xu′ + 2ku = 0

Among other places, it arises in the solution of Schrödinger’s equation for a particle in
a potential well.

(a) Write Hermite’s equation as Lu+λu = 0, where λ = 2k and L takes the standard
form of a Sturm-Liouville operator, Lu = 1

w(x)

(
d
dx

(
p(x)dudx

)
+ r(x)u

)
, with

w(x) = e−x2
. What are p(x) and r(x)?

(b) Consider the inner product

(a, b)w = lim
ℓ→∞

∫ ℓ
−ℓ
a(x)b(x)w(x)dx

where w(x) is as given above. What boundary conditions must we impose in
the limit ℓ →∞ so that L is self-adjoint, i.e., so that (Lu,v)w = (u, Lv)w?

(c) The point x = 0 is an ordinary point for this equation. Find the general solution
by series expansion around this point. Show that if k is an integer, one solution
to the equation is a polynomial. These polynomials are known as the Hermite
polynomials.

Exercise 2.29: Series solution

Find the general solution to the differential equation

(x2 − x)u′′ − xu′ +u = 0

Start by seeking a solution of Frobenius form, expanding around x = 0.
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Exercise 2.30: Another series solution

Find the general solution to

5x2y′′ + xy′ + (x3 − 1)y = 0

Expand around x = 0 and keep up to quartic terms.

Exercise 2.31: Bessel’s equation: singular solution

The Bessel equation of order zero is

x2y′′ + xy′ + x2y = 0

and the associated Cauchy-Euler equation is

x2y′′ + xy′ = 0

(a) Find the general solution to this Cauchy-Euler equation.

(b) Motivated by this result, seek a second solution to the Bessel equation, of the
form y2(x) = J0(x) lnx + g(x), where g(x) has a power series solution. It will

be convenient to note that g is even and write it as g(x) =
∑∞
n=0 cn

(
x
2

)2n
. Find

the first two terms in the power series for g.

Exercise 2.32: Sturm-Liouville problem with mixed boundary condition

Consider the Sturm-Liouville eigenvalue problem

u′′ + λu = 0, u(0) = 0, u(1)+u′(1) = 0

Find the eigenfunctions of this problem and the nonlinear algebraic equation that deter-
mines the eigenvalues λ. (This equation cannot be solved analytically.) Draw a sketch
that indicates that there will be an infinite number of these eigenvalues, and use your
sketch to propose an approximation for the eigenvalues that is valid in the situation
λ≫ 1.

Exercise 2.33: A higher-order variable coefficient problem

Find the general solution to the third-order equation

x3y′′′ + 3x2y′′ − 3xy′ = 0

Exercise 2.34: A fourth-order variable coefficient ODE

The following differential equation arises in the analysis of time-dependent flow of a
polymeric liquid (

x2D2 − x2 + 2− 2xD
)(
D2 − 2iD − 3

)
y = 0

where D = d
dx . This equation has solutions of Frobenius form. Find the roots of the

indicial equation.
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Exercise 2.35: Legendre’s equation

Legendre’s equation is

(1− x2)y′′ − 2xy′ + l(l+ 1)y = 0

The point x = 0 is an ordinary point for this equation; seek a series solution, expanding
around this point. Find the two solutions that make up the general solution. These will
have the form

y1(x) = 1− l(l+ 1)
2!

x2 + (l− 2)l(l+ 1)(l+ 3)
4!

x4 − · · ·

y2(x) = x −
(l− 1)(l+ 2)

3!
x3 + (l− 3)(l− 1)(l+ 2)(l+ 4)

5!
x5 − · · ·

By examining the recursion relation, show that for every integer l, one of these series
will truncate, becoming a polynomial. These are the Legendre polynomials.

Exercise 2.36: Chebyshev’s equation

Chebyshev’s equation is
(1− x2)u′′ − xu′ + ν2u = 0

Its solutions are important in the approximation of functions and in numerical solution
methods for boundary-value problems.

(a) Put this in the form of a Sturm-Liouville problem Lu + λu = 0 in the domain
[−1,1], with λ = ν2,w(x) = (1 − x2)−1/2. What boundary conditions must u
and u′ satisfy at x = ±1 for self-adjointness to hold?

(b) By expanding in a power series about x = 0, obtain two LI solutions of this
equation. Show that when ν is a nonnegative integer, one of these is always a
polynomial of degree ν . Because these satisfy a Sturm-Liouville problem, these
polynomials form an orthogonal basis for L2,w(−1,1), withw(x) = (1−x2)−1/2.

(c) The points x = ±1 are regular singular points for this equation. As a first step
toward finding the behavior of the solution near these points, find the roots of
the indicial equation for a solution in Frobenius form expanded around x = 1.

Exercise 2.37: Laplace’s equation as second-order, variable coefficient ODEs

Express the radial part of Laplace’s equation ∇2y ± y = 0 in the form a2(x)y′′ +
a1(x)y′ + a0(x)y = 0.

(a) What are a0, a1, a2 for one-dimensional rectangular coordinates, cylindrical co-
ordinates, and spherical coordinates?

(b) What are two linearly independent solutions for each coordinate system?

Exercise 2.38: How many solutions?

Consider the second-order differential equation

d2u
dx2 = 0 0 < x < 1

(a) How many linearly independent solutions exist for the single boundary condition

u(0) = u(1)
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(b) How many linearly independent solutions exist for the two boundary conditions

u(0) = 0 u(1) = 0

(c) How many linearly independent solutions exist for the two boundary conditions

du
dx
(0) = 0

du
dx
(1) = 0

(d) What can you conclude about the dimension of the null space of this second-
order differential operator and the number of boundary conditions?

Exercise 2.39: Heat conduction with equal temperatures at the ends

Consider the differential equation for steady-state heat conduction with heat genera-
tion, f(x), in a one-dimensional slab

d2T
dx2 = f , 0 < x < 1

Suppose we set up the problem with a temperature controller that keeps the ends of
the body at the same temperature.

(a) Identify the appropriate differential operator, L, and associated boundary func-
tional B1, so this problem can be written as

LT = f
B1T = 0 (2.98)

(b) Notice that we do not have enough boundary conditions to expect to be able to
solve (2.98) uniquely. Define the adjoint operator and adjoint boundary func-
tionals so that

(Lu,v) = (u, L∗v)
for every admissible u(x) and v(x). Notice that since you are missing a bound-
ary condition onu(x), you will require three boundary conditions onv(x). What
are L∗, B∗1 , B

∗
2 , B

∗
3 ?

(c) What are the null spaces of L and L∗ with their associated boundary conditions?
For which f can (2.98) be solved? Is the solution unique? If not, what is the form
of all solutions?

(d) Solve (2.98) using any method at your disposal. Laplace transforms would work,
for example. Check your solution by substituting into the differential equa-
tion and boundary condition. Does your solution agree with the existence and
uniqueness result you determined previously?

(e) What is the Green’s function for this problem, i.e., identify the function g ap-
pearing in the T(x) solution as

T(x) =
∫ 1

0
g(x, ξ)f (ξ)dξ + terms not involving f
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Exercise 2.40: Solvability conditions and set of solutions for a second-order
operator

Consider the second-order differential operator and two boundary conditions

Lu = −d
2u
dx2 −u −π < x < π

B1u = u(π)−u(−π)

B2u =
du
dx
(π)− du

dx
(−π)

(a) Find the adjoint operator and boundary conditions, L∗, B∗1 , and B∗2 .

(b) Find the null spaces N(L) and N(L∗).

(c) For what f can you solve the nonhomogeneous problem

Lu = f(x)
B1(u) = γ1 B2(u) = γ2

answer: (f , sinx) = −γ1 (f , cosx) = γ2

(d) For f satisfying this solvability condition, what is the set of all solutions?

answer: u(x) = −
∫ x
−π
f(ξ) sin(x−ξ)dξ+a cosx+b sinx a,b ∈ R

Exercise 2.41: Steady-state temperature profile

Solve the steady-state heat-conduction problems in Examples 2.11 and 2.12 using Laplace
transforms.

Txx = f Txx = f
T(0) = T0 Tx(0) = 0

T(1) = T1 Tx(1) = 0

Exercise 2.42: Heat-transfer boundary conditions

Consider the one-dimensional steady-state heat-conduction problem

−kd
2T(x)
dx2 = f̂ (x)

d2T
dx2 = f f = −f̂ /k

Consider Newton’s law of cooling boundary conditions

h0(Te0 − T(0)) = −kTx(0)
h1(T(1)− Te1) = −kTx(1)

in which h0, h1 are the heat-transfer coefficients at the two ends, and Te0, Te1 are the
temperatures providing the heat-transfer driving forces at the two ends.
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(a) Write this problem as

DT = f
B1T = γ1 B2T = γ2

What are D, B1 and B2, and γ1 and γ2?

(b) Solve for the steady-state temperature profile.

(c) For what f(x) does the solution exist? For these f(x), is the solution unique?

Exercise 2.43: Orthogonality of Sturm-Liouville eigenfunctions

Show that two eigenfunctions u1 and u2 of a Sturm-Liouville problem (pu′)′ + ru +
λwu = 0 are orthogonal if the inner product weighted with w is used. Consider only
zero boundary conditions u(a) = u(b) = 0. Multiply the equation for u1 (setting
λ = λ1) by u2; multiply the equation for u2 (setting λ = λ2 ≠ λ1) by u1; subtract and
integrate over the interval. Use the boundary conditions and integration by parts to
prove orthogonality.

Exercise 2.44: The convection-diffusion operator

For problems with convection and diffusion, an important differential operator is

Lu = −d
2u
dx2 + Pe

du
dx

with boundary condition u(0) = u(1) = 0. Pe is the Peclet number, measuring the
relative importance of convection and diffusion.

(a) Find the adjoint of this operator, first with an inner product with a constant
weight functionw(x) = 1, and then with the weight functionw(x) = exp(−Pe x).

(b) Solve the eigenvalue problem Lu+ λu = 0 for arbitrary Pe.
Hint: since the equation has constant coefficients, express the solution asu(x) =
eiαx and find α. Plot the first five eigenfunctions for Pe = 5.

Exercise 2.45: Testing a CSTR operating condition for stability23

The reaction

A
k
-→ B r = kcA = k0e−E/T cA

is carried out in a CSTR. The mass and energy balances are given by

dcA
dt

=
cAf − cA
τ

− kcA

dT
dt
= UoA
VRρĈP

(Ta − T)+
Tf − T
τ

− ∆HR
ρĈP

kcA

Find the three steady states corresponding to the conditions in the following table.
Determine whether each of these three steady states is stable or unstable.

23See also Exercise 6.7 in Rawlings and Ekerdt (2020).
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Parameter Value Units

E 7550 K
Tf 298 K
cAf 3 kmol/m3

Uo 0
∆HR −2.09× 108 J/kmol
k0 4.48× 106 1/s
ĈP 4.19× 103 J/(kg K)
ρ 103 kg/m3

VR 18× 10−3 m3

Qf 60× 10−6 m3/s

Exercise 2.46: Choosing an ODE solver

You are given the task of modeling the dynamics of a chemical reactor in which a large
number of reactions are occurring. The rate constants for the reactions vary between
1s−1 and 107s−1. Will you base your code on a fourth-order Runge-Kutta scheme, an
explicit Euler scheme, or an Adams-Moulton scheme? Why?

Exercise 2.47: Numerical stability criterion for RK2

Derive the numerical stability criterion for integrating the single equation ẋ = λx with
the second-order Runge-Kutta method. Allow λ to be complex.

Exercise 2.48: Dynamics of a nonlinear problem

Consider the pair of ODEs

ẏ1 = (1−y1)− 10y2
1y2

ẏ2 = −0.05y2
1y2

with initial conditions y1(0) = 0.2, y2(0) = 1.

(a) Find the Jacobian of the RHS at t = 0. Show, using the eigenvalues of the Jaco-
bian, that the you expect the problem to be stiff.

(b) Write a computer program to use the Adams-Moulton second-order method to
solve the initial-value problem. Integrate the equations out to t = 20 and plot
the solutions. Can you find any stability limit on the time step?

(c) Write a second-order Runge-Kutta program and attempt to use it for the above
problem. What time step do you have to use to get a stable result?

(d) Modify your RK code to use variable time steps. Use the criterion that ∆t <
tmin/5. Estimate tmin from the values of y/ẏ at each time step.

Exercise 2.49: Solutions of difference equations

When examining the numerical stability of integration schemes, as well as in many
other situations, we run across the linear constant-coefficient difference equation

aMy(n+M) + aM − 1y(n+M−1) + . . .+ a0y(n) = 0. (2.99)

For example, y(n) could be the value of y at the nth time step of some process.
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(a) Show that this equation can be written in vector form

x(n+1) = Gx(n) (2.100)

What are x and G in terms of the y and a coefficients?

(b) Given the initial condition x(0), find the solution to this equation (i.e., x(n) in
terms of n and x(0)) in the situation where G has distinct eigenvalues λ.

(c) Repeat for the case where

G =
[
λ 1
0 λ

]

(d) What is the general criterion for asymptotic stability of the steady state x = 0 ?

Exercise 2.50: Numerical integration for undamped oscillations

Second-order initial-value problems ü = f(u) are important for many applications.
For the specific case f(u) = −q2u do the following:

(a) Find the exact general solution.

(b) By letting u̇ = v convert the equation to a pair of first-order equations and show
that the forward Euler method is always unstable for integrating these.

(c) Consider the following numerical integration formula

u(n+1) − 2u(n) +u(n−1) = (∆t)2f(u(n))
For f(u) = −q2u find a quadratic equation for the growth factor G for this
method, i.e., look for solutions of the formu(n+1) = Gu(n). Up to what threshold
(q∆t)2 are the numerical solutions stable?

(d) By expanding all terms in Taylor series around time step n, find the local trun-
cation error p of this formula (the first power of ∆t that does not cancel).

Exercise 2.51: The velocity Verlet algorithm of molecular dynamics simu-
lation

The velocity Verlet algorithm is very commonly used to perform numerical time
integration for molecular dynamics simulations. Consider the numerical stability prob-
lem for a very simple case

ẋ = v v̇ = ax
where a ∈ R.

(a) What property must a satisfy so that the true solution x = 0, v = 0 is stable?

(b) For this problem, the velocity Verlet algorithm becomes

x(n+1) = x(n) + v(n)∆t + 1
2
ax(n)∆t2

v(n+1) = v(n) + 1
2
(ax(n) + ax(n+1))∆t

Put this expression in the form

z(n+1) = Gz(n)

where z = [x,v]T .
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(c) Find the criteria that a∆t2 must satisfy for numerical stability of the algorithm.

Exercise 2.52: Stability of predictor-corrector methods

Denote the general (up to fourth-order) predictor-corrector formulas for the differential
equation ẋ = ax by

x(∗) = x(n) +w
(
p1x(n) + p2x(n−1) + p3x(n−2) + p4x(n−3)

)
x(n+1) = x(n) +w

(
c1x(∗) + c2x(n) + c3x(n−1) + c4x(n−2)

)
in whichw = a∆t. The coefficient vectors of the first four Adams-Bashforth predictors
and Adams-Moulton correctors are as follows

p{1} = [1,0,0,0] c{1} = [1,0,0,0]
p{2} = (1/2)[3,−1,0,0] c{2} = (1/2)[1,1,0,0]
p{3} = (1/12)[23,−16,10,0] c{3} = (1/12)[5,8,−1,0]

p{4} = (1/24)[55,−59,37,−9] c{4} = (1/24)[9,19,−5,1]

Show that combining the two steps gives

x(n+1) = x(n)
(
1+wc1 +w(c1wp1 + c2)

)
+ x(n−1)(w(c1wp2 + c3)

)
+

x(n−2)(w(c1wp3 + c4)
)
+ x(n−3)(wc1wp4

)
Let z(n) = (x(n), x(n−1), x(n−2), x(n−3)), and find matrix G such that

z(n+1) = G(w)z(n)

The eigenvalues of G(w) then determine the stability of the method.

Exercise 2.53: Stability boundary of predictor-corrector methods

Given G(w) from the previous exercise, to map out the boundary of the stability re-
gion, consider ω = eiθ for 0 ≤ θ ≤ 2π , so ω has unit magnitude, and solve the single
algebraic equation det(G(w) −ωI) = 0 for the complex value w as a function of pa-
rameter θ. The stability boundary of the APC method then comprises these values of
w. That is how Figure 2.27 was prepared, for example.

Now consider the class of predictor-corrector methods that use the same order in
the predictor and corrector. Recall the methods in Figure 2.27 used a predictor with
order one less than the corrector. Find the stability boundaries for first-order through
fourth-order methods. Compare your calculated results to Figure 2.34. Contrast the
stability results displayed in Figures 2.27 and 2.34. From a stability standpoint, which
class of methods do you prefer and why?

Hints:
You will need to increase the θ interval to [0,4π] to close the stability boundary. Why
do you suppose this increased interval is required? Consider mapping out the square
root function on the unit circle using θ ∈ [0,2π]. Does this boundary close?

You will need to clip off some unstable regions made by loops in the boundary to
match Figure 2.34.
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Figure 2.34: Stability regions for Adams predictor-corrector meth-
ods; ẋ = λx; APCn’ uses nth-order predictor and nth-
order corrector.

Exercise 2.54: Airy’s equation

The eigenvalue problem
y′′ + (x + λ)y = 0

arises in optics, quantum mechanics, and hydrodynamics, and is known as Airy’s equa-
tion.

(a) If only an estimate of the smallest (magnitude) eigenvalue λ is needed, a one-term
Galerkin approximation can be useful. In quantum mechanics, where eigenval-
ues have the interpretation of energy levels, this approach is a version of the
ground state approximation. Use a one-term Galerkin approximation using a
sine function basis,φj = sin jπx, to estimate the first eigenvalue of Airy’s equa-
tion with boundary conditions y(0) = y(1) = 0. That is let y(x) ≈ c1 sinπx.

(b) Repeat with a two-term Galerkin approximation, y(x) ≈ c1 sinπx+ c2 sin 2πx.

(c) Use the finite element method with hat functions to construct an algebraic prob-
lem for the Airy equation: it will have the structure Au+ λBu = 0. The matrix
B will be invertible so this form can be converted to a standard algebraic eigen-
value problem. Find the approximate eigenvalues and eigenfunctions using six
hat functions and again with 12.
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Exercise 2.55: Applying Galerkin and collocation methods

Solve the problem

x2y′′ + xy′ + x2y = x2, y′(0) = 0, y(1) = 0

using

(a) The Legendre-Galerkin method.

(b) The Chebyshev collocation method. Recall that the Chebyshev collocation points
are numbered from right to left, i.e., x0 = 1 and xN = −1.

Exercise 2.56: Modeling a tubular reactor: convection, diffusion, and reac-
tion

The equation
2u′ = u′′ + 1, u(−1) = 0, u′(1) = 0

models the temperature profile in a tubular reactor in which an exothermic reaction
occurs.

(a) Find the exact solution.

(b) Use the Galerkin tau method to construct an approximate solution. Use the
Legendre polynomial basis set: φ0(x) = 1,φ1(x) = x,φ2(x) = (3x2 − 1)/2.
Sketch the solution and look at u′(0) and u(1) to compare the approximate and
exact solutions.

Exercise 2.57: Converting a differential operator to an algebraic operator

Solve the eigenvalue problem

x2y′′ + xy′ + x2λy = 0, y′(0) = y(1) = 0

using the Legendre-Galerkin method. You should be able to reduce this problem to a
linear algebra problem of the form Ac + λBc = 0. Note that because of the boundary
conditions, B will be singular, but A will not. How many basis functions do you need
to compute the first three eigenvalues to four-digit accuracy? Plot the first four eigen-
functions. This is the eigenvalue problem for Bessel’s equation of order zero. In the
chapter, we showed that the eigenvalues of this problem are related to the roots of the
Bessel function J0.

Exercise 2.58: An eigenvalue problem with finite elements

Solve the above problem again, using the finite element method with the “hat functions”
described in Section 2.9.1. Study how the approximation converges as the number of
node points N increases. Also look at the computation time as a function of N.

Exercise 2.59: Chebyshev collocation for a nonlinear problem

Using the Chebyshev collocation technique, write an Octave or MATLAB program to solve
the boundary-value problem (a steady-state reaction-diffusion problem)

ϵT ′′ + T − T3 = 0, T (−1) = T(1) = 0

for ϵ = 0.05. Use the initial guess T = 1 to find a nontrivial solution. Study how the
approximation converges as the number of collocation points N + 1 increases. Also
look at the computation time as a function of N.
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Exercise 2.60: Attractivity and asymptotic stability for linear systems

Show that asymptotic stability and attractivity are identical for linear systems, ẋ = Ax,
and both are equivalent to the condition that Re(eig(A)) < 0.

Exercise 2.61: Stability and asymptotic stability for linear systems

(a) Consider the linear system
dx
dt
=
[

0 1
0 0

]
x

Is this system asymptotically stable? Why or why not?

(b) Is the system (Lyapunov) stable or unstable? Prove it.

(c) Generalize this example and provide a checkable condition to test for (Lyapunov)
stability of all linear systems, ẋ = Ax.

(d) Given this result, characterize the class of linear systems that are stable but not
asymptotically stable.

Exercise 2.62: Lyapunov equation and linear systems

Establish the equivalence of (a) and (b) in Theorem 2.24.

Exercise 2.63: Discrete time Lyapunov function for linear systems

State the discrete time version of Theorem 2.24. Show that (a) and (b) are equivalent in
the discrete time version.

Exercise 2.64: Nonsymmetric matrices and definition of positive definite

For real, square matrix S, consider redefining S > 0 to mean that xT Sx > 0 for all x ∈
Rn ≠ 0. We are removing the usual requirement that S is symmetric in the definition
of positive definite in Section 1.4.4.

(a) Define the matrix B = (S + ST )/2. Show that B is symmetric and xTBx = xT Sx
for all x ∈ Rn. Therefore S > 0 (new definition) if and only if B is positive
definite (standard definition).

(b) What happens to the connection between this new definition of S > 0 and the
eigenvalues of S? Consider statement 1. from Section 1.4.4

S > 0 if and only if λ > 0, λ ∈ eig(S)

Does this statement remain valid? If so prove it. If not, provide a counterexam-
ple.

Exercise 2.65: Stabilities of a linear system

Consider the linear, time-invariant system ẋ = Ax. Characterize the class ofAmatrices
for which the systems exhibit the following forms of stability.

(a) Stable (in the sense of Lyapunov).

(b) Attractive.

(c) Asymptotically stable.
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(d) Exponentially stable.

(e) Which of these forms of stability are equivalent for the linear, time-invariant
system?

Exercise 2.66: Extending a regular perturbation solution to higher order

For the regular perturbation solution of (2.66) presented in Section 2.6.4, compute the
next term in the series, c2(r).

Exercise 2.67: QSSA as the outer solution in a two-time-scale singular per-
turbation

Consider the following simple reaction mechanism taking place in a well-mixed, constant-
volume, batch reactor

A
k1-→ B

k2-→ C

and assume k2 ≫ k1 so B is a low-concentration species for which we wish to examine
the QSSA.

(a) Solve A’s material balance and show

cAs = cA0e−k1t

Apply the usual QSSA approach, set RB = 0, and show that

cBs =
k1

k2
cAs = cA0

k1

k2
e−k1t

The concentration of C is always available if desired from the total species bal-
ance

cCs(t) = cA(0)+ cB(0)+ cC(0)− cAs(t)− cBs(t)

(b) The B species has two-time-scale behavior. On the fast time scale, it changes
rapidly from initial concentration cB0 to the quasi-steady-state value for which
RB ≈ 0. Divide B’s material balance by k2, define the fast time-scale time as
τ = k2t, and obtain for B’s material balance

dcB
dτ

= ϵk1cA − cB ϵ = 1
k2

We wish to find an asymptotic solution for small ϵ. We try a series expansion in
powers of ϵ for the inner solution (fast time scale)

cBi = Y0 + ϵY1 + ϵ2Y2 + · · ·
The initial condition, CBi = CB0, must be valid for all ϵ, which gives for the initial
conditions of the Yn

Y0(0) = cB0 Yn(0) = 0, n = 1,2, . . .

Substitute the series expansion into B’s material balance, collect like powers of
ϵ and show the following differential equations govern the Yn

ϵ0 :
dY0

dτ
= −Y0

ϵ1 :
dY1

dτ
= k1cA − Y1

ϵn :
dYn
dτ

= −Yn n ≥ 2
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(c) Solve these differential equations and show

Y0 = cB0e−τ

Y1 = cA0
k1

k1/k2 − 1

(
e−τ − e−k1τ/k2

)
Yn = 0 n ≥ 2

Because Yn vanishes for n ≥ 2, show you obtain the exact solution for the B
concentration for all ϵ by using the first two terms.

(d) Next we analyze B’s large-time-scale behavior, also called the outer solution.
Divide B’s material balance by k2 again but do not rescale time and obtain

ϵ
dcB
dt

= ϵk1cA − cB
Expand cB again in a power series of ϵ

cBo = B0 + ϵB1 + ϵ2B2 + · · ·
Substitute the power series into the material balance and collect like powers of
ϵ to obtain the following equations

ϵ0 : B0 = 0

ϵ1 :
dB0

dt
= k1cA − B1

ϵn :
dBn
dt

= −Bn+1 n ≥ 1

Solve these equations and show

B0 = 0

B1 = k1cA
Bn = kn1 cA n ≥ 2

So we see the zero-order outer solution is CB0 = 0, which is appropriate for a
QSSA species, but a rather rough approximation.

(e) Show that the classic QSSA analysis is the first-order outer solution.

(f) To obtain a uniform solution valid for both short and long times, we add the
inner and outer solution and subtract any common terms. Plot the uniform
zeroth-order and first-order solutions for the following parameter values

cA0 = 1 cB0 = 1/2 k1 = 1 k2 = 10

Compare to the exact solution and the first-order outer solution (QSSA solution).

(g) Show that the infinite-order uniform solution is also the exact solution.

Exercise 2.68: QSSA and matching conditions in singular perturbation

Consider again Exercise 2.67 with a slightly more complex reaction mechanism

A
k1-⇀↽-
k−1

B
k2-→ C

and assume that either k−1 ≫ k1 or k2 ≫ k1 (or both) so B is again a low-concentration
species for which we wish to examine the QSSA. Notice that either k−1 or k2 may be
large with respect to the other without invalidating the QSSA assumption for B. Only if
k−1 ≫ k1 ≫ k2 is the reaction equilibrium assumption also valid for this mechanism.
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(a) Apply the QSSA on species B and show

cAs =
(
cA0 + cB0

1
1+K2

)
e−

k1K2
1+K2

t

cBs =
1
k−1

k1

1+K2

(
cA0 + cB0

1
1+K2

)
e−

k1K2
1+K2

t

in which K2 = k2/k−1.

(b) With this mechanism, both the A and B species have two-time-scale behavior, so
we use a series expansion for both cA and cB . Let the inner solution be given by

cAi = X0 + ϵX1 + ϵ2X2 + · · ·
cBi = Y0 + ϵY1 + ϵ2Y2 + · · ·

in which the small parameter ϵ is the inverse of the largest rate constant in the
mechanism. In the following we assume k−1 is largest and ϵ = 1/k−1. Define
K2 = k2/k−1 and we assume that K2 is order unity or smaller. If K2 were large,
we should have chosen ϵ = 1/k2 as the small parameter. Collect terms of like
power of ϵ and show

ϵ0 :
dX0

dτ
= Y0

dY0

dτ
= −(1+K2)Y0

ϵ1 :
dX1

dτ
= −k1X0 + Y1

dY1

dτ
= k1X0 − (1+K2)Y1

ϵn :
dXn
dτ

= −k1Xn−1 + Yn
dYn
dτ

= k1Xn−1 − (1+K2)Yn n ≥ 1

What are the initial conditions for the Xn and Yn variables?

(c) Solve these for the zero-order inner solution and show

X0 = cA0 + cB0
1

1+K2

(
1− e−(1+K2)τ

)
Y0 = cB0e−(1+K2)τ

(d) Next we construct the outer solution valid for large times. Postulate a series
expansion of the form

cAo = A0 + ϵA1 + ϵ2A2 + · · ·
cBo = B0 + ϵB1 + ϵ2B2 + · · ·

Substitute these into the A and B material balances and show

ϵ0 : B0 = 0 (1+K2)B0 = 0

ϵ1 :
dA0

dt
= −k1A0 + B1

dB0

dt
= k1A0 − (1+K2)B1

ϵn :
dAn−1

dt
= −k1An + Bn

dBn−1

dt
= k1An−1 − (1+K2)Bn n ≥ 1
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(e) Solve these and show for zero order

A0 = A0(0)e
− k1K2

1+K2
t B0 = 0

Again we see that to zero order, the B concentration is zero after a short time.

Note also that, unlike in Exercise 2.67, we require an initial condition for the
outer solution An differential equations. We obtain the missing initial condition
by matching with the inner solution as follows

lim
τ→∞X0(τ) = lim

t→0
A0(t)

In other words, the long-time solution (steady state) on the fast time scale is the
short-time solution (initial condition) on the slow time scale. Using this matching
condition show

A0(0) = cA0 + cB0
1

1+K2

(f) Find also the first-order solution, B1, and show that the QSSA solution corre-
sponds to the zero-order outer solution for cA and the first-order outer solution
for cB .

Exercise 2.69: Michaelis-Menten kinetics as QSSA

Consider the enzyme kinetics

E+ S
k1-⇀↽-
k−1

ES

ES
k2-→ P+ E

in which the free enzyme E binds with substrate S to form bound substrate ES in the
first reaction, and the bound substrate is converted to product P and releases free en-
zyme in the second reaction. This mechanism has become known as Michaelis-Menten
kinetics (Michaelis and Menten, 1913), but it was proposed earlier by Henri (1901). If the
rates of these two reactions are such that either the free or bound enzyme is present in
small concentration, the mechanism is a candidate for model reduction with the QSSA.

Assume k1 ≫ k−1, k2 so E is present in small concentration. Apply the QSSA and
show that the slow time scale model reduces to a first-order, irreversible decomposition
of S to P

S -→ P r

(a) For a well-stirred batch reactor, show the total enzyme concentration satisfies

cE(t)+ cES(t) = cE(0)+ cES(0)

(b) Find an expression for the QSS concentration of E. What is the corresponding
concentration of ES?

(c) Show the rate expression for the reduced model’s single reaction is

r = kcS
1+KcS

k = k2KE0 K = k1

k−1 + k2
E0 = cE(0)+ cES(0) (2.101)
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which depends solely on the substrate concentration. The inverse of the con-
stant K is known as the Michaelis constant. The production rates of reactant S
and product P in the reduced model are then simply

RS = −r RP = r

Notice we have reduced the number of reactions from two to one; we have re-
duced the number of rate constants from three (k1, k−1, k2) to two (k,K).

(d) Plot the concentrations versus time for the full model and QSSA model for the
following values of the rate constants and initial conditions.

k1 = 5 k−1 = 1 k2 = 10

cE(0) = 1 cES(0) = 0 cS(0) = 50 cP (0) = 0

Exercise 2.70: Michaelis-Menten kinetics as reaction equilibrium

Consider again the enzyme kinetics given in Exercise 2.69.

E+ S
k1-⇀↽-
k−1

ES

ES
k2-→ P+ E

Now assume the rate constants satisfy k1, k−1 ≫ k2 so that the first reaction is at
equilibrium on the time scale of the second reaction.

(a) Find the equilibrium concentrations of E and ES

(b) Show the production rate of P is given by

RP =
k̃cS

1+K1cS
k̃ = k2K1E0 K1 = k1/k−1 (2.102)

in which K1 is the equilibrium constant for the first reaction. Notice this form
is identical to the production rate of P given in the QSSA approach. For this rea-
son, these two assumptions for reducing enzyme kinetics are often mistakenly
labeled as the same approach.

It is interesting to note that in their original work in 1913, Michaelis and Menten
proposed the reaction equilibrium approximation to describe enzyme kinetics, in
which the second step is slow compared to the first step (Michaelis and Menten,
1913). Michaelis and Menten credit Henri with proposing this mechanism to
explain the experimental observations that (i) production rate of P increases lin-
early with substrate at low substrate concentration and (ii) production rate of P is
independent of substrate concentration at high substrate concentration (Henri,
1901).

The QSSA analysis of enzyme kinetics was introduced by Briggs and Haldane
in 1925, in which the enzyme concentration is assumed small compared to the
substrate (Briggs and Haldane, 1925). Since that time, the QSSA approach has
become the more popular explanation of the observed dependence of substrate
in the production rate of product RP in 2.101 and 2.102 (Nelson and Cox, 2000).

The reader should be aware that either approximation may be appropriate de-
pending on the values of the rate constants and initial conditions. Although both
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reduced models give the same form for the production rate of P, they are often
quite different in other respects. Finally, for some values of rate constants, in
particular k−1 ≫ k1 ≫ k2, both the QSS assumption and the reaction equilib-
rium assumption apply.

(c) Show that the slow-time-scale reduced model for the reaction equilibrium as-
sumption can be summarized by two irreversible reactions

ES -→ E+ S r̃1

S -→ P r̃2

with the following rate expressions

r̃1 =
(

K1cE
1+K1(cE + cS)

)(
k̃cS

1+K1cS

)
k̃ = k2K1E0

r̃2 =
k̃cS

1+K1cS
K1 = k1/k−1

Notice here we have not reduced the number of reactions; we still have two
reactions, but as before we have reduced the number of rate constants from
three (k1, k−1, k2) to two (k̃, K1). The first rate expression here depends on cS
and cE rather than only cS as in the previous QSSA reduction. Therefore the
production rates of E, ES, and S depend on cE as well as cS . Only the production
rate of P (RP = r̃2) loses the cE dependence.

(d) Plot the concentrations versus time for the full model and reaction equilibrium
model for the following values of the rate constants and initial conditions.

k1 = 0.5 k−1 = 1 k2 = 0.5

cE(0) = 20 cES(0) = 10 cS(0) = 50 cP (0) = 0

Recall that you must modify the initial conditions for the slow-time-scale model
by equilibrating the first reaction from these starting values.

Exercise 2.71: Asymptotic expansion of an integral

Find an asymptotic expansion of the integral

f(x) =
∫∞
x
t−1ex−tdt

for large positive values of x. Use repeated integration by parts. Show that the approx-
imation is asymptotic as x →∞.

Exercise 2.72: Asymptotic series are not always power series

Find the leading-order approximations to the two solutions of

xe−x = ϵ

for ϵ ≪ 1. Seek solutions of the form x = δ(ϵ)X, find two dominant balances: one
where δ(ϵ)≪ 1 and one where δ(ϵ)≫ 1.
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Exercise 2.73: Perturbed eigenvalue problems

Consider the eigenvalue problem

Ax + ϵB(x) = λx

where A is an n×nmatrix and B(x) and x are n-vectors. Assume that A and B are real
and the eigenvalues of A are distinct. If the ϵ = 0 problem has an eigenvalue λ0 with a
corresponding eigenvector v0, find the leading-order corrections to the eigenvalue and
eigenvector. Hint: review the existence and uniqueness theory for linear equations.

Exercise 2.74: Multiple-scales analysis of a problem with a pitchfork bifur-
cation

Consider the system of equations

ẋ = −x − ϵ1/2y2

ẏ = ϵλy − ϵ1/2xy

Assume that x and y are both ord(1). (They have already been scaled by ϵ1/2.) Perform
a multiple-scales expansion, letting t0 = t, t1 = ϵ1/2t, t2 = ϵt. Show that the solvability
conditions require that

∂y0

∂t0
= ∂y0

∂t1
= 0

dy0

dt2
= λy0 +y3

0

when t0 ≫ 1. What are the steady-state solutions of the amplitude equation for y0?
Sketch the steady states as λ varies between −1 and +1.

Exercise 2.75: Degenerate pitchfork bifurcation

Consider the one-dimensional system

ẋ = f(x;µ)

where f(x;µ) = −f(−x;µ) and fxxx = 0 at x = 0. Although this equation has
the correct symmetry to display a pitchfork bifurcation, (2.80) does not hold because
fxxx = 0.

(a) Derive the correct normal form in this case and draw the corresponding bifur-
cation diagram(s).

(b) Now let fxxx be nonzero, but very small. How are the above bifurcation dia-
grams modified?

Exercise 2.76: Multiple scales to determine stability of a time-periodic so-
lution

Consider the stability of a periodic orbit of a nonlinear system. Let xp(t) = xp(t + T)
be a time-periodic solution of the differential equation

ẋ = f(x)

Now let x = xp(t)+ δz(t), δ≪ 1.
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(a) Show that the linearized equation for z takes the form

ż = A(t)z

where A(t) = A(t + T) is a matrix operator with time-periodic coefficients.

(b) The damped Mathieu equation is a particular case of a linear equation with
time-periodic coefficients. It is (written as a single second-order equation)

ẍ + ϵµẋ + (ω2 + ϵ cos 2t)x = 0

Letting ω = 1,0 < ϵ ≪ 1, µ = ord(1) > 0, use the multiple-scales method to
determine the stability of the point z = 0. Show that z = 0 is stable when µ >
1/2. (Although this equation can be put in the form ż = A(t)z, it is easier to work
with when kept in second-order form.) Use time scales t0 = t, t1 = ϵt and assume
a solution of the form x(t0, t1) = A(t1) cos t0+B(t1) sin t0+ϵx1(t0, t1)+O(ϵ2).

Exercise 2.77: Oscillator with slowly varying frequency

Use the multiple-scales approach with t1 = t, t2 = t/ϵ to find the leading-order general
solution to the problem of an oscillator with slowly varying frequency

ϵ2 d2y
dt2

+ (ω(t))2 y = 0

Assume thatω(t) > 0 in the domain of interest. Show that a leading-order solution of
the form y0 ∼ r(t1) exp(±iω(t1)t2) will not work, but that a solution of the slightly
more general form y0 ∼ r(t1) exp(±iϵ−1θ(t1)) will. You will see from the multiple-
scales result that the quantity r2ω is independent of t1, to leading order: it is a so-
called adiabatic invariant.

Exercise 2.78: Multiple-scales solution to a nonlinear oscillator problem

Use the method of multiple scales to find a leading-order solution to the nonlinear
oscillation problem

ẍ + ϵ(x2 − 1)ẋ + x = 0, x(0) = 1, ẋ(0) = 0

Use time scales t0 = t, t1 = ϵt.

Exercise 2.79: Synchronization of oscillators

Huygens was the first to observe that two oscillators (mechanical clocks in his case)
whose natural frequencies ω1 and ω2 are close but not identical can be synchronized
(“phase locked”) if they are coupled to one another. Such synchronization has since
been observed in a diverse range of applications, including coupled chemical reactors.
A simple model for a pair of coupled oscillators is

θ̇1 =ω1 +K1 sin(θ2 − θ1)

θ̇2 =ω2 +K2 sin(θ1 − θ2)

where θ1 and θ2 are the phase variables for the two oscillators. Thus these equations
describe trajectories on a torus. Synchronization occurs when the phase difference
φ = θ2−θ1 attains a stable steady-state value. Analyze the dynamics ofφ to determine
the range of parameters in which the oscillators are synchronized. Draw the bifurcation
diagram. Draw what happens on the torus as the system passes from the synchronized
to the unsynchronized state.
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3
Vector Calculus and Partial Differential

Equations

3.1 Vector and Tensor Algebra

3.1.1 Introduction

Many of the partial differential equations (PDEs) that we encounter as
chemical and biological engineers arise from field equations such as the
Navier-Stokes equations of fluid dynamics or the Schrödinger equation
of quantum mechanics. These equations govern quantities (velocity,
wave function) that vary with position in three-dimensional physical
space. In general, such a quantity is known as a field. Therefore, this
chapter begins with a discussion of the properties of vectors and re-
lated objects (tensors) in physical space. In general, a tensor is an
object that has an intrinsic geometric definition, independent of coor-
dinate system. It may be a velocity vector, a dot product between two
vectors (a scalar) or, as we shall see, even a linear operator.

3.1.2 Vectors in Three Physical Dimensions

In this chapter, we consider only vectors in three-dimensional physical
space and following convention in the physics and engineering litera-
ture, represent these vectors using bold type. We begin with a brief
review of vectors, tensors and their algebra. For now, let us consider
only a Cartesian basis for the space, with position independent, or-
thonormal basis vectors e1,e2,e3. Any vector u can be represented as
u =

∑3
i=1uiei, or, using the summation convention, uiei. In Carte-

sian tensor notation, we streamline the notation even further, denot-
ing the vector as ui. The unsummed index i on ui indicates that u is a
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vector. The length of a vector is ∥u∥ =
√∑3

i=1u
2
i =
√
uiui. The degree

of alignment between two vectors is determined by the dot product

u · v = uTv =
3∑
i=1

3∑
j=1

uivj(ei · ej) = uivi = ∥u∥∥v∥ cosθ

Using some elementary geometry, it can be shown that

u · v = 1
2

(
∥u∥2 + ∥v∥2 − ∥v − u∥2

)
This result shows that u ·v can be expressed without referring to a co-
ordinate system, but only to the lengths of vectors. Therefore, the dot
product is independent of coordinate system; it is a geometric invari-
ant. Recall that the inner product of Chapter 1 is the generalization of
the dot product.

In Chapter 1 we also introduced the outer product between two vec-
tors, also called the direct product or dyadic product. The outer
product between vectors u and v is the dyad1 uv. A dyad is a second-
order tensor: a quantity that incorporates information regarding two
directions. (A vector, which has one magnitude and one direction, is a
first-order tensor). A dyad can act as a linear operator

(uv) ·w = u(v ·w)

Similarly,
w · (uv) = (w · u)v

Note that uv ≠ vu. Based on this definition, we can write uv out,
including basis vectors

uv =
3∑
i=1

3∑
j=1

uivjeiej

In Cartesian tensor notation, uv is denoted as uivj (the presence of
the basis vectors ei and ej is implied by the presence of the two sub-
scripts). When a dyad operates on something, the rightmost index (and
basis vector) is involved. An example of a useful dyad is the projection
operator ûû, where û is a unit vector. The product (ûû) · v is the
component of the vector v in the û direction. You can check this by
applying the definition of the outer product.

1As noted in Chapter 1, sometimes the dyad uv is denoted by uvT or u⊗ v.
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A general second-order tensor τ can be written as a linear combina-
tion of the basis dyads eiej

τ =
3∑
i=1

3∑
j=1

τijeiej

In Cartesian tensor notation, the summations and base vectors are im-
plied and we can denote the tensor by its component matrix τij . The
dot product u = τ · v between a second-order tensor and a vector is
another vector: ui = τijvj . Similarly, u = v · τ is, in Cartesian coordi-
nates: ui = vjτji. The second-order identity tensor is denoted δ and
satisfies the property δ · a = a · δ = a for all a. In Cartesian coor-
dinates, the ij component of δ is simply the Kronecker delta δij , or
equivalently δ = e1e1 + e2e2 + e3e3.

Also important is the cross product, u × v. Recall that, while the
dot product is a scalar, the cross product is a vector, with magnitude
∥u∥∥v∥ sinθ and direction orthogonal to both u and v and deter-
mined by the “right-hand rule.” The cross product is not commutative:
u × v = −v × u. Because of the invocation of the right-hand rule in
its definition, the cross product is strictly speaking a pseudovector,
because its definition is affected by the handedness of the coordinate
system in which it is computed.

It is useful to view the cross product as a matrix-vector multiplica-
tion. Using the Cartesian components

u× v =

 0 −u3 u2

u3 0 −u1

−u2 u1 0


v1

v2

v3


We can write the cross product more compactly if we introduce the
following operator, called the Levi-Civita symbol

ϵijk =


1, ijk = 123,231 or 312

−1, ijk = 132,321 or 213

0, i = j, i = k or j = k

This is the Cartesian coordinate representation of the alternating
unit tensor or permutation tensor ϵ. As with the cross-product
itself, ϵijk is not actually a tensor, but rather a pseudotensor, because
its definition is based on the use of right-handed Cartesian coordinates.
Now the operator (u×) can be written ϵijkuj . This quantity has two free
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indices, so it is a second-order pseudotensor. Finally, we can write the
cross product as

(u× v)i = ϵijkujvk

A useful identity involving ϵijk is

ϵijkϵklm = δilδjm − δimδjl

which arises in the computation of double cross products such as a×
(b × c). Since the Kronecker delta is not handedness dependent, the
double cross product between three vectors is a true vector.

3.2 Vector Calculus: Differential Operators and Integral
Theorems

3.2.1 Divergence, Gradient, and Curl

Consider a vector that is a function of position, v(x), a vector field.
Physically, this vector field could be a fluid velocity (mass flux) or an
electric current (charge flux), for example. An important physical con-
sideration is the total flow into or out of a closed region. We denote
this region as V , its boundary surface as S and the outward unit nor-
mal vector to S as n, as illustrated in Figure 3.1. The volume of V is
Vol(V) =

∫
V dV . If v is a flux of some quantity, then n · v dS is the

amount of that quantity crossing the boundary element dS per unit
time and thus

1
Vol

∫
S
n · v dS

is the amount of that quantity leaving V , per unit volume. Now let the
region be centered at a position x0 and let V shrink to zero around that
point. The divergence of v at point x0 is defined by

div v = lim
Vol→0

1
Vol

∫
S
n · v dS (3.1)

Thus the divergence of v measures the amount per unit volume that
leaves the point x0. This definition is independent of coordinates, so
the divergence is a tensor.

For a scalar fieldφ(x) there is an analogous quantity, the gradient
of φ, defined by

grad φ = lim
Vol→0

1
Vol

∫
S
nφdS (3.2)



3.2 Differential Operators and Integral Theorems 261

nV

x0

S

Figure 3.1: Volume V shrinking to zero size around a point x0.

Given a unit vector s, the quantity s ·grad φ is the derivative of v along
the s direction, i.e., the directional derivative. The gradient of φ is
a vector whose direction shows the direction of the maximum change
in φ and whose magnitude is the magnitude of that change.

The final important operation, the curl, measures the rotation of a
vector field v at a point. It is defined by

curl v = lim
Vol→0

1
Vol

∫
S
n× v dS (3.3)

Because of the cross product involved in its definition, the curl is a
pseudovector.

The above definitions of div, grad, and curl are independent of co-
ordinate system and illustrate the concepts underlying them, but to
actually work with these operators we need coordinate systems. All
three of the above operations can be expressed in terms of the gra-
dient operator, ∇, also called “nabla” or “del.” It is also sometimes
denoted

∂
∂x

In Cartesian coordinates, it is given by

∇ =
3∑
i=1

ei
∂
∂xi

or in Cartesian tensor notation

∇ = ei
∂
∂xi

or simply ∂
∂xi . The presence of the basis vector ei is implied by the

unrepeated index i. The divergence, gradient, and curl operators are
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then given by

div v =∇ · v = ∂vi
∂xi

grad φ =∇φ = ∂φ
∂xi

curl v =∇× v = ϵijk
∂vk
∂xj

Another extremely important operator is the Laplacian operator div
grad, given by

div grad =∇ ·∇ = ∂2

∂xi∂xi
The most common notation for the Laplacian operator is ∇2. Unfortu-
nately, this notation is somewhat misleading, implying that the opera-
tor is grad grad rather than div grad. Some literature uses the symbol
∆ for the operator. We follow engineering convention and use ∇2.

3.2.2 The Gradient Operator in Non-Cartesian Coordinates

In many applications, Cartesian coordinates are not the most practical
for solving a problem.2 We are familiar with cylindrical and spherical
coordinate systems, but there are many others, including bipolar and
parabolic systems. We consider here only orthogonal coordinate sys-
tems; the basis vectors may change from point to point, but at each
point they are mutually orthogonal. We denote an arbitrary set of or-
thogonal coordinates by u1, u2, u3 and the (orthonormal) base vectors
by eu1 ,eu2 ,eu3 . The most important distinction between Cartesian and
other coordinate systems is the actual distance traversed in moving
from one coordinate line to another. For example, in Cartesian coordi-
nates (x1, x2, x3) = (x,y, z), the distance between the coordinate lines
y = 1 and y = 2, keeping x and z fixed, is always 1. But in cylindrical
coordinates, (u1, u2, u3) = (r , θ, z), the distance traveled going from
θ = 1 to θ = 2 (at constant r and z) depends on r ! This dependence is
quantified in the scale factors for a coordinate system, defined by

hi =

√√√√(∂x1

∂ui

)2

+
(
∂x2

∂ui

)2

+
(
∂x3

∂ui

)2

2Appendix A of Bird, Stewart, and Lightfoot (2002) contains a great deal of useful
information about this topic. Tensor analysis is not restricted to orthogonal coordi-
nate systems; if you want to learn about tensor analysis in general coordinates, some
good references are Aris (1962); Block (1978); Simmonds (1994); Bird, Armstrong, and
Hassager (1987).
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This quantity determines the distance traversed in moving along the ui
coordinate curve. For example, in cylindrical coordinates, it is easy to
compute that h1 = 1, h2 = r ,h3 = 1. The distance covered in moving
from θ to θ + dθ is h2dθ = rdθ. If we let gi = 1

hi eui (scale the basis
vector by the scale factor), then we can write the basis vectors in terms
of the Cartesian basis

gi =
1

h2
i

3∑
j=1

∂xj
∂ui

ej

Note that despite the notation, the number hi is not a component of
a vector but rather is a property of the particular coordinate system
under consideration.

For any orthogonal coordinate system, we can now write the gradi-
ent operator as

∇ = gi
∂
∂ui

(summation implied). In general, the gi depend on position. The im-
portance of this fact becomes clear when we consider operators like
the Laplacian

∇ ·∇ = gi
∂
∂ui

· gj
∂
∂uj

= δij
1
hihj

∂2

∂ui∂uj
+
(
gi ·

∂gj
∂ui

)
∂
∂uj

The second term in this expression does not appear in Cartesian coor-
dinates, where the base vectors are independent of position. In terms
of the scale factors, the derivative of a basis vector with respect to
position can be written as follows

∂gj
∂uk

= − 1
hj
gj
∂hj
∂uk

+ 1
hj

gkhkhj ∂hk∂uj
− δjk

3∑
i=1

gi
∂hj
∂ui


Summation is not implied, as

∂gj
∂uk is not a component of a tensor.

Example 3.1: Gradient (del) and Laplacian operators in polar (cylin-
drical) coordinates

(a) Without referring to Cartesian coordinates at all, derive a formula
for the gradient (del) operator in polar coordinates shown in Fig-
ure 3.2 so that one obtains for the differential of a scalar function
φ

dφ =∇φ · dx
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θ

er

dx

drer

rdθeθ

x = rer
eθ

Figure 3.2: Polar coordinates (r , θ) and unit vectors er and eθ.

in which dx is the differential of the position vector in polar co-
ordinates.

(b) Using this formula for ∇, derive the formula for the Laplacian in
polar coordinates.

(c) Finally check these two results by relating them to Cartesian co-
ordinates using the hi and gi formulas given previously.

Solution

(a) As shown in Figure 3.2 we have for the differential of position

dx = drer + rdθeθ

From the definition of partial derivative, we have the formula for
the total differential of an arbitrary function φ(r , θ)

dφ = ∂φ
∂r
dr + ∂φ

∂θ
dθ

We substitute ∇φ = era1 + eθa2 and solve for a1, a2, the two
vector components of ∇φ

dφ =∇φ · dx
∂φ
∂r
dr + ∂φ

∂θ
dθ = (era1 + eθa2) · (drer + rdθeθ)

∂φ
∂r
dr + ∂φ

∂θ
dθ = a1dr + a2rdθ
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Comparing the two sides, we have

a1 =
∂φ
∂r

a2 =
1
r
∂φ
∂θ

which gives for ∇ in polar coordinates

∇φ = er
∂φ
∂r
+ eθ

1
r
∂φ
∂θ

∇ = er
∂
∂r
+ eθ

1
r
∂
∂θ

(3.4)

(b) Next we use the definition of the Laplacian to obtain

∇2 =∇ ·∇ =
(
er
∂
∂r
+ eθ

1
r
∂
∂θ

)
·
(
er
∂
∂r
+ eθ

1
r
∂
∂θ

)
Taking the derivatives, and noting the dot product er · eθ = 0
because the unit vectors are orthogonal, gives

∇2 = er ·
(
∂er
∂r

∂
∂r
+ er

∂2

∂r 2
+ 1
r
∂eθ
∂r

∂
∂θ

)
+

1
r
eθ ·

(
∂er
∂θ

∂
∂r
+ eθ

1
r
∂2

∂θ2
+ 1
r
∂eθ
∂θ

∂
∂θ

)
Now we require the derivatives of the unit vectors with respect to
(r , θ). As shown in Figure 3.2 these are given by (see also Exercise
3.2)

∂er
∂r

= 0
∂eθ
∂r

= 0
∂er
∂θ

= eθ
∂eθ
∂θ

= −er (3.5)

Substituting these derivatives into the previous result and collect-
ing the nonzero terms gives

∇2 = ∂2

∂r 2
+ 1
r
∂
∂r
+ 1
r 2

∂2

∂θ2

Note that we can combine the first two terms for an equivalent
form

∇2 = 1
r
∂
∂r

(
r
∂
∂r

)
+ 1
r 2

∂2

∂θ2
(3.6)

(c) The partial derivatives of the coordinates are

∂x
∂r
= cosθ

∂y
∂r
= sinθ

∂x
∂θ
= −r sinθ

∂y
∂θ
= r cosθ
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Substituting into the previously given formulas for h and g gives

h1 = 1 h2 = r

g1 = cosθex + sinθey g2 =
1
r 2

(
− r sinθex + r cosθey

)
g1 = er g2 =

1
r
eθ

We then have

∇ = er
∂
∂r
+ 1
r
eθ
∂
∂θ

which agrees with (3.4).

For the Laplacian, we require the derivatives of g1,g2

∂g1

∂r
= 0

∂g1

∂θ
= eθ

∂g2

∂r
= − 1

r 2
eθ

∂g2

∂θ
= −1

r
er

The formula for the Laplacian then gives

∇2 = 1

h2
1

∂2

∂r 2
+ 1

h2
2

∂2

∂θ2
+ g1 ·

(
∂g1

∂r
∂
∂r
+ ∂g2

∂r
∂
∂θ

)
+

g2 ·
(
∂g1

∂θ
∂
∂r
+ ∂g2

∂θ
∂
∂θ

)
The g1 term vanishes upon substituting the various derivatives,
and the g2 term produces the additional term (1/r)∂/∂r giving

∇2 = ∂2

∂r 2
+ 1
r 2

∂2

∂θ2
+ 1
r
∂
∂r

= 1
r
∂
∂r

(
r
∂
∂r

)
+ 1
r 2

∂2

∂θ2

which agrees with (3.6). □

Table 3.1 collects expressions for the gradient and Laplacian oper-
ators in Cartesian, cylindrical, and spherical coordinate systems. The
convention used for the angles θ and φ in spherical coordinates are
shown in Figure 3.3.
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φ

θ

r

er

eθ

eφ

Figure 3.3: The orthonormal unit vectors in spherical coordinates.

Cartesian ∇ = ex
∂
∂x
+ ey

∂
∂y
+ ez

∂
∂z

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

Cylindrical ∇ = er
∂
∂r
+ eθ

1
r
∂
∂θ
+ ez

∂
∂z

∇2 = 1
r
∂
∂r

(
r
∂
∂r

)
+ 1
r 2

∂2

∂θ2
+ ∂2

∂z2

Spherical ∇ = er
∂
∂r
+ eθ

1
r
∂
∂θ
+ eφ

1
r sinθ

∂
∂φ

∇2 = 1
r 2

∂
∂r

(
r 2 ∂
∂r

)
+ 1
r 2 sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
+ 1

r 2 sin2 θ
∂2

∂φ2

Table 3.1: Gradient and Laplacian operators in Cartesian, cylindrical,
and spherical coordinates.
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0 a

b

n2 = ex

n3 = − sinθex + cosθey
S3

S2

S1 n1 = −ey

θ

V

ex

ey

Figure 3.4: Right triangle V with sides S1, S2, S3 and outward nor-
mals n1,n2,n3. On the hypotenuse S3 we have that
x = σ3 cosθ and y = σ3 sinθ with σ3 as distance along
S3.

3.2.3 The Divergence Theorem

The divergence theorem concerns the integral of the divergence of a
vector field v(x) in a region V . It is central to many aspects of the
derivation and solution of partial differential equations. For example,
many partial differential equations arise from conservation laws. These
are often most easily stated in integral form, i.e., as conservation of
some quantity over a finite volume of space. It is often useful, however,
to have representations of the same laws that apply at each point in the
volume and the divergence theorem plays a key role in development of
these.

A standard form of the divergence thereom is∫
V
∇ · v dΩ =

∫
S
n · v dσ

in which V is an arbitrary volume element with bounding surface S.
Note that this result equates the integral of the divergence of the vec-
tor field over the volume with the integral of the outward flux of the
vector field over the bounding surface. It is a remarkable result with
far-reaching consequences, so we would like to understand why this
equation holds and how to derive it.

We start off in two dimensions where region V is an area element,
and S becomes the bounding circumference of the area element. For
example, consider the right triangle depicted in Figure 3.4. We show
that the divergence theorem holds for this region by an explicit cal-
culation. This will turn out to be the only calculation that we have to
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do to establish the divergence theorem for quite general regions. In
rectangular coordinates we have that∫

V
∇ · v dΩ =

∫∫
V

[
∂
∂x
vx +

∂
∂y
vy
]
dxdy

=
∫ b

0

∫ a
Tx(y)

∂
∂x
vx dxdy +

∫ a
0

∫ Ty (x)
0

∂
∂y
vy dydx

Notice that the key first step is to use different orders of integration in
the two double integrals to undo the differentiation of the divergence
operator for each term in the sum. Since 0 < θ < π/2 (or we do not
have a triangle), we also know that on S3, y = x tanθ := Ty(x) and x =
y/ tanθ := Tx(y), so Ty(x) and Tx(y) are well defined. Performing
the inner intergrals and rearranging the terms give∫

V
∇ · v dΩ =

∫ b
0
vx(a,y) dy −

∫ a
0
vy(x,0) dx−∫ b

0
vx(Tx(y),y) dy +

∫ a
0
vy(x, Ty(x)) dx (3.7)

As shown in Figure 3.4 we have that on S1, n1 = −ey and on S2, n2 = ex .
So we can express the first two integrals in the right side (3.7)∫ b

0
vx(a,y) dy −

∫ a
0
vy(x,0) dx =

∫
S2

n2 · v dσ2 +
∫
S1

n1 · v dσ1

Finally, we change the variable of integration in the last two integrals
of (3.7) using x = σ3 cosθ,y = σ3 sinθ on S3. So on S3 changing from
x and y to σ3, we have that∫ b

0
vx(Tx(y),y) dy =

∫ √a2+b2

0
vx(σ3 cosθ,σ3 sinθ) sinθ dσ3∫ a

0
vy(x, Ty(x)) dx =

∫ √a2+b2

0
vy(σ3 cosθ,σ3 sinθ) cosθ dσ3

Noting that since the tangent vector for S3 is t3 = cosθex + sinθey ,
the outward unit normal vector and its inner product with v for (x,y)
on S3 are

n3 = − sinθex + cosθey n3 · v = −vx sinθ + vy cosθ

(note that n3 · t3 = 0). Substituting the results from the change of
integration variables then gives

−
∫ b

0
vx(Tx(y),y) dy +

∫ a
0
vy(x, Ty(x)) dx =

∫
S3

n3 · v dσ3
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n1

S1

V2

V1

n2

S2

Figure 3.5: Left: Decomposing an arbitrary triangle into the sum of
two right triangles. Right: Decomposing a polygon into
a sum of triangles.

Collecting the previous integrals and substituting into (3.7) then give∫
V
∇ · v dΩ =

∫
S1

n1 · v dσ1 +
∫
S2

n2 · v dσ2 +
∫
S3

n3 · v dσ3 =
∫
S
n · v dσ

and we have established the divergence theorem for an arbitrary right
triangle. Note that the normal vector is not defined at the three corners
of the triangle, but the surface integral remains well defined because
an integral is unaffected by the value of the integrand at a countable
set of points in the interval of integration.

The next key step in the development is to understand what hap-
pens when we add two objects sharing a common boundary segment.
Consider decomposing an aribtrary triangle into a sum of two right
trangles as shown on the left side of Figure 3.5. We have established
the divergence theorem for both V1 and V2, so we have that∫

V
∇ · v dΩ =

∫
V1

∇ · v dΩ +
∫
V2

∇ · v dΩ =
∫
S1

n · v dσ +
∫
S2

n · v dσ

Notice that the two surface integrals contain the same line segment.
But in the integrals over S1 and S2, the outward normals on this shared
line segment have opposite sign, and n1 = −n2. So the two integrals
on this common segment cancel and we have the integral over only the
outer boundary, S, establishing the divergence theorem∫

V
∇ · v dΩ =

∫
S
n · v dσ

for any triangle.
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P1

P2

P3

Figure 3.6: The circle as a limit of polygons Pn, n = 1,2,3, . . ..

Generalizations. Next we can decompose any polygon (or more gen-
erally an n-polytope in n dimensions) into a sum of triangles, illus-
trated on the right side of Figure 3.5. Again, the integrals over the
common interior line segments cancel and the divergence theorem ap-
plies to any polygon. Further generalizing, we can take limits of poly-
gons and extend the divergence theorem also to objects with curved
boundaries, such as circles, ellipses, and boundaries with cusps. One
can even take limits in which the limiting object is fractal, and with a
suitable definition of the surface integral establish the divergence the-
orem for fractal objects where the normal vector is nowhere defined on
the boundary (Harrison, 1999). See Exercise 3.55 for an example using
the Koch snowflake, one of the earliest fractal objects to be described.

Finally, nothing restricts the development to the two-dimensional
plane as illustrated here, and the divergence theorem holds also in n-
dimensions for any n. In one dimension it reduces to the fundamen-
tal theorem of integral calculus:

∫ b
a
df
dx dx = f(b) − f(a). As

mentioned earlier, the divergence theorem arises most often in stan-
dard 3-dimensional physical space as a key step in deriving conser-
vation laws (mass, momemtum, energy) in continuum transport prob-
lems.

Example 3.2: Divergence theorem on the circle

Show the divergence theorem applies when V is a circle of radius R.
First use the established result for polygons and take a sequence of
polygons approaching the circle. Next choose a better coordinate sys-
tem for a circle and establish the divergence theorem by direct calcu-
lation.



272 Vector Calculus and Partial Differential Equations

Solution

Note in Figure 3.6 that the sequence of polygons Pn converges to the
circle V as n→∞, and the divergence applies to each element Pn so it
applies in the limit to V . Next, consider polar coordinates, and we have
established in (3.4) and Exercise 3.3

∇ = er
∂
∂r
+ eθ

1
r
∂
∂θ

∇ · v = 1
r
∂
∂r
(rvr )+

1
r
∂vθ
∂θ

By direct integration we have that∫
V
∇ · v dΩ =

∫ 2π

0

∫ R
0

(
1
r
∂
∂r
(rvr )+

1
r
∂vθ
∂θ

)
r drdθ

=
∫ 2π

0
Rvr (R, θ) dθ +

∫ R
0
(vθ(r ,2π)− vθ(r ,0)) dr

=
∫ 2π

0
Rvr (R, θ) dθ =

∫ 2π

0
n · v(R, θ) R dθ

=
∫
S
n · v dσ

and the result is established. □

In Cartesian tensor notation, the divergence theorem is∫
V

∂vi
∂xi

dV =
∫
S
nivi dS

By replacing the vector vi by a scalar φ or by a second-order tensor τij
in this expression, the related results can be found (now expressed in
boldface notation) ∫

V
∇φ dV =

∫
S
nφ dS (3.8)∫

V
∇ · τ dV =

∫
S
n · τ dS (3.9)

Multidimensional Leibniz’s rule. Another important related result
is the multidimensional version of Leibniz’s rule. Consider the time
derivative of an integral over a volume that is moving with time, e.g., a
fluid element in a velocity field. If a point on the boundary is moving
with a velocity q(x, t), then Leibniz’s rule states that

d
dt

∫
V(t)

m(x, t)dV =
∫
V

∂m
∂t
dV +

∫
S
mn · qdS
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n

q

V(t +∆t)

V(t)

S(t)

Figure 3.7: Volume element V(t) with moving boundary S(t) having
velocity q.

The second term in this formula appears only if the volume is moving
or changing shape with time and represents the net amount that is
swept into V because of the motion of its boundaries.

A derivation of Leibniz’s rule can be constructed as follows. We as-
sume enough smoothness so that all derivatives of interest exist. Con-
sider the volume element V(t) in Figure 3.7. We consider the volume
integral at a time t +∆t with ∆t small. We have two changes to track:
the function m(x, t) changes with time, and the volume element V(t)
changes with time due to the velocity of its surface, q. Keeping up to
first-order terms, the change in m(x, t) is straightforward

m(x, t +∆t) =m(x, t)+ ∂
∂t
m(x, t) ∆t

To compute the change in the volume integral we have∫
V(t+∆t)

m(x, t)dΩ =
∫
V(t)

m(x, t)dΩ +
∫
S(t)
mn · qdσ∆t

Note that n · qdσ∆t evaluated in a surface element on S gives to first
order the local increase (or decrease) in volume V due to the motion
of the bounding surface. This local change is integrated over the en-
tire surface to obtain the total change in the volume integral due to a
small (normal) displacement in the bounding surface S(t). Note that
we need to project the velocity onto the surface normal to calculate the
volume change, i.e., the component of q tangent to the surface does not
change the size of V , but simply allows rotation of the volume element.



274 Vector Calculus and Partial Differential Equations

Assembling the terms we have

∫
V(t+∆t)

m(x, t +∆t) dΩ =
∫
V(t)

(
m(x, t)+ ∂

∂t
m(x, t)∆t

)
dΩ+∫

S(t)

(
m(x, t)+ ∂

∂t
m(x, t)∆t

)
n · q dσ∆t

Expanding the integrals and rearranging terms gives

1
∆t

[∫
V(t+∆t)

m(x, t +∆t) dΩ −
∫
V(t)

m(x, t) dΩ
]
=∫

V(t)

∂m
∂t

dΩ +
∫
S(t)

(
m(x, t)+ ∂

∂t
m(x, t)∆t

)
n · q dσ

and taking the limit ∆t → 0 produces the multidimensional Leibniz’s
rule

d
dt

∫
V(t)

m(x, t) dΩ =
∫
V(t)

∂m
∂t

dΩ +
∫
S(t)
mn · q dσ

Example 3.3: The divergence theorem and conservation laws

Conservation laws can be written for many quantities. Important exam-
ples include mass, energy, chemical species, and probability. Consider
a quantity A that satisfies a conservation law in some arbitrary region
of space V with boundary S and outward unit normal n. The density
(amount per unit volume) of A is ρA and the flux (amount per unit area
per unit time) is FA. We allow for the possibility that A is created or
destroyed within the volume, with rate RA having units of amount of A
per unit volume per unit time. If A is a chemical species, then RA is a
volumetric reaction rate of production of A. The conservation law for
A can thus be written for the domain V as follows

d
dt

∫
V
ρA dV = −

∫
S
n · FA dS +

∫
V
RA dV (3.10)

The left-hand side is the rate of accumulation of A in the domain. The
first term on the right-hand side is the net rate of entry ofA into the do-
main across its boundary and the final term is the net rate of production
of A via sources or sinks of A within the domain. Use the divergence
theorem to write a conservation statement for A that is valid at every
point in the domain.
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Solution

The divergence theorem allows the lone surface integral to be recast as
a volume integral ∫

S
n · FA dS =

∫
V
∇ · FA dV

Furthermore, because V is time independent

d
dt

∫
V
ρA dV =

∫
V

∂ρA
∂t

dV

Substituting these two equations into (3.10) yields∫
V

∂ρA
∂t

dV = −
∫
V
∇ · FA dV +

∫
V
RA dV

Since all terms in this equation are volume integrals, they can be com-
bined ∫

V

[
∂ρA
∂t
+∇ · FA − RA

]
dV

Because the volume V is arbitrary, the only way that this equation can
be satisfied in general is if the integrand vanishes at every point within
V . That is

∂ρA
∂t

= −∇ · FA + RA (3.11)

This is the general pointwise statement of the conservation law for A.
To be more specific, let A be a chemical species. Its molar density,

or concentration, will be denoted cA. Chemical species are transported
by molecular diffusion and flow; if the species is dilute the flux of A
can be written FA = cAv −DA∇cA, where v is the velocity field for the
fluid in which A is dissolved, and DA is the diffusivity of the species.
Now (3.11) becomes

∂cA
∂t
= −∇ · (cAv)+DA∇2cA + RA (3.12)

This is a partial differential equation for spatial and temporal distribu-
tion of a chemical species. If U and L are characteristic scales for the
fluid velocity v and domain size, respectively, then the relative impor-
tance of convection and diffusion is estimated by the Peclet number
Pe = UL/DA. □
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3.2.4 Further Integral Relations and Adjoints of Multidimensional
Differential Operators

Green’s identities are special cases of the divergence theorem that
are useful for working with integrals over quantities involving differ-
ential operators other than the divergence. Green’s first identity is the
divergence theorem for the case where v is replaced by u∇v , where u
and v are now scalars∫

V
(∇u ·∇v +u∇2v)dV =

∫
S
u∇v · ndS (3.13)

Green’s second identity comes writing Green’s first identity with u and
v exchanged and subtracting this expression from Green’s first identity
as written above∫

V
(u∇2v − v∇2u)dV =

∫
S
(u∇v − v∇u) · ndS (3.14)

Finally, Green’s formula comes from replacing v in the original ex-
pression by uv where u is a scalar and v a vector∫

V
(∇u · v +u∇ · v)dV =

∫
S
uv · ndS (3.15)

In one dimension, Green’s formula reduces to the expression for inte-
gration by parts.

The above theorems all deal with the divergence and its closest rel-
atives, the gradient and the Laplacian. The final results are instead for

the curl. In two dimensions, ∇× v reduces to ( ∂vy∂x −
∂vx
∂y )e3. Green’s

theorem shows how the integral of this over an area A can be reduced
to an integral over the (closed) boundary curve C∫

A

(
∂vy
∂x

− ∂vx
∂y

)
dA =

∫
C
(vx dx + vy dy)

The proof of this result closely follows what we did above with the
divergence theorem. Stokes’s theorem is more general, applying to
any bounded orientable (“two-sided”) curved surfaceA floating in three
dimensions, with boundary curve C∫

A
n · (∇× v)dA =

∫
C
v · t dC

Here t is the unit vector tangent to the boundary C , pointing in the
direction in which the integration around C is being performed. The
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orientability condition precludes surfaces like a Möbius strip. The vec-
tor n is a unit normal vector to the surface A. Since the surface does
not enclose a three-dimensional volume, however, inward and outward
are undefined, the direction of n cannot be defined as it has been in
earlier theorems. Here n is determined from the right-hand rule, based
on the direction of the integration path for C . For example, if S were a
region on a sheet of paper, then n would point upward out of the paper
if the integration path around C is counterclockwise.

One important application of the above results is in the determina-
tion of the adjoints to div, grad, and curl. First, we define the relevant
inner products. Let

(u,v) =
∫
V
uv dV

if u and v are (real) scalars, and

(u,v) =
∫
V
u · v dV

if they are vectors. In our earlier discussion of adjoints, we used in-
tegration by parts to help us compute them; in multiple dimensions,
Green’s formula and identities are the appropriate replacements. For
example, using Green’s formula, (3.15), we can easily find that, with
u(S) = 0 (Dirichlet boundary conditions)

(∇u,v) = −(u,∇ · v)

Thus the adjoint of grad (with Dirichlet boundary conditions) is −div.
Similarly, rearranging Green’s second identity we find that

(∇2u,v) = −
∫
S
(u∇v − v∇u) · ndS + (u,∇2v)

If we impose the same boundary conditions on u and v , then u∇v =
v∇u on the boundary. Thus the boundary term vanishes, leaving

(∇2u,v) = (u,∇2v)

Therefore, the Laplacian operator is always self-adjoint. This fact has
important implications for the solution of partial differential equations
that involve the Laplacian.
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3.3 Linear PDEs: Properties and Solution Techniques

3.3.1 Classification and Canonical Forms for Second-Order Partial
Differential Equations

Many general properties of partial differential equations can be intro-
duced with this second-order equation in two dimensions

auxx + 2buxy + cuyy = f(x,y,u,ux, uy) (3.16)

where x,y ∈ R and ux = ∂u
∂x etc. For the moment x and y are not nec-

essarily position variables—they are simply the independent variables
for the problem. The coefficients a, b, and c are real and constant,
though the latter restriction can be relaxed. Now consider the question
of whether there exists a change of independent variables

ξ = ξxx + ξyy
η = ηxx + ηyy

that can simplify the left-hand side of this equation. Here ξx, ξy , ηx ,
and ηy are constants and ξxηy − ξyηx must be nonzero for the coor-
dinate transformation to be invertible. Applying the chain rule yields
that (

aξ2
x + 2bξxξy + cξ2

y

)
uξξ+(

aξxηx + b(ξxηy + ξyηx)+ cξyηy
)
uξη+(

aη2
x + 2bηxηy + cη2

y

)
uηη = g(ξ, η,u,uξ , uη) (3.17)

If b2 − ac > 0, then (3.16) is said to be hyperbolic3. In this case,
we can find real constants ξx, ξy , ηx, ηy such that the coefficients mul-
tiplying uξξ and uηη in (3.17) vanish, leaving the simpler differential
equation

uξη = g (3.18)

This is the canonical, or simplest, form for a hyperbolic partial dif-
ferential equation. Lines ξ = constant and η = constant are called
characteristics for the equation. The wave equation

utt − c2uxx = 0 (3.19)

3The nomenclature introduced in this section arises from an analogy with conic
sections defined by the equation ax2 + 2bxy + cy2 + dx + ey + f = 0. If they exist,
real solutions to this equation are hyperbolas, ellipses, or parabolas, depending on
whether b2 − ac is positive, negative, or zero.
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has this form, with ξ = x − ct, η = x + ct. We present the general
solution to this equation in Section 3.3.6.

If b2−ac < 0, then (3.16) is elliptic. No real coefficients ξx, ξy , ηx ,
and ηy exist that will make the coefficients of uξξ and uηη vanish.
Instead, one finds complex conjugate characteristics ξ = ξR + iξI , η =
ξR − iξI . All is not lost, however. Using ξ′ = ξR and η′ = ξI as new
coordinates, the coefficient of uξ′η′ can be made to vanish, leading to
the canonical form

uξ′ξ′ +uη′η′ = g (3.20)

The left-hand side of this equation is the two-dimensional Laplacian
operator. At steady state, (3.12) above reduces to this form in two
spatial dimensions. If g is only a function of x and y , this equation
is called the Poisson equation. If g = 0, it is called the Laplace
equation.

The borderline case b2 − ac = 0 leads to the parabolic equation

uηη = g (3.21)

The standard example of a parabolic equation is the transient species
conservation equation, (3.12) in one spatial dimension, which we can
write

ut + vux = Duxx + RA

The Schrödinger equation is also parabolic. Elliptic and parabolic equa-
tions are treated extensively in the sections below.

The classification of partial differential equations into these cate-
gories plays an important role in the mathematical theory of existence
of solutions for given boundary conditions. Fortunately, the physical
settings commonly encountered by engineers generally lead to well-
posed mathematical problems for which we do not need to worry about
these more abstract issues. Therefore we now proceed to the presen-
tation of classical solution approaches, many of which are insensitive
to the type of equation encountered.

3.3.2 Separation of Variables and Eigenfunction Expansion with
Equations involving ∇2

The technique of separation of variables is perhaps the most famil-
iar classical technique for solving linear partial differential equations.
It arises in problems in transport, electrostatics, quantum mechanics,
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and many other applications. The technique is based on the superposi-
tion property of linear problems (Section 2.2.1) as well as the following
several assumptions:

1. A solution u(x1, x2, x3, . . .) to a PDE with independent variables
xi can be written u = X(x1)Y(x2)Z(x3) · · · .

2. The boundaries of the domain are coordinate surfaces and the
boundary conditions for the PDE can also be written in the above
form.

3. A distinct ODE can be derived from the original PDE for each func-
tion X,Y ,Z, . . ..

4. Using superposition, a solution satisfying the boundary condi-
tions can be constructed from an infinite series of solutions to
these ODEs. This condition implies that separation of variables
is primarily useful for equations involving self-adjoint partial dif-
ferential operators such as the Laplacian, in which case eigen-
functions of various Sturm-Liouville problems provide bases for
representing the solutions. Consider a problem with three in-
dependent variables and two of them, say x2 and x3, lead to
Sturm-Liouville problems with eigenfunctions Yk(x2) and Zl(x3),
k = 0,1,2, . . . , l = 0,1,2, . . .. The basis functions for the x2 − x3

direction are thus Yk(x2)Zl(x3). The solutions to the problem in
the inhomogeneous direction are then coefficients in the series
and the total solution has this form

u(x1, x2, x3) =
∞∑
k=1

∞∑
l=1

Xkl(x1) {Yk(x2)Zl(x3)}

We illustrate the method with several examples.

Example 3.4: Steady-state temperature distribution in a circular cylin-
der

Consider a circular cylinder with unit radius and an imposed tempera-
ture profile us(θ) on its surface. The steady-state temperature profile
u(r , θ) is a solution to Laplace’s equation

∇2u = 0 (3.22)

in polar coordinates

1
r
∂
∂r
r
∂u
∂r
+ 1
r 2

∂2u
∂θ2

= 0
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with u bounded at the origin and satisfying u(1, θ) = us(θ). As de-
scribed above, seek a solution u(r , θ) = R(r)Θ(θ).

Solution

Plugging into the equation and simplifying yields

r
R
(
rR′

)′ = −Θ′′
Θ

where R′ = dR/dr and Θ′ = dΘ/dθ. Notice that the LHS of the equa-
tion is a function of r only and the RHS a function of θ. The only way
for the two sides to be equal is for them both to equal a constant, c.
This observation gives us a pair of ODEs

r
(
rR′

)′ − cR = 0 (3.23)

Θ′′ + cΘ = 0 (3.24)

The constant c is as yet unspecified.
Equation (3.23) satisfies periodic boundary conditionsΘ(θ) = Θ(θ+

2π),Θ′(θ) = Θ′(θ + 2π); it is a Sturm-Liouville eigenvalue problem
with eigenvalue c. This has solutions Θk(θ) = eikθ for all integers k
with the corresponding eigenvalue c = k2. So in fact we have found
not a single solution, but a family of solutions; a basis for functions in
the θ direction.

Now consider the equation for R(r), setting c = k2. A little manip-
ulation puts the equation in this form

r 2R′′ + rR′ + k2R = 0

This is a Cauchy-Euler equation, with k as a parameter and solutions
Rk = Akrk+Bkr−k. To satisfy the boundedness condition at r = 0, only
the solution with a positive exponent must remain, so Rk = akr |k|.
Since every integer k gives a solution, we can use the superposition
principle to write

u(r , θ) =
∞∑

k=−∞
akr |k|eikθ

This is a Fourier series, using the Sturm-Liouville eigenfunctions Θk(θ)
as basis functions. The coefficients ak come from the boundary condi-
tion. At r = 1,

u(1, θ) =
∞∑

k=−∞
akeikθ = us(θ)
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We can extract the coefficients ak from this formula by using the or-
thogonality of the Sturm-Liouville basis functions: take inner products
(in θ) of both sides with the basis function eilθ( ∞∑

k=−∞
akeikθ, eilθ

)
=
(
us(θ), eilθ

)

Letting ck = (us(θ), eilθ)/2π , this process simply gives us that ak = ck.
That is, the (known) Fourier coefficients of the boundary temperature
determine the Fourier coefficients in the cylinder, so

u(r , θ) =
∞∑

k=−∞
ckr |k|eikθ □

Example 3.5: Transient diffusion in a slab

The transient diffusion of heat or a chemical species in one direction
is governed by the transient diffusion equation, also called the heat
equation

∂u
∂t
= D∂

2u
∂x2

(3.25)

Consider the initial and boundary conditions u(x,0) = 0, u(0, t) = 0,
u(ℓ, t ≥ 0) = uℓ, i.e., the initial concentration in the domain 0 < x < ℓ
is zero and at t = 0 the right end of the domain is exposed to a known
concentrationu = uℓ. Seek a separation of variables solutionu(x, t) =
X(x)T(t).

Solution

Using the form u(x, t) = X(x)T(t), (3.25) becomes

XT ′ = DX′′T

where again ′ denotes the derivative of a function with respect to its
independent variable. Rearranging yields

1
D
T ′

T
= X

′′

X

Observing that this expression equates a function of t to a function of
x we again conclude that each side of it must be constant

T ′ = cDT (3.26)

X′′ = cX (3.27)
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The second of these contains a Sturm-Liouville operator and must sat-
isfy boundary conditions X(0) = 0, X(ℓ) = uℓ. These boundary condi-
tions, however, are not homogeneous, so the problem as written is not
a Sturm-Liouville problem.

A simple change of variable solves this problem. We letu = us(x)+
v(x, t) and choose us to satisfy the inhomogeneous boundary condi-
tions atx = 0 andx = ℓ, in which case v satisfies homogeneous bound-
ary conditions v(0, t) = v(ℓ, t) = 0. A particularly convenient choice
is us = uℓ xℓ , which is the steady-state solution to this problem. Thus
v(x, t) is the deviation from the steady state. Substituting into (3.25)
and observing that ∂us/∂t = ∂2us/∂x2 = 0 yields

∂v
∂t
= D∂

2v
∂x2

with v(x,0) = −us , v(0, t) = 0, v(ℓ, t ≥ 0) = 0. Now letting v(x, t) =
X(x)T(t) and repeating the above steps we find that the problem for X
is a true Sturm-Liouville problem, including the homogeneous bound-
ary conditions X(0) = X(ℓ) = 0. The eigenvalues are c = −k2, where
now k = nπ/ℓ for positive integern and the eigenfunctions are sin nπx

ℓ .
Equation (3.26) is an initial-value problem. Its solutions, parametrized
by n, are

Tn(t) = Tn(0)e−
n2π2

ℓ2 Dt

so the overall solution again has the Fourier series form

v(x, t) =
∞∑
n=1

Tn(0)e−
n2π2

ℓ2 Dt sin
nπx
ℓ

(3.28)

The initial conditions Tn(0) are determined from the initial condi-
tionv(x,0) = −us by setting t = 0 in (3.28) and taking its inner product
with basis function sin mπx

ℓ(
−uℓ

x
ℓ
, sin

mπx
ℓ

)
=
( ∞∑
n=1

Tn(0) sin
nπx
ℓ
, sin

mπx
ℓ

)
Thus

Tm(0) =
∫ ℓ
0 −uℓ

x
ℓ sin mπx

ℓ dx∫ ℓ
0 sin mπx

ℓ sin mπx
ℓ dx

= (−1)m
2uℓ
mπ

The final exact solution is thus

u(x, t) = uℓ
x
ℓ
+

∞∑
n=1

(−1)n
2uℓ
nπ

e−
n2π2

ℓ2 Dt sin
nπx
ℓ

(3.29)
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At short times t ≪ ℓ2/D, this series converges very slowly because of
the n−1 decay of the Fourier coefficients Tn(0) of the initial condition.
In this situation, alternate approaches that approximate the domain as
semi-infinite are more appropriate because diffusion has only had time
to spread the heat or solute over a short distance from the boundary.
See Exercises 3.23 and 3.36. As t increases, the exponential decay term
becomes smaller and the series converges more rapidly.

□

With these two examples, one can see a pattern emerging. Separa-
tion of variables leads to at least one direction that presents a Sturm-
Liouville problem whose eigenfunctions are a useful basis for repre-
senting the solution. In the second example, a change of variable was
required to find a direction with the homogeneous boundary condi-
tions required of a Sturm-Liouville eigenvalue problem. The following
example extends this idea.

Example 3.6: Steady-state diffusion in a square domain

Solve Laplace’s equation ∇2u = 0 in a unit square domain 0 < x <
1,0 < y < 1, with boundary conditions u = 200 on x = 0 and y = 0,
u = 300 on x = 1 and u = 500 on y = 1, as shown in Figure 3.8(a).

Solution

As stated, there are no homogeneous directions. Now we split the so-
lution into three pieces: u(x,y) = U(x,y)+V(x,y)+W(x,y), where
U,V , andW all satisfy Laplace’s equation, but with conveniently chosen
boundary conditions that sum to the boundary conditions for the orig-
inal problem, as illustrated in Figure 3.8(b). The problem for U is trivial
because all the boundaries have the same value of 200; thus U = 200.
The problem for V has homogeneous boundary conditions at y = 0
and x = 1, while that for W has homogeneous boundary conditions at
x = 0 and x = 1, aside from a multiplicative constant, it is just a π/2
rotation of the problem for V . The solution to theW problem (to within
a multiplicative constant) is Exercise 3.32. From it the solution to the
V problem can be found so the solution for u = U+V +W is complete.

□
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∇2u = 0 300

(a)

200

200

200

500

∇2U = 0 ∇2V = 0 ∇2W = 0200

200

0

0

300

0 0

0

(b)

200 100 0

Figure 3.8: Laplace’s equation in a square domain. (a) Original prob-
lem. (b) Three subproblems whose solutions sum to the
solution of the original problem.

Example 3.7: Eigenfunction expansion for an inhomogeneous prob-
lem

Solve the Poisson equation

uxx +uyy = f(x,y)

in a unit square with Dirichlet boundary conditions, which models a
steady-state distribution given a source f(x,y) distributed within the
domain.

Solution

Separation of variables does not work for this problem (try it), but a
version of eigenfunction expansion does. Think of this problem as a
linear algebra problem Lu = f . Here L is self-adjoint, so the solutions
to the eigenvalue problem Lw + λw = 0 form an orthogonal basis and
allow us to diagonalize L. We can express u and f in this basis, and
since L becomes diagonal we can easily solve for u.

To perform this procedure in the present case, we need to solve

wxx +wyy + λw = 0

in the unit square with w = 0 on the boundary. We can solve this
problem by separation of variables: it gives Sturm-Liouville problems in
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bothx andy , and yields eigenfunctionswmn(x,y) = sinmπx sinnπy
with (real) eigenvalues λmn = π2(m2 + n2), for all integer pairs mn.
Now to solve the Poisson equation, we express u and f in terms of the
eigenfunctions

u(x,y) =
∞∑
m=1

∞∑
m=1

umnwmn(x,y)

f(x,y) =
∞∑
m=1

∞∑
m=1

fmnwmn(x,y)

Since f is known, fmn = (f ,wmn)/(wmn,wmn), where the inner prod-
uct in this case is just the integral over the square. Now since wxx +
wyy = −λw, we can write −λmnumn = fmn, which we can solve im-
mediately to give umn = −fmn/λmn, so

u(x,y) =
∞∑
m=1

∞∑
n=1

fmn
−λmn

sinmπx sinnπy □

In some situations, a separation of variable solution can be obtained
via multiple approaches. For example, the Laplacian operator in polar
coordinates can be written

∇2 = Lr +
1
r 2
Lθ + Lz

where

Lr =
1
r
∂
∂r

(
r
∂
∂r

)
Lθ =

∂2

∂θ2
Lz =

∂2

∂z2

Given appropriate homogeneous boundary conditions, all three of these
are Sturm-Liouville operators, so depending on the boundary condi-
tions, there may by the possibility of more than one method of solution.
The following example illustrates this situation.

Example 3.8: Steady diffusion in a cylinder: eigenfunction expansion
and multiple solution approaches

Consider Laplace’s equation in a cylindrical domain with boundary con-
ditions u(r , z = 0) = 1, u(r = 1, z) = 0, u(r , z = 1) = 0. That is, the
bottom is heated, and the top and side are cooled. Solve this equation
in two different ways:

(a) Using basis functions that depend on r .
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(b) Using basis functions that depend on z.

Solution

We could proceed by seeking a solution v(r , z) = R(r)Z(z) as above.
Instead we will directly impose a Fourier series form for the solution
based on the eigenfunctions.

(a) For the current problem there is no θ-dependence and we first
seek a solution that uses basis functions in the r -direction., i.e.,
eigenfunctions of Lr . This is a singular Sturm-Liouville operator
(p(r) = r ) so only boundedness is required at the origin, and the
boundary condition at r = 1 is homogeneous. Referring back to
Example 2.8, we recognize that the eigenfunctions of Lr are the
Bessel functions of order zero so we can seek a solution

u(r , z) =
∞∑
n=1

un(z)J0(
√
λnr)

where
√
λn = 2.4,5.5,8.7,11.8, . . . . To simplify notation, let kn =√

λn. Substituting this solution form into Laplace’s equation and
using the fact that LrJ0(knr) = −k2

nJ0(knr) yields that

d2un
dz2

− k2un = 0

Because of the bounded domain, it is convenient to represent the
solution to this problem as

un(z) = an coshknz + bn sinhknz

so

u(r , z) =
∞∑
n=1

(an coshknz + bn sinhknz)J0(knr) (3.30)

At z = 0, u = 1. Taking the inner product, i.e., weighted integral
from r = 0 to r = 1 of (3.30), evaluated at z = 0, with J0(kmr)
leads to

an =
(1, J0(kmr))w

(J0(kmr), J0(kmr))w
(3.31)
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Evaluation of these and related integrals is facilitated by the fol-
lowing general results for Bessel functions with integer n and ar-
bitrary k, l

d
dx
[xnJn(kx)] = xnkJn−1(kx) (3.32)

d
dx
[xnYn(kx)] = xnkYn−1(kx) (3.33)

x
d
dx
[Jn(kx)]+nkJn(kx) = xkJn−1(kx) (3.34)

x
d
dx
[Yn(kx)]+nkYn(kx) = xkYn−1(kx) (3.35)

x
d
dx
[Jn(kx)]−nkJn(kx) = −xkJn+1(kx) (3.36)

x
d
dx
[Yn(kx)]−nkYn(kx) = xkYn+1(kx) (3.37)

J−n(kx) = (−1)nJn(kx) (3.38)

Y−n(kx) = (−1)nYn(kx) (3.39)

∫ 1

0
xJn(kx)Jn(lx) dx

=

0 k ≠ l
1
2J

2
n+1(k) k = l, Jn(k) = 0, n > −1

(3.40)

Using the first and last of these expressions, one can find that

(1, J0(kmr))w =
∫ 1

0
J0(kmr)r dr =

1
km
J1(km) (3.41)

(J0(kmr), J0(kmr))w =
∫ 1

0
J2

0(kmr)r dr =
1
2
J2

1(km) (3.42)

The boundary condition u = 0 at z = 1 requires that

bn = −
an coshkn

sinhkn

Using these results, the solution is

u(r , z) =
∞∑
n=1

an
(

coshknz −
coshkn
sinhkn

sinhknz
)
J0(knr)

with an given by (3.31), (3.41), and (3.42).
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(b) Alternately, we can seek a solution using eigenfunctions of Lz.
The boundary conditions at z = 0 and z = 1 are not homogeneous
but this is easily addressed by lettingu = (1−z)+v . Now∇2v = 0
(because ∇2(1 − z) = 0) with the homogeneous boundary condi-
tions v(r ,0) = v(r ,1) = 0. Now, however, v(1, z) = −(1 − z).
We could proceed by seeking a solution v(r , z) = R(r)Z(z) as
above. Instead we will directly impose a Fourier series form for
the solution based on the eigenfunctions sinnπz of Lz

v(r , z) =
∞∑
n=1

vn(r) sinnπz

Substituting this solution form into Laplace’s equation leads to

∞∑
n=1

(
1
r
d
dr
r
dvn
dr

−n2π2vn(r)
)

sinnπz = 0

Taking the inner product of this equation with sinmπz, invoking
orthogonality, and changing m to n yields

1
r
d
dr
r
dvn
dr

−n2π2vn(r) = 0

This is called the modified Bessel equation of order zero. It
differs from Bessel’s equation by the sign in front of the second
term. Its solution can be found by the method of Frobenius; the
general solution is

vn(r) = anI0(nπr)+ bnK0(nπr)

The functions I0 and K0 are the modified Bessel functions of
order zero; they are shown in Table 2.3. The function K0 has
a logarithmic singularity at the origin, so for boundedness we
require thatbn = 0. The coefficientsan are found by imposing the
boundary condition at r = 1 and again taking the inner product
with an eigenfunction

an =
(−(1− z), sinnπz)

1
2 I0(nπ)

= −2
nπI0(nπ)

The solution in final form is

v(r , z) =
∞∑
n=1

anI0(nπr) sinnπz □
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In spherical coordinates, the Laplacian operator can be written

∇2 =
(
Lru+

1
r 2
Lθu+

1

r 2 sin2 θ
Lφu

)
where

Lr =
1
r 2

∂
∂r
r 2 ∂
∂r

Lθ =
1

sinθ
∂
∂θ

sinθ
∂
∂θ

Lφ =
∂2

∂φ2

It often is useful to rewrite the first of these in this form

Lrf =
1
r
∂2

∂r 2 (rf ) (3.43)

Accordingly, the introduction of a new variable g = rf often is useful
in problems in spherical coordinates.

Example 3.9: Transient diffusion from a sphere

Consider the transient diffusion of a chemical species out of a sphere
with radius R into uniform surroundings where the species concentra-
tion is zero. This problem satisfies

∂u
∂t
= DLru

with u(r ,0) = u0, u(R, t > 0) = 0.

Solution

Spherically symmetric problems like this can be solved using the eigen-
functions of

LrΦ + λΦ = 0

This is the Spherical Bessel’s equation

d
dx
x2dy
dx
+
(
m2x2 −n(n+ 1)

)
y = 0

in the specific case λ =m2 and n = 0. Its solutions are the spherical
Bessel functions of order zero, which are simply

f(x) = asinmx
x

+ bcosmx
x

These functions are orthogonal with respect to an inner product with
weight function w(r) = r 2. This factor arises naturally in the dif-
ferential volume element in spherical coordinates. The eigenvalues
m2, and coefficients a and b are determined as usual by the (homoge-
neous/boundedness) boundary conditions. For example, for diffusion
in a sphere, boundedness at the origin requires that b = 0. □
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Example 3.10: Temperature field around a sphere in a linear gradient

Consider the steady-state temperature field T(r , θ) that surrounds a
sphere of radius R, e.g., a spherical inclusion in a solid material, ex-
posed to a temperature gradient aligned along the z axis. We take the
thermal conductivity of the sphere to be small enough that there is no
heat flux into it. Thus we are solving

0 = LrT +
1
r 2
LηT

with boundary conditions

∂T
∂r
= 0, r = R

∇T → Gez, r →∞

Solution

Axisymmetric diffusion problems involving the Laplacian in spherical
geometries are naturally treated by expansion in the eigenfunctions of

LθΦ + λΦ = 0

If we make the substitution η = cosθ, Lθ becomes

Lη =
d
dη

(
1− η2

) d
dη

and the eigenvalue problem can be written as

(
1− z2

) d2Φ
dz2

− 2z
dΦ
dz
+ λΦ = 0

This is Legendre’s differential equation, see Example 2.9. Its eigenval-
ues are λ = n(n+1) for nonnegative integers n and its eigenfunctions
are the Legendre polynomials Pn(η).

Substituting the solution form

T(r , η) =
∞∑
n=0

Tn(r)Pn(η) (3.44)

into the governing equation, recalling that LηPn = −n(n + 1)Pn, and
using the orthogonality of the Legendre polynomials yields that

r 2LrTn −n(n+ 1)Tn = 0
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Rewriting this as

r 2d2Tn
dr 2

+ 2r
dTn
dr

−n(n+ 1)Tn = 0 (3.45)

we recognize it as a Cauchy-Euler equation with solution

Tn(r) = anrn + bnr−(n+1) (3.46)

Consider first the boundary condition at infinity. We can rewrite this
as T → Grη+ T∞ = rGP1(η)+ T∞, where T∞ is arbitrary; we have not
specified the temperature anywhere, only its gradient. Comparing this
form to the series solution (3.44), we see that a0 = T∞, a1 = G, and
an = 0 for n > 1. At r = R

0 = ∂T
∂r

=
∞∑
n=0

dTn
dr

Pn(η)

=
∞∑
n=0

(
nanRn−1 − (n+ 1)bnR−(n+1)−1

)
Pn(η)

Because of the orthogonality of the Pn(η), this sum must vanish term
by term

nanRn−1 − (n+ 1)bnR−(n+1)−1 = 0

Using the known values of an

n = 0 : b0 = 0

n = 1 : a1 = G = 2b1R−3 ⇒ b1 =
GR3

2
n > 1 : an = 0 = (n+ 1)bnR−(n+1)−1 ⇒ bn = 0

The final result is

T(r , θ) = T∞ +G
(
r + R3

2r 2

)
cosθ (3.47)

□
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Example 3.11: Domain perturbation: heat conduction around a near-
sphere

Consider the problem of heat conduction outside an object described
in spherical coordinates by

r = R(θ) = 1+ ϵP2(cosθ)

where P2(x) = (3x2− 1)/2 is the quadratic Legendre polynomial. This
shape is slightly elongated at the poles and narrower at the equator than
is a sphere, but has the same surface area. Use a regular perturbation
approach based on the smallness of the deviation of the surface from
spherical.

Solution

This example illustrates the technique of domain perturbation. This
approach is applicable to problems where the possibly unknown bound-
ary shape is a small perturbation from a shape for which a closed form
(e.g., separation of variables or Fourier transform) solution can be ob-
tained. This approach is sometimes also used in numerical solution
approaches to simplify the domain shape. In the present example, the
choice of the Legendre polynomial simplifies the calculation but the
solution procedure would be similar, but more tedious, with a more
complicated surface shape, as long as the deviation from a sphere is
uniformly small.

The equation and boundary conditions are

∇2T = 0, T (r = R) = 1, T → 0 as r →∞

Because the boundary is not a constant-coordinate surface, separation
of variables (in spherical coordinates) cannot be used to find an exact
solution. Nevertheless, a perturbation approach can be used to impose
an asymptotically exact boundary condition at r = 1. This is done by
expanding the boundary condition in a Taylor series around r = 1:

1 = T(r = R(θ))

∼ T(1, θ)+ ∂T
∂r

∣∣∣∣
r=1
(R(θ)− 1)+ 1

2
∂2T
∂r 2

∣∣∣∣∣
r=1

(R(θ)− 1)2 +O(ϵ3)

Inserting the particular expression for the boundary shape:

1 ∼ T(1, θ)+ ∂T
∂r

∣∣∣∣
r=1
ϵP2(cosθ)+ 1

2
∂2T
∂r 2

∣∣∣∣∣
r=1

ϵ2P2(cosθ)2 +O(ϵ3)
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Note that this boundary condition is imposed at r = 1, allowing the
use of separation of variables. There is no indication that a singular
perturbation approach is necessary, so we posit a regular perturbation
expansion T(r , θ) ∼ T0(r , θ) + ϵT1(r , θ) + ϵ2T2(r , θ). The governing
equation at each order is simply Laplace’s equation, with boundary con-
dition at r = 1 at each order

ϵ0 : T0 = 1

ϵ1 : T1 = −P2(cosθ) ∂T0
∂r

ϵ2 : T2 = −P2(cosθ) ∂T1
∂r −

1
2P2(cosθ)2 ∂

2T0
∂r2 .

Using the fact that axisymmetric decaying solutions to Laplace’s equa-
tion in spherical coordinates are given by

∞∑
i=0

ci
Pi(cosθ)
r i+1

we find that the solutions at each order are:

T0(r , θ) =
1
r

T1(r , θ) =
P2(cosθ)
r 3

T2(r , θ) =
2
5

1
r
+ 4

7
P2(cosθ)
r 3

+ 36
35
P4(cosθ)
r 5

Given these solutions, we can find that the dimensionless heat flux from
the object is

Q = −2π
∫ π

0

∂T
∂r

∣∣∣∣
r=1

sinθ dθ = 4π(1+ 2
5
ϵ2)

where Q = 1 corresponds to the heat flux from a sphere. Thus the
change in heat flux from the sphere is proportional to the square of the
deviation of the surface from spherical. Notice that the entire solution
procedure is valid, and the heat flux the same if ϵ < 0, so the object is
actually a slightly flattened sphere. Therefore both prolate and oblate
deviations from a spherical shape increase the heat flux. □

3.3.3 Laplace’s Equation, Spherical Harmonics, and the Hydrogen
Atom

Schrödinger’s equation for the wave function Ψ(x, t) of a particle ex-
posed to a potential energy field V(x) is

i
∂Ψ
∂t
= −∇2Ψ + V(x)Ψ (3.48)
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We will consider the case of a spherically symmetric potential V(x) =
V(r), whose form we will specify later, so it is natural to work in spher-
ical coordinates. The solutions of this equation have a very rich struc-
ture that encompasses many features of systems with spherical sym-
metry.

In contrast to the previous couple examples, we will allow the sepa-
ration of variables procedure to again guide us. To begin, let Ψ(x, t) =
f(t)ψ(x)—the temporal and spatial variables are separated but not
(yet) the individual coordinate directions. Inserting this form into (3.48)
and rearranging yields

i
df
dt
f
= −∇

2ψ+ Vψ
ψ

= E

where E is a constant. Thus

i
df
dt
= Ef (3.49)

(−∇2 + V(r))ψ = Eψ (3.50)

The solution to (3.49) is
f(t) = f0e−iEt

Equation (3.50) has the form of an eigenvalue problem where the eigen-
value E is a dimensionless energy. This must be real so that Ψ does not
vanish at past or future times. Now, since Lφ = ∂2/∂φ2 with periodic
boundary conditions, we let ψ(r ,η,φ) = u(r , η)eimφ for any integer
m. As above, we have let η = cosθ. Equation (3.50) becomes(

−Lr −
1
r 2
Lη +

m2

r 2 (1− η2)
+ V(r)

)
u = Eu (3.51)

We now write u(r , η) = R(r)P(η). Substitution into (3.51) and rear-
rangement to group terms dependent only on r and η yields

1
R
r 2LrR + r 2(E − V(r)) = −1

P
LηP +

m2

1− η2
= c

Therefore

r 2LrR + r 2(E − V(r))R − cR = 0 (3.52)

LηP −
m2

1− η2
P + cP = 0 (3.53)
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Equation (3.53) describes the angular behavior of the solutions. For
m = 0, it reduces to Legendre’s differential equation—we know that
for boundedness at η = ±1 (θ = 0 and π ), that c = l(l + 1), with
l a whole number. For m ≠ 0 it is called the associated Legen-
dre differential equation. Seeking a power series solution re-
veals that this equation has bounded solutions in −1 ≤ η ≤ 1 only
if m = −l,−(l − 1),−(l − 2), . . . ,0,1,2, . . . , l. These solutions are the
associated Legendre polynomials

Plm(η) =
(

1− η2
)m/2 dm

dηm
Pl(η), m ≥ 0 (3.54)

and Pl,−m = Plm.
Recapitulating, the products Plm(cosθ)eimφ contain the angular de-

pendence of the solution. Suitably normalized and denoted Ylm(θ,φ),
these products are called surface spherical harmonics, or some-
times just spherical harmonics; they are the eigenfunctions of the
angular part of the Laplacian(

Lθ +
1

sin2 θ
Lφ
)
Ylm + l(l+ 1)Ylm = 0 (3.55)

Each eigenvalue l has l+1 corresponding eigenfunctions Ylm withm =
0,1, . . . l. The normalized functions have the form

Ylm(θ,φ) = (−1)(m+|m|)/2
√

2l+ 1
4π

(l−m)!
(l+m)!Plm(cosθ)eimφ (3.56)

and satisfy orthonormality with respect to integration over the surface
of the unit sphere∫ 2π

0

∫ π
0
Ylm(θ,φ)Ȳnp(cosθ,φ) sinθ dθ dφ = δlnδmp (3.57)

The functions Ylm for l = 4 are shown in Figure 3.9. Surface spherical
harmonics are widely used to represent functions on the surface of a
sphere.

Returning to (3.52) for the r -dependence, consider first the case
E = V(r) = 0, in which (3.50) becomes the Laplace equation ∇2ψ = 0.
Equation (3.52) and its solution reduce to (3.45) and (3.46), respectively,
with n replaced by l. Thus the general solution to ∇2ψ = 0, expressed
in spherical coordinates, is

ψ(r , θ,φ) =
∞∑
l=0

l∑
m=0

(
almr l + blmr−(l+1)

)
Ylm(θ,φ) (3.58)
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Figure 3.9: From left to right, real parts of the surface spherical har-
monics Y40, Y41, Y42, Y43, Y44.

Equation (3.47) is a particular case of this solution. Terms r lYlm(θ,φ)
and r−(l+1)Ylm(θ,φ) are called the growing and decaying solid spher-
ical harmonics, respectively.

Now consider the case of an electron “orbiting” a proton—a hydro-
gen atom—where the potential energy is the Coulomb potential

V(x) = −1
r

As boundary conditions, we require that Ψ is bounded at r = 0 and that
it vanishes as r →∞. If the latter condition is not satisfied, the electron
is not bound to the proton and we do not have an atom. Equation (3.43)
motivates the substitution w(r) = rR(r) into (3.52), yielding

d2w
dr 2

+
[
E − 1

r
− l(l+ 1)

r 2

]
w = 0

As r → ∞ we can approximate this as w′′ + Ew = 0, suggesting that
we seek a solution w(r) = F(r)e−βr , where β =

√
−E. This result in-

dicates that E < 0 for a bound electron. Without going into the details
(with which we are now largely familiar), seeking a Frobenius solution
F(r) = rαg(r) and requiring that Fe−βr → 0 as r →∞ leads toα = l+1
and requires that g(r) be a truncated power series, i.e., a polynomial.
Inspecting the recursion relation for the power series, one finds in close
analogy to the results in Chapter 2 regarding Legendre and other or-
thogonal polynomials that it will truncate at degree n′ if

√
−E(l+n′) = 1

The solutions, which we denote Rn′ can be written in terms of as-
sociated Laguerre polynomials (Merzbacher, 1970; Winter, 1979).
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Defining n = l+n′ as the principal quantum number this becomes

E = − 1
n2

This expression determines the eigenvalues of (3.50) and describes
very well the energy levels of a hydrogen atom. The eigenfunctions
ψlmn′(x) = Ylm(θ,φ)Rn′(r) of (3.50) are characterized by l, m =
−l, . . . , l, called the angular momentum quantum numbers, and n′,
called the radial quantum number. Since the eigenvalues E depend
only on l+n′, various combinations of l and n′ have the same energy.
The same is true for all eigenfunctions with the same m. The s, p,
d, and f atomic orbitals correspond to l = 0,1,2, and 3, respectively.
Since E < 0, when n = 1 only l = 0 states, s orbitals, can exist. This
is the ground state or lowest-energy state of the hydrogen atom. When
n = 2, both l = 0 (s orbitals) and l = 1 (p orbitals) can exist, and so
on. Thus we see in this analysis the basic features of the electronic
structure of atoms.

3.3.4 Applications of the Fourier Transform to PDEs

In Section 2.4.1 we saw that functions in a finite domain could be rep-
resented as a trigonometric Fourier series4

f(x) =
∞∑

k=−∞
ĉkeikx ĉk =

(f , eikx)
(eikx, eikx)

The Fourier transform generalizes this idea to an unbounded do-
main. First some definitions: the Fourier transform f̂ (k) of a function
f(x) is given by

f̂ (k) =
∫∞
−∞
f(x)e−ikxdx = F

{
f(x)

}
This is the analogue of the expression for ĉk in a bounded domain; be-
cause periodicity is no longer required over a finite interval, k can be
any real number rather than needing to be an integer. The inverse
Fourier transform is the analogue of the Fourier series representa-
tion of f

f(x) = 1
2π

∫∞
−∞
f̂ (k)eikxdk = F−1

{
f̂ (k)

}
4Note that the ĉk used here denote the Fourier coefficients when the basis functions

are orthogonal but not normalized. So here ĉk = ck/
√

2π .
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These operations are mappings from “x-space” to “k-space” and vice
versa. Here are some useful properties of Fourier transforms, which
are easily derived from its definition:

1. Derivative property

F
{
df(x)
dx

}
= ikF

{
f(x)

}
= ikf̂ (k) (3.59)

2. Integral property

F
{∫ x

x0

f(x)dx
}
= 1
ik
f̂ (k)+ cδ(k) (3.60)

where c depends on the lower limit x0 of the integration.

3. Shift in x
F
{
f(x − a)

}
= e−ikaf̂ (k) (3.61)

4. Shift in k
F
{
eilxf(x)

}
= f̂ (k− l) (3.62)

5. Scaling

F
{
f(αx)

}
= 1
|α| f̂

(
k
α

)
(3.63)

where α is a real scalar.

6. Behavior upon exchanging variables: if f̂ (k) = F{f(x)}, then
F{f̂ (x)} = 2πf(−k). This property is useful for extending the
usefulness of lists or tables of transforms, like the one in the fol-
lowing paragraph.

7. Convolution theorem: the convolution of two functions G and
h is

u(x) =
∫∞
−∞
G(x − ξ)h(ξ) dξ =

∫∞
−∞
G(ξ)h(x − ξ) dξ

This is often written u = G ∗ h. The convolution theorem
states that

F{G ∗ h} = Ĝ(k)ĥ(k) (3.64)

A convolution in x-space is a product in k-space. Similarly,

F{f(x)g(x)} = 1
2π
f̂ (k)∗ ĝ(k) = 1

2π

∫∞
−∞
f̂ (k− k′)ĝ(k′) dk′

A product in x-space is a convolution in k-space.
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These properties will help us to solve PDEs.
Fourier transforms of some important functions are:

1. f(x) = δ(x) ⇐⇒ f̂ (k) = 1. A spike localized in space has equal
components at every wavelength.

2. f̂ (k) = 2πδ(k) ⇐⇒ f(x) = 1. Conversely, a spike located at
zero wavenumber is smeared all over space.

3. f̂ (k) = 2πδ(k− l) ⇐⇒ f(x) = eilx . A spike at k = l corresponds
to a sinusoid of wavenumber l.

4. f(x) = 1,−L < x < L and zero elsewhere ⇐⇒ f̂ (k) = (2 sinkL)/k.

5.

f(x) = 1
1+ x2

⇐⇒ f̂ (k) = πe−|k|

6.

f(x) = e−b|x| (b > 0) ⇐⇒ f̂ (k) = 2b
b2 + k2

b > 0

7.

f̂ (k) = e−ak2
, (a > 0) ⇐⇒ f(x) = 1

2
√
πa
e−x

2/4a

The Fourier transform of a Gaussian is a Gaussian. Ifa is large, the
function decays very quickly as |k| increases, so the Gaussian in
k-space is very localized. Because a appears in the denominator
in x-space, however, the function is very spread out in x. The
opposite is true if a is small, with the balance holding at a = 1/2.
Here and here only is the spread of the function the same in k and
x. As a → 0, 1

2
√
πae

−x2/4a → δ(x), in which case this property

reduces to the first result on the list: f(x) = δ(x) ⇐⇒ f̂ (k) = 1.

Example 3.12: Derivation of a Fourier transform formula

Let f(x) = e−b|x|, with b > 0. Find its Fourier transform.

Solution

f̂ (k) =
∫∞
−∞
e−b|x|e−ikx dx =

∫ 0

−∞
e(b−ik)x dx +

∫∞
0
e(−b−ik)x dx

= 1
b − ik +

1
b + ik =

2b
b2 + k2

□
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The generalization to a three-dimensional Fourier transform
is also useful

F3D
{
f(x,y, z)

}
=
∫∫∫∞

−∞
f(x,y, z)e−ikxxe−ikyye−ikzz dx dy dz

= f̂ (kx, ky , kz)

Here Fourier transforms have been applied in all three spatial coordi-
nate directions. Defining the wavevector k = (kx, ky , kz), this can be
written

f̂ (k) =
∫∫∫∞

−∞
f(x)e−ik·x dx

Similarly, the inverse can be expressed

f(x) = F−1
3D

{
f̂ (k)

}
= 1

(2π)3

∫∫∫∞
−∞
f̂ (k)eik·x dk

The results presented above for one-dimensional transforms can be
used to generate formulas for multidimensional transforms. For ex-
ample

F3D
{
∇f

}
= ikf̂ (k)

F3D {∇ · v} = ik · v̂(k)

F3D

{
∇2f

}
= −k2f̂ , k2 = k2

x + k2
y + k2

z

F3D

{∫∫∫∞
−∞
G(x − ξ)h(ξ) dξ

}
= Ĝ(k)ĥ(k)

F3D

{
1

(2
√
πa)3

e−r
2/4a

}
= e−ak2

, r 2 = x2 +y2 + z2

Note the similarity of the last result with the one-dimensional version.
It is perhaps illustrative to verify this result by taking the inverse trans-
form of the right-hand side

F−1
3D

{
e−ak

2
}
= 1

(2π)3

∫∫∫∞
−∞
e−ak

2
eik·x dk

= 1
2π

∫∞
−∞
e−k

2
xaeikxxdkx

1
2π

∫∞
−∞
e−k

2
yaeikyydky

· 1
2π

∫∞
−∞
e−k

2
zaeikzzdkz

= 1
2
√
πa
e−x

2/4a 1
2
√
πa
e−y

2/4a 1
2
√
πa
e−z

2/4a

= 1

(2
√
πa)3

e−r
2/4a
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We illustrate the use of Fourier transforms to solve PDEs with ex-
amples.

Example 3.13: Transient diffusion in an unbounded domain: one and
multiple dimensions

(a) Consider transient diffusion

ut = Duxx (3.65)

in the one-dimensional infinite domain (−∞,∞) with initial con-
dition u(x,0) = u0(x), where u0(x) is known but otherwise ar-
bitrary. Use the Fourier transform in x to find the solution.

Show that the transient solution asymptotically approaches the
constant steady-state solution

lim
t→∞

u(x, t) = u0

where u0 is the mean initial temperature of the body, defined as

u0 = lim
M→∞

1
2M

∫M
−M
u0(x)dx

(b) Extend this result to three dimensions, using initial condition
u(x,0) = u0(x), where the three-dimensional transient diffusion
equation is

ut = D
(
uxx +uyy +uzz

)
(3.66)

Solution

(a) Taking the Fourier transform of (3.65) and applying the derivative
property yields

ût(k, t) = D(ik)2û(k, t) = −k2Dû

This gives us an ODE for each value of k, with initial condition
û0(k), and the solution is

û(k, t) = e−k2Dtû0(k)

The inverse Fourier transform puts this back in physical space.
Using the Fourier transform pair for the normal with a = Dt and
applying the convolution theorem gives

u(x, t) = 1
2
√
πDt

∫∞
−∞
u0(ξ)e−(x−ξ)

2/4Dt dξ (3.67)
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It is also of interest to specialize this result to an arbitrarily sharp
initial condition by setting u0(ξ) = δ(ξ) to obtain

u(x, t) = 1
2
√
πDt

e−x
2/4Dt (3.68)

Next we look at the large time limit. In (3.67) u0(ξ) is being
integrated against a normal distribution with mean x and vari-
ance 2a = 2Dt. As t increases, the variance goes to infinity, and
the normal becomes more uniform on an increasingly large set
of (x, ξ) values. We can then approximate it as a uniform with
value 1/(2M) on an interval [−M,M], where M increases with t,
and take it outside the integral. The result is

lim
t→∞

u(x, t) = lim
M→∞

1
2M

∫M
−M
u0(ξ) dξ = u0

which is the mean initial temperature. Since heat never enters or
leaves the body, the body’s mean temperature is constant for all
time, and the temperature profile asymptotically approaches this
constant value as time increases.

(b) Taking the three-dimensional Fourier transform of (3.66) yields
the initial-value problem for the transform

ût = −k2Dû, û(x,0) = û0(k)

which is readily solved to give

û(k, t) = e−k2Dtû0(k)

Setting a = Dt in the three-dimensional Fourier transform of
a normal, and using the three-dimensional convolution theorem
gives

u(x, t) = 1(
2
√
πDt

)3

∫∫∫∞
−∞
u0(ξ)e−∥x−ξ∥

2/4Dt dξ (3.69)

We see the close similarity to (3.67). The mean temperature result
holds also in the three-dimensional case. □
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Example 3.14: Steady diffusion from a wall with an imposed concen-
tration profile

Solve the steady state diffusion or heat conduction problem

uxx +uyy = 0

in the half-plane −∞ < x < ∞, 0 < y < ∞, with boundary conditions
u(x,0) = u0(x) and u(x,y) bounded as y →∞.

Solution

Taking the Fourier transform of the equation and boundary condition
in the x-direction (the problem is not unbounded in y) yields

−k2û(k,y)+ ûyy(k,y) = 0, û(k,0) = û0(k)

Requiring that the solution be bounded as y →∞, this has the solution

û(k,y) = û0(k)e−|k|y (3.70)

Now the inverse transform of this solution must be found. Recall that
from the point of view of the Fourier transform and its inverse, the
variable y is a constant (we have only taken the Fourier transform in
the x-direction). Therefore we can combine the following results from
above: f̂ (k) = πe−|k| a f(x) = 1

1+x2 and f̂ (αx) = 1
α f̂ (k/α). Letting

y = 1
α , we have that

f̂ (k,y) = e−|k|y ⇒ f(x,y) = 1
π

1
y

1

1+ x2

y2

= 1
π

y
x2 +y2

Given this inverse, we can then use the convolution theorem to take the
inverse transform of (3.70) giving the solution

u(x,y) = 1
π

∫∞
−∞
u0(ξ)

y
(x − ξ)2 +y2

dξ □

3.3.5 Green’s Functions and Boundary-Value Problems

Overview

The transient diffusion problem we solved in Example 3.13 gave us an
example of a Green’s function, a solution to a differential equation
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with a point source forcing.5 We saw in that example that the solutions
for an arbitrary initial distribution u(x,0) = u0(x) could be written
as a convolution of u0 and the Green’s function. Exercise 3.36 extends
that result. In the present section we will develop the basic theory of
Green’s functions, with a particular focus on boundary-value problems.

Consider a linear boundary-value problem

Lu = f(x) (3.71)

with specified boundary conditions that may be inhomogeneous in gen-
eral. The Green’s function G(x,x0) for the operator L is the solution
to

LG = δ(x − x0) (3.72)

For example, G(x,x0) is the solution for a point source placed at an
arbitrary position x0 within the domain of interest. The discussion be-
low reveals what boundary conditionsG should satisfy. For the present,
we will consider Green’s functions for self-adjoint problems and as a
specific initial example will consider Sturm-Liouville operators. Recall
(2.32) from Section 2.4.2

(Lu,v)w =
∫ b
a

1
w(x)

(
d
dx

[
p(x)

du
dx

]
+ r(x)u

)
v w dx

= p(b)
(
u′(b)v(b)−u(b)v′(b)

)
− p(a)

(
u′(a)v(a)−u(a)v′(a)

)
+
∫ b
a
u

1
w(x)

(
d
dx

[
p(x)

dv
dx

]
+ r(x)v

)
w dx

Letting v(x) = G(x,x0), this becomes

(Lu,G)w = (u, LG)w
+ p(b)

(
u′(b)G(b,x0)−u(b)v′(b,x0)

)
− p(a)

(
u′(a)G(a,x0)−u(a)G′(a,x0)

)
Applying (3.71) and (3.72) in the two inner products gives us that

(f ,G)w = (u, δ(x − x0))w
+ p(b)

(
u′(b)G(b,x0)−u(b)G′(b,x0)

)
− p(a)

(
u′(a)G(a,x0)−u(a)G′(a,x0)

)
5In quantum mechanics in particular, a Green’s function for a transient problem

like this one is called a propagator, since it propagates a δ-function initial condition
forward in time.
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The inner product (u, δ(x − x0))w evaluates to u(x0)w(x0), so rear-
ranging leads to

u(x0) =
1

w(x0)

[∫ b
a
f(x)G(x,x0)w(x) dx

− p(b)
(
u′(b)G(b,x0)−u(b)G′(b,x0)

)
+ p(a)

(
u′(a)G(a,x0)−u(a)G′(a,x0)

)]
Finally, we specify boundary conditions. For example, we can set inho-
mogeneous Dirichlet boundary conditions u(a) = ua, u(b) = ub. Be-
cause we are not specifying homogeneous boundary conditions here,
the operator L is said to be formally self-adjoint; true self-adjointness
for a differential operator requires that we impose homogeneous bound-
ary conditions such that the boundary terms vanish. In this case u′(a)
and u′(b) are not specified. If we require G to satisfy homogeneous
Dirichlet boundary conditions G(a,x0) = G(b,x0) = 0, however, then
the unknown boundary values u′ do not appear and we arrive at a so-
lution for u in terms of f , G and the boundary conditions

u(x0) =
1

w(x0)

[∫ b
a
f(x)G(x,x0)w(x) dx+

p(x)u(x)G′(x,x0)
∣∣x=b
x=a

]
(3.73)

Therefore, given the solution G(x,x0) to the problem LG = δ(x −x0),
G(a,x0) = G(b,x0) = 0, we can find the solution to Lu = f for any
f through (3.73). Note that (3.73) is closely analogous to the solution
x = A−1b of the algebraic problem Ax = b, with G playing the role
of A−1. Example 2.15 shows a derivation of this formula for a spe-
cific problem. Because that example already imposes homogeneous
Dirichlet boundary conditions, reworking it with u(x) = G(x,x0) and
f(x) = δ(x − x0) would directly yield the Green’s function for the
Dirichlet problem.

The above discussion focused on a Sturm-Liouville problem, which
is formally self-adjoint. For a non-self-adjoint operator, the Green’s
function for the adjoint operator satisfies

L∗G∗(x,x1) = δ(x − x1) (3.74)

along with appropriate homogeneous boundary conditions. In general,
the position of the source is arbitrary, which is why we let its position
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here be x1, which is generally distinct from x0. From the definition of
the adjoint

(LG,G∗) = (G, L∗G∗)

(we have chosen homogeneous boundary conditions on G and G∗ so
the boundary terms vanish), and inserting (3.72) and (3.74), yields

(δ(x − x0),G∗(x,x1)) = (G(x,x0), δ(x − x1))

This reduces to simply

G∗(x0,x1) = G(x1,x0) (3.75)

This result is the analog of the matrix adjoint result A∗ij = Aji. For a
(formally) self-adjoint operator it becomes the analog of the result for a
symmetric matrix: G(x0,x1) = G(x1,x0). A specific case of this result
arose in Example 2.15. For complex functions, (3.75) simply becomes
G∗(x0,x1) = G(x1,x0).

Green’s Function Solution to the Poisson Equation

In multiple dimensions, Green’s identities provide the foundation for
developing solutions based on Green’s functions. We focus here on the
solution of the Poisson equation6

−∇2u = f(x)

with boundary conditions specified below. The Green’s function of in-
terest here satisfies

−∇2G(x,x0) = δ(x − x0) (3.76)

Green’s second identity, (3.14), with v replaced by G, is∫
V
(u(x)∇2G(x,x0)−G(x,x0)∇2u(x))dV(x)

=
∫
S
(u(x)∇G(x,x0)−G(x,x0)∇u(x)) · ndS(x)

where we have written the differential volume and surface elements as
explicit functions of x to remind us that it is the independent variable.

6We put a negative sign in front of the Laplacian here so that physically, the term
f(x) represents a source of heat, chemical species, etc., and thus the Green’s function
represents a point source. Some authors do not use the negative sign.
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Inserting (3.3.5) and (3.76) and evaluating the integral containing the
δ-function yields

u(x0) =
∫
V
G(x,x0)f (x)dV(x)

−
∫
S
(u(x)∇G(x,x0)−G(x,x0)∇u(x)) · ndS(x) (3.77)

If u satisfies Dirichlet boundary conditions u = uS on S, then requiring
that G = 0 on S yields a solution for u

u(x0) =
∫
V
G(x,x0)f (x)dV(x)−

∫
S
uS(x)

∂G
∂n
(x,x0) dS(x) (3.78)

where ∂G/∂n = n ·∇G. A Green’s function satisfying homogeneous
Dirichlet boundary conditions is sometimes called a Green’s func-
tion of the first kind. If u satisfies Neumann boundary conditions
∂u/∂n = jS , then we apply homogeneous Neumann boundary condi-
tions ∂G/∂n = 0 to the Green’s function, in which case the solution for
u is

u(x0) =
∫
V
G(x,x0)f (x)dV(x)+

∫
S
G(x,x0)jS dS(x) (3.79)

and G is a Green’s function of the second kind.
Evaluating the solutions (3.78) or (3.79) requires us to determine

the solution to −∇2G = δ(x −x0) with the appropriate boundary con-
ditions. To do this, it is useful to let G be written as the sum of two
parts: G = G∞ +GB . In this sum, G∞ is called the free-space Green’s
function. It is a solution to the equation Lu = δ in an unbounded
domain, and contains the singular behavior induced by the presence of
the point source. The boundary correction GB satisfies LGB = 0 (the
singular behavior is contained inG∞), and is determined by the require-
ment that G satisfy specific boundary conditions on S. We will find G∞
and GB for L = −∇2 in two dimensions.

For the purpose of obtaining the free-space Green’s function, we
will place the source at the origin: x0 = 0. Because the δ-function
has no angular dependence, we will seek a two-dimensional solution to
−∇2G∞ = δ(x) that is only a function of r . Therefore, at every point
in the domain except the origin, G∞(r) satisfies the equation

1
r
d
dr
r
dG∞
dr

= 0



3.3 Linear PDEs: Properties and Solution Techniques 309

The solution to this is simple

G∞(r) = c1 ln r + c2

We set c2 = 0; any constant component of the solution can be incorpo-
rated into GB . To find c1 we first integrate the equation −∇2G∞ = δ(x)
over any volume V (area in this case) containing the origin

−
∫
V
∇2G∞ dV =

∫
V
δ(x) dV = 1

Recalling that ∇2 = ∇ ·∇ and applying the divergence theorem to the
left-hand side of this expression yields that

−
∫
S

∂G∞
∂n

dS = 1

The integral is simple to evaluate if we let V be a circle of radius ϵ
surrounding the origin, in which case

−
∫
S

∂G∞
∂n

dS = −
∫
S

c1

r
r dθ = 1

Therefore c1 = − 1
2π . Letting r = |x − x0|, the free-space Green’s func-

tion for −∇2 in two dimensions becomes

G∞(x,x0) = G∞(x − x0) =
−1
2π

ln |x − x0| (3.80)

To determine GB , the shape of the domain and the boundary condi-
tions must be specified. We will take the domain to be the half-plane
−∞ < x < ∞, 0 < y < ∞ and seek a solution that vanishes as y → ∞.
In the case of Dirichlet boundary conditions, GB satisfies

−∇2GB(x,x0) = 0

withGB = −G∞ on y = 0. We can solve this problem using the “method
of images.” Since G∞ represents the field due to a point source at the
position x0 = (x0, y0), if we place a point sink (an “image” or “reflec-
tion” of the source) at x0I = (x0,−y0), symmetry shows us that the
field due to the source-sink combination will be zero at y = 0 (Figure
3.10). Therefore we set

GB(x,x0) = −
−1
2π

ln |x − x0I|
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y = 0

(x0, y0)

(x0,−y0)

+

−

Figure 3.10: A source (as indicated by the +) in the physical domain
at position (x0, y0) and an image sink (−) at (x0,−y0).
The shaded region is outside the physical domain. Be-
cause source and sink have equal magnitude and op-
posite sign, and are the same distance from the plane
y = 0, the fields due to them cancel out on that line.

This satisfies∇2GB = 0 in y > 0 because the sink is in the image region
y < 0. Thus the total Green’s function is given by

G(x,x0) =
−1
2π

ln |x − x0| −
−1
2π

ln |x − x0I|

= −1
2π

ln
|x − x0|
|x − x0I|

Finally, the solution, (3.78), becomes

u(x0, y0) =
−1
2π

∫∞
0

∫∞
−∞

ln
|x − x0|
|x − x0I|

f(x,y) dx dy

+ y0

π

∫∞
−∞

uS(x)
(x − x0)2 +y2

0

dx

If f(x,y) = 0, this solution reduces to what we found using Fourier
transforms in Example 3.14. For the solution with Neumann boundary
conditions, (3.79), GB would have to satisfy ∂GB/∂n = −∂G∞/∂n on
y = 0. In this case GB is the field due to an image source rather than a
sink at position x0I .

The simple geometry used here required only one “image point” to
satisfy the boundary conditions. Nevertheless, the geometry does not
need to be much more complicated to require many or even an infinite
number of image points. The infinite strip, −∞ < x < ∞,0 < y < 1,
requires an infinite number of image points since the image point we
use to satisfy, say, the boundary condition at y = 0 will change the
field at y = 1, which must be compensated by another image point,
and so on ad infinitum. As a practical matter, often using one image
for each of the two boundaries provides an adequate approximation.
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Boundary Integral Formulation of the Laplace Equation

Equations (3.78) and (3.79) require the availability of the solution for
the Green’s function with the appropriate boundary conditions and in
the domain of interest. In some cases, as we saw above, this solution
is available in closed form but often it is not. To address this situa-
tion, we step back to (3.77). In developing this equation, the boundary
conditions on G have not yet been specified. For example, it is valid if
we let G = G∞, which has a simple closed-form solution, (3.80). Using
this choice and letting f(x) = 0 so that we are considering the Laplace
equation, (3.77) becomes

u(x0) =
∫
S

(
G∞(x,x0)

∂u(x)
∂n

−u(x)∂G∞(x,x0)
∂n

)
dS(x) (3.81)

Above, we have taken x0 to be a point within the domain. If instead
we take it to be on the boundary itself, we would have a self-consistent
integral equation for the boundary values of u and ∂u/∂n. The
solution to this equation could then be inserted into (3.81) to find the
solution at any point within the domain. We will derive this equation
for the case where the domain is the interior of a bounded volume and
the boundary of the volume is smooth.

There is an important subtlety in doing this, which arises from the
fact that ∂G∞/∂n changes sign as x0 crosses from one side of the
boundary to the other. Consider a vertical boundary defined by the
line x = 0 with the outward normal pointing to the right, so points
on the boundary are given by x = (0, y), and denote interior point
x0 = (x0, y0). Taking the limit x0 → 0 corresponds to approaching the
boundary, and

lim
x0→0

∂G∞(x,x0)
∂n

= lim
x0→0

∂G∞(x,x0)
∂x

= lim
x0→0

1
2π

x0

x2
0 + (y −y0)2

= 1
2

sgn(x0)δ(y −y0)

where the last step is accomplished by recognizing |x0|
π(x2

0+(y−y0)2) as

a delta family, see Section 2.2.5. Thus this term is singular as x0 ap-
proaches the boundary, and the sign depends on the side from which it
approaches. Using this result, and recalling that here x0 is approaching
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the boundary from the left (interior)

lim
x0→S

∫
S
u(x)

∂G∞(x,x0)
∂n

dS(x) =
∫
S
u(x)

∂G∞(x,x0)
∂n

dS(x)− 1
2
u(x0)

(3.82)
where the integral on the boundary must be evaluated in the sense of
its Cauchy principal value

lim
ϵ→0

∫
S−Sϵ

u(x)
∂G∞(x,x0)

∂n
dS(x)

where Sϵ is the portion of S within a tiny radius ϵ of x0.
Finally, inserting (3.82) into (3.81) yields that for points x0 on the

boundary

1
2
u(x0) =

∫
S

(
G∞(x,x0)

∂u(x)
∂n

−u(x)∂G∞(x,x0)
∂n

)
dS(x) (3.83)

If Dirichlet boundary conditions u = g are imposed, then the left-
hand side and the second integral is known and the boundary values
of ∂u/∂n are determined by the solution of this equation. If Neumann
boundary conditions are imposed, then the boundary values of u are
the unknowns. If u is imposed on some part of the boundary, and
∂u/∂n on the remainder, then ∂u/∂n is an unknown on the part of the
boundary where u is imposed and vice versa.

Closed-form solutions to (3.83) can be obtained in special cases, but
its importance goes beyond these. On a fundamental level, it shows that
Laplace’s equation, a partial differential equation, can be reformulated
as an integral equation whose domain is the boundary of the origi-
nal domain. On a practical level, it forms the basis of an important
computational approach to solving the Laplace equation and related
problems, the boundary element method. In this approach, the in-
tegrals in (3.83) are discretized, leading to a system of linear algebraic
equations whose unknowns are values of u and ∂u/∂n at points on the
boundary.

3.3.6 Characteristics and D’Alembert’s Solution to the Wave Equa-
tion

The wave equation
utt = c2∇2u (3.84)

governs wave propagation in many physical contexts, including elec-
tromagnetic waves (light), vibrations of strings and membranes, and
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sound propagation. In one spatial dimension, the equation is

utt = c2uxx (3.85)

which was introduced in Section 3.3.1 as an archetypal hyperbolic equa-
tion. Following the change of variable procedure introduced there, we
find that ξ = x−ct and η = x+ct. Rewriting (3.85) in these coordinates
yields (3.18) with g = 0

∂2u
∂ξ∂η

= 0

We can easily integrate this twice to find the general solution of the
wave equation

u(x, t) = F1(ξ)+ F2(η) = F1(x − ct)+ F2(x + ct)

It says that any solution is a superposition of a right-moving and a left-
moving wave. Usually, we want to understand the wave equation as an
initial-value problem, so we look at two cases of initial conditions and
then combine them to get a general result.

First, consider the initial condition u(x,0) = u0(x),ut(x,0) = 0.
This condition corresponds to a plucked string: the string is pulled to
a stationary shape, held, then released. There is an initial deformation,
but no initial velocity. At t = 0 the above general solution and its time
derivative become

u(x,0) = u0(x) = F1(x)+ F2(x)
ut(x,0) = 0 = −cF ′1 + cF ′2

The latter equation integrates to yield F1 = F2, and using this fact in the
first equation gives F1 = F2 = 1

2u0. Thus the solution for these initial
conditions is

u(x, t) = 1
2
u0(x − ct)+

1
2
u0(x + ct)

The initial condition splits immediately into two identical waves, one
traveling to the right and one to the left. These waves have the same
shape, but half the amplitude, of the initial condition. In contrast to
the parabolic heat equation ut = uxx , which smooths discontinuous
initial conditions as illustrated in Example 3.13, no smoothing occurs
in the wave equation. If an initial condition contains a discontinuity at
a point x, this will simply propagate along the characteristic directions
ξ = constant, η = constant.
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Now consider a struck string rather than a plucked one. The initial
condition is u(x,0) = 0, ut(x,0) = v0(x) ≠ 0. There is no initial
deformation, but there is an initial velocity. Now at t = 0 we have

u(x,0) = 0 = F1(x)+ F2(x)
ut(x,0) = v0(x) = −cF ′1 + cF ′2

This tells us that F1 = −F2 and that v0 = 2cF ′2. We can integrate this to
find that

F2(x + ct) =
1

2c

∫ x+ct
0

v0(ξ) dξ

Similarly

F1(x − ct) = −
1

2c

∫ x−ct
0

v0(ξ) dξ

The solution is F1 + F2, which is

u(x, t) = 1
2c

∫ x+ct
x−ct

v0(ξ) dξ

The complete solution to the initial-value problem is the sum of the
above two cases. This is D’Alembert’s solution

u(x, t) = 1
2
u0(x − ct)+

1
2
u0(x + ct)+

1
2c

∫ x+ct
x−ct

v0(ξ) dξ

We have only considered the very simplest hyperbolic equation here.
For example, if the coefficients a,b, c depend on position, then the
characteristics are curved. The references contain extensive informa-
tion about more complex hyperbolic problems.

Because the wave equation is linear, we can superpose multiple so-
lutions to form another solution. As an application of this fact, imagine
a pulse traveling rightward toward a boundary at x = 0, at which the
boundary condition is u = 0. At time t = 0, the pulse is centered
at x = x0. To understand this situation, recall Figure 3.10 and the
“method of images” analysis of Section 3.3.5. Applying the same idea
here, we place an “image” pulse of the same shape but opposite sign
at the position x = −x0 (which is outside the physical domain) and
make it move leftward as shown in Figure 3.11. Now the real and im-
age pulses will eventually overlap, and by symmetry they will satisfy
u = 0 at x = 0. Once the “image” pulse enters the physical domain,
it is no longer an image, but a component of the true solution. The
implication of this construction is that when a wave hits a boundary
where no deformation is allowed, it reflects but with a change of sign.
What happens if the boundary condition is ux = 0?
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Image domain x > 0Physical domain x < 0

−x0

x0

Figure 3.11: An initially right-traveling wave in the domain x < 0
reflecting across a wall where u = 0, as solved using
superposition of a left-traveling “image” with opposite
sign.

3.3.7 Laplace Transform Methods

Next we illustrate the solution of several linear PDEs with Laplace trans-
forms. For a user with some experience, Laplace transforms are proba-
bly the most powerful method for solving linear, low-dimensional PDEs
in closed form. After taking the Laplace transform of a PDE, usually
with respect to the time variable, the result is a linear ODE in the trans-
form function. We can often solve this ODE. To perform the inverse
transform, we then require some inverse formulas for transforms with
singularities. We develop these inverse formulas next and then solve
some example PDEs. Let the transform function

f(s) = p(s)
q(s)

have singularities at the zeros of q(s), which is assumed to have m
simple zeros 7

q(s) = 0 s = s1, s2, . . . , sm
The inverse of this Laplace transform is given by the following formula

f(t) =
m∑
n=1

anesnt an =
p(sn)
q′(sn)

(3.86)

7The singularities of complex-valued functions are poles, branch points, and essen-
tial singularities (Levinson and Redheffer, 1970). The order of a zero is the smallest
integer i such that q(sn)/(s − sn)i is nonzero, and a simple zero is a first-order zero.
So we are assuming here that the function f(s) has m simple poles.
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which is usually called the Heaviside expansion theorem. When p(s)
and q(s) are polynomials, the coefficients an can be derived using par-
tial fractions. But the result applies to more general cases as we re-
quire in the two examples below, where q(s) = sinh

√
k+ s and q(s) =

sinh s.8

When the zeros of q(s) are higher than first order, f(t) is a linear
combination of products of polynomials and exponentials of time, and
the coefficients are more complex. Let the zero sn have order rn, n =
1,2, . . .m. Then the inverse is given by

f(t) =
m∑
n=1

esnt
rn∑
i=1

aniti−1 (3.87)

The coefficients ani, for i = 1, . . . , rn, n = 1,2, . . .m, are given by

ani =
φ(rn−i)(sn)

(rn − i)!(i− 1)!

in which

φ(s) = (s − sn)rn
p(s)
q(s)

andφ(i)(sn) denotes the ith derivative ofφ(s) evaluated at s = sn. For
students with a background in complex variables, Exercise A.2 provides
some hints to establish (3.87) (and hence also (3.86)), which requires in-
verting the Laplace transform by performing the contour integral (2.7).

Next we use Laplace transforms to solve the reaction-diffusion equa-
tion and the wave equation. We will see that the transform in both
problems has only simple zeros and we will use (3.86) for calculating
the inverse.

Example 3.15: Reaction and diffusion in a membrane

The following model describes diffusion through a membrane in which
component A decomposes by a first-order reaction. The membrane
initially has zero concentration of A. At t = 0 the concentration at the
side of the membrane at x = 0 is abruptly raised to concentration cA0

and the other side is maintained at zero concentration.

8We are in good company. Heaviside also used the expansion for the case of q(s) =
sinhxs (Vallarta, 1926)(Heaviside, 1899, p. 88).
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PDE
∂cA
∂t
= DA

∂2cA
∂x2

−KcA

BC1 cA(0, t) = cA0 t > 0
BC2 cA(L, t) = 0 t > 0
IC cA(x,0) = 0 0 < x < L

(a) Define the dimensionless variables

c = cA
cA0

z = x
L

τ = tDA
L2

k = KL
2

DA

and show that the model reduces to

PDE
∂c
∂τ
= ∂

2c
∂z2

− kc

BC1 c(0, τ) = 1 τ > 0
BC2 c(1, τ) = 0 τ > 0
IC c(z,0) = 0 0 < z < 1

in which k = KL2/DA is the only dimensionless parameter ap-
pearing in the problem. This dimensionless parameter is known
as the Thiele number or Thiele modulus in the chemical reaction
engineering literature (Rawlings and Ekerdt, 2020, p. 363). It in-
dicates the ratio of the reaction rate to the diffusion rate.

(b) Take the Laplace transform of your model (also the boundary con-
ditions). Solve the resulting differential equation and boundary
conditions for c(z, s) and show that

c(z, s) = sinh(
√
s + k(1− z))

s sinh
√
s + k

(c) Apply the final-value theorem to c(z, s) to find the steady-state
solution cs(z).

(d) Take the limit of this solution as k→ 0 for the zero-reaction case.
Does your solution satisfy the diffusion equation?

(e) Sketch the solution cs(z) for a range of k values and show the
effect of reaction on the steady-state concentration profile.

(f) Let p(s) = sinh
√
s + k(1 − z) and q(s) = s sinh

√
s + k, and find

the zeros sn of q(s). Also find the value of p(sn)/q′(sn) at the
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zeros of q(s). The following formulas may be helpful: cosh(iu) =
cos(u), sinh iu = i sinu.

(g) Invert the transform and find c(z, t). Check that the solution
satisfies the PDE and boundary conditions.

Solution

(a) Inserting the defined dimensionless variables in the PDE gives

DAcA0

L2

∂c
∂τ
= DA

cA0

L2

∂2c
∂z2

−KcA0c

and rearranging gives

∂c
∂τ
= ∂

2c
∂z2

− KL
2

DA
c

∂c
∂τ
= ∂

2c
∂z2

− kc

Inserting the dimensionless variables in the boundary and initial
conditions gives

cA0c(z, τ) = cA0 z = 0, τ > 0

cA0c(z, τ) = 0 zL = L, τ > 0

cA0c(z, τ) = 0 0 < zL < L, τ = 0

Simplifying these expression gives

c(z, τ) = 1 z = 0, τ > 0

c(z, τ) = 0 z = 1, τ > 0

c(z, τ) = 0 0 < z < 1, τ = 0

(b) Taking the Laplace transform of the PDE and BCs gives

sc(z, s)− c(z,0) = d
2c
dz2

− kc

d2c
dz2

− (k+ s)c = 0

c(1, s) = 0 c(0, s) = 1
s

The solution of the ODE can be written

c(z, s) = a cosh
√
s + k(1− z)+ b sinh

√
s + k(1− z)
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and we use the two BCs to find the constants a and b. We have

0 = a 1
s
= b sinh

√
s + k

so we have

b = 1

s sinh
√
s + k

which gives for the Laplace transform of the solution

c(z, s) = sinh
√
s + k(1− z)

s sinh
√
s + k

(c) Applying the final-value theorem gives

cs(z) = lim
s→0
sc(z, s)

= lim
s→0
s

sinh
√
s + k(1− z)

s sinh
√
s + k

= lim
s→0

sinh
√
s + k(1− z)

sinh
√
s + k

cs(z) =
sinh

√
k(1− z)

sinh
√
k

(d) Using the fact that sinhx ≈ x for small x gives

lim
k→0
cs(z) =

√
k(1− z)√
k

= 1− z

Yes, the solution satisfies the steady-state diffusion equation and
boundary conditions

d2cs(z)
dz2

= 0 cs(0) = 1 cs(1) = 0

(e) The concentration profile cs(z) versus z for a variety of rate con-
stant k are given in Figure 3.12. We see that a large reaction rate
constant prevents species A from diffusing very far into the mem-
brane.

(f) Since the zeros of sinu are u = ±nπ , n = 0,1,2, . . ., the zeros of
sinhu are u = ±nπi, n = 0,1,2, . . ..9 The zeros of sinh

√
k+ s

9See Exercise 3.48 for a proof that these are the only zeros of sinu for u ∈ C.
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Figure 3.12: Concentration versus membrane penetration distance
for different reaction rate constants.

are given by sn = −(n2π2 + k), and for these roots, we have
that

√
sn + k = nπi, in which we choose the positive square root.

Therefore the zeros of the denominator q(s) are given by

s =
{
0,−(n2π2 + k)

}
, n = 0,1,2, . . .

These are simple zeros so the inversion formula in (3.86) is ap-
plicable. Differentiating q(s) and evaluating q′(s) at the zeros
gives

q′(s) = sinh
√
s + k+ s cosh

√
s + k

2
√
s + k

q′(0) = sinh
√
k

q′(−(n2π2 + k)) = −(n
2π2 + k)(−1)n

2nπi

Evaluating p(s) at the zeros gives

p(0) = sinh
√
k(1− z) p(−(n2π2 + k)) = i sinnπ(1− z)
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(g) Putting these terms together in (3.86) gives

c(z, τ) = sinh
√
k(1− z)

sinh
√
k

+
∞∑
n=0

(−1)n
2nπ

n2π2 + k sin(nπ(1− z)) e−(n2π2+k)τ

Noticing the n = 0 term vanishes, we can rewrite the solution as

c(z, τ) = sinh
√
k(1− z)

sinh
√
k

−

2
∞∑
n=1

(−1)n+1nπ
n2π2 + k sin(nπ(1− z)) e−(n2π2+k)τ

Compare also to entry 34 in Table A.1. □

Example 3.16: Solving the wave equation

Revisit the wave equation utt = c2uxx on x ∈ [0,1] for a string with
fixed ends u(0, t) = u(1, t) = 0, and the plucked string initial con-
dition, u(x,0) = u0(x), ut(x,0) = 0. Solve this equation using the
Laplace transform. Compare the solution to D’Alembert’s solution.
Which form do you prefer and why?

Solution

First we define τ = ct to remove the velocity c and simplify our work.
The problem is now

uττ = uxx
u(x,0) = u0(x), uτ(x,0) = 0 x ∈ (0,1)

u(0, τ) = 0, u(1, τ) = 0 τ ≥ 0

Taking the Laplace transform with respect to the time variable gives

u(x, s)xx − s2u(x, s) = −su0(x)

with transformed boundary conditions

u(0, s) = u(1, s) = 0
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We obtain a second-order nonhomogeneous differential equation for
the transform. We have already solved this problem in Example 2.15
and obtained the Green’s function. The solution is therefore

u(x, s) =
∫ 1

0
G(x, ξ, s)u0(ξ)dξ

in which

G(x, ξ, s) =


sinh(sξ) sinh(s(1− x))

sinh s
, ξ < x

sinh(sx) sinh(s(1− ξ))
sinh s

, ξ > x

Notice that, as we expect, G(x, ξ, s) is symmetric in (x, ξ) because the
second-order boundary-value problem is self-adjoint. Next we invert
G(x, ξ, s). We require a Laplace inverse for the following form

f(s) = sinh(as) sinh(bs)
sinh s

Notice that sinh s has simple zeros at sn = nπi with n an integer. We
use the formula given in (3.86) to obtain

p(sn) = sinh(nπai) sinh(nπbi) = − sin(nπa) sin(nπb)
q′(sn) = cosh(nπi) = (−1)n

Therefore the inverse is

f(τ) =
∞∑

n=−∞
(−1)n+1 sin(nπa) sin(nπb)einπτ

Substituting einπτ = cos(nπτ) + i sin(nπτ) and combining terms
gives

f(τ) = 2
∞∑
n=1

(−1)n+1 sin(nπa) sin(nπb) cosnπτ

Notice that the function is now real valued as it must be. Using this
result to invert the Green’s function gives

G(x, ξ, τ) = 2
∞∑
n=1

(−1)n+1 sin(nπξ) sin(nπ(1− x)) cos(nπτ) ξ < x
(−1)n+1 sin(nπx) sin(nπ(1− ξ)) cos(nπτ) ξ > x

But noticing that sin(nπ(1− ξ)) = (−1)n+1 sin(nπξ) reduces this to

G(x, ξ, τ) = 2
∞∑
n=1

sin(nπξ) sin(nπx) cos(nπτ)
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Substituting this into the solution gives

u(x, t) = 2
∞∑
n=1

sin(nπx) cos(nπt)
∫ 1

0
u0(ξ) sin(nπξ)dξ

Defining the Fourier coefficients representing the initial condition

an = 2
∫ 1

0
u0(ξ) sin(nπξ)dξ

we have finally10

u(x,τ) =
∞∑
n=1

an sin(nπx) cos(nπτ) (3.88)

Returning to the original time variable with the substitution τ = ct
gives

u(x, t) =
∞∑
n=1

an sin(nπx) cos(nπct)

Notice that this solution does not resemble D’Alembert’s solution
presented in Section 3.3.6. The Laplace transform has provided a Fourier
series representation of the solution to the wave equation. It is easy to
see that the solution satisfies the wave equation. Taking two x deriva-
tives gives uxx = −(nπ)2u; similarly, taking two t derivatives gives
utt = −c2(nπ)2u so utt = c2uxx and the solution satisfies the wave
equation. The zero boundary conditions are satisfied because all the
sine terms vanish at x = 0,1. The initial condition is satisfied because
of the Fourier series representation of u0(x). We see immediately that
the solution is periodic (in time) with period T = 2/c since all the cosine
terms have this period. The Fourier series solution is also convenient
if we wish to analyze the frequency content of the solution, which is
often a quantity of interest when modeling sound propagation.

D’Alembert’s solution, on the other hand, provides the nice struc-
tural insight that the solution splits into two waves traveling in oppo-
site directions. But then we also require the additional insight from the
method of images to enforce zero boundary conditions and extend the
solution to the (x, t) values where x − ct < 0 or x + ct > 1, for which
u0(x − ct) or u0(x + ct) is not defined. □

10If we knew enough about the problem to propose a solution of this form, we could
arrive at this answer more quickly. The value of the Laplace transform here is that it is
prescriptive. You do not have to know (or guess) the structure of the solution to apply
the method.
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3.4 Numerical Solution of Initial-Boundary-Value Prob-
lems: Discretization and Numerical Stability

Chapter 2 introduced numerical methods for solving initial-value and
boundary-value problems. These approaches will be combined here to
solve initial-boundary-value problems

∂u
∂t
+ Lu = f(x), Bu(S, t) = h, u(x,0) = u0(x)

where L is a differential operator that contains all the spatial deriva-
tives, S is the boundary of the domain, and B is an operator that de-
termines the boundary conditions. To treat this problem the spatial-
dependence will be discretized using the approaches of Chapter 2 to
yield a set of ordinary differential equations in the form of a normal
initial-value problem. Then the time-integration approaches also intro-
duced in Chapter 2 can be used. This approach is sometimes called the
method of lines. We will see that a central issue in this approach is the
numerical stability of time integration, which is now closely coupled to
the spatial discretization (Press, Teukolsky, Vetterling, and Flannery,
1992; Strang, 1986).

Any of the methods introduced in Section 2.9 can be used for spatial
discretization. In the weighted residual formulation for one spatial
dimension, we look for an approximate solution uN(x, t); a truncated
(discretized) series of basis (trial) functions φj(x); the difference now
is that we allow the coefficients in the series to depend on time. That
is

uN(x, t) =
N∑
j=1

cj(t)φj(x)

Note the similarity of this expression to those arising in the separation
of variables technique. We assume for the moment that the basis func-
tions satisfy the boundary conditions and define the residual or error
by

R = ∂uN
∂t

+ LuN − f(x)

The residual is now forced to be orthogonal to the set of N test func-
tions ψi; that is (R,ψ) = 0, i = 1,2, . . . ,N. In the Galerkin method the
test functions equal the trial functions so this condition becomes

N∑
j=1

(φj ,φi)ċj +
N∑
j=1

(Lφj ,φi)cj = (f ,φi), i = 1,2, . . . ,N
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If we let Mij = (φj ,φi), Aij = (Lφj ,φi), and bi = (f ,φi), we can write
the weighted residual conditions as

ċ = −M−1Ac +M−1b

This is a set of linear ODEs (an initial-value problem) for the vector of
coefficients c in the series foruN . We have reduced a partial differential
equation to a system of ordinary differential equations.

If the Galerkin tau method is used, then there are only N − Nbc
ordinary differential equations, where Nbc is the number of bound-
ary conditions. The boundary conditions add Nbc algebraic equations.
Typically, these can be explicitly solved for the last Nbc values of c and
the formulas substituted into the ODEs.

A similar result arises if we use the collocation approach. Now we
replace the spatial derivative operators in L by their matrix approxima-
tions, the collocation differentiation operators. This yields

u̇(xi)+ LNiju(xj) = f(xi) for xi in the interior of the domain

u(xi) = uc(xi) on the boundaries

Here LN is the matrix operator obtained by inserting the collocation
differentiation operators.

In both Galerkin and collocation approaches, the PDE has been re-
duced to a system of ODEs. In principle, we know how to solve these.
In practice, though, there are numerical stability considerations that
arise because the matrices derive from the approximation of derivative
operators.

3.4.1 Numerical Stability Analysis for the Diffusion Equation

To get an initial idea of the stability issues we face when numerically
solving PDEs, we look at the diffusion equation in one dimension,

ut = Duxx
in an unbounded domain. Taking the Fourier transform of this equa-
tion gives ût(k) = −k2Dû(k), for all real values of k. This is a system
of linear ODEs with eigenvalues λ = −Dk2. If we want spatial reso-
lution of wavelengths as short as 2π/kmax, an explicit Euler method
would require ∆t < −2/λmax = 2/(Dk2

max) to ensure stability. Defining
ℓmin = 2π

kmax
as the smallest wavelength resolved, we can rewrite this

stability limit as
∆tD
ℓ2

min
<
(

2π2
)−1
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This result shows that, to within a numerical constant, the time step
for explicit Euler must be shorter than the time scale for diffusion over
a distance ℓmin.

A similar result holds when finite element or finite difference meth-
ods are applied. For simplicity, we will consider a finite difference ap-
proximation to the diffusion equation, using the central difference for-
mula (2.95):

duj
dt

= Duj−1 − 2uj +uj+1

h2

where h is the spacing between mesh points xj and uj = u(xj). Recall
from Chapter 2 that the finite element discretization using hat func-
tions leads to an identical form for the second derivative. The forward
Euler approximation to this ODE is

u(n+1)
j = u(n)j + D∆t

h2

(
u(n)j−1 − 2u(n)j +u(n)j+1

)
Following an approach initially developed by von Neumann, we will
seek a spatially periodic solution to this equation: u(n)j = eikxj = eikjh
where k is arbitrary. (The full solution is a superposition over all k.) In
a periodic or unbounded domain, this yields an exact solution to the
discretized problem—in a bounded domain it works very well when
kL ≫ 1 where L is the domain size. Substituting into the equation
above gives

u(n+1)
j =

{
1− 2D∆t

h2
+ 2D∆t

h2
coskh

}
eikjh

= Gu(n)j

Here G =
{

1− 2D∆t
h2 + 2D∆t

h2 coskh
}

is the growth factor, which for nu-
merical stability must satisfy |G| < 1. When k = 0, G = 1, which makes
physical sense because k = 0 corresponds to a constant function, which
does not decay by diffusion (there are no gradients). As k increases, G
decreases, taking on its most negative value when kh = π . To maintain
stability at this value of k requires that

2D∆t
h2

< 1 (3.89)

Indeed, one common indication of numerical instability in a solution is
the observation of “sawtooth” patterns with a length scale close to h.

Equation (3.89) is the key result of numerical stability theory for
parabolic differential equations and is sometimes called the diffusive
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Courant-Friedrichs-Lewy (CFL) condition11. It mirrors the result we
found above using Fourier transforms: to within a constant, the time
step ∆t must be smaller than the time h2/D required for diffusion be-
tween two mesh points or across one element. The maximum time step
scales as the square of the minimum element size h. This can be a very
severe restriction on the time step if high spatial resolution is required,
as in problems with boundary layers.

This severe stability restriction means that for problems where dif-
fusion is important (Peclet number is not high), implicit integration
techniques are almost always used. The second-order Adams-Moulton
method (AM2) is popular. For the finite difference approach used here,
AM2 becomes

u(n+1)
j = u(n)j +

1
2
D∆t
h2

(
u(n)j−1 − 2u(n)j +u(n)j+1

)
+1

2
D∆t
h2

(
u(n+1)
j−1 − 2u(n+1)

j +u(n+1)
j+1

)
This is called the Crank-Nicolson method. The linear system that
must be solved at each time step is tridiagonal so it can be factored
quickly.

3.4.2 Numerical Stability Analysis for the Convection Equation

We just considered diffusion, so it makes sense now to look at convec-
tion. The transient convection equation in one dimension (also called
the first-order wave equation)

ut + vux = 0 (3.90)

where v is a constant velocity. The Fourier transform of this is ût =
−ikvû. Now the eigenvalue is purely imaginary. Recall that imaginary
eigenvalues pose a problem for many time-integration schemes; many,
including forward Euler and RK2, are never stable for problems with
imaginary eigenvalues.

Using the central difference formula

∂u
∂x
≈ u(xj+1)−u(xj−1)

2h
Equation (3.90) becomes

duj
dt

= − v
2h
(u(n)j+1 −u

(n)
j−1)

11The true CFL condition was derived for convection problems and is given in the
following section.
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The same right-hand side arises in the finite element approximation
with hat functions. The forward Euler approximation is

u(n+1)
j = u(n)j − v∆t

2h

(
u(n)j+1 −u

(n)
j−1

)
(3.91)

which is sometimes called the forward-time center-space (FTCS) dis-
cretization. It is first-order accurate in time and second-order accurate
in space.

To analyze stability we again seek a solution u(n)j = eikxj = eikjh.

This analysis shows that G = 1− iv∆th sinkh, which always has magni-
tude greater than one when k ≠ 0. FTCS will never work for the con-
vection equation, as we guessed from the Fourier analysis above, which
revealed that the eigenvalues of the convection operator are imaginary.
The same conclusion holds for the wave equation.

There are number of possible resolutions to this problem. One is to
use a different approximation for the spatial derivative. In particular,
we might expect that we should only use information from “upwind”
when computing the solution at the next time step—after all, in the
physical problem, convection carries the value of u downstream, so
the approximate solution u(n+1)

j should ideally only be determined by
values upstream of it. Applying this idea, we replace the central differ-
ence above by a forward or “upwind” difference. For v > 0 the forward
Euler approximation becomes

u(n+1)
j = u(n)j − v∆t

h

(
u(n)j −u(n)j−1

)
This gives the growth factor

G = 1− v∆t
h

(
1− e−ikh

)
The stability condition |G| < 1 will hold if

v∆t
h

< 1

Defining C = v∆t
h as the Courant number, the stability condition be-

comes
C < Cmax (3.92)

where in this case Cmax = 1. This is the Courant-Friedrichs-Lewy
condition, often simply called the Courant condition. Physically,
it tells us that the time step must be smaller than the time it takes for
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convection at speed v over one mesh unit h. By replacing the central
difference, which has second-order accuracy in space, with an upwind
difference, we have lost an order in spatial accuracy but have gained
stability. And anyway, the method is still first order in time. One small
complication of this method is that for problems where the velocity can
change sign, it is necessary to take care that the appropriate upwind
difference is used. If downwind differencing is used, the approximation
is always unstable.

Stability also can be gained without use of upwind differences. The
Lax-Friedrichs method is a simple modification to the FTCS discretiza-
tion where the present value at point xj is replaced by the average of
the values at points j + 1 and j − 1

u(n+1)
j = 1

2

(
u(n)j+1 +u

(n)
j−1

)
− v∆t

2h

(
u(n)j+1 −u

(n)
j−1

)
(3.93)

By applying the average, this change effectively introduces a small
amount of smoothing or “numerical diffusion” into the time-integration
process. This can be seen explicitly by rewriting (3.93) so that it has
the form of (3.91) with an additional remainder term that indicates the
difference between the two methods

u(n+1)
j = u(n)j − v∆t

2h

(
u(n)j+1 −u

(n)
j−1

)
+ 1

2

(
u(n)j−1 − 2u(n)j +u(n)j+1

)
(3.94)

The remainder term has very nearly the form of a central difference
approximation to the second-derivative operator, and in fact this ex-
pression is precisely the FTCS approximation to a convection-diffusion

equation with artificial or numerical diffusivity h2

2∆t

ut + vux =
h2

2∆t
uxx

This diffusion term is enough to stabilize the method: using the von
Neumann analysis the stability criterion is found to be very similar to
what we found for the upwind method but is now insensitive to the
sign of v

|v|∆t
h

= |C| < 1

All the methods developed so far for the convection equation are
first order in time, so even if the stability condition is satisfied, the so-
lution may not be very accurate. The Lax-Wendroff method builds on
the Lax-Friedrichs method to yield second-order accuracy. Let u(n+1/2)

j±1/2
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be intermediate values at the midpoint t+∆t/2 of the time step and on
“half-mesh points” xj ± h/2. Lax-Friedrichs, (3.93) is used to generate
these intermediate values

u(n+1/2)
j±1/2 = 1

2

(
u(n)j±1 +u

(n)
j

)
∓ v∆t

2h

(
u(n)j±1 −u

(n)
j

)
This solution is used in a modified FTCS step to generate the solution
at time t +∆t

u(n+1)
j = u(n)j − v∆t

h

(
u(n+1/2)
j+1/2 −u(n+1/2)

j−1/2

)
Eliminating the intermediate values, this can be rewritten in the more
illuminating form

u(n+1)
j = u(n)j − v∆t

2h

(
u(n)j+1 −u

(n)
j−1

)
+ (v∆t)

2

2h2

(
u(n)j−1 − 2u(n)j +u(n)j+1

)
(3.95)

This is almost identical to (3.94); the difference is that now the artificial
diffusivity has the value v2∆t/2. The stability condition is again |C| <
1 and now, since the method is second order in time, the time step can
be set very close to the stability limit and still yield enough accuracy
for many purposes. Lax-Wendroff and related methods are thus widely
used.

Pure convection does not change the amplitude of an initial condi-
tion; convection only carries the initial condition downstream. In all of
the methods described here, some amplitude damping occurs (|G| < 1)
except precisely when k = 0 or C = 1. We care most about this damping
when kh is small, corresponding to length scales that are large com-
pared to the grid size, i.e., |G| should be very close to unity for all length
scales of interest. If we care about length scales close toh, then we have
made h too big; h should always be chosen to be much smaller than
the length scales over which the true solution varies. Taylor-expanding
|G|2 around kh = 0 yields

|G|2 = 1− (1− C2)(kh)2 +O((kh)4)

and

|G|2 = 1− C2(1− C2)
(kh)4

4
+O(kh)6

for Lax-Friedrichs and Lax-Wendroff, respectively. The latter is sub-
stantially better, since the deviation from |G|2 = 1 scales as (kh)4

rather than (kh)2.
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3.4.3 Operator Splitting for Convection-Diffusion Problems

The cases above represent the low and high Peclet number limits of the
general convection-diffusion equation

ut + vux = Duxx
A simple explicit method for this equation would use central differ-
ences for the diffusion term and Lax-Wendroff for the convection term

u(n+1)
j = u(n)j + D∆t

h2

(
u(n)j−1 − 2u(n)j +u(n)j+1

)
− v∆t

2h

(
u(n)j+1 −u

(n)
j−1

)
+ (v∆t)

2

2h2

(
u(n)j−1 − 2u(n)j +u(n)j+1

)
Unless the Peclet number is very large, the diffusive term controls
the stability, because it leads to a growth factor that scales as h−2

rather than the h−1 from the convective term. We could use an im-
plicit method on the whole problem, but this entails solution of a large
non-self-adjoint matrix problem (at every time step if the problem is
nonlinear). It would be preferable to use an implicit method only on
the diffusive piece, which is self-adjoint. A popular solution is called
operator splitting; an explicit method is used for the convective
terms and an implicit method for the diffusive ones. For example, Lax-
Wendroff can be used for the convective terms and Crank-Nicolson for
the diffusive. This is often executed in two steps:

1. The convective terms are applied, to give an intermediate solution
u(∗)j

u(∗)j = u(n)j − v∆t
2h

(
u(n)j+1 −u

(n)
j−1

)
+ (v∆t)

2

2h2

(
u(n)j−1 − 2u(n)j +u(n)j+1

)
2. Crank-Nicolson is applied, using the intermediate values instead

of the values at step n

u(n+1)
j = u(∗)j +

1
2
D∆t
h2

(
u(∗)j−1 − 2u(∗)j +u(∗)j+1

)
+1

2
D∆t
h2

(
u(n+1)
j−1 − 2u(n+1)

j +u(n+1)
j+1

)
In methods like this, because the diffusion terms are evaluated implic-
itly, the stability limit is set by a Courant condition on the convective
terms. In fact, one might also get away with an unstable (e.g., FTCS)
method for the convection term, relying on the implicit treatment of
the diffusion term to stabilize the overall result. There is not generally
a good reason to do this.
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3.5 Exercises

Exercise 3.1: Gradient formula from gradient definition

Consider a cubic volume with one corner at the origin and the opposite corner at
(x,y, z) = (∆x,∆y,∆z). In this case the integral definition of the gradient grad φ
becomes

lim
∆x→0

lim
∆y→0

lim
∆z→0

1
∆x∆y∆z

∫
nφ dS

Because we are going to shrink the volume to zero, we can make the truncated Taylor-
series approximation

φ(x,y, z) = φ(0,0,0)+ x ∂φ
∂x
+y ∂φ

∂y
+ z ∂φ

∂z
+ · · ·

where the derivatives are evaluated at the origin. Combine these to derive the formula
∇ =

∑3
i=1 ei

∂
∂xi

(where x1 = x,x2 = y,x3 = z).

Exercise 3.2: Derivatives of unit vectors in polar (cylindrical) coordinates

By taking limits in polar coordinates, derive the formulas for the derivatives of the unit
vectors er ,eθ

∂er
∂r

= 0
∂eθ
∂r

= 0
∂er
∂θ

= eθ
∂eθ
∂θ

= −er

Do not refer to Cartesian coordinates in your derivation.

Exercise 3.3: Divergence of the flux in polar coordinates

Derive an expression for the divergence of a flux in polar coordinates, ∇ · q, in which
q is an arbitrary vector. Do not use Cartesian coordinates in your derivation.

Hint: the answer is

∇ · q = 1
r
∂
∂r
(rqr )+

1
r
∂qθ
∂θ

Exercise 3.4: Gradient and Laplacian in spherical coordinates

Repeat Example 3.1 and find expressions for∇ and∇2 for spherical coordinates shown
in Figure 3.3. Do not refer to Cartesian coordinates in your derivation. Then derive the
result using the h and g formulas provided in the text. Which method do you prefer
and why?

Hint: the answers are in Table 3.1.

Exercise 3.5: Fundamental identities in vector calculus

Using Cartesian tensor notation, derive the following identities (here u,v, and w are
vectors and φ is a scalar).

(a) ∇ ·∇× u = 0

(b) ∇×∇φ = 0

(c) ∇ · (uu) = u ·∇u+ u∇ · u
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Exercise 3.6: Cross-product identities

(a) Verify that ϵijkϵklm = δilδjm − δimδjl. Now use this to derive the following
results.

(b) ∇×∇× u =∇∇ · u−∇ ·∇u

(c) ∇× (v ×w) = (w ·∇)v −w(∇ · v)− (v ·∇)w + (v∇ ·w)

(d) (u× v)×w = (u ·w)v − (v ·w)u

(e) (u× v)×w = (vu− uv) ·w

(f) v × (∇× v) =∇( 1
2 ∥v∥

2)− (v ·∇)v

Exercise 3.7: A special case of Leibniz’s rule

Derive Leibniz’s rule for the special case where the volume V is a cube whose size
is constant but is moving with velocity q. In other words, explicitly show that the
contribution from the motion of V becomes

∫
Smn · qdS.

Exercise 3.8: Adjoint of curl

Find the adjoint of the curl operator with Dirichlet boundary conditions.

Exercise 3.9: Volume as surface integral

(a) If A is a constant vector and r = ∥x∥, then show using Cartesian tensor notation
that

A ·∇
(

1
r

)
= −A · x

r3

and
∇(A · x) = A

(b) Show that
∇ · x = 3

(c) Use this result and the divergence theorem to derive a formula for the total
volume T =

∫
V dV of a region V in terms of an integral over the surface S of the

volume.

Exercise 3.10: Curl theorem

Use the divergence theorem and results of vector algebra to show that∫
V
∇× v dV =

∫
S
n× v dS

Exercise 3.11: Poisson equation in a no-flux domain

Consider the Poisson equation
∇2u = f

in a volume T with (no-flux) boundary condition n ·∇u = 0 on the boundary S of T . n
is the outward unit normal vector on the boundary.
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(a) Use the divergence theorem to show that a necessary condition for the existence
of a solution to this problem is ∫

T
f dV = 0

(b) If f = ∇ · v for some vector v, what condition must v satisfy for the result of
part (a) to be satisfied?

Exercise 3.12: Helmholtz decomposition

Under rather general conditions it is possible to write a vector field q(x) as

q =∇φ+∇× v

Using the results of Problem 3.5, find independent equations for φ and v in terms of

q. Find φ and v for the case q = x1e1 + x2
1e2.

Exercise 3.13: The Stokes equations for viscous flow

The Stokes equations for the velocity u and pressure p in a viscous flow driven by a
body force f are

∇2u−∇p = −f
∇ · u = 0

These equations can be written in matrix-vector form as

AU = F

where

A =
[
∇2 −∇
∇· 0

]
U =

[
u
p

]
F =

[
−f
0

]
If u = 0 on the boundary S of the flow domain V , show that the Stokes operator A is
self-adjoint. That is, if

V =
[
v
q

]
then

(AU,V) = (U,AV)
where the inner product is given by

(U,V) =
∫
V
u · v dV +

∫
V
pq dV

Exercise 3.14: Differentiating functions of a matrix and matrix determinant

Derive the following two differentiation formulas.

(a) Use the polynomial expansion of a matrix function to show that

d
dt
f(A) = g(A) d

dt
A

in which g(·) = d/d(·)f (·) is the usual derivative of the scalar function f(·).
For the special case of f(A) = lnA for A nonsingular, we obtain

d
dt

lnA = A−1 d
dt
A
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(b) For nonsingular A, differentiate (1.39) with respect to scalar t and use the result
of the previous part to show that

d
dt

detA = det(A) tr
(
A−1 d

dt
A
)

(3.96)

Exercise 3.15: Euler expansion formula

Let coordinates u represent the reference position of a point in a deformable contin-
uum, and x be the position at time t so x(0) = u. We have that d

dtx = v, the velocity
of the continuum. We know that the size of the volume element when transforming
coordinates is given by

dVu = det
(
∂x
∂u

)
dVx

in which det( ∂x∂u ) is the determinant of the Jacobian matrix of the transformation. As-
suming the Jacobian is nonsingular, use the matrix differentiation formula of the pre-
vious exercise to establish that

d
dt

det
(
∂x
∂u

)
= det

(
∂x
∂u

)
(∇ · v)

which is known as the Euler expansion (or dilation) formula.

Exercise 3.16: Temperature profile in tube flow

Read Example 12.2–2 in (Bird et al., 2002, p.384). Check the following points.

(a) Substitute Ψ from Equation 12.2–21 into 12.2–23. Then exchange the order of
integration, and show that the inner integral can be performed. Then, make a
change of variable to obtain

Θ(χ, λ) =
3√9λ
Γ( 2

3 )

[
e−χ

3 − χ
∫∞
χ3
t−1/3 e−t dt

]
which is equivalent to 12.2–24.

(b) Evaluate the derivatives

(
∂Θ
∂χ

)
λ

(
∂Θ
∂λ

)
χ

(
∂2Θ
∂χ2

)
λ

(c) Verify that the temperature profile in (a) satisfies the differential equation in
Equation 12.2–13. Use the chain rule and the results from (b).

(d) What is the numerical value of Γ(2/3)?

Exercise 3.17: The error function and some useful integrals

The error function is defined by

erf (z) = 2√
π

∫ z
0
e−t

2
dt z > 0

Note that ∫∞
0
e−t

2
dt =

√
π
2

The complementary error function defined by

erfc(z) = 1− erf (z)

erfc(z) = 2√
π

∫∞
z
e−t

2
dt z > 0
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(a) Sketch the error function and the complementary error function.

(b) Consider the function f(x)

f(x) =
∫∞

0
e−t

2
cos(2tx)dt

Differentiate f(x) and then integrate by parts to show that f satisfies the dif-
ferential equation

df
dx
+ 2xf(x) = 0

What is the initial condition for this ODE?

(c) Solve the ODE and show that

f(x) =
√
π
2
e−x

2

(d) Let t = au and x = b/(2a) and show that
√
π

2a
exp

(
− b2

4a2

)
=
∫∞

0
e−a

2u2
cos(bu)du

(e) Integrate the previous equation with respect to b on the interval [0, β]. Change
the order of integration and show finally that

π
2

erf
(
β

2a

)
=
∫∞

0
e−a

2u2 sin(βu)
u

du

Exercise 3.18: Other useful integrals

Differentiate the following function with respect to x
√
π

4a

[
e2aberf

(
ax + b

x
)
+ e−2aberf

(
ax − b

x
)]

and derive the indefinite integral (Abramowitz and Stegun, 1970, p. 304)∫
e−a

2x2− b
2

x2 dx =
√
π

4a

[
e2aberf

(
ax + b

x
)
+ e−2aberf

(
ax − b

x
)]
+ const. a ≠ 0

Use the indefinite integral to derive the definite integral∫ x
0
e−a

2x2− b
2

x2 dx =
√
π

4a

[
e−2aberfc

(b
x
− ax

)
− e2aberfc

(b
x
+ ax

)]
a ≠ 0, b ≥ 0

(3.97)
From this result, show that∫∞

0
e−x

2− b
2

x2 dx =
√
π
2
e−2b b ≥ 0 (3.98)

This integral arises in transport problems in semi-infinite domains (see Exercises 3.19
and 3.23).
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Exercise 3.19: Some useful Laplace transforms

The following Laplace transform pairs are useful for solving transient heat-conduction
and diffusion equations (see Exercises 3.23 and 5.6).

f(s) f (t)

e−k
√
s

s
, k > 0 erfc

(
k

2
√
t

)

e−k
√
s , k > 0

k
2
√
πt3

e−
k2
4t

e−k
√
s

√
s
, k > 0

1√
πt
e−

k2
4t

(a) Establish the first entry by taking the Laplace transform of the function

f(t) = erfc
(
k

2
√
t

)
Use the definition of the Laplace transform, switch the order of integration, and
use Equation 3.98.

(b) Establish the second entry by differentiating the first f(t) with respect to t.

(c) Establish the third entry by differentiating the second f(s) with respect to s.

Exercise 3.20: A transform pair for reaction-diffusion problems

The following Laplace transform pair is useful in solving problems with simultaneous
diffusion and first-order reaction (Carslaw and Jaeger, 1959, p. 496)

f(s) = e−k
√
s

(s −α)√s k > 0

f(t) = 1
2
√
α
eαt

{
e−k

√
αerfc

(
k

2
√
t
−
√
αt
)
− ek

√
αerfc

(
k

2
√
t
+
√
αt
)}

Derive this result by using the convolution theorem and the last entry in the table in
Exercise 3.19. You will also require the integral (3.97).

Exercise 3.21: Integral representations of K0

The following integral representation of K0 proves useful in applying Laplace trans-
forms to solve the diffusion equation

K0(x) =
1
2

∫∞
0
t−1e−(x

2t+ 1
4t )dt (3.99)

The following argument provides a derivation.

(a) Denote the integral by

f0(x) =
1
2

∫∞
0
t−1e−(x

2t+ 1
4t )dt

Differentiate with respect to x and show

1
x
d
dx

(
x
df0

dx

)
= 2x2

∫∞
0
te−(x

2t+ 1
4t )dt − 2

∫∞
0
e−(x

2t+ 1
4t )dt
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(b) Next use integration by parts to show∫∞
0
e−(x

2t+ 1
4t )dt = x2

∫∞
0
te−(x

2t+ 1
4t )dt − 1

4

∫∞
0
t−1e−(x

2t+ 1
4t )dt

Substitute this result into the previous equation and show that f0 satisfies the
Bessel equation

1
x
d
dx

(
x
df0

dx

)
− f0(x) = 0

Therefore f0 is of the form

f0(x) = a1I0(x)+ a2K0(x)

with some constants a1, a2.

(c) Given the integral defining f0(x), what value does f0(x) approach for large x?
Use this fact to deduce the value of a1.

(d) Next use l’Hôpital’s rule to show that

lim
x→0

f0(x)
ln(x)

= −1

It is known that K0(x) ≈ − ln(x) as x → 0 (see (Abramowitz and Stegun, 1970,
p. 375)), so we conclude that a2 = 1 and f0(x) = K0(x).

Exercise 3.22: More useful Laplace transforms

Use the integral representations of the modified Bessel function K0 derived in Exer-
cise 3.21 to derive the following Laplace transform pairs.

f(s) f (t)

K0(k
√
s), k > 0

1
2t
e−

k2
4t

1√
s
K1(k

√
s), k > 0

1
k
e−

k2
4t

These transforms are also useful in solving transient heat-conduction and diffusion
equations (see Exercise 5.9).

Exercise 3.23: Time-dependent heating of a semi-infinite slab

Consider a slab of infinite thickness, density ρ, heat capacity Ĉp , and thermal conduc-
tivity k with a surface at x = 0. The boundary conditions are

T(x,0) = T0 x > 0

T(0, t) = T1 t > 0

(a) Define the following scaled variables

Θ = T − T0

T1 − T0
τ = kt

ρĈP
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Show that the energy equation reduces to

∂Θ
∂τ
= ∂

2Θ
∂x2

with boundary conditions

Θ(x,0) = 0 x > 0

Θ(0, τ) = 1 τ > 0

Notice that there are no parameters in the problem, but there is also no natural
length scale for this problem.

(b) Take the Laplace transform of the PDE and show that

Θ(x, s) = e
−x√s

s
What assumptions did you make?

(c) Take the inverse transform using Exercise 3.19 to obtain

Θ(x, τ) = erfc
(
x

2
√
τ

)
Plot Θ(x, τ) as a function of x on 0 ≤ x ≤ 10 for τ = [0.01,0.1,1,10,100,1000].

(d) Show that the proposed solution satisfies the PDE and BCs.

Exercise 3.24: Partial fraction expansion

We often teach inversion of Laplace transforms by so-called partial fraction expansion.
For example, given

f(s) = 1
(s − a)(s − b)(s − c) a ≠ b ≠ c

Note thata ≠ b ≠ c ensuresa, b, and c are simple zeros of the denominator polynomial.
The function f(s) is first written as a summation of simpler fractions

1
(s − a)(s − b)(s − c) =

A
s − a +

B
s − b +

C
s − c (3.100)

and the coefficients A, B, and C are determined. Then the inverse is simply

f(t) = Aeat + Bebt + Cect

(a) Determine A, B, and C in the partial expansion approach and determine f(t).

(b) Apply (3.86) with p(s) = 1 and q(s) = (s − a)(s − b)(s − c), and find f(t)
using (3.86). Which method do you prefer and why? Notice that (3.86) can be
applied when the denominator q(s) is more general than a polynomial as shown
in Example 3.15.
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Exercise 3.25: Transient heat conduction in a finite slab

Consider the transient heat conduction equation

ρĈP
∂T
∂t
= −∇ · (−k∇T)

We have a one-dimensional slab with ends located at x = ±L. The slab is initially
at uniform temperature T0. Just after t = 0, the two ends are immediately raised to
temperature T1 and held at this temperature. We wish to find the transient solution
T(x, t) for this problem.

(a) Write the PDE and (three) boundary conditions for this situation, i.e., conditions
at x = L, x = −L, and t = 0. How many parameters appear in this problem?

(b) Choose nondimensional temperature, spatial position, and time variables as fol-
lows

Θ = T − T0

T1 − T0
z = x

L
τ = tk

ρĈPL2

Express the PDE and BCs in these nondimensional variables. How many param-
eters appear in this problem?

(c) Take the Laplace transform of the PDE, apply the boundary conditions, and show
that

Θ(z, s) = cosh(
√
sz)

s cosh
√
s

(d) For what s values in the complex plane is Θ(z, s) singular?

(e) Invert the transform and find Θ(z, τ).
Hint: the answer is

Θ(z, τ) = 1− 2
∞∑
n=0

(−1)n

(n+ 1/2)π
cos((n+ 1/2)πz) e−((n+1/2)π)2τ (3.101)

(f) Show that Θ(z, τ) satisfies the PDE and boundary conditions at z = ±1. Does
the solution satisfy the initial condition? How would you check this?

(g) What is the steady state, Θs(z), i.e., take the limit of Θ(z, τ) as τ →∞.

Exercise 3.26: Heat conduction in a cylinder and a sphere

Let’s change the body in Exercise 3.25 from a slab to a cylinder and a sphere and see
what happens. Again assume the body is initially at uniform temperature T0. Just after
t = 0, the outer boundary at r = R is immediately raised to temperature T1 and held
at this temperature. We wish to find the transient solution T(r , t) for these problems.

(a) Write the PDE and (three) boundary conditions for the cylindrical body, i.e.,
conditions at r = R, r = 0, and t = 0. How many parameters appear in this
problem?

(b) Choose nondimensional temperature, radial position, and time variables as fol-
lows

Θ = T − T0

T1 − T0
ξ = r

R
τ = tk

ρĈPR2

Express the PDE and BCs in these nondimensional variables. How many param-
eters appear in this problem?
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Figure 3.13: Transient heating of slab, cylinder, and sphere from
(3.101), (3.102), and (3.103). Dimensionless temperature
Θ(ξ, τ) versus ξ at τ = 10−4,10−3,10−2,0.1,0.5.

(c) Take the Laplace transform of the PDE, apply the boundary conditions and find
Θ(ξ, s) for the cylinder. You do not need to invert this transform.

(d) Write the PDE and (three) boundary conditions for the spherical body, i.e., condi-
tions at r = R, r = 0, and t = 0. How many parameters appear in this problem?

(e) Choose the same nondimensional temperature, radial position, and time vari-
ables as follows

Θ = T − T0

T1 − T0
ξ = r

R
τ = tk

ρĈPR2

Express the PDE and BCs in these nondimensional variables. How many param-
eters appear in this problem?

(f) Take the Laplace transform of the PDE, apply the boundary conditions and find
Θ(ξ, s) for the sphere. You do not need to invert this transform.

Exercise 3.27: Transient solutions for slab, cylinder, and sphere

We wish to plot and compare the temperature profile Θ(ξ, τ) versus ξ at different τ
for the slab, cylinder, and sphere geometries.
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(a) The transform for the cylinder is given by

Θ(ξ, s) = I0(
√
sξ)

sI0(
√
s)

Find the zeros of the denominator.
Hint: you may want to use the Bessel function relations I0(r) = J0(ir) and
I1(r) = J1(ir)/i (Abramowitz and Stegun, 1970, p. 375, 9.6.3.).

(b) Use (3.86) and show that the inverse is given by

Θ(ξ, τ) = 1− 2
∞∑
n=1

1
αnJ1(αn)

J0(αnξ) e−α
2
nτ (3.102)

What are the αn in this formula?

(c) The transform for the sphere is

Θ(ξ, s) = sinh(
√
sξ)

ξs sinh
√
s

Find the zeros of the denominator sinh
√
s. Note that the denominator has a

double zero at s = 0 because both s and sinh
√
s vanish at s = 0.

(d) Because of the double zero, we cannot use the inversion formula (3.86), which
assumes simple zeros. But notice the following fact. If the Laplace transforms
f(s) and g(s) satisfy

g(s) = f(s)
s

then their inverse transforms satisfy

g(t) =
∫ t

0
f(t′)dt′

Therefore define

f(ξ, s) = sΘ(ξ, s) = sinh(
√
sξ)

ξ sinh
√
s

Use (3.86) to invert this transform and show

f(ξ, τ) = 2
∞∑
n=1

(−1)n+1

ξ
(nπ) sin(nπξ)e−n

2π2τ

(e) Perform the time integral and show that

Θ(ξ, τ) = 2
∞∑
n=1

(−1)n+1

nπξ
sin(nπξ)

[
1− e−n2π2τ]

Notice that the following series is the Fourier sine series of the linear function ξ
(Selby, 1973, p. 480)

2
π

∞∑
n=1

(−1)n+1

n
sin(nπξ) = ξ

so we have

Θ(ξ, τ) = 1− 2
∞∑
n=1

(−1)n+1

nπξ
sin(nπξ) e−n

2π2τ (3.103)
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(f) Make plots of the temperature profile Θ(ξ, τ) versus ξ at several τ for the slab,
cylinder, and sphere geometries. Your results should resemble Figure 3.13.

Which geometry heats up the quickest? The slowest? Give a physical explanation
for these results.

Exercise 3.28: Transient diffusion in a sphere by separation of variables

Revisit the transient diffusion problem in the spherical geometry described in Exercises
3.26 and 3.27. Solve it by separation of variables, using the information in Example 3.9.

Exercise 3.29: Fourier series

Find the Fourier series coefficients for the function f(x) = 1 on the interval x ∈
[−π/2, π/2] using the odd cosine terms {cosx, cos 3x, cos 5x, . . .}

f(x) =
∞∑
n=0

an cos(2n+ 1)x

Use this result to check the initial condition of (3.101) in Exercise 3.25.

Hint: first establish the orthogonality property
∫π/2
−π/2 cosnx cosmxdx = π

2 δmn, n,m =
1,2, . . .. Then obtain the an by taking inner products as discussed in Section 2.4.1.

Exercise 3.30: Plancherel’s formula

Plancherel’s formula states that

2π
∫∞
−∞
|f(x)|2 dx =

∫∞
−∞
|f̂ (k)|2 dk

Begin with the expression on the left and from it derive the expression on the right. In
general, both f(x) and f̂ (k) can be complex. Hint:

∫∞
−∞ ei(k−l)x dx = 2πδ(k− l).

Exercise 3.31: Green’s function for a fourth-order problem

(a) Use the Fourier transform technique to solve the ordinary differential equation

d4G
dξ4 − 2

d2G
dξ2 +G = δ(ξ − x)

Use a computer algebra program or a math handbook to perform the integral
that is required to find G(ξ).

(b) The function G from the previous problem is the Green’s function for the ordi-

nary differential operator L = d4

dx4 −2 d2

dx2 +1. Use this Green’s function to solve
Lu = f(x),u(x) → 0 as x → ±∞, where f(x) = 1 if 0 < x < 1 and 0 elsewhere.
Use numerical integration to approximate the solution for |x| < 10.

Exercise 3.32: A square with one heated wall

Solve∇2u = 0 in a unit square domain 0 < x < 1,0 < y < 1, with boundary conditions
u = 0 on x = 0, x = 1 and y = 0, and u = 1 on y = 1.
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Exercise 3.33: Separation of variables for the wave equation

Use separation of variables to solve

utt = c2uxx

with the following boundary conditions

u(x,0) =

x, x < 1/2
1− x, x > 1/2

, u(0, t) = u(1, t) = 0, ut(x,0) = 0

Show that your solution can be put in the D’Alembert form u = F1(x−ct)+F2(x+ct).

Exercise 3.34: Separation of variables for a partially heated sphere

Use separation of variables to solve for the steady-state temperature distribution in
a sphere whose bottom half is kept at temperature T = 0, and whose top half is at
T = 1. Use the transformation η = cosθ to convert the equation in the polar angle
direction to Legendre’s equation. Note that the eigenvalues of Legendre’s equation are
λ = n(n + 1) for positive integers n. The corresponding eigenfunction is the Legen-
dre polynomial Pn(η). Explicitly find the first four terms in the expansion. Laplace’s
equation in spherical coordinates (r , θ,φ) is

1
r2

∂
∂r

(
r2 ∂T
∂r

)
+ 1
r2 sinθ

∂
∂θ

(
sinθ

∂T
∂θ

)
+ 1

r2 sin2 θ
∂2T
∂φ2 = 0

Exercise 3.35: The Helmholtz equation

Consider the wave equation
utt = c2∇2u

in the domain y > 0, ∞ < x < ∞, with boundary condition u(x,y = 0, t) = f(x)eiωt .
This equation governs sound emanating from a vibrating wall.

(a) By assuming a solution of the form u(x,y, t) = v(x,y)eiωt , show that the
equation can be reduced to

−ω2v − c2∇2v = 0

with boundary condition v(x,0) = f(x). This is the Helmholtz equation.

(b) Find the Green’s function G = G∞ + GB for this operator with the appropriate
boundary conditions, using the fact that the Bessel function Y0(r) ∼ 2

π ln r as
r → 0.

(c) Use the Green’s function to solve for u(x,y, t).

Exercise 3.36: Transient diffusion via Green’s function and similarity solu-
tion approaches

In Example 3.13 we found that the transient diffusion problem

Gt = DGxx
has solution

G(x, t, ξ, τ) = 1

2
√
πD(t − τ)

e−(x−ξ)
2/4D(t−τ)

We have changed notation here to emphasize that this solution is the Green’s function
for transient diffusion with delta function source term f(x, t) = δ(x − ξ)δ(t − τ).
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(a) Use this result, along with the convolution theorem to find the solution to the
initial-value problem

ut = Duxx + f(x, t)
in −∞ < x <∞ and initial condition u(x,0) = u0(x).

(b) Now consider the case f = 0 in the domain x > 0 with boundary condition
u(0, t) = 0 and initial condition u(x > 0,0) = 1. Use an image or symmetry
argument to convert this into a problem in the unbounded domain, where you
can apply (3.67). The information in Exercise 3.17 may be useful. This solution
is found by Laplace transforms in Exercise 3.23.

(c) Solve this problem again by the method of similarity solution. That is, ob-
serve that the only length scale in the problem is the combination η = x/2

√
Dt

(the factor of 2 is arbitrary but convenient), and seek a solution

u(x, t) = u(η)

Substitution of this form into the governing equation and application of the
chain rule leads to an ordinary differential equation.

Exercise 3.37: Schrödinger equation in a circular domain

The wave function for the “quantum corral”—an arrangement of atoms on a surface
designed to localize electrons—is governed by the Schrödinger equation

i
∂ψ
∂t
= ∇2ψ

Use separation of variables to find the general (bounded) axisymmetric solution to this
problem in a circular domain with ψ = 0 at r = 1. Hint: if you assume exponential
growth or decay in time, the spatial dependence will be determined by the so-called
modified Bessel equation. Use the properties of solutions to this equation to show that
there are no nontrivial solutions that are exponentially growing or decaying in time,
thus concluding that the time dependence must be oscillatory.

Exercise 3.38: Temperature profile with wavy boundary temperature

Solve the steady-state heat-conduction problem

uxx +uyy = 0

in the half-plane −∞ < x < ∞, 0 < y < ∞, with boundary conditions u(x,0) =
A+ B cosαx = A+ B

2 (e
iαx + e−iαx) and u(x,y) bounded as y → ∞. Use the Fourier

transform in the x direction. How far does the wavy temperature variation imposed at
the boundary penetrate out into the material?

Exercise 3.39: Domain perturbation analysis of diffusion in a wavy-walled
slab

Solve ∇2T = 0 in the wavy-walled domain shown in Figure 3.14. The top surface is at
y = 1, the left and right boundaries are x = 0 and x = L, respectively, and the bottom
surface is y = ϵ cos 2πx/L, where ϵ ≪ 1. Find the solution to O(ϵ) using domain
perturbation.
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T = 1

T = 0

∇2T = 0 ∂T
∂x = 0∂T

∂x = 0

Figure 3.14: Wavy-walled domain.

Exercise 3.40: Fourier transform for solving heat conduction in a strip

Solve the steady-state heat-conduction problem

uxx +uyy = 0

in the infinite strip −∞ < x < ∞, 0 < y < 1, with boundary conditions u(x,0) =
u0(x),u(x,1) = u1(x). Use the Fourier transform in the x direction to get an ordinary
differential equation and boundary conditions for û(k,y).

Exercise 3.41: Separation of variables and Laplace’s equation for a wedge

Use separation of variables to solve Laplace’s equation in the wedge 0 < θ < α,0 < r <
1, with boundary conditions u(r ,0) = 0, u(r ,α) = 50, u(1, θ) = 0.

Exercise 3.42: Laplace’s equation in a wedge

Again consider Laplace’s equation in a wedge, but now fix the wedge angle at α = π/4.

Use the method of images to find the Green’s function for this domain—where should

the images be, and what should their signs be? A well-drawn picture showing the posi-

tions and signs of the images is sufficient. The first two images are shown. They don’t

completely solve the problem because each messes up the boundary condition on the

side of the wedge further from it.

−

G = 0 + position of point source

−
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Exercise 3.43: D’Alembert form of the wave equation

(a) By looking for solutions of the form u(x, t) = U(x−at) where a is to be deter-
mined, show that the general solution of the wave equation

∂2u
∂t2

= c2 ∂2u
∂x2

is
u(x, t) = f(x − ct)+ g(x + ct)

where f and g are arbitrary.

(b) Use this solution to find the solution with initial condition u(x,0) = w(x),
∂u/∂t(x,0) = 0 in an unbounded domain. Pick a shape forw(x) and sketch the
solution u(x, t).

Exercise 3.44: Heat equation in a semi-infinite domain

The solution to the heat equation

ut = Duxx

subject to the initial condition u(x,0) = u0(x) is

u(x, t) =
∫∞
−∞
u0(ξ)

1
2
√
πDt

e−
(x−ξ)2

4Dt dξ

Use this solution and an argument based on images to find the analogous solution for
the same problem, but in the domain x > 0, with boundary condition u(0, t) = 0 and
with initial condition u(x > 0, t = 0) = u+(x).

Exercise 3.45: Vibrating beam

The transverse vibrations of an elastic beam satisfy the equation

utt + κuxxxx = 0

where κ > 0. Use separation of variables to find u(x, t) subject to initial condi-
tion u(x,0) = u0(x),ut(x,0) = 0 and boundary conditions u(0, t) = u(L, t) = 0,
uxx(0, t) = uxx(L, t) = 0. These conditions correspond to a beam whose ends are
pinned in place at x = 0 and x = L, but that have no torques exerted on them. Hint:
the equation α4 = c has solutions α = ±c1/4 and α = ±ic1/4, where c1/4 is the real
positive fourth root of c.

Exercise 3.46: Convection and reaction with a point source

Use the Fourier transform and its properties to find a solution that vanishes at ±∞ for
the ordinary differential equation

du
dx

= −au+ δ(x)

where a > 0. Recall that F−1
{

1
a2+k2

}
= 1

2ae
−a|x|.
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Exercise 3.47: Green’s function for Laplacian operator

(a) Find the free space Green’s function G∞ for the Laplacian operator in three di-
mensions. It is spherically symmetric.

(b) Show that ifu is a solution to Laplace’s equation, then so is∇u, as well as c·∇u,
where c is any constant vector.

(c) Show that Eij
∂
∂xi

∂
∂xj
u is also a solution, for any constant tensor E.

Exercise 3.48: Zeros of sine, cosine, and exponential in the complex plane

We extend the definition of the exponential to complex argument z ∈ C as follows

ez = ex+iy = ex(cosy + i siny) z ∈ C, x,y ∈ R
in which we take the usual definitions of real-valued ex , cosy, siny for x,y ∈ R. We
extend the sine and cosine to complex arguments in terms of the exponential

cosz = e
iz + e−iz

2
sinz = e

iz − e−iz
2i

Given these definitions, find all the zeros of the following functions in the complex
plane

(a) The function sinz.
Hint: using the definition of sine, convert the zeros of sinz to solutions of the
equation e2iz = 1. Substitute z = x + iy and find all solutions x,y ∈ R. Notice
that all the zeros in the complex plane are only the usual ones on the real axis.

(b) The function cosz. (Answer: only the usual ones on the real axis.)

(c) The function ez . (Answer: no zeros in C.)

Exercise 3.49: A Laplace transform inverse

The Laplace inverse for the following transform has been used in solving the wave
equation

f(s) = sinh(as) sinh(bs)
sinh s

a, b ∈ R
Find f(t), and note that your solution should be real valued, i.e., the imaginary number i
should not appear anywhere in your final expression for f(t).

Exercise 3.50: Wave equation with struck string

Revisit Example 3.16 and the wave equation uττ = uxx on x ∈ [0,1] for a string with
fixed ends u(0, τ) = u(1, τ) = 0, but the struck string initial condition, u(x,0) = 0,
uτ(x,0) = v(x). Here there is zero initial deformation, but a nonzero initial velocity.

(a) Solve this equation using the Laplace transform.

(b) Note that this initial condition requires an inverse Laplace transform for

f(s) = sinh(as) sinh(bs)
s sinh s

Show that this inverse is given by

f(τ) = 2
∞∑
n=1

(−1)n+1

nπ
sin(nπa) sin(nπb) sin(nπτ) (3.104)
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(c) Denote the Fourier coefficients for the initial velocity v(x) as bn

v(x) =
∞∑
n=1

bn sin(nπx)

(d) Next consider the mixed initial condition u(x,0) = u0(x) and uτ(x,0) = v(x).
Let an denote the Fourier coefficients of u0(x) as in Example 3.16. Show that
the solution for the mixed initial condition is

u(x,τ) =
∞∑
n=1

sin(nπx)
(
an cos(nπτ)+ bn

nπ
sin(nπτ)

)

Exercise 3.51: Wave equation with triangle wave initial condition

The wave equation is useful to describe propagation of sound and vibration of strings
and membranes. Consider the wave equation utt = c2uzz on z ∈ [0, L] for a string
with fixed ends u(0, t) = u(L, t) = 0, and the plucked string initial condition, i.e.,
fixed arbitrary position and zero velocity at t = 0, u(z,0) = u0(z), ut(z,0) = 0. The
constant c is known as the wave speed.

(a) First rescale time and position as τ = (c/L)t, x = z/L, to remove the parameters
c and L and simplify your work. Show that the rescaled problem is

uττ = uxx
u(x,0) = u0(x), uτ(x,0) = 0 x ∈ (0,1)

u(0, t) = 0, u(1, t) = 0 τ ≥ 0

(b) Consider the solution (3.88) given in Example 3.16. Establish that the solution
u(x,τ) satisfies the wave equation, both boundary conditions, and the initial
condition. Establish that the solution u(x,τ) is periodic in time. What is the
period?

(c) Consider the string’s initial condition to be the triangle function depicted in
Figure 2.32 with a = 0.1. Given the Fourier coefficients for this triangle function
from Exercise 2.10, plot your solution at the following times on separate plots:

1. τ = 0,0.0175,0.035,0.0525,0.07

2. τ = 0.45,0.48,0.49,0.495,0.4975,0.50

3. τ = 0.50,0.5025,0.505,0.51,0.52,0.55

4. τ = 0.90,0.95,1.00,1.05,1.10

5. τ = 1.90,1.95,2.00,2.05,2.10

Provide a physical description (comprehensible to the general public) of what is
happening as the wave equation evolves forward in time. In particular, explain
what the initial condition does just after τ = 0. Explain what happens when
waves arrive at the boundaries x = 0,1?
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Exercise 3.52: Numerical solution of the heat equation

(a) Write (and run) a program to use Chebyshev collocation to solve the heat equa-
tion

ut = uxx
with boundary conditions

u(x,0) = 0, 0 < x < 1,

u(0, t) = 0, u(1, t) = 1, 0 < t

Use the implicit Euler method and compare your solutions at a number of values
ofN at different times. Approximately how long does it take for the temperature
at x = 0.9 to reach 0.5?.

(b) How many terms in the exact solution are needed to find the time at which
u(0.9) = 0.5? (to five percent precision)?

Exercise 3.53: Propagation of a reaction front

Using the Chebyshev collocation technique for spatial discretization and the implicit
Euler time integration scheme, write a MATLAB or Octave program to solve the transient
reaction-diffusion problem)

∂T
∂t
= α∂

2T
∂x2 + T − T

3

T(−1, t) = 1 T(1, t) = −1 T(x,0) = −1

using α = 0.1. Perform simulations for a long enough time that the solution reaches a
steady state, and perform convergence checks to verify that your spatial and temporal
discretizations are adequate, i.e., that the solution does not change much when the
resolution is increased).

Exercise 3.54: Von Neumann stability analysis

Use von Neumann stability analysis to find the growth factor and the stability (Courant)
condition for the Lax-Wendroff method, (3.95).

Exercise 3.55: Divergence theorem for a fractal

Consider the sequence of objects shown in the following figure

n = 0 n = 1 n = 2 n = 3 n = 4

Each figure is generated from the previous by adding an equilateral triangle pertur-
bation to each straight line segment of the boundary. If we take the limit as n → ∞,
we have a so-called fractal object. This fractal is known as the Koch snowflake in
honor of the mathematician Niels Fabian Helge von Koch, who wrote about it in a 1904
paper, “On a continuous curve without tangents, constructible from elementary geome-
try.”(von Koch, 1904). We’ll establish that the area, which is clearly bounded, converges
as n tends to infinity, but the length of the boundary tends to infinity.
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Note that in the limit as n tends to infinity the boundary becomes arbitrarily
“rough,” and the outward normal (and tangent) is nowhere defined. Despite these tech-
nical challenges, it can also be shown that a suitable generalization of the divergence
theorem still applies to this fractal object.

(a) Compute the area of the Koch snowflake at level n and show that

An
A0
= 1

4
+ 27

20
(1− (4/9)n+1)

in which A0 is the area of the starting equilateral triangle. Therefore, show that
limn→∞An = (8/5)A0

(b) Compute the perimeter and show that

Pn =
(

4
3

)n
P0

in which P0 is the perimeter of the starting equilateral triangle. Therefore, show
that limn→∞ Pn = ∞.

(c) Show that the divergence theorem holds for each value n. What result do you
use to establish this fact?

Assume for simplicity that the vector field is a constant. How do you rationalize
the result that an integral over this bounded area is equal to a line integral over
an unbounded perimeter?
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4
Probability, Random Variables, and

Estimation

4.1 Introduction and the Axioms of Probability

For those engineers familiar with only deterministic models, we now
make a big transition to random or stochastic models in the final two
chapters of the text. Why? The motivation for including stochastic
models is simple: they have proven highly useful in many fields of
science and engineering. Moreover, even basic scientific literacy de-
mands reasonable familiarity with stochastic methods. Students who
have been exposed to primarily deterministic descriptions of physical
processes sometimes initially regard stochastic methods as mysteri-
ous, vague, and difficult. We hope to change this perception, remove
any mystery, and perhaps even make these methods easy to understand
and enjoyable to use. To achieve this goal, we must maintain a clear
separation between the physical process, and the stochastic model we
choose to represent it, and the mathematical reasoning we use to make
deductions about the stochastic model. Ignoring this separation and
calling upon physical intuition in place of mathematical deduction in-
variably creates the confusion and mystery that we are trying to avoid.

Probability is the branch of mathematics that provides the inference
engine that allows us to derive correct consequences from our starting
assumptions. The starting assumptions are stated in terms of unde-
finable notions, such as outcomes and events. This should not cause
any alarm, because this is the same pattern in all fields of mathemat-
ics, such as geometry, where the undefinable notions are point, line,
plane, and so forth. Since human intuition about geometry is quite
strong, however, the undefinable starting notions of geometry are taken
in stride without much thought. Exposure to games of chance may pro-
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vide the same human intuition about probability’s undefinable starting
terms.

We start with the set or space of possible outcomes which we denote
by I . Let A and B be events, which are subsets of I and therefore
include some collection of outcomes. We use the empty set∅ to denote
an impossible event. Let A∪B denote the event “either A or B,” and
letA∩B denote the event “bothA and B.” The close analogy with the
set operations of union and intersection is intentional, and helpful. To
each event A ⊆ I , we can assign a probability to that event, denoted
Pr(A). The three axioms of probability can then be stated as follows.

I. (Nonnegativity) Pr(A) ≥ 0 for allA⊆ I .

II. (Normalization) Pr(I) = 1.

III. (Finite additivity) Pr(A∪B) = Pr(A)+Pr(B) for allA,B ⊆ I
satisfyingA∩B = ∅.

These three axioms, due to Kolmogorov (1933), combined with the ax-
ioms of set theory, are the source from which all probabilistic deduc-
tions follow. It may seem surprising at first that these three axioms
are sufficient. In fact, we’ll see soon that we do require a modified
third axiom to handle infinitely many events. First we state a few im-
mediate consequences of these axioms. Exercise 4.1 provides several
more. When A∩B = ∅ we say that events A and B are mutually ex-
clusive, or pairwise disjoint. We use the symbol A \ B to denote the
outcomes in setA that are not outcomes in set B, or, equivalently, the
outcomes in set A with the outcomes in B removed. The event A is
then defined to be I \ A, i.e., A is the set of all outcomes that are not
outcomes in A. We say that two events A and B are independent if
Pr(A∩B) = Pr(A)Pr(B).

Some of the important immediate consequences of the axioms are
the following

Pr(∅) = 0

Pr(A)+ Pr(A) = 1

Pr(A) ≤ 1

If B ⊆A, then Pr(B) ≤ Pr(A)
Pr(A∪B) = Pr(A)+ Pr(B)− Pr(A∩B)

Proof. To establish the first result, note thatA∪∅ =A andA∩∅ = ∅
for allA⊆ I , and apply the third axiom to obtain Pr(A∪∅) = Pr(A) =
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Pr(A) + Pr(∅). Rearranging this last equality gives the first result.
To establish the second result note that from the definition of A, we
have that A ∪A = I and A ∩A = ∅. Applying the third axiom then
gives Pr(A ∪A) = Pr(I) = Pr(A) + Pr(A), and applying the second
axiom then gives the second result. Using this second result and the
first axiom, then gives the third result.1 To obtain the fourth result,
note that if B ⊆ A, then A can be expressed as A = B ∪ (A ∩ B),
with B ∩ (A∩B) = ∅. Applying the third axiom then gives Pr(A) =
Pr(B)+ Pr(A∩B), and applying the first axiom gives Pr(A) ≥ Pr(B).

To obtain the fifth result, we express bothA∪B and B as the union
of mutually exclusive events: A∪B =A∪(A∩B)withA∩(A∩B) = ∅,
and B = (A∩B)∪ (A∩B) with (A∩B)∩ (A∩B) = ∅. Applying the
third axiom to both gives

Pr(A∪B) = Pr(A)+ Pr(A∩B) Pr(B) = Pr(A∩B)+ Pr(A∩B)

Solving the second equation for Pr(A∩B) and substituting into the first
gives the fifth result, which is known as the addition law of probability.
Also note that due to the first result, the probability of two mutually
exclusive events is zero. ■

4.2 Random Variables and the Probability Density Func-
tion

Next we introduce the concept of an experiment and a random variable.
An experiment is the set of all outcomes I , the set of events F of inter-
est, and the probabilities assigned to these events. A random variable
is a function that assigns a number to the possible outcomes of the
experiment, X(ω),ω ∈ I . For an experiment with a finite number of
outcomes, such as rolling a die, the situation is simple. We can enumer-
ate all outcomes to obtain I = {1,2,3,4,5,6}, and the set of events, F ,
can be taken as all subsets of I . The set F obviously contains the six
different single outcomes of the die roll, {1}, {2}, {3}, {4}, {5}, {6} ∈ F .
But the random variable is a different idea. We may choose to assign
the integers 1,2, . . . ,6 to the different outcomes. But we may choose in-
stead to assign the values 1 to the outcomes corresponding to an even
number showing on the die, and 0 to the outcomes corresponding to
an odd number showing on the die. In the first case we have the simple
assignment

X(ω) =ω, ω = 1,2,3,4,5,6
1Notice that we have used all three axioms to reach this point.
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and in the second case, we have the assignment

X(ω) =

0, ω = 1,3,5
1, ω = 2,4,6

The experiment is the same in both cases, but we have chosen different
random variables to reflect potentially different goals in our physical
modeling that led to this random process.

The situation becomes considerably more complex when we have an
experiment with uncountably many outcomes, which is the case when
we require real-valued random variables. For example, if we measure
the temperature in a reactor, and want to model the reactor as a random
process, the random variable of interest X(ω) assigns a (positive, real)
value to each outcome of the experiment ω ∈ I . If we let I = R, for
example, it is not immediately clear what we should allow for the set
of events F . If we allow only the individual points on the real number
line, we do not obtain a rich enough set of events to be useful, i.e.,
the probability of achieving exactly some real-valued temperature T is
zero for all T ∈ R. The events corresponding to (uncountably) infinite
sets of points, e.g., a ≤ T ≤ b with a < b ∈ R, are the ones that have
nonzero probability. If we try to allow F to be all subsets of the real
number line,2 however, we obtain a set that is so large that we cannot
satisfy the axioms of probability on the events in this set. Probabilists
have found a satisfactory resolution to this issue in which F is the set
of all intervals [a, b], for all a,b ∈ R, and all countable intersections
and unions of all such intervals.3 Moreover, we modify the third axiom
of probability to cover unions of countably infinitely many events

III’. (Countable additivity) LetAi ⊂ I, i = 1,2,3, . . . be a count-
able collection of mutually exclusive events. Then

Pr(A1 ∪A2 ∪ · · · ) = Pr(A1)+ Pr(A2)+ · · ·

We can then assign probabilities to these events, Pr(A),A∈ F satisfy-
ing the axioms. The random variable X(ω) is then a mapping from
ω ∈ I to R, and we have well-defined probabilities for the events
Pr(X ≤ x) = Pr(ω | X(ω) ≤ x) for all x ∈ R. At this point we have
all the foundational elements that we require to develop the stochastic

2The power set of the reals, whose cardinality is larger than that of the reals.
3The collection of Borel sets of the reals, whose cardinality is equal to that of the

reals.
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methods of most use in science and engineering. The interested reader
may wish to consult Papoulis (1984, pp.22–27) and Thomasian (1969,
pp.320–322) for further discussion of these issues.

We let ξ be a random variable taking values in the field of real num-
bers, and the function Fξ(x) denote the (cumulative) probability dis-
tribution function of the random variable so that

Fξ(x) = Pr(ξ ≤ x)

i.e., we say that Fξ(x) is the probability that the random variable ξ takes
on a value less than or equal to x. The function Fξ is a nonnegative,
nondecreasing function and has the following properties due to the
axioms of probability

Fξ(x1) ≤ Fξ(x2) if x1 < x2

lim
x→−∞

Fξ(x) = 0 lim
x→∞

Fξ(x) = 1

We next define the probability density function, denoted pξ(x),
such that

Fξ(x) =
∫ x
−∞
pξ(s)ds, −∞ < x <∞ (4.1)

We can allow discontinuous Fξ if we are willing to accept generalized
functions (delta functions and the like) for pξ . Also, we can define the
density function for discrete as well as continuous random variables if
we allow delta functions. Alternatively, we can replace the integral in
(4.1) with a sum over a discrete density function. The random variable
may be a coin toss or a dice game, which takes on values from a discrete
set contrasted to a temperature or concentration measurement, which
takes on values from a continuous set. The density function has the
following properties

pξ(x) ≥ 0
∫∞
−∞
pξ(x)dx = 1

and the interpretation in terms of probability

Pr(x1 ≤ ξ ≤ x2) =
∫ x2

x1

pξ(x)dx

The mean or expectation of a random variable ξ is defined as

E(ξ) =
∫∞
−∞
xpξ(x)dx (4.2)
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The moments of a random variable are defined by

E(ξn) =
∫∞
−∞
xnpξ(x)dx

and the mean is the first moment. Moments of ξ about the mean are
defined by

E((ξ −E(ξ))n) =
∫∞
−∞
(x −E(ξ))npξ(x)dx

The variance is defined as the second moment about the mean

var(ξ) = E((ξ −E(ξ))2)
= E(ξ2 − 2ξE(ξ)+E2(ξ))

= E(ξ2)− 2E2(ξ)+E2(ξ)

= E(ξ2)−E2(ξ)

The standard deviation is the square root of the variance

σ(ξ) = (var(ξ))1/2

Normal distribution. The normal or Gaussian distribution is ubiqui-
tous in applications. It is characterized by its mean, m, and variance,
σ 2, and is given by

pξ(x) =
1√

2πσ 2
exp

(
−1

2
(x −m)2
σ 2

)
(4.3)

We proceed to check that the mean of this distribution is indeed m
and the variance is σ 2 as claimed, and that the density is normalized
so that its integral is one. We require the definite integral formulas∫∞

−∞
e−x

2
dx =

√
π (4.4)∫∞

−∞
xe−x

2
dx = 0 (4.5)∫∞

−∞
x2e−x

2
dx =

√
π
2

(4.6)

The first formula may also be familiar from the error function in trans-
port phenomena

erf (x) = 2√
π

∫ x
0
e−u

2
du erf (∞) = 1
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The second integral follows because the function e−x2
is even and the

function x is odd. The third formula may also be familiar from the
gamma function, defined by (Abramowitz and Stegun, 1970, p.255–260)

Γ(n) =
∫∞

0
tn−1e−tdt = (n− 1)!

Changing the variable of integration using t = x2 gives∫∞
−∞
x2e−x

2
dx = 2

∫∞
0
x2e−x

2
dx

=
∫∞

0
t1/2e−tdt

= Γ(3/2) =
√
π
2

We calculate the integral of the normal density as follows∫∞
−∞
pξ(x)dx =

1√
2πσ 2

∫∞
−∞

exp

(
−1

2
(x −m)2
σ 2

)
dx

Define the change of variable

u = 1√
2

(
x −m
σ

)
which gives ∫∞

−∞
pξ(x)dx =

1√
π

∫∞
−∞

exp
(
−u2

)
du = 1

from (4.4) and the proposed normal density does have unit area. Com-
puting the mean gives

E(ξ) = 1√
2πσ 2

∫∞
−∞
x exp

(
−1

2
(x −m)2
σ 2

)
dx

using the same change of variables as before yields

E(ξ) = 1√
π

∫∞
−∞
(
√

2uσ +m)e−u2
du

The first term in the integral is zero from (4.5), and the second term
produces

E(ξ) =m
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as claimed. Finally the definition of the variance of ξ gives

var(ξ) = 1√
2πσ 2

∫∞
−∞
(x −m)2 exp

(
−1

2
(x −m)2
σ 2

)
dx

Changing the variable of integration as before gives

var(ξ) = 2√
π
σ 2

∫∞
−∞
u2e−u

2
du

and from (4.6)
var(ξ) = σ 2

Shorthand notation for the random variable ξ having a normal distri-
bution with mean m and variance σ 2 is

ξ ∼ N(m,σ 2)

In order to collect a more useful set of integration facts for manipu-
lating normal distributions, we can derive the following integrals by
changing the variable of integration in (4.4)–(4.6). For x,a ∈ R, a > 0∫∞

−∞
e−

1
2x

2/adx =
√

2π
√
a∫∞

−∞
xe−

1
2x

2/adx = 0∫∞
−∞
x2e−

1
2x

2/adx =
√

2πa3/2

Figure 4.1 shows the normal distribution with a mean of one and vari-
ances of 1/2, 1, and 2. Notice that a large variance implies that the ran-
dom variable is likely to take on large values. As the variance shrinks to
zero, the probability density becomes a delta function and the random
variable approaches a deterministic value.

Characteristic function. It is often convenient to handle the algebra
of density functions, particularly normal densities, by using a close
relative of the Fourier transform of the density function rather than
the density itself. The transform, which we denote as ϕξ(u), is known
as the characteristic function in the probability and statistics literature.
It is defined by

ϕξ(t) = E
(
eitξ

)
=
∫∞
−∞
eitxpξ(x)dx
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Figure 4.1: Normal distribution, with probability density pξ(x) =
(1/
√

2πσ 2) exp(−(1/2)(x −m)2/σ 2). Mean is one and
standard deviations are 1/2, 1, and 2.

where we again assume that any random variable ξ of interest has a
density pξ(·). Note the sign convention with a positive sign chosen on
the imaginary unit i. Hence, under this convention, the conjugate of the
characteristic function ϕξ(t) is the Fourier transform of the density.
The characteristic function has a one-to-one correspondence with the
density function, which can be seen from the inverse transform formula

pξ(x) =
1

2π

∫∞
−∞
e−itxϕξ(t)dt

Again note the sign difference from the usual inverse Fourier trans-
form. Note that multiplying a random variable by a constant η = aξ
gives

ϕη(t) = E
(
eitaξ

)
=ϕξ(at) (4.7)
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Adding independent random variables η = ξ1 + ξ2 gives

ϕη(t) = E
(
eit(x1+x2)

)
=
∫∫∞
−∞
eit(x1+x2)pξ1,ξ2(x1, x2)dx1dx2

=
∫∞
−∞
eitx1pξ1(x1)dx1

∫∞
−∞
eitx2pξ2(x2)dx2

ϕη(t) =ϕξ1(t)ϕξ2(t) (4.8)

We next compute the characteristic function of the normal distribution.

Example 4.1: Characteristic function of the normal density

Show the characteristic function of the normal density is

ϕξ(t) = exp
(
itm− 1

2
t2σ 2

)

Solution

The definition of the characteristic function and the normal density
give

ϕξ(t) =
1√

2πσ 2

∫∞
−∞
eitxe−(1/2)(x−m)

2/σ2
dx

Changing the variable of integration to z = x −m gives

ϕξ(t) =
1√

2πσ 2
eitm

∫∞
−∞
eitze−(1/2)z

2/σ2
dz

= 2√
2πσ 2

eitm
∫∞

0
e−(1/2)z

2/σ2
cos tzdz

ϕξ(t) = eitm−t
2σ2/2

in which we used the definite integral∫∞
0
e−a

2x2
cosbxdx =

√
π

2a
e−b

2/(4a2) a ≠ 0

on the last line. Exercise 4.49 discusses how to derive this definite inte-
gral. Note also that the integral with the sin tz term vanished because
sine is an odd function. □
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4.3 Multivariate Density Functions

In applications we usually do not have a single random variable but a
collection of them. We group these variables together in a vector and let
random variable ξ now take on values in Rn. Proceeding analogously
to the single variable case, the joint distribution function Fξ(x) is
defined so that

Fξ(x) = Pr(ξ ≤ x)
in which the vector inequality is defined to be the n corresponding
scalar inequalities for the components. Note that Fξ(x) remains a
scalar -valued function taking values in the interval [0,1]

Fξ(x) : Rn → [0,1]

Also, as in the single variable case, we define the joint density func-
tion, denoted pξ(x) : Rn → R≥0 such that

Fξ(x) =
∫ xn
−∞
· · ·

∫ x1

−∞
pξ(s)ds1 · · ·dsn

or, provided the derivatives exist,

pξ(x) =
∂n

∂x1∂x2 · · · ∂xn
Fξ(x) (4.9)

As in the scalar case, the probability that the n-dimensional random
variable ξ takes on values between a and b is given by

Pr(a ≤ ξ ≤ b) =
∫ bn
an
· · ·

∫ b1

a1

pξ(x)dx1 · · ·dxn

Mean and covariance. The mean of the vector-valued random vari-
able ξ is simply the vector-valued integral

E(ξ) =
∫∞
−∞
xpξ(x)dx (4.10)

Writing out this integral in terms of its components we have

E(ξ) =



∞∫
···

∫
−∞

x1pξ(x)dx1 . . . dxn
∞∫
···

∫
−∞

x2pξ(x)dx1 . . . dxn
...

∞∫
···

∫
−∞

xnpξ(x)dx1 . . . dxn





366 Probability, Random Variables, and Estimation

The covariance of two scalar random variables ξ, η is defined as

cov(ξ, η) = E ((ξ −E(ξ)) (η−E(η)))
= E(ξη)−E(ξ)E(η)

The covariance matrix, C , of the vector-valued random variable ξ with
components ξi, i = 1, . . . n is defined as

Cij = cov(ξi, ξj)

C =


var(ξ1) cov(ξ1, ξ2) · · · cov(ξ1, ξn)

cov(ξ2, ξ1) var(ξ2) · · · cov(ξ2, ξn)
...

...
. . .

...
cov(ξn, ξ1) cov(ξn, ξ2) · · · var(ξn)


Again, writing out the integrals in terms of the components gives

Cij =
∞∫
· · ·

∫
−∞

(xi −E(ξi))(xj −E(ξj))pξ(x)dx1 . . . dxn (4.11)

Notice that Cij = Cji, so C is symmetric and has positive elements on
the diagonal. We often express this definition of the variance with the
convenient shorthand

var(ξ) = C = E
(
(ξ −E(ξ))(ξ −E(ξ))T

)
= E(ξξT )−E(ξ))E(ξ)T

Notice that the vector outer product xxT appears here, which is an
n×n matrix, and not the inner product xTx, which is a scalar.

Marginal density functions. We often are interested in only some
subset of the random variables in a problem. Consider two vectors
of random variables, ξ ∈ Rn and η ∈ Rm. We can consider the joint
distribution of both of these random variables pξ,η(x,y) or we may
only be interested in the ξ variables, in which case we can integrate out
the m η variables to obtain the marginal density of ξ

pξ(x) =
∞∫
· · ·

∫
−∞

pξ,η(x,y)dy1 · · ·dym

Analogously, to produce the marginal density of η we use

pη(y) =
∞∫
· · ·

∫
−∞

pξ,η(x,y)dx1 · · ·dxn
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4.3.1 Multivariate normal density

We define the multivariate normal density of the random variable ξ ∈
Rn as

pξ(x) =
1

(2π)n/2(detP)1/2
exp

[
− 1

2
(x −m)TP−1(x −m)

]
(4.12)

in which m ∈ Rn is the mean and P ∈ Rn×n is a real, symmetric, pos-
itive definite matrix. We show subsequently that P is the covariance
matrix of ξ. The notation detP denotes the determinant of P . The
multivariate normal density is well defined only for P > 0. The singu-
lar, or degenerate, case P ≥ 0 is discussed subsequently. Shorthand
notation for the random variable ξ having a normal distribution with
mean m and covariance P is

ξ ∼ N(m,P)

We also find it convenient to define the notation

n(x,m,P) = 1
(2π)n/2(detP)1/2

exp
[
− 1

2
(x−m)TP−1(x−m)

]
(4.13)

so that we can write compactly for the normal with mean m and co-
variance P

pξ(x) = n(x,m,P)
in place of (4.12). The matrix P is real and symmetric. Figure 4.2 dis-
plays a multivariate normal for

P−1 =
[

3.5 2.5
2.5 4.0

]

As displayed in Figure 4.2, lines of constant probability in the multi-
variate normal are lines of constant

(x −m)TP−1(x −m)

To understand the geometry of lines of constant probability (ellipses
in two dimensions, ellipsoids or hyperellipsoids in three or more di-
mensions) we examine the eigenvalues and eigenvectors of a positive
definite matrix A as shown in Figure 4.3. Each eigenvector of A points
along one of the axes of the ellipse. The eigenvalues show us how
stretched the ellipse is in each eigenvector direction.

If we want to put simple bounds on the ellipse, then we draw a
box around it as shown in Figure 4.3. Notice that the box contains
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pξ(x)

Figure 4.2: Multivariate normal for n = 2. The contour lines show
ellipses containing 95, 75, and 50 percent probability.
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Figure 4.3: The geometry of quadratic form xTAx = b.
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much more area than the corresponding ellipse and we have lost the
correlation between the elements of x. This loss of information means
we can put different tangent ellipses of quite different shapes inside
the same box. The size of the bounding box is given by

length of ith side =
√
bÃii

in which
Ãii = (i, i) element of A−1

See Exercise 4.15 for a derivation of the size of the bounding box. Fig-
ure 4.3 displays these results: the eigenvectors are aligned with the
ellipse axes and the eigenvalues scale the lengths. The lengths of the
sides of the box that is tangent to the ellipse are proportional to the
square root of the diagonal elements of A−1.

Example 4.2: The mean and covariance of the multivariate normal

Assume the random variable ξ is distributed normally as in (4.12)

pξ(x) =
1

(2π)n/2(detP)1/2
exp

[
− 1

2
(x −m)TP−1(x −m)

]
1. Establish the following facts of integration. For z ∈ Rn with A ∈
Rn×n, A > 0

∫∞
−∞

exp
[
− 1

2
zTA−1z

]
dz = (2π)n/2(detA)1/2 (4.14)

(scalar)∫∞
−∞
z exp

[
− 1

2
zTA−1z

]
dz = 0 (4.15)

(n-vector)∫∞
−∞
zzT exp

[
− 1

2
zTA−1z

]
dz = (2π)n/2(detA)1/2A (4.16)

(n×n-matrix)

2. Show that the first and second integrals, and the definition of
mean, (4.10), lead to

E(ξ) =m

Show that the second and third integrals, and the definition of
covariance, (4.11), lead to

C = P
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So we have established that vector m and matrix P in (4.12) are
the mean and covariance, respectively, of the normally distributed
random variable ξ.

Solution

1. To compute the integrals, we first note that because A is real and
symmetric, there exists a factorization

A = QΛQT A−1 = QΛ−1QT

in which Λ is a diagonal matrix containing the eigenvalues of A
and Q is real and orthogonal. To establish the first integral, we
use the variable transformation z = Qx and change the variable
of integration in (4.14)∫∞
−∞

exp
[
− 1

2
zTA−1z

]
dz =

∫∞
−∞

exp
[
− 1

2
xTΛ−1x

]
|detQ|dx

=
∫∞
−∞

exp
[
− 1

2

n∑
i=1

x2
i /λi

]
dx

=
n∏
i=1

∫∞
−∞
e−

1
2x

2
i /λidxi

in which |detQ| = 1 because QQT = I, which makes det(QQT ) =
(detQ)2 = 1 so detQ = ±1. Performing the integrals gives

∫∞
−∞

exp
[
− 1

2
zTA−1z

]
dz =

n∏
i=1

√
2π

√
λi

= (2π)n/2
 n∏
i=1

λi

1/2

= (2π)n/2(detA)1/2

and we have established the first result.

To establish the second integral, use the variable transformation
z = Qx to obtain∫∞

−∞
z exp

[
− 1

2
zTA−1z

]
dz = Q

∫∞
−∞
x exp

[
− 1

2
xTΛ−1x

]
dx
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Notice that the ith element of this vector equation is of the form

Q
∫∞
−∞
xi exp

[
− 1

2
xTΛ−1x

]
dx =

Q
∫∞
−∞
xie−

1
2x

2
i /λidxi

n∏
k=1,k≠i

∫∞
−∞
e−

1
2x

2
k/λkdxk = 0

This integral vanishes because of the first term in the product.
Since the integral vanishes for each element i, the vector of inte-
grals is therefore zero.

To establish the third integral, we again use the variable transfor-
mation z = Qx and change the variable of integration in (4.16)

∫∞
−∞
zzT exp

[
− 1

2
zTA−1z

]
dz =

Q
(∫∞

−∞
xxT exp

[
− 1

2
xTΛ−1x

]
|detQ|dx

)
QT =

Q
(∫∞

−∞
xxT exp

[
− 1

2

n∑
i=1

x2
i /λi

]
dx

)
QT = QVQT (4.17)

in which, again, |detQ| = 1, and the V matrix is defined to be the
integral on the right-hand side. Examining the components of V
we note that if i ≠ j then the integral is of the form

Vij =
∫∞
−∞
xie−

1
2x

2
i /λidxi

∫∞
−∞
xje−

1
2x

2
j /λjdxj

n∏
k=1,k≠i,j

∫∞
−∞
e−

1
2x

2
k/λkdxk = 0 i ≠ j

The off-diagonal integrals vanish because of the odd functions in
the integrands for the xi and xj integrals. The diagonal terms, on
the other hand, contain even integrands and they do not vanish

Vii =
∫∞
−∞
x2
i e
− 1

2x
2
i /λidxi

n∏
k=1,k≠i

∫∞
−∞
e−

1
2x

2
k/λkdxk
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Evaluating these integrals gives

Vii =
√

2πλ3/2
i

n∏
k=1,k≠i

√
2π

√
λk

= (2π)n/2
( n∏
k=1

λk
)1/2

λi

Vii = (2π)n/2(detA)1/2λi

Substituting this result into (4.17) gives

∫∞
−∞
zzT exp

[
− 1

2
zTA−1z

]
dz = QVQT

= (2π)n/2(detA)1/2Q


λ1

. . .
λn

QT
= (2π)n/2(detA)1/2QΛQT = (2π)n/2(detA)1/2A

and we have established the integral result of interest.

2. Using the probability density of the multivariate normal and the
definition of the mean give

E(ξ) =
∫∞
−∞
xpξ(x)dx

= 1
(2π)n/2(detP)1/2

∫∞
−∞
x exp

[
− 1

2
(x −m)TP−1(x −m)

]
dx

Changing the variable of integration to z = x −m gives

E(ξ) = 1
(2π)n/2(detP)1/2

∫∞
−∞
(m+ z) exp

[
− 1

2
zTP−1z

]
dz

E(ξ) =m

in which the integral with m produces unity by (4.14) and the
integral involving z vanishes because the integrand is odd.

Next using the probability density of the multivariate normal, the
definition of the covariance, and changing the variable of integra-
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tion give

C =
∫∞
−∞
(x −E(ξ))(x −E(ξ))Tpξ(x)dx

= 1
(2π)n/2(detP)1/2

∫∞
−∞
(x −m)(x −m)T

exp
[
− 1

2
(x −m)TP−1(x −m)

]
dx

= 1
(2π)n/2(detP)1/2

∫∞
−∞
zzT exp

[
− 1

2
zTP−1z

]
dz

= 1
(2π)n/2(detP)1/2

(2π)n/2(detP)1/2P

C = P □

Characteristic function of multivariate density. The characteristic
function of ann-dimensional multivariate random variable ξ, is defined
as

ϕξ(t) =
∫∞
−∞
eit

Txpξ(x)dx

in which t is now an n-dimensional variable. The inverse transform is
now

pξ(x) =
1

(2π)n

∫∞
−∞
e−it

Txϕξ(t)dt

Note that if one has the characteristic function of the entire ran-
dom variable vector available, one can easily compute the characteristic
function of any marginal distribution. We simply set the components
of the t vector to zero for any variables we wish to integrate over to
create the marginal. To illustrate the idea, assume we have a joint den-
sity for two (vector-valued) random variables ξ and η, pξ,η(x,y), and
its characteristic function ϕ(tx, ty)

ϕ(tx, ty) =
∫∫∞
−∞

exp

(
i
[
tTx tTy

][x
y

])
pξ,η(x,y)dxdy

If we are interested in the characteristic function ofη’s marginal,ϕη(ty),
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we set tx = 0 in the joint characteristic function to obtain it

ϕξ,η(0, ty) =
∫∫∞
−∞

exp

(
i
[
0 tTy

][x
y

])
pξ,η(x,y)dxdy

=
∫∞
−∞
eit

T
yy
∫∞
−∞
pξ,η(x,y)dxdy

=
∫∞
−∞
eit

T
yypη(y)dy

=ϕη(ty)

Example 4.3: Characteristic function of the multivariate normal

Show that the characteristic function of the multivariate normal ξ ∼
N(m,P) is given by

ϕξ(t) = eit
Tm−(1/2)tTPt

Solution

From the definition of the characteristic function we are required to
evaluate the integral

ϕξ(t) =
∫∞
−∞

eitTxe−(1/2)(x−m)TP−1(x−m)

(2π)n/2(detP)1/2
dx

Changing the variable of integration to z = x −m gives

ϕξ(t) =
eitTm

(2π)n/2(detP)1/2

∫∞
−∞
eit

Tze−(1/2)z
TP−1zdz

Since P is positive definite, by Theorem 1.17 it can be factored as P =
QΛQT so P−1 = QΛ−1QT , and changing the variable of integration to
w = QTz in the integral gives

∫∞
−∞
eit

Tze−(1/2)z
TP−1zdz =

∫∞
−∞
eit

TQwe−(1/2)w
TΛ−1wdw
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after noting that det(Q) = ±1 since Q is orthogonal. Denoting tTQ =[
b1 b2 · · · bn

]
gives∫∞

−∞
eit

Tze−(1/2)z
TP−1zdz =

n∏
j=1

∫∞
−∞
eibjwje−(1/2)w

2
j /λjdwj

=
n∏
j=1

√
π
√

2λje−(1/2)b
2
jλj

= (2π)n/2(detP)1/2 exp
(
− (1/2)

n∑
j=1

b2
jλj

)

in which we used (4.94) to evaluate the integral. Noting that
∑n
j=1 b

2
jλj =

tTQΛQT t = tTPt gives∫∞
−∞
eit

Tze−(1/2)z
TP−1zdz = (2π)n/2(detP)1/2e−(1/2)t

TPt (4.18)

Substituting this result into the characteristic function gives

ϕξ(t) = eit
Tm−(1/2)tTPt

which is the desired result. □

Example 4.4: Marginal normal density

Given that ξ and η are jointly, normally distributed with mean and
covariance

m =
[
mx
my

]
P =

[
Px Pxy
Pyx Py

]
show that the marginal density of ξ is normal with the following pa-
rameters

ξ ∼ N(mx, Px) (4.19)

Solution

Method 1. As a first approach to establish (4.19), we could directly
integrate the y variables. Let x̄ = x −mx and ȳ = y −my , and nx
and ny be the dimension of the ξ and η variables, respectively, and
n = nx +ny . Then the definition of the marginal density gives

pξ(x) =
1

(2π)n/2(detP)1/2∫∞
−∞

exp

−1
2

(
x̄
ȳ

)T [
Px Pxy
Pyx Py

]−1 (
x̄
ȳ

)dȳ
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If we follow this approach, we’ll also need to use the matrix inversion
lemma. This is left as an exercise for the interested reader.

Method 2. In the second approach, we use the previously derived
results of characteristic function of the multivariate normal and its
marginals. First the characteristic function of the joint density is given
by

ϕξ,η(tx, ty) = exp

i [tTx tTy
][mx
my

]
− (1/2)

[
tx
ty

]T
P
[
tx
ty

]
Setting ty = 0 to compute the characteristic function of ξ’s marginal
gives

ϕξ(tx) =ϕξ,η(tx,0)

= exp

i [tTx 0
][mx
my

]
− (1/2)

[
tx
0

]T
P
[
tx
0

]
= eitTxmx−(1/2)tTxPxtx

But notice that this last expression is the characteristic function of a
normal with mean mx and covariance Px , so inverting this result back
to the densities gives

pξ(x) =
1

(2π)nx/2(detPx)1/2
e−(1/2)(x−mx)TP−1

x (x−mx)

or ξ ∼ N(mx, Px).
Summarizing, since we have already performed the required inte-

grals to derive the characteristic function of the normal, the second
approach saves significant time and algebraic manipulation. It pays
off to do the required integrals one time, “store” them in the charac-
teristic function, and then reuse them whenever possible, such as here
when deriving marginals. □

4.3.2 Functions of random variables.

In many applications we need to know how the density of a random
variable is related to the density of a function of that random variable.
Let f : Rn → Rn be a mapping of the random variable ξ into the random
variable η, and assume that the inverse mapping also exists

η = f(ξ), ξ = f−1(η)
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Given the density of ξ,pξ(x), we wish to compute the density of η,
pη(y), induced by the function f . Let X denote an arbitrary region of
the field of the random variable ξ, and define the set Y as the transform
of this set under the function f

Y = {y|y = f(x),x ∈ X}

Then we seek a function pη(y) such that∫
X
pξ(x)dx =

∫
Y
pη(y)dy (4.20)

for every admissible set X. Using the rules of calculus for transforming
a variable of integration we can write∫

X
pξ(x)dx =

∫
Y
pξ(f−1(y))

∣∣∣∣∣det
(
∂f−1(y)
∂y

)∣∣∣∣∣dy (4.21)

in which
∣∣det(∂f−1(y)/∂y)

∣∣ is the absolute value of the determinant
of the Jacobian matrix of the transformation from η to ξ.4 Subtracting
(4.21) from (4.20) gives∫

Y

(
pη(y)− pξ(f−1(y))

∣∣∣∣∣det
(
∂f−1(y)
∂y

)∣∣∣∣∣
)
dy = 0 (4.22)

Because (4.22) must be true for any set Y, we conclude (a proof by
contradiction is immediate)5

pη(y) = pξ(f−1(y))

∣∣∣∣∣det
(
∂f−1(y)
∂y

)∣∣∣∣∣ (4.23)

Example 4.5: Nonlinear transformation

Find the density function of the random variable η under the transfor-
mation η = ξ3 for ξ normally distributed ξ ∼ N(m,σ 2).

Solution

The transformation is invertible and we have that ξ = η1/3. Taking the
derivative gives dξ/dη = (1/3)η−2/3, and using (4.23) gives

pη(y) =
1

3
√

2πσ
y−2/3 exp

(
− (1/2)(y1/3 −m)2/σ 2) □

4See Appendix A for various notations for derivatives with respect to vectors.
5Some care should be exercised if one has generalized functions in mind for the

probability density.
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c x1

c

x2

X(c)

Figure 4.4: The region X(c) for y =max(x1, x2) ≤ c.

Noninvertible transformations. Given random variables ξ having n
components ξ = (ξ1, ξ2, . . . ξn) with joint density pξ and k random
variables η = (η1, η2, . . . , ηk) defined by the transformation η = f(ξ)

η1 = f1(ξ) η2 = f2(ξ) · · · ηk = fk(ξ)

We wish to find pη in terms of pξ . Consider the region generated in Rn

by the vector inequality
f(x) ≤ c

Call this region X(c), which is by definition

X(c) = {x|f(x) ≤ c}

Note that X is not necessarily simply connected. The (cumulative) prob-
ability distribution (not density) for η then satisfies

Fη(y) =
∫
X(y)

pξ(x)dx (4.24)

If the density pη is of interest, it can be obtained by differentiating Fη.

Example 4.6: Maximum of two random variables

Given two independent random variables, ξ1, ξ2 and the new random
variable defined by the noninvertible, nonlinear transformation

η =max(ξ1, ξ2)

Show that η’s density is given by

pη(y) = pξ1(y)
∫ y
−∞
pξ2(x)dx + pξ2(y)

∫ y
−∞
pξ1(x)dx
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Solution

The region X(c) generated by the inequality y = max(x1, x2) ≤ c is
sketched in Figure 4.4. Applying (4.24) then gives

Fη(y) =
∫ y
−∞

∫ y
−∞
pξ(x1, x2)dx1dx2

= Fξ(y,y)
= Fξ1(y)Fξ2(y)

which has a clear physical interpretation. It says the probability that
the maximum of two independent random variables is less than some
value is equal to the probability that both random variables are less
than that value. To obtain the density, we differentiate

pη(y) = pξ1(y)Fξ2(y)+ Fξ1(y)pξ2(y)

= pξ1(y)
∫ y
−∞
pξ2(x)dx + pξ2(y)

∫ y
−∞
pξ1(x)dx □

4.3.3 Statistical Independence and Correlation

From the definition of independence, two eventsA and B are indepen-
dent if Pr(A∩B) = Pr(A)Pr(B). We translate this definition into an
equivalent statement about probability distributions as follows. Given
random variables ξ, η, let eventA be ξ ≤ x and event B be η ≤ y , then
A∩ B is ξ ≤ x and η ≤ y . By the definitions of joint and marginal
probability distribution, these events have probabilities: Pr(A∩B) =
Fξ,η(x,y), Pr(A) = Fξ(x), Pr(B) = Fη(y). So events A and B are in-
dependent if for the corresponding x and y , Fξ,η(x,y) = Fξ(x)Fη(y).
We say that the two random variables ξ, η are statistically indepen-
dent or simply independent if this relation holds for all x,y

Fξ,η(x,y) = Fξ(x)Fη(y), all x,y (4.25)

See Exercise 4.2 for the proof that an equivalent condition for statistical
independence can be stated in terms of the probability densities instead
of distributions

pξ,η(x,y) = pξ(x)pη(y), all x,y (4.26)

provided that the densities are defined. We say two random variables,
ξ and η, are uncorrelated if

cov(ξ, η) = 0
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Example 4.7: Independent implies uncorrelated

Prove that if ξ and η are statistically independent, then they are uncor-
related.

Solution

The definition of covariance and statistical independence gives

cov(ξ, η) = E((ξ −E(ξ))(η−E(η)))

=
∫∫∞
−∞
(x −E(ξ))(y −E(η))pξ,η(x,y)dxdy

=
∫∞
−∞
(x −E(ξ))pξ(x)dx

∫∞
−∞
(y −E(η))pη(y)dy

= 0

□

Example 4.8: Does uncorrelated imply independent?

Let ξ and η be jointly distributed random variables with probability
density function

pξ,η(x,y) =


1
4[1+ xy(x2 −y2)], |x| < 1,

∣∣y∣∣ < 1,
0, otherwise

(a) Compute the marginals pξ(x) and pη(y). Are ξ and η indepen-
dent?

(b) Compute cov(ξ, η). Are ξ and η uncorrelated?

(c) What is the relationship between independent and uncorrelated?
Are your results on this example consistent with this relationship?
Why or why not?

Solution

The joint density is shown in Figure 4.5.

(a) Direct integration of the joint density produces

pξ(x) =
1
2
, |x| < 1 E(ξ) = 0

pη(y) =
1
2
,

∣∣y∣∣ < 1 E(η) = 0
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pξ,η(x,y) = 1
4

[
1+ xy(x2 −y2)

]

−1
0

1x −1

0

1

y

0

0.25

0.5

Figure 4.5: A joint density function for the two uncorrelated random
variables in Example 4.8.

and we see that both marginals are zero mean, uniform densities.
Obviously ξ and η are not independent because the joint density
is not the product of the marginals.

(b) Performing the double integral for the expectation of the product
term gives

E(ξη) =
∫∫ 1

−1
xy + (xy)2(x2 −y2)dxdy

= 0

and the covariance of ξ and η is therefore

cov(ξ, η) = E(ξη)−E(ξ)E(η)
= 0

and ξ and η are uncorrelated.

(c) We know that independent implies uncorrelated. This example
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does not contradict that relationship. This example shows uncor-
related does not imply independent, in general, but see the next
example for normals. □

Example 4.9: Independent and uncorrelated are equivalent for nor-
mals

If two random variables are jointly normally distributed,[
ξ
η

]
∼ N

([
mx
my

]
,
[
Px Pxy
Pyx Py

])

Prove ξ and η are statistically independent if and only if ξ and η are
uncorrelated, or, equivalently, P is block diagonal.

Solution

We have shown already that independent implies uncorrelated for any
density, so we now show that, for normals, uncorrelated implies inde-
pendent. Given cov(ξ, η) = 0, we have

Pxy = PTyx = 0 detP = detPx detPy

so the density can be written

pξ,η(x,y) =
1

(2π)
1
2 (nx+ny )

(
detPx detPy

)1/2

exp

−1
2

[
x̄
ȳ

]T [
Px 0
0 Py

]−1 [
x̄
ȳ

] (4.27)

For any joint normal, we know that the marginals are simply

ξ ∼ N(mx, Px) η ∼ N(my , Py)

so we have

pξ(x) =
1

(2π)nx/2(detPx)1/2
exp

(
−1

2
x̄TP−1

x x̄
)

pη(y) =
1

(2π)ny/2(detPy)1/2
exp

(
−1

2
ȳTP−1

y ȳ
)
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Forming the product and combining terms gives

pξ(x)pη(y) =
1

(2π)
1
2 (nx+ny )

(
detPx detPy

)1/2

exp

−1
2

[
x̄
ȳ

]T [
P−1
x 0
0 P−1

y

][
x̄
ȳ

]
Comparing this equation to (4.27), and using the inverse of a block-
diagonal matrix, we have shown that ξ and η are statistically indepen-
dent. □

4.4 Sampling

Let scalar random variable ξ have density pξ with meanm and variance
P , and considern independent samples of ξ, denoted x1, x2, . . . , xn. By
independent samples, we mean that the joint density of the samples is
the product of the marginals, which all are identical and equal to pξ

px1,...,xn(z1, . . . , zn) = px1(z1) · · ·pxn(zn) = pξ(z1) · · ·pξ(zn)

4.4.1 Linear Transformation

The following facts about the linear transformations of random vari-
ables prove useful. Consider random variable ξ ∈ Rn with density pξ ,
and let A ∈ Rm×n be a constant matrix. Then the following formulas
give the mean and variance of random variable η = Aξ

E(η) = AE(ξ) var(η) = Avar(ξ)AT (4.28)

We establish these formulas as follows. Using the definition of expec-
tation, we have that

E(η) = E(Aξ)

=
∫∞
−∞
Axpξ(x)dx

= A
∫∞
−∞
xpξ(x)dx

= AE(ξ)
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Using the definition of variance, we have that

var(η) = var(Aξ)

=
∫∞
−∞
(Ax −E(Aξ))(Ax −E(Aξ))Tpξ(x)dx

= A
∫∞
−∞
(x −E(ξ))(x −E(ξ))Tpξ(x)dxAT

= Avar(ξ)AT

With normals, we often wish to check if the variance is positive def-
inite after a linear transformation. Let P ∈ Rn×n be positive definite
and A ∈ Rm×n be an arbitrary matrix. The following result is often
useful: P > 0 and A’s rows linearly independent ⇐⇒ APAT > 0. See
also statement 5 in Section 1.4.4.

Singular or degenerate normal distributions. It is often convenient
to extend the definition of the normal distribution to admit positive
semidefinite covariance matrices. The distribution with a semidefinite
covariance is known as a singular or degenerate normal distribution
(Anderson, 2003, p. 30). Figure 4.6 shows a nearly singular normal
distribution.

To see how the singular normal arises, let the scalar random variable
ξ be distributed normally with zero mean and positive definite covari-
ance, ξ ∼ N(0, Px), and consider the simple linear transformation

η = Aξ A =
[

1
1

]

in which we have created two identical copies of ξ for the two compo-
nents η1 and η2 of η. Now consider the density of η. If we try to use
the standard formulas for transformation of a normal, we would have

η ∼ N(0, Py) Py = APxAT =
[
Px Px
Px Px

]

and Py is singular since its rows are linearly dependent. Therefore one
of the eigenvalues of Py is zero, and Py is positive semidefinite and
not positive definite. Obviously we cannot use (4.12) for the density
in this case because the inverse of Py does not exist. To handle these
cases, we first provide an interpretation that remains valid when the
covariance matrix is singular and semidefinite.
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p(x) = exp
(
−1/2

(
27.2x2

1 + 2(−43.7)x1x2 + 73.8x2
2

))

−2−1012 x1

−2 −1
0

1
2x2

0

0.25

0.5

0.75

1

Figure 4.6: A nearly singular normal density in two dimensions.

Definition 4.10 (Density of a singular normal). A singular joint normal
density of random variables (ξ1, ξ2), ξ1 ∈ Rn1 , ξ2 ∈ Rn2 , is denoted[

ξ1

ξ2

]
∼ N

[[m1

m2

]
,
[
Λ1 0
0 0

]]

with Λ1 > 0. The density is defined by

pξ(x1, x2) =
1

(2π)n1/2(detΛ1)1/2

exp
[
− 1

2
(x1 −m1)TΛ−1

1 (x1 −m1)
]
δ(x2 −m2) (4.29)

In this limit, the “random” variable ξ2 becomes deterministic and
equal to its mean m2. For the case n1 = 0, we have the completely
degenerate case in which pξ2(x2) = δ(x2 −m2), which describes the
completely deterministic case ξ2 = m2, and there is no component
ξ1. Notice that by performing the required integrals of (4.29) the two
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marginal densities are found to be

pξ1(x1) =
1

(2π)n1/2(detΛ1)1/2
exp

[
− 1

2
(x1 −m1)TΛ−1

1 (x1 −m1)
]

pξ2(x2) = δ(x2 −m2)

Example 4.11: Computing a singular density

Consider again the motivating example with the unit normal scalar ran-
dom variable ξ ∼ N(0, Px), Px = 1 and the linear transformation

η = Aξ A =
[

1
1

]

Use Definition 4.10 to express the density pη for this case, and draw a
figure showing the appearance of pη.

Solution

We first compute the eigenvalue decomposition of the semidefinite co-
variance Py

Py = APxAT = AAT =
[

1 1
1 1

]
and obtain

Py = QΛQT Q = 1√
2

[
−1 −1
−1 1

]
Λ =

[
2 0
0 0

]

Next we define the invertible variable transformation

ζ = QTη η = Qζ

and we can write the covariance of ζ, Pz, as

Pz = QTPyQ = Λ =
[

2 0
0 0

]

which is in the form of Definition 4.10. Using that definition gives the
density for ζ

pζ(z1, z2) =
1√

2π
√

2
e−

1
2 (z

2
1/2) δ(z2)

Finally transforming back to the variable η using

z1 = −
1√
2
(y1 +y2) z2 = −

1√
2
(y1 −y2)
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y1

y2

pη(y)

Figure 4.7: The singular normal resulting from y = Ax with rank
deficient A.

and noting δ(ax) = (1/a)δ(x) gives

pη(y1, y2) =
1√
2π

exp
[
− 1

2
(y1 +y2)2

4

]
δ(y1 −y2)

To draw a sketch, first we note that pη(y1, y2) = 0 fory1 ≠ y2 because
of the delta function. So we have a singular normal defined in the plane,
and the density is nonzero on the line y1 = y2. Therefore take a zero
mean, unit variance normal defined on the y1 axis, and rotate it by 45
degrees to the y1 = y2 line, and that is the joint density for pη(y1, y2).
The result is shown in Figure 4.7. □

The expanded definition of normal distribution enables us to gener-
alize the important result that the linear transformation of a normal is
normal, so that it holds for any linear transformation, including rank-
deficient transformations such as the A matrix given above in which
the rows are not independent. We state this result as the following
theorem and defer the proof to Exercise 4.24.

Theorem 4.12 (Normal distributions under linear transformation). Con-
sider a normally distributed random variable ξ ∈ Rn, ξ ∼ N(0, Px),
with semidefinite covariance Px ≥ 0 and an arbitrary linear transfor-
mation A ∈ Rm×n and transformed random variable η = Aξ. Then
η ∼ N(0, Py) with Py = APxAT ≥ 0.
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4.4.2 Sample Mean, Sample Variance, and Standard Error

Usually in applications we do not obtain nearly enough samples to ob-
tain convergence to the entire density, and we settle for convergence
to a few low-order moments of the distribution, such as the mean and
variance. The sample mean is defined as

x̂n =
1
n

n∑
i=1

xi

and we expect this quantity to converge to ξ’s mean as the number of
samples increases. Indeed if we take expectations

E(x̂n) = E
(

1
n

n∑
i=1

xi
)
= 1
n

n∑
i=1

E(xi) =
1
n

n∑
i=1

m =m

which means that the sample mean is an unbiased estimate of the mean
of random variable ξ, for all values of n. An estimator’s bias is defined
to be the difference between the expectation of the estimator and the
true value, and an estimator is termed unbiased if the bias is zero.

Next, toward defining an appropriate sample variance, we consider
the sum of squares of the samples’ differences from the sample mean
Sn =

∑n
i=1(xi − x̂n)2, which can be rearranged as follows

Sn =
n∑
i=1

(xi − x̂n)2

=
n∑
i=1

(
(xi −m)− (x̂n −m)

)2

=
n∑
i=1

(
(xi −m)2 − 2(xi −m)(x̂n −m)+ (x̂n −m)2

)

=
( n∑
i=1

(xi −m)2
)
− 2n(x̂n −m)2 +n(x̂n −m)2

Sn =
( n∑
i=1

(xi −m)2
)
−n(x̂n −m)2

Taking the expectation gives

E(Sn) =
n∑
i=1

var(xi)−nvar(x̂n)
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We know var(xi) = P , for all i = 1, . . . , n, and to compute the vari-
ance of x̂n, it is convenient to first determine the variance of vec-
tor X, obtained by stacking the samples together in a column vector

X =
[
x1 x2 · · · xn

]T
. Since the xi are mutually independent, we

have that var(xi, xj) = Pδij , i, j = 1, . . . , n or in matrix form

var(X) =


P
P

. . .
P


Using x̂n = AX with A = (1/n)

[
1 1 · · · 1

]
and the second part of

(4.28) gives

var(x̂n) = Avar(X)AT = 1
n
P

Substituting these into the equation for expectation of Sn gives

E(Sn) = nP − P = (n− 1)P

So here we notice an interesting outcome; if we want to obtain an unbi-
ased estimate of the variance, we should define the sample variance
as sn = Sn/(n− 1) to obtain

sn =
1

n− 1

n∑
i=1

(xi − x̂n)2

E(sn) = P

This explains the somewhat mysterious definition of sample variance
involving division of the sum of squares by n − 1 instead of n, which
one might have anticipated. We show later that division by n gives
the maximum-likelihood estimate of the variance, which is also a good
estimate because it converges to P as n→∞. Although the maximum-
likelihood estimate is not an unbiased estimate for finite n, the bias
decreases to zero as n→∞.

Standard error is the standard deviation of the sampling distribu-
tion of an estimator. For example, in the scalar case, if we consider the
sample mean above to be an estimator of the mean, we have worked
out that the variance of the sample mean is var(x̂n) = (1/n)var(x) =
(1/n)σ 2, and the standard error of the mean is therefore

SE(x̂n) =
σ√
n
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When the standard deviation of the random variable being sampled is
also unknown, people sometimes replace σ in the previous expression
with an estimate of it, such as the square root of the sample variance√
sn. We then have

SE(x̂n) ≈
√
sn√
n

This quantity does provide a rough measure of the uncertainty in x̂n
due to the finite sample size. But if we want to say something precise
about the uncertainty in the sample mean as an estimate of mean, we
must calculate a true confidence interval for that estimate. We show
how to calculate confidence intervals in the discussion of maximum
likelihood estimation in Section 4.7.

4.5 Central Limit Theorems

Central limit theorems are concerned with the following remarkable
observation: if we have a set of n independent random variables xi, i =
1,2, . . . , n, then, under fairly general conditions, the density py of their
sum

y = x1 + x2 + · · · + xn

tends to a normal density as n→∞. We require only mild restrictions
on how the xi themselves are distributed for the sum y to tend to a
normal. It is perhaps best to illustrate this observation with a concrete
example.

Example 4.13: Sum of 10 uniformly distributed random variables

Consider 10 uniformly and independently distributed random variables,
x1, x2, . . . , x10. Consider a new random variable y , which is the sum
of the 10 x random variables

y = x1 + x2 + · · ·x10

What is y ’s mean and variance? Draw samples of the 10 xi random
variables, and compute samples of y . Plot frequency distributions of
x and y . Even though the 10 x random variables are uniformly dis-
tributed, and their probability distribution looks nothing like a normal
distribution, discuss how well y is approximated by a normal.
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Solution

The x random variables are distributed as x ∼ U(0,1), which means

px(x′) =

1 x′ ∈ [0,1]
0 otherwise

(4.30)

Computing the mean and variance gives

E(x) =
∫ 1

0
xdx = 1

2

var(x) =
∫ 1

0
(x − (1/2))2dx = 1

12

If we stack the x variables in a vector

x =
[
x1 x2 · · · x10

]T
we can write the y random variable as the linear transformation of x

y = Ax A =
[
1 1 · · · 1

]
We have that y ’s mean and variance are given by

E(y) = AE(x) = 5

var(y) = Avar(x)AT = 5
6

So, if the central limit theorem is in force with only 10 random variables
in the sum, we might expect y to be distributed as

y ∼ N(5,5/6)

A histogram of the 10,000 samples of x1 and y are shown in Fig-
ures 4.8 and 4.9. It is clear that even 10 uniformly distributedx random
variables produce nearly a normal distribution for their sum y . □

4.5.1 Identically distributed random variables

Consider n independent random variables, Xi, i = 1,2, . . . , n, each with
identical distribution having mean µ and varianceσ 2. We are interested
in the distribution of the sum Sn = X1 + X2 + · · · + Xn as n becomes
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Figure 4.8: Histogram of 10,000 samples of uniformly distributed x.
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Figure 4.9: Histogram of 10,000 samples of y =
10∑
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xi.
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large. Since the Xi are independent, the mean and variance of Sn are
given by

E(Sn) =
n∑
i=1

E(Xi) = nµ

var(Sn) =
n∑
i=1

var(Xi) = nσ 2

Since we want to take the limit as n → ∞, we first rescale the sum
to keep the mean and variance finite. Given the formulas for shifting
mean and variance we choose Zn = (Sn −nµ)/(

√
nσ) and obtain

E(Zn) =
1√
nσ

(
E(Sn)−nµ

)
= 0

var(Zn) =
1
nσ 2

var(Sn) = 1

Theorem 4.14 (De Moivre-Laplace central limit theorem). Let Xi, i =
1,2, . . . , n be independent and identically distributed with mean µ and
variance σ 2, then Zn tends to the standard normal N(0,1) as n→∞.

Proof. In keeping with Laplace’s approach to the problem, we shall use
characteristic functions to establish this result. We shall find useful
the following bound on the error in the Taylor series approximation of
the exponential with a purely imaginary argument.∣∣∣∣∣∣eix −

n∑
m=0

(ix)m

m!

∣∣∣∣∣∣ ≤ |x|n+1

(n+ 1)!
(4.31)

This bound is simple to establish (see Exercise 4.53). We will use it with
n = 2 stated in this form

eix = 1+ ix − x
2

2!
+O(|x|3) (4.32)

in which O(|x|3) denotes that the size of the error term in (4.31) is less
than some constant times |x|3. We first show that the characteristic
function ofZn converges to the characteristic function ofN(0,1), which
is e−(1/2)t2

. Let Yi = (Xi − µ)/σ so that the Yi have zero mean and
unit variance. We use (4.32) with argument eitx and obtain a series
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expansion for Yi’s characteristic function

ϕYi(t) =
∫∞
−∞
eitxpYi(x)dx

=
∫∞
−∞

(
1+ itx − (1/2)t2x2 + |x|3O(|t|3)

)
pYi(x)dx

= 1+ itE(Yi)− (1/2)t2var(Yi)+E(|Yi|3)O(|t|3)
= 1− (1/2)t2 +O(|t|3)

Notice that here we have assumed E(|Yi|3) is finite, so that it can be
absorbed into the O(|t|3) term. Next, since Zn = (1/

√
n)
∑n
i=1 Yi, we

have from (4.7) and (4.8) that

ϕZn(t) =
(
ϕYi(t/

√
n)
)n = (1− (1/2)t2/n+O(t3/n3/2)

)n
In taking the limit as n → ∞ the last term is negligible and can be
dropped to obtain

lim
n→∞

ϕZn(t) = lim
n→∞

(
1− (1/2)t2/n)n

Using the calculus result that limx→0(1 + ax)1/x = ea with n = 1/x
gives

lim
n→∞

ϕZn(t) = e−(1/2)t
2

The final step, which unfortunately requires the most effort, is to show
that if the characteristic function converges, then the random variable
also converges (in distribution). Assuming this is true, we then have

lim
n→∞

Zn ∼ N(0,1)

and the result is established. ■

This argument can be improved in several ways. For example, it is
sufficient to assume only that the second moment is finite, not the third
absolute moment E(|Yi|3) assumed here (Durrett, 2010, pp.114–116).
And we have not justified the claim of convergence in distribution im-
plied by convergence in characteristic function. However, the argument
does nicely illustrate why characteristic functions prove so useful. In
the next section we pursue a much more general approach that is not
based on the characteristic function, so we content ourselves to leave
this proof here.
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4.5.2 Random variables with different distributions

The central limit theorem of de Moivre and Laplace is already a spectac-
ular mathematical result. But as it stands, it is not a compelling reason
to assume that unmodeled noise in a physical system would be well
represented by a normal distribution. After all, how would we deduce
that some unmodeled random effect in a physical system is the result
of many different independent random causes, all of which have iden-
tical distributions? But the central limit theorem runs deeper. We next
remove the assumption that the Xi are identically distributed. This ver-
sion of the central limit theorem was developed by Lindeberg (1922).
We consider the following conditions on the Xi variables.

Assumption 4.15 (Lindeberg conditions). Consider independent ran-
dom variables Xi, i = 1,2, . . . , n satisfying E(Xi) = 0 and var(Xi) = σ 2

i ,
and let s2

n =
∑n
i=1 σ

2
i . The following two conditions hold as n→∞

(a) sn →∞

(b) For every ϵ > 0,
1

s2
n

n∑
k=1

E(X2
k ; |Xk| > ϵsn)→ 0

The notation E(X2
k ; |Xk| > ϵsn) is shorthand for taking expectations

of the truncated random variable

E(X2; |X| > a) =
∫ a
−∞
pX(w)w2dw +

∫∞
a
pX(w)w2dw

Notice that the definition implies thatE(X2; |X| > a)+E(X2; |X| ≤ a) =
var(X). Many sufficient conditions for the central limit theorem have
been proposed over the years, but all were superseded by the Lindeberg
conditions, which were also shown to be necessary (Feller, 1935; Lévy,
1935). For example, Exercise 4.55 shows that the identically distributed
assumption of the de Moivre-Laplace central limit theorem is a special
case of these conditions. Also, all bounded random variables satisfy
these conditions. We have the following theorem with Φ(x) denoting
the distribution function of the standard normal.

Theorem 4.16 (Lindeberg-Feller central limit theorem). Consider in-
dependent random variables Xi, i = 1,2, . . . , n with E(Xi) = 0 and
var(Xi) = σ 2

i satisfying Assumption 4.15. The normalized sum Zn =
Sn/sn converges in distribution to the unit normal

lim
n→∞

sup
x

∣∣FZn(x)− Φ(x)∣∣ = 0

The proof of this theorem is given in Section 4.9.
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4.5.3 Multidimensional central limit theorems

The central limit theorem (CLT) can be extended to vector-valued ran-
dom variables, Xi ∈ Rd. Consider first independent, identically dis-
tributed (IID) Xi, i = 1,2, . . . , n random variables with E(Xi) = µ, and
var(Xi) = Σ. We assume that Σ > 0 is positive definite. We have the
following result.

Theorem 4.17 (Multivariate CLT—IID). Let vector-valued random vari-
ables Xi, i = 1,2, . . . , n be independent and identically distributed with
E(Xi) = µ and var(Xi) = Σ. The normalized sumZn = (1/

√
n)
∑n
i=1

(
Xi−

µ
)

converges in distribution to the normal N(0,Σ).

Again, the IID version is a special case of a more general version
that assumes a generalization of the Lindeberg condition.

Theorem 4.18 (Multivariate CLT—Lindeberg-Feller). Consider indepen-
dent vector-valued random variables Xi, i = 1,2, . . . , n with E(Xi) = µi
and var(Xi) = Σi > 0, and satisfying the following conditions asn→∞
(a)

∑n
i=1 Σi → Σ

(b) For every ϵ > 0,
∑n
i=1E

(
∥Xi∥2 ;∥Xi∥ > ϵ

)
→ 0

Then the sum Zn =
∑n
i=1

(
Xi−µi

)
converges in distribution to the normal

N(0,Σ).

See van der Vaart (1998, pp. 20-21) for further discussion of this
case. Theorem 4.18 is the mathematical basis for the common physical
assumption that noise in process measurements is often well modeled
by a zero mean normal distribution. The variance often can be deter-
mined by examining samples of the measurement, which is an impor-
tant part of the process modeling task that is often overlooked.

Finally, the history of the term “central limit theorem” is also in-
teresting. Apparently coined by Polyá in 1920 (in German: zentraler
Grenzwertsatz), he referred to the theorem as central to the theory of
probability, a place of honor that it maintains to this day. But the word
central can also be interpreted to mean the center of the normal distri-
bution, where the distribution converges quickly as n increases com-
pared to the tails of the distribution, where the convergence is much
slower (Le Cam, 1986). Le Cam’s article is highly recommended read-
ing for anyone interested in the fascinating history of the central limit
theorem.
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4.6 Conditional Density Function and Bayes’s Theorem

Let ξ and η be jointly distributed random variables with probability
density pξ,η(x,y). We seek the density function of ξ given that a spe-
cific realization y of η has been observed. We define the conditional
density function as

pξ|η(x|y) =
pξ,η(x,y)
pη(y)

pη(y) ≠ 0

Consider a roll of a single die in whichη takes on values E or O to denote
whether the outcome is even or odd and ξ is the integer value of the
die. The 12 values of the joint density function are simply computed

pξ,η(1,E) = 0
pξ,η(2,E) = 1/6
pξ,η(3,E) = 0
pξ,η(4,E) = 1/6
pξ,η(5,E) = 0
pξ,η(6,E) = 1/6

pξ,η(1,O) = 1/6
pξ,η(2,O) = 0
pξ,η(3,O) = 1/6
pξ,η(4,O) = 0
pξ,η(5,O) = 1/6
pξ,η(6,O) = 0

(4.33)

The marginal densities are then easily computed; we have for ξ

pξ(x) =
E∑

y=O

pξ,η(x,y)

which gives by summing across rows of (4.33)

pξ(x) = 1/6, x = 1,2, . . .6

Similarly, we have for η

pη(y) =
6∑
x=1

pξ,η(x,y)

which gives by summing down the columns of (4.33)

pη(y) = 1/2, y = E,O

These are both in accordance of our intuition on the rolling of the die:
uniform probability for each value 1 to 6 and equal probability for an
even or an odd outcome.
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Now the conditional density is a different concept. The conditional
density pξ|η(x|y) tells us the density of x given that η = y has been
observed. So consider the value of this function

pξ|η(1|O)

which tells us the probability that the die has a 1 given that we know
that it is odd. We expect that the additional information on the die
being odd causes us to revise our probability that it is 1 from 1/6 to
1/3. Applying the defining formula for conditional density indeed gives

pξ|η(1|O) = pξ,η(1,O)/pη(O) =
1/6
1/2

= 1/3

Consider the reverse question, the probability that we have an odd
given that we observe a 1. The definition of conditional density gives

pη|ξ(O|1) = pη,ξ(O,1)/pξ(1) =
1/6
1/6

= 1

i.e., we are sure the die is odd if it is 1. Notice that the arguments to
the conditional density do not commute as they do in the joint density.

This fact leads to a famous result. Consider the definition of condi-
tional density, which can be expressed as

pξ,η(x,y) = pξ|η(x|y)pη(y)

or
pη,ξ(y,x) = pη|ξ(y|x)pξ(x)

Because pξ,η(x,y) = pη,ξ(y,x), we can equate the right-hand sides
and deduce

pξ|η(x|y) =
pη|ξ(y|x)pξ(x)

pη(y)
pη(y) ≠ 0 (4.34)

which is known as Bayes’s theorem (Bayes, 1763). Notice that this re-
sult comes in handy whenever we wish to switch the variable that is
known in the conditional density, which we will see is a key step in
state estimation problems.

Example 4.19: Conditional normal density

Show that if ξ and η are jointly normally distributed as[
ξ
η

]
∼ N

([
mx
my

]
,
[
Px Pxy
Pyx Py

])
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then the conditional density of ξ given η is also normal

pξ|η(x|y) = n(x,m,P) (4.35)

in which the mean and covariance are

m =mx + PxyP−1
y (y −my) P = Px − PxyP−1

y Pyx (4.36)

Solution

The definition of conditional density gives

pξ|η(x|y) =
pξ,η(x,y)
pη(y)

Because (ξ, η) is jointly normal, we know from Example 4.4

pη(y) = n(y,my , Py)

and therefore

pξ|η(x|y) =
n
([x
y

]
,
[
mx
my

]
,
[
Px Pxy
Pyx Py

])
n(y,my , Py)

Substituting in the definition of the normal density from (4.13) gives

pξ|η(x|y) =
(detPy)1/2

(2π)nξ/2 det

([
Px Pxy
Pyx Py

])1/2 exp(−(1/2)a) (4.37)

in which the argument of the exponent is

a =
[
x −mx
y −my

]T [
Px Pxy
Pyx Py

]−1 [
x −mx
y −my

]
− (y −my)TP−1

y (y −my)

(4.38)
If we use P = Px − PxyP−1

y Pyx as defined in (4.36) then we can use the
partitioned matrix inversion formula to express the matrix inverse in
(4.38) as[

Px Pxy
Pyx Py

]−1

=
[

P−1 −P−1PxyP−1
y

−P−1
y PyxP−1 P−1

y + P−1
y PyxP−1PxyP−1

y

]
Substituting this expression into (4.38) and multiplying out terms yields

a = (x −mx)TP−1(x −mx)− 2(y −my)T (P−1
y PyxP−1)(x −mx)

+ (y −my)T (P−1
y PyxP−1PxyP−1

y )(y −my)
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which is the expansion of the following quadratic term

a =
[
(x −mx)− PxyP−1

y (y −my)
]T
P−1

[
(x −mx)− PxyP−1

y (y −my)
]

in which we use the fact that Pxy = PTyx . Substituting (4.36) into this
expression yields

a = (x −m)TP−1(x −m)

Finally noting that for the partitioned matrix

det

[
Px Pxy
Pyx Py

]
= detPy detP

and substituting the two previous equations into (4.37) yields

n
([x
y

]
,
[
mx
my

]
,
[
Px Pxy
Pyx Py

])
n(y,my , Py)

= n(x,m,P) (4.39)

or

pξ|η(x|y) = n(x,m,P)

which is the desired result. □

Example 4.20: More normal conditional densities

Let the joint conditional of random variables (A, B) given C be a normal
distribution with the following mean and variance

pA,B|C(a, b|c) = n((a, b),m,P) (4.40)

m =
[
ma
mb

]
P =

[
Pa Pab
Pba Pb

]

Show that the conditional density of A given B and C is also normal

pA|B,C(a|b, c) = n(a,m,P) (4.41)

with mean and variance given by

m =ma + PabP−1
b (b −mb) P = Pa − PabP−1

b Pba
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Solution

From the definition of joint density we have that

pA|B,C(a|b, c) =
pA,B,C(a, b, c)
pB,C(b, c)

Multiplying the top and bottom of the fraction by pC(c) yields

pA|B,C(a|b, c) =
pA,B,C(a, b, c)

pC(c)
pC(c)

pB,C(b, c)

or

pA|B,C(a|b, c) =
pA,B|C(a, b|c)
pB|C(b|c)

Substituting the distribution given in (4.40) and using the result in
Example 4.4 to integrate over a to obtain the marginal pB|C(b|c) =∫
pA,B|C(a, b|c)da yields

pA|B,C(a|b, c) =
n
([a
b

]
,
[
ma
mb

]
,
[
Pa Pab
Pba Pb

])
n(b,mb, Pb)

Now using (4.39) and (4.36) gives

pA|B,C(a|b, c) = n(a,m,P)
m =ma + PabP−1

b (b −mb) P = Pa − PabP−1
b Pba

and the result is established. □

4.7 Maximum-Likelihood Estimation

We now turn to one of the most basic problems in modeling: how to de-
termine model parameters from experimental measurement. Finding
methods to solve parameter estimation problems has had a significant
impact on the development of mathematics, generally, and statistics,
in particular. To get started we consider the simplest but arguably still
one of the most important problems, determining the parameters in a
linear model. Consider some set of environmental or predictor vari-
ables, x, that we wish to use to explain some response variables, y .
The linear model means simply that y = θx in which θ is a set of pa-
rameters that we wish to determine from measurements of y for given
values of x. We often intend to use the identified parameters to make
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predictions about y ’s response to x values that we have not used in
any previous experiment. We may use the identified model to optimize
over the x variables to find the conditions that maximize the responses
y . This approach may save considerable time and expense compared
to the alternative of trial and error experimental adjustment of the x
variables.

In addition to finding the “best” parameter estimate, we would also
like to quantify our uncertainty in the estimate. Modeling the uncer-
tainty in the data as a random variable with some fixed probability
density is one of the key methods that we can use to solve this prob-
lem. Uncertainty in measurement leads to uncertainty in estimate, and
stipulating the structure of the measurement uncertainty allows us to
find (exactly in some cases) the uncertainty in the estimate. Because of
the central limit theorem, our first choice for modeling uncertainty in
measurement is the normal distribution. We then have the model

y = θx + e

in which e is assumed normal and zero mean. The effect of nonzero
mean is assumed to be included in θ as additional parameters to be
estimated.

The six canonical linear estimation problems. We next look at the
six versions of this problem that result from assuming (i) y is a scalar
or vector, (ii) θ is a vector or matrix, and (iii) whether we know the
measurement error variance, or if it has to be estimated from the data.
The variable x will be a vector throughout. The goal in each problem
is the same: find the optimal parameter estimate by maximizing the
probability of the data, and quantify the estimate’s uncertainty, for
example, by determining confidence intervals. The first five estimation
problems have analytical, closed-form solutions. Number six requires
iterative, numerical solution for both the optimal parameter estimate
and the measurement error covariance estimate.

4.7.1 Scalar Measurement y, Known Measurement Variance σ2

We consider first the case in which yi is a scalar measurement for n
samples i = 1, . . . , n, ei is the measurement error (a random variable)
for the ith sample, θ ∈ Rnp is a vector of np model parameters, and
xi ∈ Rnp is the np vector of environmental conditions for the ith sam-
ple

yi = xTi θ + ei ei ∼ N(0, σ 2) (4.42)
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Consider n ≥ 1 samples. The probability density of the set of yi sam-
ples for given values of θ and σ are obtained from the given normal
distribution for the measurement error ei = yi − xTi θ. We have that

p(y1, y2, . . . , yn;θ,σ) = 1
(2π)n/2σn

exp

− 1
2σ 2

n∑
i=1

(yi − xTi θ)2


Taking logarithm gives

− lnp(y1, y2, . . . , yn;θ,σ) = n
2

ln 2π +n lnσ + 1
2σ 2

n∑
i=1

(yi − xTi θ)2

This equation is easier to express if we first stack the yi in a vector and
xi in a matrix as

y =


y1

y2
...
yn

 X =


xT1
xT2
...
xTn


giving

− lnp(y ;θ,σ) = n
2

ln 2π +n lnσ + 1
2σ 2

(y −Xθ)T (y −Xθ)

We define the log of the likelihood as a function of the parameters θ
and σ with the data y regarded as fixed values

−L(θ,σ) = n
2

ln 2π +n lnσ + 1
2σ 2

(y −Xθ)T (y −Xθ) (4.43)

Because we assume that we know the measurement error variance σ 2,
the only unknown in this first estimation problem is θ. Therefore, to
find the maximum-likelihood estimate, we maximize L(θ,σ) by differ-
entiating with respect to θ and set the result to zero

dL(θ,σ)
dθ

= 1
σ 2
XT (y −Xθ) (4.44)

0 = 1
σ 2
XT (y −Xθ)

Assuming that X has full column rank, we solve the last equation giv-
ing the familiar least-squares formula for the maximum-likelihood es-
timate

θ̂ = (XTX)−1XTy (4.45)
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We delay a discussion of what to do when X does not have full column
rank until Section 4.8. But we know from Chapter 1 that the optimal
estimate is not unique, and we have a linear subspace of estimates that
all are optimal. This situation is depicted in Figure 1.6(b).

Probability density of parameters and parameter confidence inter-
val. The next item of interest is the probability density of the esti-
mates. Let θ0 be the parameter generating the measurements so the
model is y = Xθ0 + e. Then we have

θ̂ = (XTX)−1XTy

= (XTX)−1XT (Xθ0 + e) e ∼ N(0, σ 2In)

= θ0 + (XTX)−1XTe

θ̂ = θ0 + (XTX)−1XTe

Using the result on linear transformation of a normal, we have

θ̂ ∼ N(θ0, σ 2(XTX)−1) (4.46)

As shown in Exercise 4.21, for a random variable ξ ∈ Rnp distributed as
a multivariate normal with mean m and covariance P , the probability
that ξ takes on value x inside the ellipse

σb = {x | (x −m)TP−1(x −m) ≤ b}

is given by

Pr(ξ ∈ σb) =
γ(np/2, b/2)
Γ(np/2)

in which the complete and incomplete gamma functions are defined by
(Abramowitz and Stegun, 1970, p.255–260)

Γ(np) =
∫∞

0
tnp−1e−tdt = (np − 1)! γ(np, x) =

∫ x
0
tnp−1e−tdt

Defining the transformation λ = (ξ −m)TP−1(ξ −m), we have that
Pr(ξ ∈ σb) = Pr(λ ≤ b) = Fλ(b) and have shown that

Fλ(b) =
γ(np/2, b/2)
Γ(np/2)

This cumulative distribution is known as the χ2 distribution with np
degrees of freedom, i.e., Fλ(b) = Fχ2(b;np). Exercise 4.33 discusses
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the χ2 distribution in more detail. The function F−1
χ2 (α;np) then inverts

this relationship so we have that

F−1
χ2 (α;np) = b

Therefore, given a confidence level α, the elliptical region of the multi-
variate normal containing probability α is obtained by substituting this
relation for b into the equation defining the ellipse

(x −m)TP−1(x −m) ≤ F−1
χ2 (α;np)

Finally, substituting in the values of the mean and covariance gives
the following α-level elliptical confidence region for the maximum-
likelihood estimate

(θ̂ − θ0)T
(
XTX
σ 2

)
(θ̂ − θ0) ≤ F−1

χ2 (α;np) (4.47)

For a large-dimensional parameter vector, the elliptical region is cum-
bersome to present. In these cases we may wish to approximate the
confidence region with the smallest bounding box that contains the
ellipse. As shown in Exercise 4.15, this box is given by

∣∣∣θ̂ − θ0

∣∣∣
i
≤
(
F−1
χ2 (α;np)σ 2(XTX)−1

ii

)1/2

which is commonly reported as plus/minus limits with the following
notation

θ̂ = θ0 ± c

in which

ci =
(
F−1
χ2 (α;np)σ 2(XTX)−1

ii

)1/2

Note that the parameter uncertainly interval does not depend on
the measurement samples yi when we know the measurement error
variance. We can compute c before we do the experiment, based solely
on the chosen xi. Only θ̂ depends on the experiment. And if we do an
increasing number of experiments, XTX =

∑n
i=1 xix

T
i increases linearly

with the number of samples n, so the confidence interval c decreases
as n−1/2. So one method to reduce uncertainty in parameter estimates
is to replicate experiments.
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Marginal parameter estimates. Another way to condense the multi-
variate density is to compute its marginals. Since θ̂ is distributed as a
normal in (4.46), we compute marginals as in (4.19) giving

θ̂i ∼ N((θ0)i, σ 2(XTX)−1
ii )

We can then compute α-level confidence levels on each of the np uni-
variate normals giving

θ̂ = θ0 ±m

in which

mi =
(
F−1
χ2 (α; 1)σ 2(XTX)−1

ii

)1/2

Notice that themi and ci formulas are different. The first is the bound-
ing box for the true multivariate α-level confidence region; the sec-
ond is simply a collection of the α-level confidence intervals for all the
marginals of the multivariate estimate. Let’s call this latter region the
“marginal box” to distinguish it from the bounding box. Students often
ask, “Since it is difficult to present a high-dimensional ellipse, which of
these two plus/minus results should be reported as the confidence in-
terval in a research presentation?” This question has no satisfactory
answer. The important point is to know and communicate what you
are reporting. The bounding box certainly contains more than the α-
level probability since it contains the true α-level region in its interior.
The marginal box does not have this property. The interpretation of
the marginal box is the same as the interpretation of any marginal den-
sity. If you obtained many samples of the parameter estimates from
many datasets, the ith interval of the marginal box would contain an α-
level fraction of all the different samples of the ith parameter estimate.
No statement about the probability of the jointly distributed parameter
estimate follows from this characterization. We include the following
example to help clarify these distinctions.

Example 4.21: The confidence region, bounding box, and marginal
box

Assume that the two-dimensional random variable ξ is distributed as
N(m,P) with

m =
[

1
2

]
P =

[
2 3/4

3/4 1/2

]

(a) Plot the multivariate density.
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Figure 4.10: The multivariate normal density (top right). The two
marginal densities and marginal 95% confidence re-
gions (shaded) (top left and bottom right). The joint el-
liptical 95% confidence region (shaded), bounding box
(outer), and the marginal box (inner) (bottom left).

(b) Compute and plot the two marginal densities, and their 95% con-
fidence intervals.

(c) Compute the bounding box and the marginal box, and plot them
along with the joint density 95% confidence ellipse.

(d) Take 1000 independent samples of ξ, and determine the number
inside the ellipse, the bounding box, and the marginal box. Ap-
proximately what confidence levels can you assign to the bound-
ing box and marginal box?
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Solution

(a) The multivariate density is shown in the top right of Figure 4.10.
The 95% confidence ellipse is given by

(x −m)TP−1(x −m) ≤ F−1
χ2 (0.95,2) = 5.99

This ellipse is shown in the bottom left of Figure 4.10.

(b) The two marginals are (see also Example 4.4)

pξ1(x1) =
1√
4π
e−(1/4)(x1−1)2

pξ2(x2) =
1√
π
e−(x2−2)2

The marginal densities of ξ1 and ξ2 are shown in the bottom right
and top left of Figure 4.10, respectively. The 95% interval for the
two marginals are given by

(x1 − 1)2

2
≤ F−1

χ2 (0.95,1) = 3.84 x1 ∈ [−1.77,3.77]

(x2 − 2)2

(1/2)
≤ F−1

χ2 (0.95,1) = 3.84 x2 ∈ [0.614,3.39]

These intervals are shown as the shaded regions in the bottom
right and top left of Figure 4.10.

(c) The ellipse’s bounding box is given by

(x1 − 1)2

2
≤ F−1

χ2 (0.95,2) = 5.99 x1 ∈ [−2.46,4.46]

(x2 − 2)2

(1/2)
≤ F−1

χ2 (0.95,2) = 5.99 x2 ∈ [0.269,3.73]

The ellipse, bounding box, and marginal box are shown in the
bottom left of Figure 4.10.

(d) Generating 1000 samples of ξ and counting the fraction of sam-
ples within each of the three regions gives

ellipse = 0.956

bounding box = 0.981 marginal box = 0.920 □
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4.7.2 Scalar Measurement y, Unknown Measurement Variance σ2

We now consider the measurement error variance σ 2 to be unknown.
We have the same model as in the previous section

yi = xTi θ + ei ei ∼ N(0, σ 2)

When the measurement variance is unknown, we maximize the like-
lihood function given in (4.43) over both σ and θ and estimate both
quantities from the data. The θ derivative is the same as in (4.44), and
differentiating (4.43) with respect to σ gives

∂L(θ,σ)
∂θ

= 1
σ 2
XT (y −Xθ)

∂L(θ,σ)
∂σ

= −n
σ
+ σ−3(y −Xθ)T (y −Xθ)

Equating the derivatives to zero and solving simultaneously gives

θ̂ = (XTX)−1XTy (4.48)

σ̂ 2 = 1
n
(y −Xθ̂)T (y −Xθ̂) (4.49)

We see that the maximum-likelihood parameter estimate is unchanged
from the known variance case, and the maximum-likelihood estimate of
the variance is the mean of the square of the residual over the samples.
Notice that the maximum-likelihood estimate of variance is close to but
not equal to the sample variance s2 given by the formula (for n > np)

s2 = 1
n−np

(y −Xθ̂)T (y −Xθ̂)

s2 = n
n−np

σ̂ 2

We show subsequently that the sample variance is an unbiased estimate
of σ 2 so the maximum-likelihood estimate of σ 2 is biased. But this
bias is small for a large number of samples compared to parameters
n≫ np.

Given the same result for θ̂ as in the previous problem, the proba-
bility density of θ̂ is unchanged from the previous problem. We next
determine the probability density of σ̂ 2. For this it is convenient to
first consider the singular value decomposition of the X matrix. We
assume that this n× np matrix has independent columns so the rank
is np. As discussed in Chapter 1, a real n×np matrix with independent
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columns can be written as the product of orthogonal n × n matrix U
and orthogonal np ×np matrix V , and diagonal np ×np matrix Σ

X =
[
U1 U2

][Σ
0

]
VT

X = U1ΣVT

in which the following relationships result from orthogonality

UT1 U1 = Inp UT2 U2 = In−np UT1 U2 = 0np×n−np

UT2 U1 = 0n−np×np U1UT1 +U2UT2 = In VTV = VVT = Inp

Using the singular value decomposition (SVD) for X, we find by substi-
tution and orthogonality

(XTX)−1XT = VΣ−1UT1
X(XTX)−1XT = U1UT1

I −X(XTX)−1XT = U2UT2

These relations allow us to express the estimate and residual in terms
of the measurement errors as

θ̂ − θ0 = VΣ−1UT1 e

y −Xθ̂ = U2UT2 e (4.50)

Using these relations we can express the following quadratic terms as

(θ̂ − θ0)T
(
XTX

)
(θ̂ − θ0) = eTU1UT1 e

(y −Xθ̂)T (y −Xθ̂) = eTU2UT2 e

These relations provide an essential insight. The error e obviously af-
fects both quadratic terms, but its effect in the sum of the squares of
the residual (the sample variance) is through U2 and its effect in the
parameter estimate’s distance from the true value is through U1. Be-
cause these two matrices are orthogonal to each other, the effect of
the measurement error is independently distributed in these two quad-
ratic terms. We make this statement precise subsequently. First it is
helpful to establish that the following two random variables, z1, z2 are
statistically independent

z1 =
1
σ
UT1 e z2 =

1
σ
UT2 e
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Given that e ∼ N(0, σ 2I) and the result on linear transformation of a
normal, the pair z1, z2 is distributed as[

z1

z2

]
∼ N(0, P) P =

[
Inp 0
0 In−np

]

Since the pair is jointly normal and the covariance is diagonal, z1 and
z2 are statistically independent. We also know that their quadratic
products are distributed as chi-squared

zT1 z1 ∼ χ2
np zT2 z2 ∼ χ2

n−np

Exercise 4.33 discusses the chi-squared and chi densities, and also
shows that the mean of χ2

n is n.
From that fact we can deduce quickly the earlier claim that the sam-

ple variance is an unbiased estimate. Summarizing our results on sam-
ple variance thus far

s2 = 1
n−np

(y −Xθ̂)T (y −Xθ̂)

s2 = σ 2

n−np
(zT2 z2)

Taking expectation gives

E(s2) = σ 2

n−np
E(zT2 z2) =

σ 2

n−np
E(χ2

n−np)

E(s2) = σ 2

and the result is established.
As shown in Exercise 4.3, if two random variables are statistically

independent, then all functions of the two random variables are also
statistically independent. Therefore we know that zT1 z1 and zT2 z2 are
statistically independent. The ratio of two chi-squared, statistically in-
dependent random variables is defined as the F -distribution(

n−np
np

)
zT1 z1

zT2 z2
∼ F(np, n−np)

The F -distribution can be shown to have density

pF(z;n,m) =
Γ
(n+m

2

)
Γ
(n

2

)
Γ
(m

2

) 1
z

√
(zn)nmm

(zn+m)n+m z ≥ 0, n,m ≥ 1
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Exercises 4.35 and 4.45 provide further discussion of the F -distribution.
Substituting the definitions of z1, z2 in terms of θ̂ and σ̂ 2 give

(θ̂ − θ0)T
(
XTX
σ 2

)
(θ̂ − θ0) ∼ χ2

np n
(
σ̂ 2

σ 2

)
∼ χ2

n−np(n−np
nnp

)
(θ̂ − θ0)T (XTX)(θ̂ − θ0)

σ̂ 2
∼ F(np, n−np) (4.51)

This last distribution provides the basis for the confidence intervals on
the parameter estimates. Summarizing our results so far, the densities
for the parameter estimates and the measurement variance estimate
are

θ̂ ∼ N(θ0, σ 2(XTX)−1) (4.52)

n
(
σ̂ 2

σ 2

)
∼ χ2

n−np (4.53)

Notice that these distributions are inadequate to construct confidence
levels on the estimated parameter θ̂ because they both depend on the
unknown measurement variance σ 2. One might be tempted to re-
place the unknown σ 2 in the normal density for θ̂ with the maximum-
likelihood estimate σ̂ 2 and obtain the confidence intervals for θ̂ from
that density. That idea is in the right spirit, but is not quite correct. We
obtain the correct confidence region by considering the distribution in
(4.51). Notice that the ratio of the two quadratic terms has divided out
the common term σ 2. Define the random variable λ to be the left-hand
side of (4.51)

λ =
(n−np
nnp

)
(θ̂ − θ0)T (XTX)(θ̂ − θ0)

σ̂ 2

We want to find the value b so that Pr(λ ≤ b) = α, or, since λ is dis-
tributed as an F -distribution

Fη(b) = FF(b;np, n−np) = α

Taking the inverse of the cumulative F -distribution then gives

b = F−1
F (α;np, n−np)

The ellipsoidal confidence intervals for the parameter estimates are
therefore given by

(θ̂ − θ0)T
(
XTX
σ̂ 2

)
(θ̂ − θ0) ≤

(
nnp
n−np

)
F−1
F (α;np, n−np)
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We can use the sample variance s2 in place of σ̂ 2 in this formula to give
a slightly simpler expression

(θ̂ − θ0)T
(
XTX
s2

)
(θ̂ − θ0) ≤ np F−1

F (α;np, n−np) (4.54)

We can obtain the bounding box intervals as was done in the previous
section

θ̂ = θ0 ± c

in which

ci =
(
npF−1

F (α;np, n−np) s2(XTX)−1
ii

)1/2

The significant difference between this and the previous case is that
here the confidence interval c also depends on the measurements. The
size as well as the center (θ̂) of the α-level confidence ellipse is there-
fore random. But the statistical interpretation remains the same; given
many replicated experiments, the true parameter θ0, which is not a
random variable, will lie within the generated confidence ellipse for the
experiment 95% of the time (for α = 0.95). We have the same depen-
dence as the previous case, the confidence interval c decreases with
number of samples n−1/2.

We can also compute the marginals and the marginal box as we did
in the previous case. The result is

θ̂ = θ0 ±m mi =
(
F−1
F (α; 1, n−np) s2(XTX)−1

ii

)1/2

mi = F−1
t

(
1+α

2
;n−np

)(
s2(XTX)−1

ii
)1/2

which can be equivalently expressed using the t-statistic in place of the
F -statistic as shown in Exercise 4.59.

4.7.3 Vector of Measurementsy, Different Parameters Correspond-
ing to Different Measurements, Known Measurement Covari-
ance R

We next consider the vector measurement case. This case arises fre-
quently when identifying empirical linear models between a vector of
input variables x and a vector of output or response variables yi. We
consider first the case in which each measurement type has its own
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vector of parameters describing it


1

y1

p
...
yp


i

=


q

θT1

p
...
θTp




1

q xi

 +


1

e1

p
...
ep


i

yi = Θ xi + ei ei ∼ N(0, R)

(4.55)

The environmental variable xi is assumed to have q components, xi ∈
Rq, and Θ ∈ Rp×q, and we assume q < n. In this model we have
np = pq model parameters to estimate. Notice that this model is not
restricted to only p independent versions of the model given by (4.42).
The generalization allowed here comes from the covariance matrix R.
To reduce this case to the (4.42), we would add the further restriction
that R = σ 2I. We will see that allowing the different measurements
y1, . . . , yp to be correlated does not prevent us from solving this esti-
mation problem also in closed form. We continue to assume here (and
assume throughout) that the different samples are independent (hence
uncorrelated).

Consider n ≥ 1 samples, i = 1, . . . , n, and, given the deterministic
variables Θ and the n xi, we have for the probability density of the
measurements

p(y1, y2, . . . , yn;Θ, R) =
1

(2π)np/2(detR)n/2
exp

(
− 1

2

n∑
i=1

(yi −Θxi)TR−1(yi −Θxi)
)

or, by taking logarithm

− lnp(y1, y2, . . . , yn;Θ, R) =
np
2

ln 2π + n
2

ln detR + 1
2

n∑
i=1

(yi −Θxi)TR−1(yi −Θxi)

We again define the log-likelihood as a function of the parameters Θ
and R with the data yi, i = 1,2, . . . n, regarded as fixed values

−L(Θ, R) = np
2

ln 2π + n
2

ln detR + 1
2

n∑
i=1

(yi −Θxi)TR−1(yi −Θxi)
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Since R is known, we take the derivative of L with respect to the matrix
Θ. It is perhaps easiest to perform this derivative using component
notation. Rewriting the expression for L in components gives

−L(Θ, R) = np
2

ln 2π + n
2

ln detR+ 1
2
(yir −Θrjxij)TR−1

rs (yis −Θslxil)

in which we use the Einstein summation convention for repeated in-
dices. Taking the derivative of scalar-valued function L with respect to
Θmn gives a matrix derivative

∂L
∂Θmn

= 1
2

(
δrmδjnxijR−1

rs (yis −Θslxil)+

(yir −Θrjxij)R−1
rs δsmδlnxil

)
Performing the sums over the deltas, noting R is symmetric, and col-
lecting terms gives

∂L
∂Θmn

= R−1
ms(yis −Θslxil)xni

If we convert this back to the vector/matrix notation of the problem
statement we have

∂L
∂Θ
=

n∑
i=1

R−1(yi −Θxi)xTi

Setting this matrix to zero and solving gives the maximum-likelihood
estimate for the parameters Θ

Θ̂ =
(∑
i
yixTi

)(∑
i
xixTi

)−1

in which we assume that the matrix
∑
i xixTi has full rank. Again, we

discuss what to do when this rank condition fails later in Section 4.8.
Notice that the value of the measurement error covariance R is irrele-
vant in the estimation of Θ in this problem also. It is often convenient
to arrange the variables so that the summation is performed by matrix
operations. Arranging the data vectors in the following matrices

Y =
[
y1 · · · yn

]
X =

[
x1 · · · xn

]
allows us to express the maximum-likelihood estimate as

Θ̂ = YXT
(
XXT

)−1
(4.56)
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Next we determine the probability density of the estimated param-
eter Θ̂. We denote the parameter value generating the data as Θ0, so
the measurements are given by

Y = Θ0X + E E =
[
e1 · · · en

]
The estimate and its transpose are therefore

Θ̂ = Θ0 + EXT (XXT )−1

Θ̂T = ΘT0 + (XXT )−1XET

We find the transpose convenient because we now wish to stack the
matrix Θ̂T in a vector giving

Θ̂T =
[
θ1 θ2 · · · θp

]
vecΘ̂T =


θ1

θ2
...
θp


Applying the vec operator to both sides of the transposed form of the
parameter estimates gives

vecΘ̂T = vecΘT0 + (I ⊗ (XXT )−1X)vecET

From the definition of E we see

vecET =



e1,1
e1,2

...
e1,n

...
ep,1
ep,2

...
ep,n



ej,i jth measurement, ith sample

Given this arrangement of these normally distributed random variables,
we have for the density

vecET ∼ N(0, P)
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in which

P =



R11

. . .
R11

· · ·
R1p

. . .
R1p

...
. . .

...

Rp1

. . .
Rp1

· · ·
Rpp

. . .
Rpp


P = R ⊗ I

Using the result on linear transformation of a normal, we have

vecΘ̂T − vecΘT0 ∼ N(0, S) S = R ⊗ (XXT )−1 (4.57)

in which
S = (I ⊗ (XXT )−1X)(R ⊗ I)(I ⊗ (XXT )−1X)T

Using the Kronecker product formulas from Section 1.5.3, we can sim-
plify this covariance as follows

S = (I ⊗ (XXT )−1X)(R ⊗ I)(I ⊗ (XXT )−1X)T

= (R ⊗ (XXT )−1X)(I ⊗XT (XXT )−1)

S = R ⊗ (XXT )−1

Equation (4.57), with this result for S, is the matrix analog of the vector
result in (4.46).

Given the normal density, the elliptical confidence region for vecΘ̂T

can be found as in Section 4.7.1

(vecΘ̂T − vecΘT0 )
T S−1(vecΘ̂T − vecΘT0 ) ≤ F−1

χ2 (α;np) (4.58)

Interlude

Let’s put the tools of orthogonality and Kronecker products to good use
and prove a fundamental result in statistics, namely that the sample
mean and sample variance from a normal distribution are statistically
independent.
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Theorem 4.22 (Mean and variance of samples from a normal). Let xi ∈
Rp, i = 1, . . . , n be n independent samples from N(µ,Σ). Define the
sample mean and the maximum-likelihood estimate of the variance as

x = 1
n

n∑
i=1

xi Σ̂ = 1
n

n∑
i=1

(xi − x)(xi − x)T

Then x is distributed as N(µ, (1/n)Σ) and independently of Σ̂, and nΣ̂ is
distributed as

∑n−1
i=1 ziz

T
i in which the zi are distributed independently

and identically as N(0,Σ)

Proof. Stack the n xi vectors next to each other in a matrix

X =
[
x1 x2 · · · xn

]
We next construct an orthogonal transformation of this matrix. Let 1
be 1/

√
n times an n-vector of ones so that X1 = √n x. Next consider

the null space of 1T . From the fundamental theorem of linear algebra,
that is an n−1 dimensional space. Collect an orthonormal basis in the
n × (n − 1) matrix Bn−1. Then construct the following orthogonal B
matrix

B =
[
BTn−1
1T

]
BT =

[
Bn−1 1

]
BBT = BTB = I

Define the transformed random variables[
z1 z2 · · · zn

]
=
[
x1 x2 · · · xn

]
BT

Z = XBT

in which zn =
√
n x. The samples xi are distributed as

vecX =


x1
...
xn

 ∼ N


µ
...
µ

 ,

Σ

. . .
Σ




or in more compact notation

vecX ∼ N(
√
n1⊗ µ, I ⊗ Σ)

The transformation gives for Z

vecZ = (B ⊗ I)vecX vecZ ∼ N(m,P)
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in which

m =
√
n(B ⊗ I)(1⊗ µ) P = (B ⊗ I)(I ⊗ Σ)(B ⊗ I)T

Rearranging these expressions gives

m =
√
nB1⊗ µ P = (BBT ⊗ Σ)

From the orthogonality relations we have

B1 =


0
...
0
1

 BBT = I

so

vecZ =


z1
...

zn−1

zn

 ∼ N



0
...
0√
nµ

 ,

Σ

. . .
Σ

Σ




From the covariance we conclude that the variables z1, z2, . . . , zn are
statistically independent. Computing Σ̂ gives

Σ̂ = 1
n

n∑
i=1

(xi − x)(xi − x)T

= 1
n

n∑
i=1

(
xixTi − xxT

)
= 1
n
(
XXT −nxxT

)
= 1
n
(
ZBBTZT − znzTn

)
= 1
n

(
ZZT − znzTn

)
Σ̂ = 1

n

n−1∑
i=1

zizTi

which establishes the stated distribution for Σ̂. Since Σ̂ is a function of
only z1, . . . zn−1 and x is a function of only zn, Σ̂ and x are independent.
Since x = zn/

√
n, we have that x ∼ N(µ, (1/n)Σ), and the theorem is

proved. ■
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This result is established in many statistical texts using a dazzling
variety of arguments, some bordering on the mystical. The proof given
above is a compact expression of a standard method given by Anderson
(2003, p. 77).

4.7.4 Vector of Measurementsy, Different Parameters Correspond-
ing to Different Measurements, Unknown Measurement Co-
variance R

When R is also unknown, we maximize L with respect to both Θ and R.

−L(Θ, R) = np
2

ln 2π + n
2

ln detR + 1
2

n∑
i=1

(yi −Θxi)TR−1(yi −Θxi)

(4.59)
TheΘ derivative has been given previously. Differentiating with respect
to R is facilitated by using the following fact about the trace of a matrix
product

tr(AB) = tr(BA)

which follows immediately from the definition of trace and expressing
the matrix product in components

tr(AB) = AijBji = BjiAij = tr(BA)

Using this result twice on a product of three matrices gives

tr(ABC) = tr(BCA) = tr(CAB)

This identity allows us to rewrite the following scalar term

(yi −Θxi)TR−1(yi −Θxi) = tr
(
R−1(yi −Θxi)(yi −Θxi)T

)
Next we use the fact that

d
dA

tr(A−1B) = −(A−1)TBT (A−1)T

See Exercise A.6 for a derivation. Applying this result and using the
fact that R is symmetric gives

∂
∂R
(yi −Θxi)TR−1(yi −Θxi) = −R−1(yi −Θxi)(yi −Θxi)TR−1

The derivative of the determinant and the log of the determinant are
(see Exercise 4.5 for a derivation)

ddetA
dA

= (A−1)T detA
d ln detA
dA

= (A−1)T
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The R derivative of (4.59) is therefore

∂L(Θ, R)
∂R

= −n
2
R−1 + 1

2
R−1

(∑
i
(yi −Θxi)(yi −Θxi)T

)
R−1

Setting this matrix equation to zero, using the estimate of Θ, and solv-
ing gives the maximum-likelihood estimates for this problem

Θ̂ =
(∑
i
yixTi

)(∑
i
xixTi

)−1

R̂ = 1
n

∑
i
(yi − Θ̂xi)(yi − Θ̂xi)T

The estimate R̂ is a biased estimate of the measurement variance R
with E(R̂) = R(n−q)/n. The distribution for nR̂ can be shown to be a
Wishart distribution (see Exercise 4.51), which is a generalization of the
χ2 distribution to the multivariate case (Wishart, 1928). The Wishart
distribution can be shown to be (Anderson, 2003, pp. 252–255)

pW (W ;n) = (detW)
n−p−1

2

2
np
2 (detR)

n
2 Γp

(n
2

)e− 1
2 tr(R−1W) (4.60)

in which Γp is the multivariate gamma function defined by

Γp(z) = πp(p−1)/4
p∏
i=1

Γ(z − 1
2
(i− 1))

Note that the argument of the probability densitypW (W ;n) is a positive
definite matrix W . The probability is zero for W not positive definite.

4.7.5 Vector of Measurementsy, Same Parameters for all Measure-
ments, Known Measurement Covariance R

Next we consider the case in which the different measurement types
are affected by the same set of parameters. The model is

y1

y2
...
yp


i

=


xT1
xT2
...
xTp


i

θ
 +


e1

e2
...
ep


i

yi = Xi θ + ei ei ∼ N(0, R)
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In this model, all of the different components of the measurement
y1, y2, . . . , yp are affected by the same, single vector of parameters
θ. Consider n ≥ 1 samples, i = 1, . . . , n, and, given the deterministic
variables θ and the n Xi, we have for the probability density of the
measurements

p(y1, y2, . . . , yn;θ,R) =
1

(2π)np/2(detR)n/2
exp

(
− 1

2

n∑
i=1

(yi −Xiθ)TR−1(yi −Xiθ)
)

− L(θ,R) =
np
2

ln 2π + n
2

ln detR + 1
2

n∑
i=1

(yi −Xiθ)TR−1(yi −Xiθ) (4.61)

Taking the derivative with respect to θ gives

∂L(θ,R)
∂θ

= 1
2

n∑
i=1

2XTi R
−1yi − 2XTi R

−1Xiθ

=
n∑
i=1

XTi R
−1(yi −Xiθ)

Setting this vector equation to zero and solving forθ gives the maximum-
likelihood estimate

θ̂ =
(∑
i
XTi R

−1Xi
)−1∑

i
XTi R

−1yi (4.62)

In this problem, it can make sense to estimate θ with a single sample
(n = 1) if we can choose the number of measurements p significantly
larger than the number of parameters np. For a single sample, the
parameter estimate formula is

θ̂ =
(
XTR−1X

)−1
XTR−1y (4.63)

which is the solution of a weighted least-squares problem using R−1 as
the weight. Compare this expression to (4.45).

Notice also that this is the first estimation problem for which the
maximum-likelihood estimate of the parameter θ̂ depends on the co-
variance of the measurement error R. We see next that this dependence
prevents us from solving the final estimation problem in closed form.
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We next calculate the probability density of the estimate. We denote
the parameter value generating the data as θ0, so the measurements are
given by

yi = Xiθ0 + ei

and substituting this result into the estimate equation gives

θ̂ = θ0 +
(∑
i
XTi R

−1Xi
)−1∑

i
XTi R

−1ei

θ̂ = θ0 +
(∑
i
XTi R

−1Xi
)−1 [

XT1 R−1 · · · XTnR−1
]
e1
...
en


Using the result on linear transformation of a normal, we have

θ̂ − θ0 ∼ N(0, S) (4.64)

in which

S =
(∑
i
XTi R

−1Xi
)−1 [

XT1 R−1 · · · XTnR−1
]
·


R

. . .
R



R−1X1

...
R−1Xn

(∑
i
XTi R

−1Xi
)−1

S =
(∑
i
XTi R

−1Xi
)−1

Given the normal density, we can compute the elliptical confidence re-
gion as in Section 4.7.1

(θ̂ − θ0)T S−1 (θ̂ − θ0) ≤ F−1
χ2 (α;np) (4.65)

The bounding box intervals follow as in Section 4.7.1. Notice that when-
ever the variance of the measurement errors is known, the maximum-
likelihood estimate is normally distributed and the elliptical confidence
intervals are given by F−1

χ2 (α;np).
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4.7.6 Vector of Measurementsy, Same Parameters for all Measure-
ments, Unknown Measurement Covariance R

The final case is the one that arises most often in mechanistic modeling
of chemical and biological experiments. To determine the unknown
R, we maximize L(θ,R) over R in addition to θ. Using the results of
Section 4.7.4 we can take the derivative of (4.61) with respect toR giving

∂L(θ,R)
∂R

= −n
2
R−1 + 1

2
R−1

(∑
i
(yi −Xiθ)(yi −Xiθ)T

)
R−1

Setting this result to zero and using the result of the previous sec-
tion gives the following set of necessary conditions for the maximum-
likelihood estimates

θ̂ =
(∑
i
XTi R̂

−1Xi
)−1∑

i
XTi R̂

−1yi (4.66)

R̂ = 1
n

∑
i
(yi −Xiθ̂)(yi −Xiθ̂)T (4.67)

These are two sets of nonlinear equations in the unknowns θ̂ and R̂,
which must be solved numerically. One simple solution strategy is to
first estimate the parameter θ̂0 with (4.66) using an initial guess for
the covariance such as R̂0 = I. One then estimates the iterate R̂1 by
substituting θ̂0 into (4.67), and the process is repeated. If this iteration
procedure converges, then one has found the maximum-likelihood es-
timates by solving a sequence of standard estimation problems. But
there is no guarantee that this procedure converges. One may find that
a crude initial guess like R̂0 = I lies outside the region of convergence
of the iteration procedure.

Maximum-Likelihood and Bayesian Estimation

With this background in maximum-likelihood estimation, we would
like to compare the approach to another class of popular methods
known as Bayesian estimation. As we saw in the previous sections,
in the maximum-likelihood approach, we maximize the probability of
the measurements over the model parameter θ

θ̂MLE = arg max
θ
p(y ;θ) (4.68)
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As in the MLE sections we writep(y ;θ) to indicate that θ is a parameter,
not a random variable. In the MLE approach, θ̂ is the random variable,
not θ, and we assess the confidence intervals for θ̂.

In Bayesian estimation, on the other hand, θ itself is modeled as
a random variable. The information that we have about θ before the
experiment is denoted by p(θ). In the experiment, we imagine drawing
a value of θ as well as the measurement errors to create the data yi =
xTi θ+ei, i = 1, . . . , n. With the measuredy available, we then maximize
p(θ|y) over θ to obtain the estimate

θ̂BE = arg max
θ
p(θ|y)

The conditional density p(θ|y) is known as the posterior density, i.e.,
the density for θ after the experiment, and the density p(θ) is known as
the prior, i.e., the density before experiment. In Bayesian estimation,
we assess how much the measurement ofy has changed our knowledge
about θ. From Bayes’s theorem we can express the posterior as

p(θ|y) = p(y|θ)p(θ)
p(y)

Notice that p(y|θ) is exactly the same functional form as p(y ;θ) in
the MLE approach. Since the denominator does not depend on θ, in
Bayesian estimation we estimate θ by the following equivalent maxi-
mization

θ̂BE = arg max
θ
p(y|θ)p(θ) (4.69)

The only difference in the estimators (4.68) and (4.69) is the presence of
the prior p(θ) in the Bayesian approach. In the absence of knowledge
about θ, we often assume that p(θ) is a uniform distribution. This is
called the uniform prior. Since p(θ) does not depend on θ with the
uniform prior, the MLE and BE estimates are identical in this case.

The posterior density of Bayesian estimation is a useful way to sum-
marize the state of knowledge about the parameter θ given the available
experiments. Since one has available the posterior density, confidence
levels on random variable θ are determined directly from p(θ|y). Box
and Tiao (1973) provide further discussion of Bayesian estimation. In
Chapter 5 when we address the problem of state estimation, we will
use the Bayesian approach.
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4.8 PCA and PLS regression

Principal components analysis (PCA) and projection onto latent struc-
tures (also known as partial least squares) (PLS) are two methods used
to develop empirical linear models between a vector of predictor or
environmental variables x, and a vector of responses y . This is the
same linear model discussed in Sections 4.7.3 and 4.7.4, so we can
view these methods as alternatives to the maximum-likelihood estima-
tion approach presented in those sections. The focus of these methods
is on determining estimates of the linear model that can handle situ-
ations with possible collinearities in the x variables, and missing or
erroneous information, such as unknown error structure. Collinear-
ities in the data can make the maximum-likelihood estimator highly
sensitive to outliers and nonnormal errors. Because the measurement
error structure is regarded as unknown or at least unreliable, robust-
ness of the estimated model to unmodeled effects is the goal, rather
than statistical optimality as in the maximum-likelihood methods.

As in Section 4.7.3, let p-vector y and q-vector x be related by the
linear model y = Θx + e, and we wish to determine the parameter
matrix Θ ∈ Rp×q given data on y and x. We use xi, yi, i = 1,2, . . . , n
to denote the available samples. We assume n > q (often n ≫ q) so
that we have more equations than unknowns, which is necessary for
a well-conditioned estimation problem. It is customary to define data
matrices

Y =


yT1
yT2

...
yTn

 X =


xT1
xT2
...
xTn


in which Y ∈ Rn×p, X ∈ Rn×q, and the model is Y = XΘT + E. In order
to use a more standard notation we let B = ΘT ∈ Rq×p, and we have
the linear model

Y = XB + E

We wish to estimate parameters B from measurementsX and Y without
knowledge of the statistical structure of E. Given what we already know
about least squares from Chapter 1, a natural approach would be to
minimize some measure of the size of the residual matrix E over all
choices of B. If we choose the sum of the squares of all the elements of
matrix E as our measure, we have (the square of) the so-called Frobenius
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norm of the matrix

∥E∥F =
( n∑
i=1

p∑
j=1

E2
ij

)1/2

So our first candidate for estimating matrix B is

min
B
∥Y −XB∥2

F

It is not difficult to show that the solution to this problem is the fol-
lowing

Bls = (XTX)−1XTY = X†Y

with the usual pseudoinverse that we have seen in the standard vector
least-squares problem in Chapter 1. Notice that by taking the trans-
pose, this is also the maximum-likelihood estimate given in (4.56) for
the case in which the measurement error in y is assumed normally
distributed with covariance R, whether the covariance is known, or un-
known and must be estimated from the data.

Also, we already know that XTX has an inverse if and only if the
columns of X are linearly independent; see Proposition 1.20. Since we
may not have control over the experimental conditions, we often must
contend with datasets in which X has dependent or nearly dependent
columns, i.e., we have near collinearity in the columns of X. In such
cases, the maximum-likelihood estimate Bls is unreliable and sensitive
to small changes in the data or small errors in the assumed model
structure.

SVD. But we also have a clear idea what to do about this issue given our
background with singular value decomposition (SVD). We first replaceX
with its (real) SVDX = USVT , and sinceX has more rows than columns,
we obtain

X =
[
U1 U2

][Σ
0

]
VT Σ = diag(σ1, · · · , σq), σ1 ≥ · · · ≥ σq > 0

in which U1 contains the first q columns of U , and U2 contains the
remaining n− q columns. Multiplying the partitioned matrices gives

X = U1ΣVT

Next to handle the case in which Σ has several small singular values,
corresponding to matrix X with columns that are nearly collinear, we
approximate X by setting any small singular values to zero. Assume
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we have ℓ large singular values, and q − ℓ small singular values that
are nearly zero. In this case, the rank of X may be q, but with small
perturbations to the data in matrix X, it can easily drop to rank ℓ. We
have

X =
[
Uℓ Uq

][Σℓ 0
0 Σq

][
VTℓ
VTq

]
= UℓΣℓVTℓ +UqΣqV

T
q

X ≈ UℓΣℓVTℓ (4.70)

Using this lower-rank SVD in place of X then gives the following more
robust least-squares estimate

BSVD = VℓΣ−1
ℓ U

T
ℓ Y (4.71)

The ill-conditioning caused by inverting Σ with all q singular values is
overcome by inverting only the largest ℓ singular values. Thus the SVD
estimate is less sensitive to errors in the data than the least-squares
or maximum-likelihood estimate. Realize also that only the maximum-
likelihood estimate is unbiased. By suppressing the small singular val-
ues, we introduce a small bias in BSVD, but greatly reduce the variance
in the estimate.

PCR. Given this background in the SVD approach, we are in an excel-
lent position to summarize the principal component regression (PCR)
method. In PCR, the X data matrix is decomposed as follows

X = TPT

with orthogonal matrices T , known as the scores, and P , known as the
loadings. Only the first ℓ principal components are retained, and the
matrixX is approximated byX ≈ TℓPTℓ in which Tℓ and Pℓ are the first ℓ
columns of T and P , respectively. The principal component regression
for B is given by the following

BPCR = Pℓ(T Tℓ Tℓ)
−1T Tℓ Y

So the correspondence with the SVD approach is as follows. The scores
in PCR are the product of the singular values and the left singular vec-
tors Tℓ = UℓΣℓ. The loadings are the right singular vectors, Pℓ = Vℓ.
Substituting these relationships into the formula for BPCR shows that

BPCR = BSVD

and the two approaches are equivalent. So one advantage of learning
the SVD as part of linear algebra is that you have also learned PCR.
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PLSR. A potential drawback of the PCR approach is that only the pre-
dictor variables are evaluated. The principal components are selected
to maximize the information about matrix X. But there is no guarantee
that these components can represent the responses Y . To improve the
predictive capability of the model, the PLS regression (PLSR) adds an
interesting wrinkle. In this approach, one does not start with the SVD
of X but with the SVD of XTY , which includes information about both
X and Y and the correlation between them. Note that XTY ∈ Rq×p,
which is a small matrix regardless of the number of samples, n. So
computing the SVD of a matrix of the dimension of XTY , which is done
repeatedly in PLSR, is a fast computation. The components, called la-
tent variables, are obtained recursively as follows (Mevik and Wehrens,
2007). The first left and right singular vectors u1 and v1, are used to
obtain the scores t1 and w1, respectively, via

t1 = Xu1 = E1u1 w1 = Yv1 = F1v1

in which the matrices E1 and F1 are initialized as X and Y , respectively.

TheX scores are then usually normalized t1 = t1/
√
tT1 t1. We now define

the two loadings, p1 and q1 using the same score t1

p1 = ET1 t1 q1 = FT1 t1

Next the data matrices are deflated by subtracting the information in
the current latent variable via

Ei+1 = Ei − tipTi Fi+1 = Fi − tiqTi
The next iterate starts with the SVD of ETi+1Fi+1 in place of XTY and the
process is repeated. As in PCR, the number of latent variables ℓ ≤ q is
chosen as the number of iterations of the algorithm. The left singular
vectors ui, the scores ti, and the loadings pi and qi for i = 1,2, . . . , ℓ
are stored as the columns of the four matrices U , T , P , and Q. After ℓ
iterations we have low-rank approximations of both X and Y

X̂ = TPT Ŷ = TQT

We can define the PLS solution for B as the following (nonunique) least-
squares solution of Y = X̂B

BPLS = RT TY = RQT

in which R = U(PTU)−1 so that PTR = Iℓ. Note that this estimate
satisfies also Ŷ = X̂BPLS = XBPLS.
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Cross validation. In both PCR and PLS we need to decide how many
principal components or latent variables to retain in the model. The
most widely accepted method to make this decision is known as cross
validation. In cross validation the dataset is divided into two or more
sets; one set is used for fitting the parameters, and the other set is used
to evaluate the predictive power of the model using the remaining data
that have not been used in the fitting process. The validation error, de-
fined as Ev = Yv −Xv B̂ℓ, in which B̂ℓ is the estimated model parameter
matrix using the fitting dataset (X, Y) and the chosen number of prin-
cipal components or latent variables, ℓ. To determine the best value of
ℓ to use for estimating B, one finds the ℓ that minimizes ∥Ev∥2

F . This
value of ℓ is large enough that the model fits the data accurately, but
not so large that the model has been fit to the noise in the data. We
demonstrate the cross validation technique with the following example.

Example 4.23: Comparing PCR and PLSR

Consider a dataset with five predictor variables, x ∈ R5, to model a
vector of two responses, y ∈ R2. The dataset has 200 samples. The
data are available on the website www.chemengr.ucsb.edu/~jbraw/
principles.

We would like to estimate the coefficient B in the model Y = XB.
Compare the results using PCR and PLSR for the regression. Show the
prediction error in Y for the number of principal components or latent
variables ranging from one to five (full least squares). Which regres-
sion method provides the best fit with the smallest number of principal
components/latent variables?

Solution

First we divide the 200 samples into two sets, and use the first 100
samples for estimating the parameter matrix B, and the second 100
samples for cross validation. For principal component analysis, we
compute the SVD of the 5× 100 X matrix. The five singular values are

Σ = diag(15.1, 3.26, 2.72, 2.67, 0.0226)

We see that X has four large singular values and one near zero, indi-
cating that the rank of X is nearly four. Next we estimate BPCR using
(4.71) for ℓ = 1,2,3,4,5 and calculate the sum of squares of the fitting
error, ∥Y −XBPCR∥2

F . The results are shown in the top of Figure 4.11. It
is not surprising that the fitting error decreases with increasing num-
ber of principal components. As we see, the fitting error contains little
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Figure 4.11: The sum of squares fitting error (top) and validation
error (bottom) for PCR versus the number of principal
components ℓ; cross validation indicates that four prin-
cipal components are best.

information about how many principal components to use. After esti-
mating the parameters, we then compute the output responses for the
validation data and compute ∥Yv −XvBPCR∥2

F in which Xv , Yv are the
predictor and response variables in the validation dataset. This vali-
dation error is plotted in the bottom of Figure 4.11. Here we see that
we should use four principal components in the model, in agreement
with the SVD analysis of X. Using the unreliable smallest singular value
in the regression causes a large error when trying to predict response
data that have not been used in the fitting process.

Next we implement the PLS regression algorithm as described above
for ℓ = 1,2,3,4,5 latent variables. The validation error is shown in
Figure 4.12 along with the validation error of PCR. Notice that only two
latent variables are required to obtain the same error as four principal
components. This reduction in model order is the primary benefit of
the PLSR approach. By evaluating the SVD of XTY instead of only X, we
obtain the latent variables that can explain the responses Y , not just
the variables with independent information in X, which is what PCR
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Figure 4.12: The sum of squares validation error for PCR and PLSR
versus the number of principal components/latent vari-
ables ℓ; note that only two latent variables are required
versus four principal components.

provides.
Next, in Figure 4.13 we present the predicted responses versus the

measured responses for the validation dataset. A perfect prediction
would be a straight line with a slope of 45 degrees. Note that these data
were not used in the fitting process, so this plot displays the predictive
capability of the model. We see that the PLS model with two latent
variables has roughly the same predictive capability as the PCR model
with four principal components. Finally, in Figure 4.14 we make the
same comparison if we use only three principal components and one
latent variable. Notice that we obtain significantly worse predictions of
the validation dataset, indicating that we have undermodeled the data
by choosing too few variables for the regression. □

By now there is an extensive literature including many books and
research monographs on model regression with PCR and PLSR. Many
researchers have documented the usefulness and robustness of these
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ŷ2

y1

y1

y2

y2

Figure 4.13: Predicted versus measured outputs for the validation
dataset. Top: PCR using four principal components.
Bottom: PLSR using two latent variables. Left: first out-
put. Right: second output.

techniques to identify linear empirical models in numerous applica-
tions. The understanding of PCR is reasonably complete, since it is
based on the SVD of the single matrix, X. By contrast, the understand-
ing of PLSR is not as complete. PLS was introduced by H. Wold in the
1960s in the field of econometrics (Wold, 1966). The use of PLS in
the fields of analytical chemistry and chemometrics was pioneered by
S. Wold, Martens, and Kowalski. The tutorial by Geladi and Kowal-
ski (1986) and historical reviews by S. Wold (2001) and Martens (2001)
summarize the approach and early contributions. Its use in process
monitoring and control was developed by MacGregor, Marlin, Kresta,
and Skagerberg (1991). Kaspar and Ray (1993) discovered the connec-
tion between the early PLS algorithms and the singular value decom-
position, which we exploited here to compactly express the PLS algo-
rithm. An efficient recursive formulation was developed by Qin (1998).
Efficient numerical implementations of PCR and PLSR are available in
several high-level computing languages such as R, Octave, and MATLAB,
which make it easy for the user to try out these approaches (Mevik and
Wehrens, 2007).
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Figure 4.14: Effect of undermodeling. Top: PCR using three princi-
pal components. Bottom: PLSR using one latent vari-
able.

As demonstrated in the example, starting with the SVD of XTY
rather than X is useful for finding the smallest number of latent vari-
ables that have the most predictive capability. But PLSR research has
not yet provided a complete analysis of the method and its salient prop-
erties. We do not know, for example, in what sense PLSR is an opti-
mal estimator or whether there might be, as yet undiscovered, better
methods. Adding to the complexity, several different alternative PLSR
algorithms have been developed. The appearance of many different
algorithms has in turn generated some confusion and controversy. To
clarify matters, connections between the properties of several of the
different algorithms have been established. But until some optimality
properties of PLSR are uncovered, research on the PLSR approach will
likely continue. In any field, a valuable technique that also defies easy
explanation is a prime target for further research.

4.9 Appendix — Proof of the Central Limit Theorem

In this appendix we provide a complete proof of Theorem 4.16. We fol-
low the basic approach outlined in the stimulating papers by Le Cam
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(1986) and Pollard (1986). Moreover, in this version of the central limit
theorem we not only establish convergence to the normal distribution
as n → ∞, but also develop an approach that leads to bounds valid
for finite n on the distance of the sum’s distribution from the normal
distribution. This version of the central limit theorem and, more impor-
tantly, the techniques used to establish it are wide ranging and worth
knowing for researchers making extensive use of random variables. As
you will see, the proof is elementary, by which we mean that none of
the steps require any advanced techniques that are not already familiar
to the reader. But the proof is rather long. Note also that this mate-
rial can be skipped without affecting the understanding of any other
section in the text.

Proof. We start by considering two sums of independent random vari-
ables; let Sn = Xi + X2 + · · · + Xn and Tn = Y1 + Y2 + · · · + Yn, in
which E(Xk) = E(Yk) = 0 and var(Xk) = var(Yk) = σ 2

k . The zero mean
assumption is not restrictive. If the original Xk have nonzero mean µk,
consider instead the zero mean, shifted variables X̃k = Xk − µk. Next
define Rk as follows

Rk =
n∑
j<k
Xj +

n∑
j>k
Yj , k = 1,2, . . . , n

so that

R1 = Y2 + Y3 + · · · + Yn
R2 = X1 + Y3 + Y4 + · · · + Yn
R3 = X1 +X2 + Y4 + · · · + Yn
· · ·

Rn = X1 +X2 + · · · +Xn−1

Notice from this definition that Rk and Xk as well as Rk and Yk are also
independent for k = 1,2, . . . , n. We see shortly why the Rk variables
are useful.

We also require an approximation theorem; the form we choose here
is motivated by a nice, unpublished note of F.W. Scholz (2011).

Theorem 4.24 (Taylor’s theorem with bound on remainder). Let f be
a bounded function on R with three continuous, bounded derivatives.
Consider the second-order Taylor series with remainder

f(x + h) = f(x)+ f ′(x)h+ f
′′(x)
2

h2 + r(x,h)
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The remainder satisfies the following bound for all h ∈ R

sup
x∈R

|r(x,h)| ≤ Kf min(h2, |h|3) (4.72)

The term |h|3 is expected from the standard Taylor expansion, but
including the term h2 gives a better bound for large h, which we shall
find useful subsequently. Exercise 4.54 discusses how to prove this
theorem, which is not difficult.

So we assume that f has three continuous, bounded derivatives,
and express f(Xk + Rk) as

f(Xk + Rk) = f(Rk)+Xkf ′(Rk)+
X2
k

2
f ′′(Rk)+ r(Rk, Xk)

Performing a similar expansion for f(Yk+Rk), taking expectations, and
subtracting gives

E
(
f(Xk + Rk)− f(Yk + Rk)

)
= (E(Xk)−E(Yk))E(f ′(Rk))+

(1/2)(E(X2
k)−E(Y 2

k ))E(f ′′(Rk))+E(r(Rk, Xk)− r(Rk, Yk))

where we have used the fact that E(AB) = E(A)E(B) for A and B in-
dependent random variables. Noting that the first two terms cancel,
taking absolute values, and using (4.72) gives∣∣E(f(Xk + Rk)− f(Yk + Rk))∣∣ ≤ KfE(g(Xk)+ g(Yk)) (4.73)

where we used the fact6 that
∣∣E(f (X))∣∣ ≤ E(

∣∣f(X)∣∣) and defined
g(X) =min(X2, |X|3) to compress the notation. Next comes the reason
for introducing the Rk variables. Notice that differencing the sum of
f(Rk +Xk) and f(Rk + Yk) leaves only two terms

n∑
k=1

f(Rk+Xk)−f(Rk+Yk) = f(Rn+Xn)−f(R1+Y1) = f(Sn)−f(Tn)

Taking expectations and then absolute values and using (4.73) then
gives ∣∣E(f (Sn)− f(Tn))∣∣ ≤ Kf n∑

k=1

E
(
g(Xk)+ g(Yk)

)
(4.74)

Establishing this inequality is the first major step.

6Since f(x) ≤
∣∣f(x)∣∣ for all x, multiply by the density pX(x) and integrate.
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Figure 4.15: The indicator (step) function f1(w;x) and its smooth
approximation, f(w;x). A piecewise fifth-order poly-
nomial gives continuous derivatives up to third order;
see Exercise 4.57 for details.

But we wish to bound the distance between the two cumulative dis-
tributions FSn and FTn , so we next choose an appropriate function f(·)
to achieve this goal. Consider the step function f1(w;x) depicted in
Figure 4.15, in which w is the argument to the function and x is con-
sidered a fixed parameter. Using f1(w;x) we have immediately

E(f1(Sn)) =
∫∞
−∞
f1(w;x)pSn(w)dw =

∫ x
−∞
pSn(w)dw = FSn(x)

The function f1(·) is known as an indicator function, because f1(Sn)
indicates when the random variable Sn satisfies Sn ≤ x. So this is
the kind of function we seek, but, of course, f1 does not have even
a bounded first derivative, let alone three bounded derivatives as re-
quired in our development. So we first smooth out this function as
depicted in Figure 4.15. Exercise 4.57 gives an example of a piecewise
polynomial function f with the required smoothness. Moreover, there
exists an L0 > 0 such that Kf = 20L−3 is a valid upper bound in (4.72)
for every L satisfying 0 < L ≤ L0; see (4.96). We will require this bound
shortly.

Computing Ef(Sn) gives∫∞
−∞
pSn(w)f(w;x)dw =

∫ x
−∞
pSn(w)dw +

∫ x+L
x

pSn(w)f(w;x)dw

E(f (Sn)) = FSn(x)+
∫ x+L
x

pSn(w)f(w;x)dw
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and, subtracting the analogous expression for Tn and rearranging gives

FSn(x)− FTn(x) = E(f (Sn)− f(Tn))−
∫ x+L
x

(pSn(w)− pTn(w))f(w;x)dw

≤ E(f (Sn)− f(Tn))+
∫ x+L
x

pTn(w)f(w;x)dw

≤ E(f (Sn)− f(Tn))+ bnL

with bn = maxw pTn(w). Since we will later choose the Yk variables,
we have some control over the constant bn. Taking absolute values and
substituting (4.74) then gives the following bound

∣∣FSn(x)− FTn(x)∣∣ ≤ Kf n∑
k=1

E
(
g(Xk)+ g(Yk)

)
+ bnL (4.75)

Establishing this inequality is the second major step. Note that if we
choose L small, we make Kf large, so making the sum on the right-hand
side small will require a judicious choice of L.

Next we choose the Yk to be N(0, σ 2
k ), and the scaled sum Tn/sn =∑n

k=0 Yk/sn has zero mean and unit variance for all n, i.e, it is a stan-
dard normal, denoted Z with distribution function Φ(x). This gives
immediately for (4.75) the value bn = maxw pZ(w) = 1/

√
2π , which is

also independent of n for this choice of Yk. The variable Zn = Sn/sn =∑n
k=1Xk/sn is a sum of scaled Xk, and also has zero mean and unit

variance for all n. Applying (4.75) to these variables gives

sup
x

∣∣FZn(x)− Φ(x)∣∣ ≤ Kf n∑
k=1

E(g(Xk/sn)+ g(Yk/sn))+ bnL (4.76)

To evaluate the right-hand side, we partition the interval of integration
as discussed before

E(g(Xk/sn)) = E(g(Xk/sn); |Xk| ≤ ϵsn)+ E(g(Xk/sn); |Xk| > ϵsn)

Next we use the fact that g(Xk/sn) ≤ |Xk/sn|3 in the first term and that
g(Xk/sn) ≤ (Xk/sn)2 in the second term to obtain the bound

E(g(Xk/sn)) ≤ E(|Xk/sn|3 ; |Xk| ≤ ϵsn)+E((Xk/sn)2; |Xk| > ϵsn)

≤ ϵ
s2
n
E(|Xk|2 ; |Xk| ≤ ϵsn)+

1

s2
n
E(X2

k ; |Xk| > ϵsn)

≤
ϵσ 2
k

s2
n
+ 1

s2
n
E(X2

k ; |Xk| > ϵsn)
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Performing the sum gives

n∑
k=1

E(g(Xk/sn)) ≤ ϵ+
1

s2
n

n∑
k=1

E(X2
k ; |Xk| > ϵsn)

The second term goes to zero as n→∞ by the Lindeberg condition. So
for large enoughn it is smaller than the first term, which is independent
of n. So as n→∞ we have that

n∑
k=1

E(g(Xk/sn)) ≤ 2ϵ

We also can show that the normally distributed Yk variables satisfy the
Lindeberg conditions if the Xk do. See Exercise 4.56 for the steps. So
we have that as n→∞

n∑
k=1

E(g(Xk/sn)+ g(Yk/sn)) ≤ 4ϵ (4.77)

Next we choose L, and therefore Kf , as follows

L =
( n∑
k=1

E(g(Xk/sn)+ g(Yk/sn))
)1/4

≤ (4ϵ)1/4

To use the bound in (4.96), we require L ≤ L0. Therefore setting ϵ0 =
L4

0/4 > 0, we have from the previous inequality that for every ϵ < ϵ0,

Kf = 20L−3 =
(

20
n∑
k=1

E(g(Xk/sn)+ g(Yk/sn))
)−3/4

Substituting these values for Kf and L into (4.76) and using (4.77) gives

sup
x

∣∣FZn(x)− Φ(x)∣∣ ≤ cϵ1/4

with c = (1/2)5−3/4 + 1/
√
π ≈ 0.71. Since this bound holds for all

ϵ ≤ ϵ0, we have established that

lim
n→∞

sup
x

∣∣FZn(x)− Φ(x)∣∣ = 0

and the proof is complete. ■
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4.10 Exercises

Exercise 4.1: Consequences of the axioms of probability

(a) If B ⊆ A, show that Pr(A \ B) = Pr(A)− Pr(B).

(b) By definition, the events A and B are independent if Pr(A∩B) = Pr(A)Pr(B).
IfA and B are independent, show thatA and B are independent.

Exercise 4.2: Statistical independence condition in densities

Show that two random variables ξ and η are statistically independent if and only if

pξ,η(x,y) = pξ(x)pη(y), all x,y (4.78)

Exercise 4.3: Statistical independence of functions of random variables

Consider statistically independent random variables, ξ ∈ Rm and η ∈ Rn. Define
random variable α ∈ Rp and β ∈ Rq as α = f(ξ), β = g(η). Show that α and β are
statistically independent for all functions f(·) and g(·). Summarizing

Statistical independence of random variables (ξ, η) implies statistical in-
dependence of random variables (f (ξ), g(η)) for all f(·) and g(·).

Note that f(·) and g(·) are not required to be invertible.

Exercise 4.4: Trace of a matrix function

Derive the following formula for differentiating the trace of a function of a square
matrix

dtr(f (A))
dA

= g(AT ) g(x) = df(x)
dx

(4.79)

in which g is the usual scalar derivative of the scalar function f .

Exercise 4.5: Derivatives of determinants

For A ∈ Rn×n nonsingular, derive the following formulas

ddetA
dA

= (A−1)T detA
d ln detA
dA

= (A−1)T

Exercise 4.6: Transposing the maximum-likelihood problem statement

Consider again the estimation problem for the model given in (4.55), but this time
express it in transposed form

yTi = x
T
i Θ̃+ e

T
i ei ∼ N(0, R) (4.80)

(a) Derive the maximum-likelihood estimate for this case. Show all steps in the
derivation. Arrange the data in matrices

Ỹ =


yT1

...
yTn

 X̃ =


xT1

...
xTn


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and show the maximum-likelihood estimate can be expressed as

̂̃Θ = (X̃T X̃)−1
X̃T Ỹ

Expressing the model this way gives an estimate formula that is analogous to
what other problem?

(b) Find the resulting probability density for the estimate and give the analogous
result corresponding to (4.57).

(c) Which form of the model do you prefer and why?

Exercise 4.7: Joint, marginal, mean, and covariance

We consider two discrete-valued random variables, ξ and η. Calculate the joint density,
pξ,η(x,y), both marginal densities, pξ(x),pη(y), the means, E(ξ),E(η), and covari-
ance, cov(ξ, η), for the following two cases

(a) We throw two dice, and ξ and η are the values on each die.

(b) We throw two dice, ξ is the value on one die and η is the sum of the two values.

Exercise 4.8: Probability density of the inverse function

Consider a scalar random variable ξ ∈ R and let the random variable η be defined by
the inverse function

η = ξ−1

(a) If ξ is distributed uniformly on [a,1] with 0 < a < 1, what is the density of η?

(b) Is η’s density well defined if we allow a = 0? Explain your answer.

Exercise 4.9: Expectation as a linear operator

(a) Consider the random variable x to be defined as a linear combination of the
random variables a and b

x = a+ b
Show

E(x) = E(a)+E(b)
Do a and b need to statistically independent for this statement to be true?

(b) Next consider the random variable x to be defined as a scalar multiple of the
random variable a

x = αa
in which α is a scalar. Show

E(x) = αE(a)

(c) What can you conclude about E(x) if x is given by the linear combination

x =
∑
i
αivi

in which vi are random variables and αi are scalars.
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Exercise 4.10: Calculating mean and variance from data

We are sampling a real-valued, scalar random variable x(k) ∈ R at time k. Assume
the random variable comes from a distribution with mean x and variance P , and the
samples at different times are statistically independent.

A colleague has suggested the following formulas for estimating the mean and
variance from N samples

x̂N =
1
N

N∑
j=1

x(j) P̂N =
1
N

N∑
j=1

(x(j)− x̂N)2

(a) Prove the estimate of the mean is unbiased for all N, i.e., show

E(x̂N) = x, all N

(b) Prove the estimate of the variance is not unbiased for any N, i.e., show

E(P̂N) ≠ P, any N

(c) Using the result above, provide an improved formula for the variance estimate
that is unbiased for allN. How large doesN have to be before these two estimates
of P are within 1%?

Exercise 4.11: The sum of throwing two dice

Using (4.23), what is the probability density for the sum of throwing two dice? On what
number do you want to place your bet? How often do you expect to win if you bet on
this outcome?

Make the standard assumptions: the probability density for each die is uniform
over the integer values from one to six, and the outcome of each die is independent of
the other die.

Exercise 4.12: The product of throwing two dice

Using (4.23), what is the probability density for the product of throwing two dice? On
what number do you want to place your bet? How often do you expect to win if you
bet on this outcome?

Make the standard assumptions: the probability density for each die is uniform
over the integer values from one to six, and the outcome of each die is independent of
the other die.

Exercise 4.13: Expected sum of squares

Given random variable x has mean m and covariance P , show that the expected sum
of squares is given by the formula (Selby, 1973, p.138)

E(xTQx) =mTQm+ tr(QP)

Recall that the trace of a square matrix A, written tr(A), is defined to be the sum of the
diagonal elements

tr(A) =
∑
i
Aii
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Exercise 4.14: Normal distribution

Given a normal distribution with scalar parameters m and σ

pξ(x) =
√

1
2πσ2 exp

[
−1

2

(
x −m
σ

)2
]

(4.81)

By direct calculation, show that

(a)

E(ξ) =m
var(ξ) = σ2

(b) Show that the mean and the maximum likelihood are equal for the normal dis-
tribution. Draw a sketch of this result. The maximum-likelihood estimate, x̂, is
defined as

x̂ = arg max
x
pξ(x)

in which arg returns the solution to the optimization problem.

Exercise 4.15: The size of an ellipse’s bounding box

Here we derive the size of the bounding box depicted in Figure 4.3. Consider a real,
positive definite, symmetric matrix A ∈ Rn×n and a real vector x ∈ Rn. The set of x
for which the scalar xTAx is constant are n-dimensional ellipsoids. Find the length of
the sides of the smallest box that contains the ellipsoid defined by

xTAx = b

Hint: consider the equivalent optimization problem to minimize the value of xTAx
such that the ith component of x is given by xi = c. This problem defines the ellipsoid
that is tangent to the plane xi = c, and can be used to answer the original question.

Exercise 4.16: Conditional densities are positive definite

We showed in Example 4.19 that if ξ and η are jointly normally distributed as[
ξ
η

]
∼ N(m,P)

∼ N
([
mx
my

]
,
[
Px Pxy
Pyx Py

])
then the conditional density of ξ given η is also normal

(ξ|η) ∼ N(mx|y , Px|y)

in which the conditional mean is

mx|y =mx + PxyP−1
y (y −my)

and the conditional covariance is

Px|y = Px − PxyP−1
y Pyx

Given the joint density is well defined, prove the marginal densities and the conditional
densities are also well defined, i.e., given P > 0, prove Px > 0, Py > 0, Px|y > 0,
Py|x > 0.
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Exercise 4.17: Transform of the multivariate normal density

Show the Fourier transform of the multivariate normal density given in (4.12) is

ϕ(u) = exp
[
iuTm− 1

2
uTPu

]

Exercise 4.18: The difference of two exponentially distributed random vari-
ables

The random variables τ1 and τ2 are statistically independent and identically distributed
with the exponential density

pτ(t) = e−t t ≥ 0

Define the new random variable y to be the difference

y = τ1 − τ2

We wish to calculate y ’s probability density py .

(a) First introduce a new random variable z = τ2 and define the transformation
from (τ1, τ2) to (y, z). Find the inverse transformation from (y, z) to (τ1, τ2).
What is the determinant of the Jacobian of the inverse transformation?

(b) What is the joint density pτ1,τ2(t1, t2)? Sketch the region in (y, z) that corre-
sponds to the region of nonzero probability of the joint densitypτ1,τ2 in (τ1, τ2).

(c) Apply the formula given in (4.23) to obtain the transformed joint density py,z .

(d) Integrate over z in this joint density to obtain py .

(e) Generate 1000 samples of τ1 and τ2, calculate y , and plot y ’s histogram. Does
your histogram of the y samples agree with your result from (d)? Explain why
or why not.

Exercise 4.19: Surface area and volume of a sphere in n dimensions

In three-dimensional space, n = 3, the surface area and volume of the sphere are given
by

S3(r) = 4πr2 V3(r) = 4/3πr3

You are also familiar with the formulas for n = 2, in which case “surface area” is the
circumference of the circle and “volume” is the area of the circle

S2(r) = 2πr V2(r) = πr2

If we define sn and vn as the constants such that

Sn(r) = snrn−1 Vn(r) = vnrn

we have

s2 = 2π v2 = π
s3 = 4π v3 = 4/3π

We seek the generalization of these results to the n-dimensional case. Compute the
formulas for sn and vn and show

sn =
2(π)n/2

Γ(n/2)
vn =

πn/2

Γ(n/2+ 1)
(4.82)
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Exercise 4.20: Surface area and volume of an ellipsoid in n dimensions

The results for surface area and volume of a sphere in n dimensions can be extended
to obtain the surface area and volume of an ellipse (ellipsoid, hyperellipsoid) in n
dimensions. Let x be an n-vector. The surface of an ellipse is defined by the equation

xTAx = R2

in which A ∈ Rn×n is a symmetric, positive definite matrix and R2 is the square of the
ellipse “radius.” Let the interior of the ellipse of size R be denoted by the set σR

σR = {x | xTAx ≤ R2}
We wish to compute the volume of the ellipse, which is defined by the following integral

V en(R) =
∫
σR
dx

The surface area, Sen(R), is defined to have the following relationship with the volume

V en(R) =
∫ R

0
Sen(r)dr

dV en(r)
dr

= Sen(r)

(a) Derive formulas for sen and ven such that

Sen(R) = senRn−1 V en(R) = venRn

for the ellipse.

(b) Show that your result subsumes the formula for the volume of the 3-dimensional
ellipse given by (

x
a

)2
+
(
y
b

)2
+
(
z
c

)2
= 1 V = 4

3
πabc

Exercise 4.21: Definite integrals of the multivariate normal and χ2

(a) Derive the following n-dimensional integral over an elliptical region∫
σb
e−x

TAxdx = πn/2

(detA)1/2
γ(n/2, b)
Γ(n/2)

σb = {x | xTAx ≤ b}

(b) Let ξ be distributed as a multivariate normal with mean m and covariance P ,
ξ ∼ N(m,P), and let α denote the total probability that ξ ∈ σb . Use the integral
in the previous part to show

Pr(ξ ∈ σb) = α =
γ(n/2, b/2)
Γ(n/2)

(4.83)

(c) Defining the transformation λ = xTAx, we have that ξ ∈ σb is equivalent to
λ ∈ [0, b], and since Pr(λ ∈ [0, b]) = Fλ(b)

Fλ(b) = α =
γ(n/2, b/2)
Γ(n/2)

This distribution is known as the χ2 distribution, also discussed in Exercise 4.33.
Therefore the function F−1

χ2 (α;n) inverts this relationship and gives the size of

the ellipse that contains total probability α
F−1
χ2 (α;n) = b (4.84)

Plot γ(n/2,x/2)Γ(n/2) and F−1
χ2 (x;n) versus x for various n (try n = 1,4), and display

the inverse relationship given by (4.83) and (4.84).
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Exercise 4.22: Normal distributions under linear transformations

Given the normally distributed random variable, ξ ∈ Rn, consider the random variable,
η ∈ Rn, obtained by the linear transformation

η = Aξ

in which A is a nonsingular matrix. Using the result on transforming probability den-
sities, show that if ξ ∼ N(m,P), then η ∼ N(Am,APAT ). This result establishes
that (invertible) linear transformations of (nonsingular) normal random variables are
normal.

Exercise 4.23: Normal with singular covariance

Consider the random variable ξ ∈ Rn and an arbitrary positive semidefinite covariance
matrix Px with rank r < n. Starting with the definition of a singular normal, Definition
4.10, show that the density for ξ ∼ N(mx , Px) is given by

pξ(x) =
1

(2π)r/2(detΛ1)1/2
exp

[
− 1

2
(x−mx)TQ1Λ−1

1 QT1 (x−mx)
]
δ(QT2 (x−mx))

in which matrices Λ ∈ Rr×r and orthonormal Q ∈ Rn×n are obtained from the eigen-
value decomposition of Px

Px = QΛQT =
[
Q1 Q2

][Λ1 0
0 0

][
QT1
QT2

]

and Λ1 > 0 ∈ Rr×r , Q1 ∈ Rn×r , Q2 ∈ Rn×(n−r). On what set of x is the density
nonzero?

Exercise 4.24: Linear transformation and singular normals

Prove Theorem 4.12, which generalizes the result of Exercise 4.22 to establish that any
linear transformation of a normal is normal. And for this statement to hold, we must
expand the meaning of normal to include the singular case.

Exercise 4.25: Useful identities in least-squares estimation

Establish the following two useful results using the matrix inversion formula(
A−1 + CTB−1C

)−1
= A−ACT

(
B + CACT

)−1
CA(

A−1 + CTB−1C
)−1

CTB−1 = ACT
(
B + CACT

)−1
(4.85)

Exercise 4.26: Least-squares parameter estimation and Bayesian estimation

Consider a model linear in the parameters

y = Xθ + e (4.86)

in which y ∈ Rp is a vector of measurements, θ ∈ Rm is a vector of parameters,
X ∈ Rp×m is a matrix of known constants, and e ∈ Rp is a random variable modeling
the measurement error. The standard parameter estimation problem is to find the best
estimate of θ given the measurements y corrupted with measurement error e, which
we assume is distributed as

e ∼ N(0, R)
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(a) Consider the case in which the measurement errors are independently and iden-
tically distributed with variance σ2, R = σ2I. For this case, the classic least-
squares problem and solution are

min
θ

∥∥y −Xθ∥∥2 θ̂ =
(
XTX

)−1
XTy

Consider the measurements to be sampled from (4.86) with true parameter value
θ0. Show that using the least-squares formula, the parameter estimate is dis-
tributed as

θ̂ ∼ N(θ0, Pθ̂) Pθ̂ = σ
2
(
XTX

)−1

(b) Now consider again the model of (4.86) and a Bayesian estimation problem. As-
sume a prior distribution for the random variable θ

θ ∼ N(θ, P)

Compute the conditional density of θ given measurement y , show this density
is a normal, and find its mean and covariance

(θ|y) ∼ N(m,P)

Show that Bayesian estimation and least-squares estimation give the same result
in the limit of a uniform prior. In other words, if the covariance of the prior is
large compared to the covariance of the measurement error, show

m ≈ (XTX)−1XTy P ≈ Pθ̂

(c) What (weighted) least-squares minimization problem is solved for the general
measurement error covariance

e ∼ N(0, R)

Derive the least-squares estimate formula for this case.

(d) Again consider the measurements to be sampled from (4.86) with true param-
eter value θ0. Show that the weighted least-squares formula gives parameter
estimates that are distributed as

θ̂ ∼ N(θ0, Pθ̂)

and find Pθ̂ for this case.

(e) Show again that Bayesian estimation and least-squares estimation give the same
result in the limit of a uniform prior.

Exercise 4.27: Least-squares and minimum-variance estimation

Consider again the model linear in the parameters and the least-squares estimator from
Exercise 4.26

y = Xθ + e e ∼ N(0, R)

θ̂ =
(
XTR−1X

)−1
XTR−1y

Show that the covariance of the least-squares estimator is the smallest covariance of
all linear, unbiased estimators.
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Exercise 4.28: Two stages are not better than one

We can often decompose an estimation problem into stages. Consider the following
case in which we wish to estimate x from measurements of z, but we have the model
between x and an intermediate variable, y , and the model between y and z

y = Ax + e1 cov(e1) = Q1

z = By + e2 cov(e2) = Q2

(a) Write down the optimal least-squares problem to solve for ŷ given the z mea-
surements and the second model. Given ŷ , write down the optimal least-squares
problem for x̂ in terms of ŷ . Combine these two results together and write the
resulting estimate of x̂ given measurements of z. Call this the two-stage estimate
of x.

(b) Combine the two models together into a single model and show the relationship
between z and x is

z = BAx + e3 cov(e3) = Q3

Express Q3 in terms of Q1,Q2 and the models A,B. What is the optimal least-
squares estimate of x̂ given measurements of z and the one-stage model? Call
this the one-stage estimate of x.

(c) Are the one-stage and two-stage estimates of x the same? If yes, prove it. If
no, provide a counterexample. Do you have to make any assumptions about the
models A,B?

Exercise 4.29: Let’s make a deal!

Consider the following contest of the American television game show of the 1960s, Let’s
Make a Deal. In the show’s grand finale, a contestant is presented with three doors.
Behind one of the doors is a valuable prize such as an all-expenses-paid vacation to
Hawaii or a new car. Behind the other two doors are goats and donkeys. The contestant
selects a door, say door number one. The game show host, Monty Hall, then says,

“Before I show you what is behind your door, let’s reveal what is behind door num-
ber three!” Monty always chooses a door that has one of the booby prizes behind it.
As the goat or donkey is revealed, the audience howls with laughter. Then Monty asks
innocently,

“Before I show you what is behind your door, I will allow you one chance to change
your mind. Do you want to change doors?” While the contestant considers this option,
the audience starts screaming out things like,

“Stay with your door! No, switch, switch!” Finally the contestant chooses again,
and then Monty shows them what is behind their chosen door.

Let’s analyze this contest to see how to maximize the chance of winning. Define

p(i, j,y), i, j,y = 1,2,3

to be the probability that you chose door i, the prize is behind door j and Monty showed
you door y (named after the data!) after your initial guess. Then you would want to

max
j
p(j|i,y) (4.87)

for your optimal choice after Monty shows you a door.

(a) Calculate this conditional density and give the probability that the prize is behind
door i, your original choice, and door j ≠ i.
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(b) You need to specify a model of Monty’s behavior. Please state the one that is
appropriate to Let’s Make a Deal.

(c) For what other model of Monty’s behavior is the answer that it does not matter
if you switch doors. Why is this a poor model for the game show?

Exercise 4.30: A nonlinear transformation and conditional density

Consider the following relationship between the random variable y , and x and w

y = f(x)+w

The author of a famous textbook wants us to believe that

py|x(Y |X) = pw(Y − f(X))

Derive this result and state what additional assumptions on the random variables x
and w are required for this result to be correct.

Exercise 4.31: Least squares and confidence intervals

A common model for the temperature dependence of the reaction rate is the Arrhenius
model. In this model the reaction rate (rate constant, k) is given by

k = k0 exp(−E/T) (4.88)

in which the parameters k0 is the preexponential factor and E is the activation energy,
scaled by the gas constant, and T is the temperature in Kelvin. We wish to estimate k0
and E from measurements of the reaction rate (rate constant), k, at different temper-
atures, T . In order to use linear least squares we first take the logarithm of (4.88) to
obtain

ln(k) = ln(k0)− E/T
Assume you have made measurements of the rate constant at 10 temperatures evenly
distributed between 300 and 500 K. Model the measurement process as the true value
plus measurement error e, which is distributed normally with zero mean and 0.001
variance

ln(k) = ln(k0)− E/T + e e ∼ N(0,0.001)
Choose true values of the parameters to be

ln(k0) = 1 E = 100

(a) Generate a set of experimental data for this problem. Estimate the parameters
from these data using least squares. Plot the data and the model fit using both
(T , k) and (1/T , lnk) as the (x,y) axes.

(b) Calculate the 95% confidence intervals for your parameter estimates. What are
the coordinates of the semimajor axes of the ellipse corresponding to the 95%
confidence interval?

(c) What are the coordinates of the corners of the box corresponding to the 95%
confidence interval?

(d) Plot your result by showing the parameter estimate, ellipse, and box. Are the
parameter estimates highly correlated? Why or why not?
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Exercise 4.32: A fourth moment of the normal distribution

You have established the following matrix integral result involving the second moment
of the normal distribution∫∞

−∞
xxT exp

(
−1

2
xTP−1x

)
dx = (2π)n/2(detP)1/2P

Establish the following matrix result involving a fourth moment∫∞
−∞
xxTxxT exp

(
−1

2
xTP−1x

)
dx = (2π)n/2(detP)1/2 [2PP + tr(P)P]

First you may want to establish the following result for scalar x

ip =
∫∞
−∞
xp exp

(
−1

2
x2

σ2

)
dx

=

0 p odd

2
p+1

2 σp+1Γ(p+1
2 ) p even

Exercise 4.33: The χ2 and χ densities

Let Xi, i = 1,2, . . . , n, be statistically independent, normally distributed random vari-
ables with zero mean and unit variance. Consider the random variable Y to be the sum
of squares

Y = X2
1 +X2

2 + · · · +X2
n

(a) Find Y ’s probability density. This density is known as the χ2 density with n
degrees of freedom, and we say Y ∼ χ2

n. Show that the mean of this density is
n.

(b) Repeat for the random variable

Z =
√
X2

1 +X2
2 + · · ·X2

n

This density is known as the χ density with n degrees of freedom, and we say
Z ∼ χn.

Exercise 4.34: The t-distribution

Assume that the random variables X and Y are statistically independent, and X is
distributed as a normal with zero mean and unit variance and Y is distributed as χ2

with n degrees of freedom. Show that the density of random variable t defined as

t = X√
Y/n

is given by

pt(z;n) = 1√
nπ

Γ
(n+1

2

)
Γ
(n

2

) (
z2

n
+ 1

)−n+1
2

t-distribution (density) (4.89)

This distribution is known as Student’s t-distribution after its discoverer, the chemist
W. S. Gosset (Gosset, 1908), writing under the name Student.
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Exercise 4.35: The F-distribution

Given random variables X and Y are independently distributed as χ2 with n and m
degrees of freedom, respectively. Define the random variable F as the ratio,

F = X/n
Y/m

Show that F ’s probability density is

pF (z;n,m) =

√
(zn)nmm

(zn+m)n+m
zB(n2 ,

m
2 )

z ≥ 0 n,m ≥ 1

in which B is the complete Beta function (Abramowitz and Stegun, 1970, p. 258) defined
by

B(n,m) = Γ(n)Γ(m)
Γ(n+m)

This density is known as the F -distribution (density).

Exercise 4.36: Relation between t- and F-distributions

Given the random variable F is distributed as pF (z; 1,m) distribution with parameters
n = 1 and m, consider the transformation

τ = ±
√
F

Show that the random variable τ is distributed as a t-distribution with parameter m

pτ(z;m) = pt(z;m)

Exercise 4.37: Independence and conditional density

Consider two random variables A, B with joint density pAB(a, b), and well-defined
marginals pA(a) and pB(b) and conditional pA|B(a|b). Show that A and B are statis-
tically independent if and only if the conditional of A given B is independent of b

pA|B(a|b) ≠ f(b)

Exercise 4.38: Independent estimates of parameter and variance

(a) Show that θ̂ and σ̂2 given in (4.48) and (4.49) are statistically independent.

(b) Are the random variables θ̂ andy−Xθ̂ statistically independent as well? Explain
why or why not.

Exercise 4.39: Many samples of the vector least-squares problem

We showed for the model

y = Xθ + e e ∼ N(0, R)

that the maximum-likelihood estimate is given by (4.63)

θ̂ =
(
XTR−1X

)−1
XTR−1y
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Use this result to solve the n-sample problem given by the following model
y1
y2
...
yp


i

=


xT1
xT2

...
xTp


θ
 +


e1
e2
...
ep


i

yi = Xi θ + ei ei ∼ N(0, R)

First stack the yi samples in an enlarged vector ỹ , and define the corresponding
stacked X̃ matrix and ẽ measurement error

y1
y2
...
yn

 =


X1
X2
...
Xn


θ
 +


e1
e2
...
en

 ei ∼ N(0, R)

ỹ = X̃ θ + ẽ ẽ ∼ N(0, R̃)

(a) What is the covariance matrix R̃ for the new ẽ measurement error vector?

(b) What is the corresponding formula for θ̂ in terms of ỹ for this problem?

(c) What is the probability density for this θ̂?

(d) Does this result agree with (4.64)? Discuss why or why not.

Exercise 4.40: Vector and matrix least-squares problems

A colleague has an old but good piece of software that solves the traditional vector
least-squares problem with constraints on the parameters

y = Aθ + e e ∼ N(0, R)
in which y,θ, e are vectors and A,R are matrices. If the constraints are not active, the
code produces the well-known solution

θ̂ =
(
ATR−1A

)−1
ATR−1y (4.90)

You would like to use this code to solve your matrix model problem

yi = Θxi + ei ei ∼ N(0, R)
in which yi, xi, ei are vectors, Θ is a matrix, i is the sample number, i = 1, . . . , n, and
you have n statistically independent samples. Your colleague suggests you stack your
problem into a vector and find the solution with the existing code. So you arrange your
measurements as

Y =
[
y1 · · · yn

]
X =

[
x1 · · · xn

]
E =

[
e1 · · · en

]
and your model becomes the matrix equation

Y = ΘX + E (4.91)

You looked up the answer to your estimation problem when the constraints are not
active and find the formula

Θ̂ = YXT
(
XXT

)−1
(4.92)
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Figure 4.16: Typical strain versus time data from a molecular dynam-
ics simulation. The data are available on the website
www.chemengr.ucsb.edu/~jbraw/principles.

You do not see how this answer can come from your colleague’s code because the
answer in (4.90) obviously depends onR but your answer above clearly does not depend
on R. Let’s get to the bottom of this apparent contradiction, and see if we can use vector
least-squares codes to solve matrix least-squares problems.

(a) What vector equation do you obtain if you apply the vec operator to both sides
of the matrix model equation, (4.91)?

(b) What is the covariance of the vector vecE appearing in your answer above?

(c) Apply (4.90) to your result in (a) and obtain the estimate vecΘ̂.

(d) Apply the vec operator to the matrix solution, (4.92), and obtain another expres-
sion for vecΘ̂.

(e) Compare your two results for vecΘ̂. Are they identical or different? Explain any
differences. Does the parameter estimate depend on R? Explain why or why not.

Exercise 4.41: Estimating a material’s storage and loss moduli from molec-
ular simulation

Consider the following strain response model7

σxy(ωt) = G1 sinωt +G2 cosωt

in which σxy is the strain, G1 is the storage modulus, and G2 is the loss modulus (G1
and G2 are positive scalars). We wish to estimate G1 and G2 from measurements of
σxy at different times t for a given forcing frequency ω.

The strain “measurement” in this case actually comes from a molecular dynamics
simulation. The simulation computes a noisy realization of σxy(ωt) for the given ma-
terial of interest. A representative simulation data set is provided in Figure 4.16. These

7This problem was motivated by Rohit Malshe’s preliminary exam on May 7, 2007.



454 Probability, Random Variables, and Estimation

0

2

4

6

8

10

12

−0.2 0 0.2 0.4 0.6 0.8 1

y

x

Figure 4.17: Plot of y versus x available on the website www.
chemengr.ucsb.edu/~jbraw/principles.

data are available on the website www.chemengr.ucsb.edu/~jbraw/principles so
you can download them.

(a) Without knowing any details of the molecular dynamics simulation, suggest a
reasonable least-squares estimation procedure for G1 and G2.

Find the optimal estimates and 95% confidence intervals for your recommended
estimation procedure.

Plot your best-fit model as a smooth time function along with the data.

Are the confidence intervals approximate or exact in this case? Why?

(b) Examining the data shown in Figure 4.16, suggest an improved estimation pro-
cedure. What traditional least-squares assumption is violated by these data?

How would you implement your improved procedure if you had access to the
molecular dynamics simulation so you could generate as many replicate “mea-
surements” as you would like at almost no cost.

Exercise 4.42: Who has the error?

You are fitting some n laboratory measurements to a linear model

yi =mxi + b + eyi i = 1,2, . . . , n

in which you have been told that the x variable is known with high accuracy and the y
variable has measurement error ey distributed as

ey ∼ N(0,0.03)

The data are shown in Figure 4.17 and are available on the website www.chemengr.
ucsb.edu/~jbraw/principles.

(a) Given these assumptions, write the model as

y = Xθ + ey
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find the best estimate of the slope and intercept

θ̂ =
[
m̂
b̂

]

and the 95% probability confidence ellipse, and also the plus/minus bounds on
the parameter estimates.

(b) Plot the data, and the line of best fit to these data.

(c) Due to some confusion in the lab, you are told later that actually y is known
with high accuracy and the x variable has measurement error ex distributed as

ex ∼ N(0,0.01)

Transform the model so that it is linear in a transformed parameter vector φ

xi = f(yi,φ1,φ2)+ exi i = 1,2, . . . , n

What are f and φ for the transformed model?

(d) Given these assumptions, write the model as

x = Yφ+ ex

find the best estimate φ̂ for this model. Add this line of best fit to the plot of
the data and the line of best fit from the previous model. Clearly label which
line corresponds to which model.

(e) Compute the 95% confidence ellipse and plus/minus bounds for φ̂.

(f) Can you tell from the estimates and the fitted lines which of these two proposed
models is more appropriate for these data? Discuss why or why not.

Exercise 4.43: Independence of transformed normals

Consider n independent samples of a scalar, zero-mean normal random variable with

variance σ2 arranged in a vector e =
[
e1 e2 · · · en

]T
so that

e ∼ N(0, σ2In)

Consider random variables x and y to be linear transformations of e, x = Ae and
y = Be.

(a) Provide necessary and sufficient conditions for matrices A and B so that x and
y are independent.

(b) Given that the conditions on A and B are satisfied, what can you conclude about
x and y if e has variance σ2In but is not necessarily normally distributed.

Exercise 4.44: The multivariate t-distribution

Assume that the random variables X ∈ Rp and Y ∈ R≥0 are statistically independent,
X ∼ N(0,Σ) and Y ∼ χ2

n.
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(a) Show that the density of random variable t defined as

t = X√
Y/n

+m

with m ∈ Rp a constant is given by

pt(z;p,n,m,Σ) =
Γ
(n+p

2

)
Γ
(n

2

)
(nπ)p/2(detΣ)1/2

(
1+ 1

n
(z −m)TΣ−1(z −m)

)−(n+p)/2
(4.93)

This distribution is known as the multivariate t-distribution, and was discov-
ered by Cornish (1954), and Dunnett and Sobel (1954).

(b) Show that the ratio of the least-squares estimates of the parameters and vari-
ance for the case of the linear model with unknown measurement variance are
distributed as

θ̂ − θ0√
n

n−np σ̂
2
+ θ0 ∼ t(np , n−np , θ0, (XTX)−1)

Exercise 4.45: Integrals of the multivariate t-distribution and the F-statistic

Given the random variable t is distributed as a multivariate t defined in Exercise 4.44,
consider the p-dimensional hyperellipse σb , of size b ∈ R≥0, centered at m ∈ Rp

σb = {z | (z −m)TΣ−1(z −m) ≤ b}
Show that the value of b that gives probability Pr(t ∈ σb) = α for the multivariate
t-distribution is given by the following F -statistic

b = pF−1
F (α;p,n)

in which F−1
F (α;p,n) is the inverse of the cumulative F -distribution.

Exercise 4.46: Confidence interval for unknown variance

Consider again θ̂ and σ̂2 from (4.48) and (4.49) and define the new random variable Z
as the ratio

Z = θ̂ − θ0√
n

n−np σ̂
2
+ θ0

in which θ̂ and σ̂2 are statistically independent as shown in Exercise 4.38.

(a) Show Z is distributed as a multivariate t-distribution as defined in Exercise 4.44.

(b) Show that lines of constant probability of the multivariate t-distribution are
ellipses in θ̂ as in the normal distribution.

(c) Define an α-level confidence interval using the multivariate t-distribution in
place of the normal distribution and show that

(θ̂ − θ0)T
(
XTX

σ̂2

)
(θ̂ − θ0) ≤

npn
n−np

F−1
F (α;np , n−np)

in agreement with (4.54).
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Exercise 4.47: Adding two uniformly distributed random variables

Given two independent, uniformly distributed random variables, X ∼ U[0,1] and Y ∼
U[4,5], find the density for Z = X + Y . Note that the transformation from (X, Y) to Z
is not an invertible transformation.

Exercise 4.48: Product of two unit variance normals

Let X and Y be independent scalar random variables distributed identically as N(0,1).
Find and plot the density for Z = XY . Is pZ(z) well defined for all z? If not, explain
why not.

Exercise 4.49: A useful integral in Fourier transforms of normals

Derive the definite integral used in taking the Fourier transform of the normal density∫∞
0
e−a

2x2
cosbxdx =

√
π

2a
e−b

2/(4a2) a ≠ 0

Hint: consider first the exponential version of the integral on (−∞,∞). We wish to
show that ∫∞

−∞
e−a

2x2
eibxdx =

√
π
a
e−b

2/(4a2) a ≠ 0 (4.94)

which gives the integral of interest as well as a second result∫∞
0
e−a

2x2
sinbxdx = 0 a ≠ 0

To proceed, complete the square on the argument of the exponential and show that

−a2x2 + ibx = −a2
((
x − ib

2a2

)2 + b2

4a4

)
Then perform the integral by noticing that integrating the normal distribution gives∫∞

−∞
e−(1/2)(x−m

′)2/σ2
dx =

√
2πσ

even when m′ = im is complex valued instead of real valued. This last statement can
be established by a simple contour integration in the complex plane and noting that
the exponential function is an entire function, i.e., has no singularities in the complex
plane.

Exercise 4.50: Orthogonal transformation of normal samples

Let vectors x1, x2, . . . , xn ∈ Rp be n independent samples of a normally distributed
random variable with possibly different means but identical variance, xi ∼ N(mi, R).
Consider the transformation

yi =
n∑
j=1

Cijxj i = 1,2, . . . , n

in which matrix C is orthogonal.
Show that the yi are independently distributed as yi ∼ N(νi, R) in which νi =∑n

j=1 Cijmj for i = 1,2, . . . , n.
Hint: to reduce the algebra, you may wish to start off by arranging the xi and yi

samples in the following matrices

X =
[
x1 x2 · · · xn

]
Y =

[
y1 y2 · · · yn

]
and deduce the relationship between X, Y , and C given in the problem statement.
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Exercise 4.51: Estimated variance and the Wishart distribution

Let vectors e1, e2, . . . , en ∈ Rp be n independent samples of a normally distributed
random variable with zero mean and identical variance, ei ∼ N(0, R). Define the matrix

S =
n∑
i=1

eieTi

The distribution for random matrix S is known as the Wishart distribution, written

S ∼ Wp(R,n)

and integer n is known as the number of degrees of freedom.
Consider the estimation problem of Section 4.7.4 written in the form

Y = Θ0X + E E =
[
e1 · · · en

]
Θ0 ∈ Rp×q

(a) Show that the EET ∼ Wp(R,n).

(b) Define Ê = Y − Θ̂X and show that nR̂ = ÊÊT .

(c) Show that ÊÊT ∼ Wp(R,n− q), and therefore that nR̂ ∼ Wp(R,n− q).
Hint: take the SVD of the q ×n matrix X for q < n

X = U
[
Σ 0

][VT1
VT2

]

Define Z = EV , which can be partitioned as
[
Z1 Z2

]
= E

[
V1 V2

]
, and show

that ÊÊT = Z2ZT2 . Work out the distribution of Z2ZT2 from the definition of the
Wishart distribution and the result of Exercise 4.50.

(d) Show that the variance estimate R defined as

R = 1
n− q ÊÊ

T

is an unbiased estimate of the variance R.

Exercise 4.52: Singular normal distribution as a delta sequence

Two generalized functions f(·) and g(·) are defined to be equal (in the sense of distri-
butions) if they produce the same integral for all test functions φ(·) ∈ Φ

⟨f ,φ⟩ = ⟨g,φ⟩∫∞
−∞
f(x)φ(x)dx =

∫∞
−∞
g(x)φ(x)dx

The space of test functions Φ is defined to be the set of all smooth (nongeneralized)
functions that vanish outside of a compact set C = [−c, c] for some c > 0.

Show that the zero mean normal density n(x,σ)

n(x,σ) = 1√
2πσ

e−
1
2 (x/σ)

2

is equal to the delta function δ(x) in the limit σ → 0.
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Exercise 4.53: Error bound for the Taylor series of the exponential

Derive the bound (4.31) used in establishing the central limit theorem for sums of
identically distributed random variables∣∣∣∣∣∣eix −

n∑
m=0

(ix)m

m!

∣∣∣∣∣∣ ≤ |x|n+1

(n+ 1)!

Hint: expand eix in a Taylor series with remainder term at x = 0 and take magnitudes.
Note that for this particular function, the inequality above turns out to be an equality.

Exercise 4.54: Error bound for the remainder term in Taylor series

Derive the bound (4.72) for a second-order Taylor series of a bounded function f having
three continuous, bounded derivatives

r(x,h) = f(x + h)−
(
f(x)+ f (1)(x)h+ f

(2)(x)
2

h2
)

sup
x∈R

|r(x,h)| ≤ Kf min(h2, |h|3)

Show that the following Kf is valid for any b > 0

Kf =max
(
[(2/b2)M(0)f + (1/b)M(1)f + (1/2)M(2)f ], (b/6)M(3)f , (1/6)M(3)f

)
(4.95)

with M(i)f = supx∈R f (i)(x).
Hints: first expand f(x+h) about f(x) to second order using the standard Taylor

theorem with remainder. This gives the |h|3 bound. For the second-order bound, first
take absolute values of the definition of r(x,h) and use the triangle inequality. Choose
a constant b > 0 and consider two cases: |h| ≤ b and |h| > b. Develop second-order
bounds for both cases and then combine them to obtain a second-order bound for all
h. Finally, combine the second-order and third-order bounds by taking the smaller.

Exercise 4.55: Lindeberg conditions

Show that the following are special cases of the Lindeberg conditions given in Assump-
tion 4.15.

(a) The de Moivre-Laplace central limit theorem assumption that the Xi are inde-
pendent and identically distributed with mean zero and variance σ2.

(b) The Lyapunov central limit theorem assumption that there exists δ > 0 such
that as n→∞

1

s2+δ
n

n∑
k=1

E(
∣∣Xk∣∣2+δ)→ 0

Note that the Lyapunov assumption implies only part (b) of Assumption 4.15.

(c) The bounded random variable assumption, i.e., there exists B > 0 such that∣∣Xi∣∣ ≤ B, i = 1,2, . . ..

Therefore, by proving Theorem 4.16, we have also proved the de Moivre-Laplace
and the Lyapunov versions of the central limit theorem. We have also shown that the
central limit theorem holds for bounded random variables, provided that sn →∞.
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Figure 4.18: Smooth approximation to a unit step function,H(z−1).

Exercise 4.56: Normal random variables satisfy Lindeberg conditions

Let Xi, i = 1,2, . . . , n be independent with mean zero and variance σ2
i . Let Yi, i =

1,2, . . . , n be independent normals with mean zero and variance σ2
i . Show that if the

Xi satisfy the Lindeberg conditions listed in Assumption 4.15, then so do the Yi.
Hint: using the Xi variables, show that for n sufficiently large and any ϵ > 0,

σi/sn ≤
√

2ϵ for all i. This result shows that no single random variable can account for
a significant fraction of the sum’s variance as n becomes large. Next evaluate the Lin-
deberg condition for the Yi variables, and use the fact that

∑
i σ3
i ≤ (maxi σi)

∑
i σ2
i =

(maxi σi)s2
n.

Exercise 4.57: Smoothing a step (indicator) function

We construct a suitably smooth indicator function as shown in Figure 4.15. To simplify
the presentation, first consider the set up in Figure 4.18. We seek a monotone function
f(z) with three continuous derivatives that increases from zero at z = 0 to one at
z = 2. We shall then rescale the z-axis to make this function as sharp as we please.

(a) Divide the interval in half and consider a fifth-order polynomial on z ∈ [0,1].

p(z) = a0 + a1z + a2z2 + a3z3 + a4z4 + a5z5

To have p(z) and its first three derivatives vanish at z = 0, we require a0 = a1 =
a2 = a3 = 0. We will reflect this function about the y = 1/2 and z = 1 lines
to provide the matching function q(z) on z ∈ [1,2], or, in equations, q(z) =
−p(2−z)+1. Note that the symmetry implies p(i)(1) = (−1)i+1q(1), so that all
odd derivatives are automatically continuous at z = 1, and the even derivatives
are negatives of each other at z = 1. So we require that the even derivatives at
z = 1 are zero. We therefore have two conditions, p(1) = 1/2 and p′′(1) = 0, to
find the remaining two coefficients

p(1) = a4 + a4 = 1/2 p′′(1) = 12a4 + 20a5 = 0

Solve these equations and show that a4 = 5/4 and a5 = −3/4.
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(b) The candidate function f(z) is therefore

f(z) =


0, z ≤ 0

(5/4)z4 − (3/4)z5, 0 < z ≤ 1

1− (5/4)(2− z)4 + (3/4)(2− z)5, 1 ≤ z < 2

1, 2 ≤ z

Plot this function and its first three derivatives, and check that they are contin-
uous at z = 0,1,2. Show that the maxima in magnitude of the derivatives are
given by

M(0)f = 1 M(1)f = 5/4 M(2)f = 20/9 M(3)f = 15

and check these values also on your plots.

(c) Next we rescale. Letw = (1−z/2)L+x and f(z) = f(2(1−(w−x)/L)) = f̃ (w).
The function f̃ (w) now has the required properties of Figure 4.15. Show that
the derivative bounds are scaled by

M(i)
f̃
= (2/L)iM(i)f

(d) Show finally that because of this scaling with L, there exists L0 > 0 such that the
bound in (4.95) is given by

Kf̃ = 20L−3 for every L satisfying 0 < L ≤ L0 (4.96)

For an even smoother, seventh-order polynomial, with a smaller third derivative, see
Thomasian (1969, p.486).

Exercise 4.58: Properties of PLSR algorithm

Given the PLSR algorithm described in Section 4.8, establish the following properties.

(a) TTT = Iq

(b) Q minimizes
∥∥∥Y − TQT ∥∥∥2

F
for given Y and T .

(c) T = XR

Exercise 4.59: The marginal intervals for the unknown meaurement vari-
ance case and the t-statistic

Consider again the maximum-likelihood estimation problem presented in Section 4.7.2
for the linear model with scalar measurement y , and unknown measurement variance
σ2.

(a) Show that the marginal box for this case is given by

θ̂ = θ0 ±m

mi =
(
F−1
F (α; 1, n−np) s2(XTX)−1

ii

)1/2

(b) Compare your formula formi above to ci given in the text for the bounding box
interval. Which one is larger and why?
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(c) Next use the approach in Exercise 4.34 to show that the marginal box can equiv-
alently be expressed with a t-statistic

mi = F−1
t

(
1+α

2
;n−np

)(
s2(XTX)−1

ii
)1/2

in which F−1
t is the inverse of the cumulative t-distribution, i.e.,∫ F−1

t (α;n)

−∞
pt(z;n)dz = α

for all n ≥ 1 and α ∈ [0,1]. Therefore, comparing the two formulas for mi, we
have also established the following relationship between the t-statistic and the
F -statistic

F−1
t

(
1+α

2
;n
)
=
√
F−1
F (α; 1, n) n ≥ 1, α ∈ [0,1]
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5
Stochastic Models and Processes

5.1 Introduction

We are by now expert in using (deterministic) differential and partial
differential equations as models of chemical and biological systems.
These equations capture equations of motion, conservation of mass
and energy, and many of the fundamental principles useful in analy-
sis and design of chemically reacting systems. Chapters 2 and 3 were
mainly devoted to developing this program. The motivation for stochas-
tic processes and differential equations is to incorporate into the model
the random effects of the internal system (discrete molecules) and the
external environment on the system of interest. In some applications
at fine length scales, the random effects are mainly due to the internal
random behavior of the molecules. But even in applications at large
scales, the random effects of the external environment are often quite
important to understand and interpret the (noisy) measurements com-
ing from a system.

In this chapter, we illustrate the usefulness of random variables and
random processes in the modeling and analysis of systems of interest
to chemical and biological engineers. We find the basic probability and
statistics that we covered in Chapter 4 indispensable tools in carrying
out this program. We study three main examples: (i) the Wiener pro-
cess as a model of diffusion in transport phenomena, (ii) the Poisson
process as a model of chemical reactions and kinetics at the small scale,
and (iii) the Kalman filter for reducing the effects of noise in process
measurements, a fundamental task in systems engineering. By covering
representative examples from transport phenomena, chemical kinetics,
and systems engineering, we hope to both introduce random models
and processes, as well as demonstrate their wide range of applicability
in modern chemical and biological engineering.
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5.2 Stochastic Processes for Continuous Random Vari-
ables

5.2.1 Discrete Time Stochastic Processes

Our target in this part of the chapter is an understanding of the struc-
ture and dynamics of continuous time stochastic processes: the stochas-
tic analogs of deterministic differential equations. In building up to
these, it is instructive to start with the conceptually simpler stochastic
difference equation. Consider the following example

x(k+ 1) = Ax(k)+Gξ(k) (5.1)

in which k ∈ I≥0 is the sample number in discrete time, ξ is a random
variable, assumed to have some fixed and known probability density,
and ξ(k), k = 0,1,2, . . . are independent, identically distributed sam-
ples of ξ. If we define a sampling interval ∆t, then t = k∆t. Because of
the influence of the random variable ξ, the variable x is also a random
variable. In general it can take any value, so we call it a continuous
random variable in contrast to the integer-valued or discrete random
variables we encounter in Section 5.3.

We wish to study the statistical properties of the process x(k) due
to the random disturbance ξ. Because the process is linear, an explicit
solution is simply calculated

x(k) = Akx(0)+
k−1∑
j=0

Ak−j−1Gξ(j) k ≥ 0 (5.2)

There is no difficulty expressing the solution to the stochastic differ-
ence equation; in fact we cannot determine by looking at the form of
the solution if ξ(k) is a random variable or simply a deterministic func-
tion of time. This is the perfect place to start because everything is
well defined regardless of whether or not ξ is a random variable. We
build some simple intuition with stochastic difference equations and
then proceed to continuous time systems. We shall also see that dif-
ference equations arise whenever we wish to numerically approximate
the solution to stochastic differential equations, so some facility with
the difference equations is highly useful.

The integrated white-noise process provides a starting point for
understanding many important aspects of stochastic processes. Con-
sider a system with scalar x, A = 1, zero initial condition and ξ(k) =
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w(k), where the w(k) are independent and unit normals w ∼ N(0,1)

x(k+ 1) = x(k)+Gw(k) x(0) = 0 (5.3)

We wish to find the probability density of x(k) versus time for this
process.

We have x(1) = x(0)+Gw(0) = Gw(0), so x(1) ∼ N(0, G2). Since
the w(k) sequence is independent of x, we have for k = 2

x(2) = x(1)+Gw(1)
[
x(1)
w(1)

]
∼ N

([
0
0

]
,
[
G2 0
0 1

])
Noting that

x(2) =
[
1 G

][x(1)
w(1)

]
and using Theorem 4.12 on the linear transformation of a normal we
have that

x(2) ∼ N(0,2G2)

Continuing this process gives

x(k) ∼ N(0, kG2) k ≥ 0

and we have that the variance of x(k) increases linearly with time and
the mean remains zero for the integrated white-noise process. If we
choose G =

√
∆t, then x(k) ∼ N(0, k∆t) and the system satisfies

x(t) ∼ N(0, t) t ≥ 0 G =
√
∆t

or equivalently its probability density p(x) satisfies

p(x, t) = 1√
2πt

exp

(
−1

2
x2

t

)

Similarly, if we let G =
√

2D∆t where D is a constant, then

x(t) ∼ N(0,2Dt) t ≥ 0

or

p(x, t) = 1
2
√
πDt

exp

(
−1

4
x2

Dt

)
This is precisely (3.68) from Chapter 3, which describes the transient
spread by diffusion of a delta-function initial condition. Thus we see
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already the first sign of what turns out to be a deep and important con-
nection between diffusion and stochastic processes: (5.3) is a model
for a particle undergoing Brownian motion in one dimension. Contin-
uing with the diffusion analogy, if we consider x(k∆t) = x(t) to be a
position variable, then the mean square displacement is given by

E
(
x2(t)

)
= var(x(t)) = kG2 = 2Dt

For diffusion processes, the mean square displacement increases lin-
early in time.

The analysis above can be extended to the case where the random
term has nonzero mean: ξ ∼ N(m,1), which we can write ξ =m +w
with w defined as above. Now

x(k+ 1) = x(k)+Gm+Gw(k)

Defining v = Gm/∆t this becomes

x(k+ 1) = x(k)+ v∆t +Gw(k)

Again, if we interpretx as a particle position, then the particle travels or
“drifts” a distance v∆t in one time interval as well as diffusing. Letting
G =

√
2D∆t

x(t) ∼ N(vt,2Dt)

The particle drifts with a velocity v so its mean position changes lin-
early with time, while also diffusing.

Finally, we return to the case where ξ is drawn from an arbitrary
distribution rather than a normal. With A = 1 and x(0) = 0, (5.2)
becomes

x(k) = G
k−1∑
j=0

ξ(j)

That is, the solution becomes a sum of independent identically dis-
tributed (IID) random variables. In Section 4.5 we learned the remark-
able fact that sums of IID random variables converge to a normal distri-
bution. Thus as k→∞, x(k) becomes normally distributed even if the
noise that drives it is not. So, for example, if we can only observe the
process x(t) at time intervals that are infrequent compared to ∆t, it
will be virtually impossible to know whether the underlying noise was
Gaussian or not—the resulting process x(k) will be. This result is one
reason why, in the absence of further information, taking the noise in
a system to be normally distributed is often a good approximation.
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5.2.2 Wiener Process and Brownian Motion

We now wish to define the continuous time version of the discrete time
integrated white noise or Brownian motion just presented. This pro-
cess, denotedW(t), is known as a Wiener process in honor of the math-
ematician Norbert Wiener. The property that we retain in taking the
limit as ∆t → 0 is that W(t) is normally distributed with zero mean
and linearly increasing variance or

W(t) ∼ N(0, t) t ≥ 0

By analogy with the results above, a diffusion process x(t) with diffu-
sivity D and x(0) = 0 would simply be

x(t) =
√

2DW(t) (5.4)

Note that the linear increase in variance with time should hold for any
starting time s, giving

W(t)−W(s) ∼ N(0, t − s) s ≥ 0, t ≥ s (5.5)

The increment of the Wiener process is denoted

∆W(t − s) = W(t)−W(s)

Considering distinct time instants ti, with ti > ti−1, we define ∆ti =
ti − ti−1 and ∆W(ti) = W(ti) − W(ti−1). Increments involving non-
overlapping time intervals are independent. The Wiener increments
have a number of important properties that follow from their defini-
tions

E(∆W(ti)) = 0 (5.6)

E((B∆W(ti))(B∆W(tj))) = B2∆tiδij (5.7)

E (∆W(ti)n) = 0 for n odd (5.8)

E
(
∆W(ti)2m

)
∝ ∆tmi for integer m (5.9)

In Theorem 4.12 we saw that the distribution of a sum of normally
distributed random variables is also normally distributed. A number of
important results for Wiener processes follow from this fact. A Wiener
process can be written as a sum of N Wiener increments for any N

W(t − t0) =
N∑
i=1

∆W(ti) (5.10)
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where tN = t and the only restriction on ti is that ti > ti−1. Accordingly,
a diffusion (Brownian motion) process can be written as a sum of Wiener
increments multiplied by

√
2D

x(t − t0) =
N∑
i=1

√
2D∆W(ti) (5.11)

Furthermore, for separate Wiener processes W1,W2,W3

√
2D1∆W1(ti)+

√
2D2∆W2(ti) =

√
2(D1 +D2)∆W3(ti) (5.12)

In other words, the sum of two diffusion processes is equivalent to a
different diffusion process whose diffusivity is the sum of the first two.

To visualize a trajectory of a Brownian motion process x(t), we
can use (5.11), generating points x(t) at constant time intervals ∆t.
Observing that now ∆W ∼ N(0,∆t), this is equivalent to evaluating the
discrete time process

x((k+ 1)∆t) = x(k∆t)+
√

2D∆t w(k) x(0) = 0

with w(k) ∼ N(0,1) defined as above. Figure 5.1 shows a trajectory of
this process for sample time ∆t = 10−6 and diffusivity D = 5 × 105.
Notice that the roughness is quite apparent in the top row of Figure
5.1. But by looking at finer time scales, we can see the effect of the
finite step size in the discrete time approximation. The continuous
time Wiener process defined in (5.5) maintains its roughness at all time
scales; Figure 5.2 shows how the path should appear between the sam-
ples if we chose the step size properly for this magnification. Unlike
more familiar functions, the Wiener process is very irregular. Thus it
is important to address its continuity and smoothness properties.

The Wiener process is continuous. A crude argument for this state-
ment is that |∆W | ∝

√
∆t, which approaches zero as ∆t → 0. A more

refined one is presented in Exercise 5.4. On the other hand, because of
the ∆t1/2 behavior of ∆W , we arrive at the perhaps surprising fact that
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Figure 5.1: A simulation of the Wiener process with fixed sample
time ∆t = 10−6 and D = 5 × 105. The boxed region
in each figure is expanded in the next plot to display a
decreasing time scale of interest. The true Wiener pro-
cess is rough at all time scales and therefore dW(t)/dt
does not exist. The top row shows an adequate sampling
rate to display the roughness of the Wiener process. The
middle row shows the time scale of interest starting to
become too small for the given sample time. The bot-
tom row shows a time scale of interest much too small
for the given sample time; one can see the samples and
the straight lines drawn between them.
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Figure 5.2: Sampling faster on the last plot in Figure 5.1; the sam-
ple time is decreased to ∆t = 10−9 and the roughness is
restored on this time scale. Thought question: how did
we generate a random walk that passes exactly through
the solid sample points taken from Figure 5.1? Hint: cer-
tainly not by trial and error! Such a process is called a
Brownian bridge (Bhattacharya and Waymire, 2009).

the Wiener process is not differentiable1

E
(∣∣∣∣∆W∆t

∣∣∣∣) = 1
∆t
E (|∆w|)

= 1
∆t

1√
2π∆t

∫∞
−∞
|x| exp

(
−x2

2∆t

)
dx

=
√

2∆t/π
∆t

=
√

2
π

1√
∆t

This diverges as ∆t−1/2 as ∆t → 0.

1The results of Exercise 5.8 were applied in this derivation.
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Now let us return for the moment to the discrete time integrated
white-noise process, (5.3). Considering a sampling interval ∆t and let-
ting x(k + 1) − x(k) = ∆x and Gw(k) = B∆W , we can rewrite this
as

∆x = B∆W (5.13)

Under other circumstances we could divide by ∆t and let it shrink to
zero, yielding

dx
dt
=
√

2D
dW
dt

We have just found, however, that dW/dt does not exist. Neverthe-
less, we can define a differential of the Wiener process as the Wiener
increment W(t +∆ts)−W(t) when ∆t becomes the infinitesimal dt

dW(t) = W(t + dt)−W(t) ∼ N(0, dt)

This is also known as the white-noise process. It is not continuous.
Now we can write (5.13) in differential form

dx = B dW (5.14)

This is the most elementary stochastic differential equation.
With initial condition x(0) = 0, its solution is (5.4).

5.2.3 Stochastic Differential Equations

Basic ideas

To motivate and introduce stochastic differential equations, consider
first the deterministic differential equation

dx
dt
= f(x, t) (5.15)

When we wish to augment this model to include some random effects,
one might try

dx
dt
= f(x, t)+ g(x, t)η(t)

in which η(t) is a random variable, often a normally distributed, zero
mean random variable, as discussed in Chapter 4.

We have already run into problems with this formulation. Even to
model a “well-behaved” (e.g., continuous) stochastic process like dif-
fusion, we have seen that the random term would have to take on the
form

g(x, t)η(t) = BdW
dt
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But we also saw that dWdt does not exist. Extending what we did above for
Brownian motion, we thus consider differentials instead of derivatives
and write a general stochastic differential equation (SDE) in the form

dx =A(x, t) dt +B(x, t) dW (5.16)

Formally, we can integrate this to yield

x(t) = x(0)+
∫ t

0
A(x(t′), t′) dt′ +

∫ t
0
B(x(t′), t′) dW(t′) (5.17)

The first integral is classical. The second would be as well if dWdt existed,
in which case would just write that∫ t

0
B(x(t′), t′) dW(t′) =

∫ t
0
B(x(t′), t′)dW

dt
dt′

This integral is nontrivial and to understand it we need to understand
a little bit about the calculus of stochastic processes.

Elementary Stochastic Calculus

Stochastic integrals of the form

S =
∫ t
t0
G(t′)dW(t′)

are more complex than conventional integrals because both G and dW
can vary stochastically (think of the case G(t) = W(t)). Nevertheless,
as with conventional integrals, we can divide the interval [t0, t] into n
subintervals t0 ≤ t1 ≤ t2... ≤ tn−1 ≤ t, and choose intermediate time
points τi such that ti−1 ≤ τi ≤ ti. Now the integral S is approximated
by the sum

Sn =
n∑
i=1

G(τi)(W(ti)−W(ti−1))

In normal calculus this sum converges to the same value independent
of the choice of the τi; in stochastic calculus this is not the case. We
will choose τi = ti−1, yielding the Itô stochastic integral2. Thus
(5.16) is an Itô stochastic differential equation.

2Other choices are used in various situations—for example the Stratonovich
stochastic integral takes τi = (ti−1 + ti)/2. Stochastic calculus is complex and techni-
cal; Gardiner (1990) and Schuss (2010) provide detailed discussions that are accessible
to the non-mathematician.
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The Itô stochastic integral corresponds to a stochastic “rectangle
rule,” with the function value chosen at the left side of the subinter-
val. One practical reason for this choice is that it is the one most
straightforwardly applied in numerical solutions of stochastic differen-
tial equations. The Euler-Maruyama scheme generalizes the explicit
Euler method to the stochastic case, using this rectangle rule approxi-
mation

x(t +∆t) = x(t)+A(x(t), t)∆t +B(x(t), t)∆W(∆t) (5.18)

where ∆W(∆t) ∼ N(0,∆t). This is the standard method for finding
trajectories of SDEs and is often referred to as Brownian dynamics
simulation; it is not highly accurate, but higher-order schemes for
SDEs are very complex to implement (Kloeden and Platen, 1992).

A more fundamental reason for working with the Itô integral is that,
when applied to (5.17), it corresponds to a noise term that does not
change the mean of x(t), because its expected value is zero

E
(∫ t
t0
G(t′) dW(t′)

)
= 0 (5.19)

This is easily seen by taking the expected value of the discrete sum and
using the fact that for the Itô integral, G(τi) and (W(ti)−W(ti−1)) are
independent

E (Sn) =
n∑
i=1

E (G(ti−1)(W(ti)−W(ti−1)))

=
n∑
i=1

E(G(ti−1))E (W(ti)−W(ti−1))

= 0

because E (W(ti)−W(ti−1)) = 0. This calculation makes clear that
the choice of τi matters: if τi were not taken to be ti−1, then G(τi)
and (W(ti)−W(ti−1)) would not be independent and E(Sn) would not
necessarily be zero.

By considering integrals of the form∫
G(t′)[dW(t′)]2+N

and using the Itô expression for Sn one can show that∫ t
t0
G(t′)[dW(t′)]2+N =

{ ∫ t
t0 G(t

′)dt′ N = 0
0 N > 0
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This result tells us how to treat higher differentials involving dW and
dt in general

[dW(t)]2 = dt, [dW(t)]2+N = 0, dW dt = 0

and so on. If dWi and dWj are different white-noise processes, e.g.,
corresponding to different components of a vector of such processes,
then

dWidWj = δijdt (5.20)

Unlike in regular calculus, in working with differentials ofW , one must
keep terms up todW 2. To understand why, simply recall thatE(|∆W |)∝√
∆t.

We can use the above observations about stochastic differentials to
derive the Itô stochastic chain rule. Let F be a function of t and
W(t). Then

dF(t,W(t)) =
(
∂F
∂t
+ 1

2
∂2F
∂W 2

)
dt + ∂F

∂W
dW(t)

For example, if we let F = x(t,W(t)) = A(t − t0) + B(W(t) −W(t0)),
where A and B are constants, then application of the chain rule gives
us back the constant coefficient SDE dx =A dt +B dW .

Now consider a function f(x(t)), where x(t) evolves according to
(5.16). The differential of f can be written

df(x(t)) = f(x(t + dt))− f(x(t))

= f ′(x(t))dx(t)+ 1
2
f ′′(x(t))(dx(t))2

= f ′(x(t))(A dt +B dW)+ 1
2
f ′′(x(t))(A dt +B dW)2

Noting that dt2 = 0 and dW 2 = dt, we have Itô’s formula

df(x(t)) = (Af ′ + 1
2
B2f ′′) dt +Bf ′ dW (5.21)

Example 5.1: Diffusion on a plane in Cartesian and polar coordinate
systems

We can write two-dimensional Brownian motion in Cartesian coordi-
nates as

dx = B dWx (5.22)

dy = B dWy (5.23)
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where Wx and Wy are independent Wiener processes and B =
√

2D.
How would we write the same process in polar coordinates?

Solution

As a brief prelude, observe that for a particle starting at the origin, the
mean square displacement satisfies

E
(
r 2(t)

)
= B2

(
E
(
W 2
x

)
+E

(
W 2
y

))
= B2 (t + t)
= 4Dt

This result easily extends to Brownian motion in any number d of di-
mensions, giving the result E

(
r 2(t)

)
= 2dDt.

Returning to the specific question at hand, consider the radial co-
ordinate first and keep in mind that we may need to keep terms up to
quadratic in dx and dy

dr = ∂r
∂x
dx + ∂r

∂y
dy + 1

2
∂2r
∂x2

dx2 + 1
2
∂2r
∂x∂y

dxdy + 1
2
∂2r
∂y2

dy2

Here all the partials can be evaluated from the formulas r =
√
x2 +y2

and θ = tan−1
(
y
x

)
. Now using the SDEs and noting that dx2 = dy2 =

B2dt, dxdy = 0, we have that

dr = cosθB dWx + sinθB dWy +
1

2r
B2 dt

Now, using (5.12) we see that cosθ dWx + sinθB dWy is a diffusion
process with variance dt. We will denote this process as dWr , so

dr = B
2

2r
dt + B dWr (5.24)

Consider a particle that starts at r = 0. Applying Itô’s formula with
f = r 2 and taking the expected value we find that

E(d(r 2)) = 2B2 dt

Letting B2 = 2D we find that E(r 2) = 4Dt in two dimensions, as we
should.

Now we turn to the equation for θ

dθ = ∂θ
∂x
dx + ∂θ

∂y
dy + 1

2
∂2θ
∂x2

dx2 + 1
2
∂2θ
∂x∂y

dxdy + 1
2
∂2θ
∂y2

dy2
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By symmetry there cannot be any drift term—positive and negative
changes in θ must be equally likely. Evaluating derivatives we find

dθ = B
r 2
(−ydWx + xdWy)

Using (5.12) again we can replace −ydWx + xdWy with r dWθ

dθ = B
r
dWθ (5.25)

□

Example 5.2: Average properties from sampling

Often we are interested in an “average” property of the model rather
than a single realization of the stochastic equation. Consider again
the random walk model of the diffusion process on the plane, (5.22)-
(5.23). Simulate the process and compute an estimate of the mean
square displacement versus time.

Solution

We approximate this process for simulation with the discrete process

X(k+ 1) = X(k)+ V∆t +
√

2D∆tP (5.26)

where X = (x,y)T , k is the sample number, ∆t is the sample time, and
time is t = k∆t. The velocity of the particles is V = (vx, vy)T and the
random two-vector P is the two-dimensional normal distribution with
zero mean and covariance equal to a 2× 2 identity matrix

P ∼ N(0, I)

This choice provides uncorrelated steps in the x and y directions. In
the ensuing discussion we choose ∆t = 1 so k = t. We also take
vx = vy = 0 here so there is no drift, only diffusion. A representa-
tive simulation of (5.26) is given in Figure 5.3.

We can approximate average properties by simulating many trajec-
tories or equivalently many independent particles, and then taking the
average. Let Xi(k) be the position of the ith particle at sample time k,
which follows the evolution

Xi(k+ 1) = Xi(k)+
√

2Dni (5.27)



5.2 Stochastic Processes for Continuous Random Variables 479

−160

−140

−120

−100

−80

−60

−40

−20

0

20

−80 −60 −40 −20 0 20 40 60 80 100

y

x

Figure 5.3: A representative trajectory of the discretely sampled
Brownian motion; D = 2, V = 0, n = 500.
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Figure 5.4: The mean square displacement versus time; D = 2, V =
0, n = 500.
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The squared displacement of the ith particle is given by

r 2
i (k) = XTi (k)Xi(k) (5.28)

and the mean square displacement is given by the average over many
particles

⟨r 2⟩(k) ≈ 1
n

n∑
i=1

r 2
i (k) n large

Figure 5.4 shows the mean square displacement for the random walk
with no drift and D = 2 for the diffusion coefficient. We use n = 500
particles for this simulation. Notice that the mean square displacement
grows linearly with time. The simulation agrees with Einstein’s analysis
of diffusion (Einstein, 1905). See also (Gardiner, 1990, pp.3–5) as well
as our analyses above

⟨r 2⟩(k) = 4Dk (5.29)

□

5.2.4 Fokker-Planck Equation

There are two ways to think about solving an SDE. We can find particu-
lar trajectories—this is what the Euler-Maruyama scheme above will do.
We can also consider the evolution of the probability density p(x, t).
In considering the integrated white-noise and Wiener processes, we ob-
served the connection between the evolution of p(x, t) and the diffu-
sion equation. The Wiener process is the solution to dx = dW . Because
its trajectories x(t)−x(0) ∼ N(0, t), the density p(x, t) for a trajectory
starting at x = x0 is a solution to the transient diffusion equation

∂p
∂t
= D∂

2p
∂x2

, p(0, t) = δ(x − x0) (5.30)

with D = 1
2 . To generalize this result, consider the time evolution

of the expected value of an arbitrary function f(x(t)), where x(t)
evolves according to the Itô SDE (5.16). Using Itô’s formula and the
result E (Bf ′ dW) = 0, which is the infinitesimal version of (5.19)

E (df(x(t))) = E
(
(Af ′ + 1

2
B2f ′′) dt +Bf ′ dW

)
= E

(
(Af ′ + 1

2
B2f ′′) dt

)
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This can be rewritten as

d
dt

∫
f(x)p(x, t) dx =

∫
(Af ′ + 1

2
B2f ′′)p(x, t) dx

Rearranging and integrating by parts yields∫
f(x)

∂p(x, t)
∂t

dx =
∫
f(x)

(
∂
∂x

(
−Ap(x, t)

)
+ 1

2
∂
∂x2

(
B2p(x, t)

))
dx

Finally, since f is arbitrary, this result can only hold in general if

∂p(x, t)
∂t

= ∂
∂x

(
−A(x, t)p(x, t)

)
+ ∂2

∂x2

(
1
2
B2(x, t)p(x, t)

)
(5.31)

This is the evolution equation for p(x, t), often called the Fokker-
Planck equation (FPE). For a trajectory starting at x = x0, the initial
condition for this equation is again p(0, t) = δ(x − x0). The equation
can be put into conservation form

∂p(x, t)
∂t

= − ∂
∂x

{
A(x, t)p(x, t)− ∂

∂x

(
1
2
B2(x, t)p(x, t)

)}
(5.32)

The term inside the curly brackets is the flux of probability density
and this equation bears obvious similarities to equations we are famil-
iar with from transport phenomena. It shows us that trajectories of
an Itô SDE have a drift coefficient A(x, t) and a diffusion coefficient
D(x, t) = 1

2B2(x, t). This is sometimes called the “short-time” diffu-
sivity, because one can show using Itô’s formula (Exercise 5.5) that for
a particle at position x′ at time t′

E
(
d(x − x′)2

dt

)∣∣∣∣∣
t=t′

= 2D(x′, t′) (5.33)

Similarly, the instantaneous drift velocity of the trajectory is (as in the
deterministic case)

E
(
d(x − x′)
dt

)∣∣∣∣
t=t′

=A(x′, t′) (5.34)

The probability density must integrate to unity∫
p(x, t) dx = 1 (5.35)
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Elaborating on the connection between the FPE and transport equa-
tions, we recall that the convection-diffusion equation in one dimension
is

∂c
∂t
= − ∂

∂x

{
v(x)c −D ∂

∂x
c
}

The first term in the flux expression inside the curly brackets is analo-
gous to that for the FPE, with A = v , but there is an important differ-
ence in the second term. When the (short-time) diffusivity D = 1

2B2 in
the FPE varies with position, it is not equivalent to the (gradient) diffu-
sivity D that appears in the transport equation. Exercise 5.2 explores
these differences in further detail.

We also can generalize the analysis to an n-vector random process
x, with components xi, i = 1,2, . . . , n. The SDE and FPEs for this case
are

dxi =Ai(x, t)dt +Bij(x, t) dWj (5.36)

∂
∂t
p = −

n∑
i=1

∂
∂xi

(Ai(x, t)p)+
n∑
i=1

n∑
j=1

∂2

∂xi∂xj
(Dij(x, t)p) (5.37)

Herep is a function of all componentsxi and time, p = p(x1, . . . , xn, t),
and Dij = 1

2BikBjk are the elements of the diffusion coefficient ma-
trix. The derivation of (5.37) from (5.36) makes use of the multidi-
mensional Itô formula

df(x) =
(
Ai
∂f
∂xi

+ 1
2
BikBjk

∂
∂xi

∂
∂xj

f
)
dt + Bij

∂f
∂xi

dWj (5.38)

As in the scalar case, probability is conserved∫
p(x1, x2, . . . , xn) dx1 dx2 . . . dxn = 1 (5.39)

In vector/matrix notation the equations are written

dx =A(x, t)dt +B(x, t) · dW (5.40)

∂
∂t
p(x, t) = −∇ ·

(
A(x, t)p(x, t)

)
+∇∇ : (D

(
x, t)p(x, t)

)
(5.41)

with

D(x, t) = 1
2
B ·BT (5.42)

This result indicates that D is symmetric positive semidefinite. For
numerical integration of multidimensional SDEs, the Euler-Maruyama
scheme extends straightforwardly.
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Example 5.3: Transport of many particles suspended in a fluid

A large number of particles, each obeying the equation

dx = vdt +
√

2DdW (5.43)

are moving in a fluid. How do we describe the evolution of the concen-
tration field in the fluid?

Solution

The probability density for an individual particle evolves as

pt = −vpx +Dpxx

For the many-particle system, we define ann-particle joint density func-
tion (n is on the order of Avogadro’s number) as

p(x1, x2, . . . , xn, t)dx1dx2 · · ·dxn
probability density that particles 1
through n are located at x1 through xn,
respectively, at time t

The concentration of particles at x, c(x, t), is then

c(x, t) =
n∑
j=1

∫
Ω
p(x1, . . . , xj , . . . , xn)δ(xi − xj)

n∏
i=1

dxi (5.44)

The jth term in the sum represents the probability that the jth particle
is located at x at time t, and the sum over all particles gives the total
concentration. If the particle motions are independent

p(x1, . . . , xn; t) =
n∏
i=1

pi(xi; t)

Performing the integral in (5.44) gives

c(x, t) =
n∑
j=1

pj(x, t)

which indicates that the linear superposition of each particle’s proba-
bility of being at location x produces the total concentration at x. If
the particles are identical, pj(x, t) = p(x, t), j = 1, . . . , n, this reduces
to

c(x, t) = np(x, t)
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The evolution equation for c is therefore

ct(x, t) = −vcx(x, t)+Dcxx(x, t)

The conclusion is that the concentration profile created by many non-
interacting, identical particles obeys the same evolution equation as the
probability density of a single particle. Averaging the behavior of many
particles does not “average away” the diffusion term in the evolution
equation of the total concentration c(x, t). See Deen (1998, pp. 59-63)
for further discussion of this case. □

Example 5.4: Fokker-Planck equations for diffusion on a plane

Example 5.1 introduced the stochastic differential equations for diffu-
sion on a plane in Cartesian and polar coordinate representations. For
the Cartesian representation, (5.22) and (5.23) have probability density
p(x,y) that satisfies the diffusion equation

∂p(x,y)
∂t

= D
(
∂2

∂x2
+ ∂2

∂y2

)
p(x,y) = D∇2p(x,y)

with normalization (conservation of probability) condition∫∫∞
−∞
p(x,y) dx dy = 1

If we rewrite this equation in polar coordinates we get

∂p(r , θ)
∂t

= D
(

1
r
∂
∂r

(
r
∂
∂r

)
+ 1
r 2

∂2

∂θ2

)
p(r , θ) = D∇2p(r , θ) (5.45)

and ∫ 2π

0

∫∞
0
p(r , θ)r dr dθ = 1

Do we get the same result if we start with the polar coordinate form
of the stochastic differential equations, (5.24) and (5.25)? Why or why
not?

Solution

Equations (5.24) and (5.25) can be written as the system[
dr
dθ

]
=
[D
r
0

]
dt +

[
B 0
0 B

r

][
dWr
dWθ

]
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With regard to (5.36) and (5.37), x1 = r ,x2 = θ and

A=
[D
r
0

]

D = 1
2

[
B 0
0 B

r

][
B 0
0 B

r

]T
=
[
D 0
0 D

r2

]
Inserting these expressions into (5.37) and denoting the probability
density as pP(r , θ) yields

∂pP(r , θ)
∂t

= −D ∂
∂r
pP(r , θ)
r

+D
(
∂2

∂r 2
+ 1
r 2

∂2

∂θ2

)
pP(r , θ) (5.46)

This is not the transient diffusion equation in polar coordinates.
We begin to understand this difference by writing the normalization

condition, (5.39) ∫ 2π

0

∫∞
0
pP(r , θ) dr dθ

This differs by a factor of r in the integrand from the conventional area
integral in polar coordinates. The reason is simple: in going from the
SDE to the FPE, we did not tell Itô’s formula about the geometry of area
elements on the plane, but only to take an SDE written with variables
x1 = r ,x2 = θ and write the corresponding FPE. There is no paradox
here, only a message to be careful about coordinate transformations.

Finally, we wish to understand the relationship between p and pP .
Motivated by the factor of r difference in the normalization conditions,
we might guess thatpP(r , θ) = crp(r , θ)where c is a constant. Indeed,
making this substitution into (5.46), we recover the transient diffusion
equation in polar coordinates, (5.45). For a process starting at the origin
at t = 0, the normalized solutions (Exercise 5.9) are

p(r , θ, t) = 1
4πDt

e−r
2/(4Dt)

and
pP(r , θ, t) = rp(r , θ, t) □

5.3 Stochastic Kinetics

5.3.1 Introduction, and Length and Time Scales

Our next application of interest is reaction networks and chemical ki-
netics taking place at small numbers of molecules. First we start with a
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continuum kinetics example to define some useful nomenclature. Con-
sider the following two-step series reaction

A
k1-→ B B

k2-→ C

We define the species vector of concentrations c =
[
cA cB cC

]T
, and

denote the stoichiometry for the reaction network with the stoichio-
metric matrix

ν =
[
−1 1 0

0 −1 1

]
We let νi, i = 1,2, . . . , nr denote the rows of the stoichiometric matrix,
written as column vectors

ν1 =

−1
1
0

 ν2 =

 0
−1

1


We assume the reaction takes place in a well-mixed reactor and assume
some rate law for the reaction kinetics, such as

r1 = k1cA r2 = k2cB r =
[
r1

r2

]

As taught in every undergraduate chemical engineering curriculum, the
material balances for the three species is then given by

d
dt
c = νTr(c) =

nr∑
i=1

νiri(c) (5.47)

The solution of this model with a pure reactant A initial condition is
shown in Figure 5.5.

Next we consider reactions taking place at small concentrations. In-
stead of the common case in which we have on the order of Avogadro’s
number of reacting molecules, assume we have only tens or hundreds
of molecules moving randomly in a constant-volume, well-mixed, re-
actor. At such low concentrations, the deterministic concentration as-
sumption makes no sense, and we have to consider the random behav-
ior of the molecules. But we still have to choose an appropriate length
and time scale of interest. Indeed, if we move down to the length scale
of the atoms, we can model the electron bonds deforming continu-
ously in time from reactants through transition states to products. We
choose instead a larger time and length scale so that each reaction that
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Figure 5.5: Two first-order reactions in series in a batch reactor,
cA0 = 1, cB0 = cC0 = 0, k1 = 2, k2 = 1.

takes place can be regarded as a single instantaneous event causing a
discrete change in the number of reactants and products. At this scale,
we track the integer-valued numbers of reactant and products, and we
treat the reaction events as random jump processes. This choice of
length and time scale makes the discrete Poisson process the natural
description for stochastic kinetics.

5.3.2 Poisson Process

Just as the Wiener process W(t) is the simplest mathematical process
appropriate for modeling diffusion, the Poisson process Y(t) is the sim-
plest mathematical process appropriate for modeling stochastic chem-
ical kinetics. The Poisson process is an integer-valued counting pro-
cess. Time is modeled as a continuous variable, but the value of the
Poisson process is discrete. The Poisson process is characterized by a
rate parameter, λ > 0, and for small time interval ∆t, the probability
of an event taking place in this time interval is proportional to λ∆t. To
start off, we assume that parameter λ is constant. The probability that
an event does not take place in the interval [0,∆t] is therefore approx-
imately 1−λ∆t. Let random variable τ be the time of the first event of
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the Poisson process starting from t = 0. We then have for small ∆t

Pr(τ > ∆t) ≈ 1− λ∆t

Like the Wiener process, the Poisson process has independent incre-
ments, which means that the number of events in disjoint time inter-
vals are independent. The independent increment assumption coupled
with the fact that λ does not change implies that the probability that
an event does not take place in two consecutive time intervals [0,2∆t]
is Pr(τ > 2∆t) ≈ (1 − λ∆t)2. Continuing this argument to n intervals
gives for t = n∆t

Pr(τ > t) ≈ (1− λ∆t)n ≈ (1− λ∆t)t/∆t

Taking the limit as ∆t → 0 gives

Pr(τ > t) = e−λt

From the probability axioms and the definition of τ ’s probability dis-
tribution, we then have

Pr(τ ≤ t) = Fτ(t) = 1− e−λt

Differentiating to obtain the density gives the exponential density

pτ(t) = λe−λt (5.48)

The exponential distribution should be familiar to chemical and bio-
logical engineers because of the residence-time distribution of a well-
mixed tank. The residence-time distribution of the CSTR with volume
V and volumetric flowrate Q satisfies (5.48) with λ being the dilution
rate or inverse mean residence time, λ = Q/V .

Figure 5.6 shows a simulation of the unit Poisson process, i.e., the
Poisson process with λ = 1. If we count many events, the sample path
looks like the top of Figure 5.7, which resembles a “bumpy” line with
slope equal to λ, unity in this case. The frequency count of the times to
next event, τ , are shown in the bottom of Figure 5.7, and we can clearly
see the exponential distribution with this many events. Note that to
generate a sample of the exponential distribution for the purposes of
simulation, one can simply take the negative of the logarithm of a uni-
formly distributed variable on [0,1]. Most computational languages
provide functions to give pseudorandom numbers following a uniform
distribution, so it is easy to produce samples from the exponential dis-
tribution as well. See Exercise 5.14 for further discussion.
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Figure 5.6: A sample path of the unit Poisson process.
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(top) and frequency distribution of event times τ.
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The time of the first event also characterizes the probability Pr(Y(t) =
0) for t ≥ 0. The probability that Y is still zero at time t is the same as
the probability that the first event has occurred at some time greater
than t, or Pr(Y(t) = 0) = Pr(τ > t) = 1− Pr(τ ≤ t). Therefore we have
the relationships

Pr(Y(t) = 0) = 1− Fτ(t) = e−λt

We next generalize the discussion to find the probability density for
the time of the second and subsequent events. Let random variable τ2

denote the time of the second event. We wish to compute the density
pτ2,τ(t2, t). Because of the independent increments property and the
fact that λ is constant, we have for the joint density

pτ2,τ(t2, t) =

pτ(t2 − t)pτ(t), t2 > t0 t2 ≤ t1

Integrating the joint density gives the marginal

pτ2(t2) =
∫ t2

0
pτ(t2 − t)pτ(t)dt

=
∫ t2

0
λe−λ(t2−t)λe−λtdt

pτ2(t2) = λ2t2e−λt2

or pτ2(t) = λ2te−λt . We can then use induction to obtain the density
of the time for the nth event, n > 2. Assuming that τn−1 has density
λn−1tn−2e−λt/(n− 2)!, we have for τn

pτn(tn) =
∫ tn

0
pτn,τn−1(tn, t)pτn−1(t)dt

=
∫ tn

0
pτ(tn − t)

λn−1

(n− 2)!
tn−2e−λtdt

=
∫ tn

0
λe−λ(tn−t)

λn−1

(n− 2)!
tn−2e−λtdt

pτn(tn) =
λn

(n− 1)!
tn−1
n e−λtn (5.49)

From here we can work out Pr(Y(t) = n) for any n. For Y(t) to be n at
time t, we must have time τn ≤ t and time τn+1 > t, i.e., n events have
occurred by time t but n+1 have not. In terms of the joint density, we
have

Pr(Y(t) = n) =
∫∞
t

∫ t
0
pτn+1,τn(t

′, t)dtdt′



5.3 Stochastic Kinetics 491

As before, the independent increments property allows us to express
the joint density as pτn+1,τn(t′, t) = pτ(t′ − t)pτn(t) for t′ ≥ t. Substi-
tuting this and (5.49) into the previous equation gives

Pr(Y(t) = n) =
∫∞
t

∫ t
0
λe−λ(t

′−t) λn

(n− 1)!
tn−1e−λtdtdt′

Pr(Y(t) = n) = (λt)
n

n!
e−λt (5.50)

See Exercise 5.13 for an alternative derivation. The discrete density
appearing on the right-hand side of (5.50), i.e, p(n) = e−aan/n! with
parameter a = λt, is known as the Poisson density. Its mean and vari-
ance are equal to a (see Exercise 5.12). So we have that E(Y(t)) = λt,
which is consistent with Figure 5.7.

Because λ and t appear only as the product λt, the Poisson process
with intensity λ, now denoted Yλ(t), can be expressed in terms of the
unit Poisson process, denoted Y(t), with the relation

Yλ(t) = Y(λt) t ≥ 0

The justification is as follows. We have just shown

Pr(Yλ(t) = n) =
(λt)n

n!
e−λt

and, for the unit Poisson process, we have Pr(Y(t) = n) = tne−t/n!,
which is equivalent on the substitution of λt for t. Because the incre-
ments are independent, we also have the property for all n ≥ 0

Pr(Y(t)− Y(s) = n) = Pr(Y(t − s) = n) t ≥ s

which is similar to (5.5) for the Wiener process.

Nonhomogeneous Poisson process. Next we consider the nonhomo-
geneous Poisson process in which the intensity λ(t) is time varying. We
define the Poisson process for this more general case so that the prob-
ability of an event during time interval [t, t + ∆t] is proportional to
λ(t)∆t for ∆t small. We can express the nonhomogeneous process
also in terms of a unit Poisson process with the relation

Yλ(t) = Y
( ∫ t

0
λ(s)ds

)
t ≥ 0

To see that the right-hand side has the required property, we compute
the probability that an event occurs in the interval [t, t+∆t]. Let z(t) =
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∫ t
0 λ(s)ds. We have

Pr(t ≤ τ ≤ t +∆t) = Pr(Yλ(t +∆t)− Yλ(t) > 0)
= Pr(Y(z(t +∆t)− Y(z(t))) > 0)
= Pr(Y(z(t +∆t)− z(t)) > 0)

= 1− Pr(Y
( ∫ t+∆t
t

λ(s)ds
)
= 0)

= 1− e−
∫ t+∆t
t λ(s)ds

For ∆t small, we can approximate the integral as
∫ t+∆t
t λ(s)ds ≈ λ(t)∆t

giving
Pr(t ≤ τ ≤ t +∆t) ≈ 1− (1− λ(t)∆t) = λ(t)∆t

and we have the stipulated probability.

Random time change representation of stochastic kinetics. With
these results, we can now express the stochastic kinetics problem in
terms of the Poisson process. Assume nr reactions take place between
ns chemical species with stoichiometric matrix ν ∈ Rnr×ns , and denote
its row vectors, written as columns, by νi, i = 1,2, . . . , r . Let X(t) ∈ Ins
be an integer-valued random variable vector of the chemical species
numbers, and let ri(X), i = 1,2, . . . , nr be the kinetic rate expressions
for thenr reactions. We assign to each reaction an independent Poisson
process Yi with intensity ri. Note that this assignment gives nr non-
homogeneous Poisson processes because the species numbers change
with time, i.e., ri = ri(X(t)). The Poisson processes then count the
number of times that each reaction fires as a function of time. Thus
the Poisson process provides the extents of the reactions versus time.
From these extents, it is a simple matter to compute the species num-
bers from the stoichiometry. We have that

X(t) = X(0)+
nr∑
i=1

νiYi
( ∫ t

0
ri(X(s))ds

)
(5.51)

This is the celebrated random time change representation of stochastic
kinetics due to Kurtz (1972).

Notice that this representation of the species numbers has X(t) ap-
pearing on both sides of the equation. This integral equation repre-
sentation of the solution leads to many useful solution properties and
simulation algorithms. We can express the analogous integral equation
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for the deterministic continuum mass balance given in (5.47)

c(t) = c(0)+
nr∑
i=1

νi
∫ t

0
ri(c(s))ds

Comparing the two results, we see the obvious similarities; the key dif-
ferences are that the species number vector X is an integer-valued ran-
dom variable, and the Poisson process Y fires the reactions at random
times.

5.3.3 Stochastic Simulation

The random time change representation suggests a natural simulation
or sampling strategy for the species numbers X(t). We start with a
chosen or known initial condition, X(0). We then select based on each
reaction, nr exponentially distributed proposed times for the next re-
actions, τi, i = 1,2, . . . , nr . These exponential distributions have in-
tensities equal to the different reaction rates, ri(X(0)). As mentioned
previously, we obtain a sample of an exponential Fτi(t) = 1 − e−rit
by drawing a sample of a uniformly distributed RV on [0,1], u, and
rescaling the logarithm

τi = −(1/ri) lnui i = 1,2, . . . , nr

We then select the reaction with the smallest event time as the reaction
to fire, giving

t1 = min
i∈[1,nr ]

τi i1 = arg min
i∈[1,nr ]

τi

We then update the species numbers at the chosen reaction time with
the stoichiometric coefficients of the reaction that fires

X(t1) = X(0)+ νi1

This process is then repeated to provide a simulation over the time
interval of interest. This simulation strategy is known as the first
reaction method (Gillespie, 1977). We summarize the first reaction
method with the following algorithm.

Algorithm 5.5 (First reaction method).

Require: Stoichiometric matrix and reaction-rate expressions, νi, ri(X),
i = 1,2, . . . , nr ; initial species numbers, X0; stopping time T .

1: Initialize time t = 0, time index k = 1, and species numbers X(t) =
X0.
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p1 p2 p3

u0 1

Figure 5.8: Randomly choosing a reaction with appropriate probabil-
ity. The interval is partitioned according to the relative
sizes of the reaction rates. A uniform random number u
is generated to determine the reaction. In this case, since
p2 ≤ u ≤ p3, m = 3 and the third reaction is selected.

2: Evaluate rates ri = ri(X(t)). If ri = 0, all i, exit (system is at steady
state.)

3: Choose nr independent samples of a uniformly distributed RV, ui.
Compute random times for each reaction τi = −(1/ri) lnui.

4: Select smallest time and corresponding reaction, τk =mini∈[1,nr ] τi,
ik = arg mini∈[1,nr ] τi.

5: Update time and species numbers: tk = t + τk, X(tk) = X(t)+ νik .
6: Set t = tk, replace k← k+ 1. If t < T , go to Step 2. Else exit.

Gibson and Bruck (2000) show how to conserve random numbers
in this approach by saving the nr − 1 random numbers that were not
selected at the current iteration, and reusing them at the next itera-
tion. With this modification, the method is termed the next reaction
method.

An alternative, and probably the most popular, simulation method
was proposed also by Gillespie (1977, p. 2345). In this method, the
reaction rates are added together to determine a total reaction rate r =∑nr
i=1 ri(X(t)). The time to the next reaction is distributed as pτ(t) =

re−rt . So sampling this density provides the time of the next reaction,
which we denote τ . To determine which reaction fires, the following
cumulative sum is computed

pi =
nr∑
i=1

ri/r , i = 0,1,2, . . . nr

Note that 0 = p0 ≤ p1 ≤ p2 ≤ · · · ≤ pnr = 1, so the set of pi are a par-
tition of [0,1] as shown in Figure 5.8 for nr = 3 reactions. The length
of each interval indicates the relative rate of each of the nr reactions.
So to determine which reaction m fires, let u be a sample from the
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uniform distribution on [0,1], and determine the interval m in which
u falls by the condition

pm−1 ≤ u ≤ pm
Given the reaction that fires m and the time of the reaction τ , we then
update the species numbers in the standard way

X(t + τ) = X(t)+ νm
This method is known as Gillespie’s direct method or simply the
stochastic simulation algorithm (SSA). We summarize this method
with the following algorithm.

Algorithm 5.6 (Gillespie’s direct method or SSA).

Require: Stoichiometric matrix and reaction-rate expressions, νi, ri(X),
i = 1,2, . . . , nr ; initial species numbers, X0; stopping time T .

1: Initialize time t = 0, time index k = 1, and species numbers X(t) =
X0.

2: Evaluate rates ri = ri(X(t)) and total rate r =
∑
i ri. If r = 0, exit

(system is at steady state.)
3: Choose two independent samples,u1, u2, of a uniformly distributed

RV on [0,1]. Compute time of next reaction τ = −(1/r) lnu1.
4: Select which reaction, ik, as follows. Compute the cumulative sum,
pi =

∑i
j=1 rj/r for i ∈ [0, nr ]. Note p0 = 0. Find index ik such that

pik−1 ≤ u2 ≤ pik .
5: Update time and species numbers: tk = t + τ , X(tk) = X(t)+ νik .
6: Set t = tk, replace k← k+ 1. If t < T , go to Step 2. Else exit.

Figure 5.9 shows the results when starting withnA = 100 molecules.
Notice the random aspect of the simulation gives a rough appearance
to the number of molecules versus time, which is quite unlike the de-
terministic simulation presented in Figure 5.5. Because the number of
molecules is an integer, the simulation is discontinuous with jumps at
the reaction event times. But in spite of the roughness, we can already
make out the classic behavior of the series reaction: loss of starting
material A, appearance and then disappearance of the intermediate
species B, slow increase in final product C. Note also that Figure 5.9
is only one simulation or sample of the random process. Unlike the de-
terministic models, if we repeat this simulation, we obtain a different
sequence of random numbers and a different simulation. To compute
accurate expected or average behavior of the system, we perform many
of these random simulations and then compute the sample averages of
quantities we wish to report.
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Figure 5.9: Stochastic simulation of the first-order series reaction
A -→B -→C starting with 100 A molecules.

5.3.4 Master Equation of Chemical Kinetics

The simulations in the previous section allow us to envision many pos-
sible simulation trajectories depending on the particular sequence of
random numbers we have chosen. Some reflection leads us to con-
sider instead modeling the evolution of the probability density of the
state. We shall see that we can either solve this evolution equation di-
rectly, or average over many randomly chosen simulation trajectories
to construct the probability density by brute force. Both approaches
have merit, but here we focus on expressing and solving the evolution
equation for the probability density.

Consider the reversible reaction

A+ B
k1-⇀↽-
k−1

C (5.52)

taking place in a constant-volume, well-stirred reactor. Let p(a,b, c, t)
denote the probability density for the system to have a molecules of
species A, bmolecules of species B, and cmolecules of species C at time
t. We seek an evolution equation governing p(a,b, c, t). The prob-
ability density evolves due to the chemical reactions given in (5.52).
Consider the system state (a, b, c, t); if the forward event takes place,
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the system moves from state (a, b, c, t) to (a − 1, b − 1, c + 1, t + dt).
If the reverse reaction event takes place the system moves from state
(a, b, c, t) to (a + 1, b + 1, c − 1, t + dt). We have expressions for the
rates of these two events

r1 = k1ab r−1 = k−1c

These are the rates required for the trajectory simulations of the pre-
vious sections. But here we are asking for more. Here we want to know
how these reaction events occurring at these rates change the prob-
ability density that the system is in state (a, b, c, t). This evolution
equation for the probability density is known as the master equation
for chemical kinetics. The master equation for this chemical example
system is

∂p(a, b, c, t)
∂t

= −(k1ab + k−1c) · p(a,b, c, t)

+ k1(a+ 1)(b + 1) · p(a+ 1, b + 1, c − 1, t)
+ k−1(c + 1) · p(a− 1, b − 1, c + 1, t) (5.53)

We see that the reaction rate for each event is multiplied by the prob-
ability density that the system is in that state.

Because we have a single reaction, we can simplify matters by defin-
ing ε to be the extent of the reaction. The numbers of molecules of
each species are calculated from the initial numbers and reaction ex-
tent given the reaction stoichiometry

a = a0 − ε b = b0 − ε c = c0 + ε

We see that ε = 0 corresponds to the initial state of the system. Using
the reaction extent, we define p(ε, t) to be the probability density that
the system has reaction extent ε at time t. Converting (5.53) we obtain

∂p(ε, t)
∂t

= −
(
k1(a0 − ε)(b0 − ε)+ k−1(c0 + ε)

)
· p(ε, t)

+ k1(a0 − ε + 1)(b0 − ε + 1) · p(ε − 1, t)
+ k−1(c0 + ε + 1) · p(ε + 1, t) (5.54)

The four terms in the master equation are depicted in Figure 5.10.
Given a0, b0, c0 we can calculate the range of possible extents. For
simplicity, assume we start with only reactants A and B so c0 = 0.
Then the minimum extent is ε = 0 because we cannot fire the reverse
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reaction from this starting condition. If we fire the forward reaction
n = min(nA0, nB0) times, the limiting reactant A or B is completely
consumed and no further forward reactions are possible. Therefore
the range of possible extents is 0 ≤ ε ≤ n. We now can write n + 1
equations stemming from the master equation and place them in the
matrix form

d
dt



p0

p1

p2
...

pn−1

pn


=



β0 γ0

α1 β1 γ1

α2 β2 γ2

. . .
. . .

. . .
γn−1

αn βn





p0

p1

p2
...

pn−1

pn


(5.55)

in which pj(t) is shorthand for p(j, t), and αj , βj , and γj are the fol-
lowing rate expressions evaluated at different extents of the reaction

αj = k1(a0 − j + 1)(b0 − j + 1)
βj = −k1(a0 − j)(b0 − j)− k−1(c0 + j)
γj = k−1(c0 + j + 1)

We can also write this model as

dP
dt
= AP (5.56)

P(0) = P0

in which P is the column vector of probabilities for the different reac-
tion extents

P =
[
p0 p1 · · · pn

]T
and the A matrix contains all the model parameters.

The essential connection between the stochastic and determinis-
tic approaches to the well-mixed chemical kinetics problem is that the
stochastic model’s probability density becomes arbitrarily sharp at the
solution to the deterministic problem as the number of molecules in-
creases. Figure 5.11 displays the solution to (5.55) starting with 20 A
molecules, 100 B molecules and 0 C molecules. The extent of reaction is
scaled by the initial number of A molecules. Notice that the probability
density spreads out rapidly as time increases and there is significant
uncertainty in the equilibrium state.

If we increase the starting number of molecules by a factor of 10,
we obtain the results depicted in Figure 5.12. Notice the sharpening
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p(ε, t)

εε − 1 ε + 1ε − 2 ε + 2

A+ B ←- C

A+ B ←- C A+ B -→ C

A+ B -→ C

Figure 5.10: Master equation for chemical reaction A + B -⇀↽- C. The

probability density at state ε changes due to forward
and reverse reaction events. The rate of change is pro-
portional to the reaction rate times the probability den-
sity of being in that state.

in the probability density. We can see that the extent versus time is
traced out by the peak in probability density is approaching the mass
action kinetics limit. You can imagine the sharpness in the density if
we started out with on the order of Avogadro’s number of A molecules.
As stressed earlier, however, if we are not operating near that limit, the
random fluctuation may be an important physical behavior to include
in the model. To describe this behavior, the stochastic approach is
essential and the deterministic approach cannot be substituted.

The master equation, (5.56), is a simple linear, constant-coefficient
differential equation, and the solution is

P(t) = eAtP0

The challenge in solving the master equation directly is its high dimen-
sion. The dimension of P is the number of different species values
that the system can reach by reaction. If we have a single reaction, the
extent can range from zero, its initial value, to a value that exhausts
some limiting species. Denote this limiting species’s initial number by
n0, the dimension of the state vector P is then n0. But if we have mul-
tiple reactions, we multiply nr by the limiting species corresponding
to all the combinations of reactions. The scaling is on the order of the
product n0nr . If we have 1000 initial molecules with 10 reactions, the
dimension of the master equation P vector is already on the order of
104. The Amatrix already contains 108 elements, although it would be
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Figure 5.11: Solution to master equation for A + B -⇀↽- C starting with

20 A molecules, 100 B molecules and 0 C molecules,
k1 = 1/20, k−1 = 3. Congratulations, you now under-
stand what is displayed on the cover of the text.

quite sparse. Thus solving the master equation becomes computation-
ally intractable for problems of even modest size. The best we can hope
for with these larger models is to sample the master equation with sim-
ulations. Even simulating enough trajectories to obtain reliable sample
averages can be quite time consuming, which motivates research efforts
to develop efficient simulation algorithms and sampling strategies.

Given this basic understanding, we now express the general master
equation fornr reactions with the random variableX (species numbers)
as the state of the system rather than the reaction extents. Given a
system in state x ∈ Ins , reaction i with stoichiometric vector νi can
reach state x from only state x − νi, and can leave this state to reach
state x + νi. We then have for the evolution of the probability density

d
dt
pX(x, t) =

∑
i
ri(x − νi)pX(x − νi, t)−

(∑
i
ri(x)

)
pX(x, t) (5.57)

with initial condition pX(x,0) = p0(x). Equation (5.57) is the chemi-
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Figure 5.12: Solution to master equation for A + B -⇀↽- C starting with

200 A molecules, 1000 B molecules and 0 C molecules,
k1 = 1/200, k−1 = 3.

cal master equation for a general reaction network. It is also known
as the forward Kolmogorov equation in the mathematics literature.

Applying (5.57) to the previous example we have

x =

nAnB
nC

 ν1 =

−1
−1

1

 ν−1 =

 1
1
−1

 r1(x) = k1nAnB r−1(x) = k−1nC

and master equation

d
dt
pX(x, t) = r1(x−ν1, t)pX(x−ν1, t)+r−1(x−ν−1, t)pX(x−ν−1, t)

− (r1(x, t)+ r−1(x, t))pX(x, t)
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or, written to show the species numbers

d
dt
pX
(nAnB
nC

 , t) = k1(nA + 1)(nB + 1)pX
(nA + 1
nB + 1
nC − 1

 , t)+

k−1(nC + 1)pX
(nA − 1
nB − 1
nC + 1

 , t)− (k1nAnB + k−1nC)pX
(nAnB
nC

 , t)

5.3.5 Microscopic, Mesoscopic, and Macroscopic Kinetic Models

Next we would like to explore how the discrete stochastic kinetic model
of a microscopic system transforms into the deterministic kinetic model
of a macroscopic system that is familiar to undergraduate chemical and
biological engineers. Along the way, we derive a model for the regime
bridging the microscopic and macroscopic levels, which is sometimes
called the mesoscopic regime. Our goal is to start with the microscopic
chemical master equation and take the limit as the system size becomes
large. We use the system volume Ω for the size parameter. The pro-
cedure we follow is given by van Kampen (1992, pp. 244-263) and is
known as the omega expansion. The essentials of the approach are
perhaps best explained by taking a concrete (and nonlinear) example.
Consider the bimolecular reaction

2A -→ B

In the deterministic macroscopic description, we have a reaction-rate
expression r = k̃c2, in which c is molar concentration of A, an intensive
variable, and the rate constant k̃ has units of l3/(mol · t), so the rate
has units of mol/(t · l3), a rate of reaction per volume, which is also
intensive. The mole balance for species A in a well-mixed system is the
familiar

dc
dt
= −2k̃c2 c(0) = c0 (5.58)

For these same kinetics, at the small scale, we have the microscopic
chemical master equation

d
dt
P(n, t) = −kn(n− 1)

2Ω
P(n, t)+k(n+ 2)(n+ 1)

2Ω
P(n+2, t) n ≥ 0

(5.59)
in which n is the number of A molecules in the well-mixed system of
volume Ω. Here n is a discrete (nonnegative, integer-valued) random
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Figure 5.13: The equilibrium reaction extent’s probability density for
Reactions 5.52 at system volume Ω = 20 (top) and Ω =
200 (bottom). Notice the decrease in variance in the
reaction extent as system volume increases.

variable. As Ω becomes large, we expect the concentration c = n/Ω to
be well described by the ODE (5.58). It is initially far from clear how we
take this limit to make this transition from a discrete-valued random
variable n to a continuous-valued deterministic variable c.

To motivate the appropriate analysis, we first look at solutions to
the master equation for increasing values of Ω. Figure 5.13 shows the
final equilibrium distributions of the scaled reaction extent, ε, from
Figures 5.11 and 5.12. We have increased the system size from Ω = 20
in the top figure to Ω = 200 in the bottom figure. We also show the
variance in random variable ε in the two simulations. Notice that for a
ten-fold increase in Ω, the variance has decreased by almost this same
ten-fold amount. From these solutions to the master equation we have
some idea what to expect. For a large system, the integer increments in
the number of molecules n become so fine that we can approximately
replace them by a continuous variable c. But we also see randomness
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in the concentration, and although the (relative) magnitude of the con-
centration fluctuations decreases as the system size increases, it is not
zero. In fact, we see that the familiar normal distribution appears to de-
scribe the probability distribution of the fluctuations and the variance
scales with Ω−1.

Therefore we are led to hypothesize that we can approximate n as
a combination of the deterministic concentration c and a continuous
random variable ξ to capture the fluctuations. Based on our numerical
experiments, the form we choose is

n = cΩ + ξΩ1/2 (5.60)

so that the variance inn/Ω scales withΩ−1, i.e., var(n/Ω) = Ω−1var(ξ).
We are neglecting terms of order Ω0 and lower in the expansion of n
in (5.60). Thus we are expressing n/Ω as a perturbation solution in
increasing powers of small parameter Ω−1/2. The additional complica-
tion in this case compared to our previous perturbation examples in
Chapters 2 and 3, is that we are also changing from a discrete variable
n to continuous variables c and ξ.

The master equation describes the density of random variable n,
P(n, t), and we wish to deduce an evolution equation for the density
of random variable ξ, which we denote Π(ξ, t). And we also expect the
analysis to show that the familiar differential equation (5.58) describes
the deterministic variable c. As a transformation of random variables,
we are considering the two densities to be related by

P(n, t) = P(cΩ + ξΩ1/2, t) = Π(ξ, t)

in which we suppress the dependence of n on c. Consider c to be some
known function of time when expressing the transformation between
the two random variables n and ξ.

Given this transformation, the partial derivatives are related by Pt =
Πt +Πξξt and ξt is found by differentiating (5.60) holding n constant,
which yields

ξt = −ċΩ1/2

in which ċ represents the time derivative of c(t). Substituting this into
the relation for the partial derivatives gives

Pt = Πt − ċΩ1/2Πξ

This is the first step. We have the left-hand side of the master equation
evaluated in terms of the new density Π. Next we work on the right-
hand side.
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The term P(n, t) is simply the transformed Π(ξ, t), but we also re-
quire P(n+2, t). First we solve (5.60) for ξ so that we know what n+2
corresponds to in variable ξ

ξ(n) = nΩ−1/2 − cΩ1/2 (5.61)

Using (5.61) gives ξ(n+2)−ξ(n) = 2Ω−1/2. Next we use a Taylor series
to represent Π(ξ(n + 2), t) in terms of Π(ξ(n), t), denoted simply as
Π, and its derivatives

Π(ξ(n+ 2), t) = Π+ 2Ω−1/2Πξ +
4Ω−1

2!
Πξξ +

8Ω−3/2

3!
Πξξξ + · · · (5.62)

The number of terms retained in the Taylor series determines the order
of the approximation for the density Π. We now can easily transform
the remaining terms in n using (5.60)

n(n− 1)
Ω

= c2Ω + 2cξΩ1/2 + (−c + ξ2)− ξΩ−1/2

(n+ 2)(n+ 1)
Ω

= c2Ω + 2cξΩ1/2 + (3c + ξ2)+ 3ξΩ−1/2 + 2Ω−1

Now we combine all of these ingredients by substituting them into the
master equation (5.59) giving

Πt − ċΩ1/2Πξ =
k
2

[
4c + 4ξΩ−1/2 + 2Ω−1] Π+

k
[
c2Ω1/2 + 2cξ + (3c + ξ2)Ω−1/2 + 3ξΩ−1 + 2Ω−3/2] Πξ+
k
[
c2 + 2cξΩ−1/2 + (3c + ξ2)Ω−1 + 3ξΩ−3/2 + 2Ω−2] Πξξ

in which we have kept up to the second-order term in (5.62).
The third and final step is to extract from this large equation the in-

formation provided at the different orders of the expansion parameter
Ω.

Order Ω1/2. Collecting the terms of order Ω1/2 gives (ċ + kc2)Πξ = 0
and, since Πξ ≠ 0, we deduce

dc
dt
= −kc2 (5.63)

which is the macroscopic equation (5.58) after noting that the usual
macroscopic convention absorbs a factor of one-half into the definition
of the rate constant, i.e., k̃ = k/2.
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Order Ω0. Collecting the terms of order Ω0 gives

Πt = 2kc Π+ 2kcξ Πξ + kc2 Πξξ

which can be rearranged into

∂
∂t
Π = − ∂

∂ξ
(
− 2kcξ Π

)
+ ∂2

∂ξ2

(
kc2 Π

)
This is the familiar Fokker-Planck equation, (5.41), which we can write
as an equivalent SDE

dξ = −2kcξ dt +
√

2kc2 dW

Because this is a linear Fokker-Planck equation (the drift term is linear
in ξ and the diffusivity is independent of ξ), this equation is sometimes
referred to as the linear noise approximation.

To simulate the model at this level of approximation, we first solve
(5.63) for c(t), and then perform a random walk simulation for the fluc-
tuation term ξ(t), which depends on c(t). We combine these two parts
for n(t) using (5.60). This description in which c(t) is deterministic
and ξ(t) is a continuous random walk is the mesoscopic description.
We see the results in Figure 5.14. The top figure shows the discrete
simulation using KMC for volume Ω = 500 and initial condition of 500
A molecules n0 = 500. Note that the plot has a log scale on the time
axis to more clearly show the evolution at early times. These two simu-
lations display quite similar character. To compare them more quanti-
tatively, we could compute several low-order moments of the densities
by computing sample averages over many simulations.

As a more comprehensive alternative, we compute the correspond-
ing cumulative probability distributions at the selected time t = 1,
shown as the dashed line in Figure 5.14. We obtain the cumulative
distribution for the discrete model by solving the master equation and
summing

F(n, t) =
n∑
n′=0

P(n′, t) 0 ≤ n ≤ n0

We can obtain the density for the omega expansion by solving the PDE
for Π(ξ, t), shifting the mean by the deterministic c(t), and integrating
for the cumulative distribution. Or we can instead derive a correspond-
ing evolution equation for ξ’s cumulative density

Fξ(x, t) =
∫ x
−∞
Π(ξ, t)dξ
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Figure 5.14: Simulation of 2 A -→ B for n0 = 500, Ω = 500. Top:
discrete simulation; bottom: SDE simulation.

and shift its mean by c(t), Fc(x, t) = Fξ(x − c(t), t). Exercise 5.22
discusses this approach in more detail. The results are shown in Fig-
ure 5.15. The staircase function is the solution to the discrete master
equation at time t = 1, at which time the deterministic concentration
is one-half, i.e., c(t) = 1/2 at t = 1. The steps in x = n/Ω are caused
by the zero probability at all the odd integer values of n in the discrete
model. The smooth function is the omega expansion, which we can see
is in reasonably close agreement with the discrete model for Ω = 500.

Finally, in the limit as Ω → ∞, the fluctuation ξ becomes negligible
compared to c, and we have the familiar deterministic macroscopic
description, (5.63) or (5.58). In Figure 5.15, this limit would be observed
by the two functions converging to a unit step function at the value of
x = c(t). See also Exercise 5.22.

There is now an extensive and rapidly growing literature on stochas-
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Figure 5.15: Cumulative distribution for 2 A -→ B at t = 1 with n0 =
500, Ω = 500. Discrete master equation (steps) versus
omega expansion (smooth).

tic kinetics. The book chapter by Anderson and Kurtz (2011) is highly
recommended for those interested in a current and comprehensive
overview of most of the topics covered here as well as more advanced
topics on: relevant central limit theorems for Poisson processes, mar-
tingales, and scaling and model reduction.

5.4 Optimal Linear State Estimation

5.4.1 Introduction

Sensors are how we learn about the world. Our five natural senses
provide us with our first exposure to sensors, i.e., the type built in
by nature. Since humans are very curious about the world, people
have been hard at work for a long time augmenting the natural senses
by constructing artificial or man-made sensors. Some of mankind’s
biggest advances in science and engineering were precipitated by a
breakthrough in sensor technology, e.g., the telescope, the microscope,
detectors for electromagnetic radiation outside the visible range, etc.

One of the important things that we know about sensors is that
they are limited and imperfect indicators of the world around us. They
often are affected by nature in ways that the user does not intend or
desire; they often conflate many different physical effects into a single
signal, which makes it challenging for us to interpret what the sensor is
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telling us. Finally, all sensors, as well as the systems that we are trying
to measure, are subject to uncontrolled and random effects.

One of the fundamental problems in systems engineering is to de-
vise methods for taking these imperfect measurements of imperfectly
controlled systems and deciding on the best estimate of the state of
the system. We are inherently trading off two sources of error: the
sensor’s random error or noise, and the system’s random fluctuation
or disturbance. We may decide in some situation that a change in a
sensor signal indicates that the system has changed. But we may de-
cide in a different situation that a change in a sensor signal is caused
by a random effect or disturbance to the sensor itself, and the system
is completely unchanged. Optimally combining these two sources of
information: what the sensor tells us and the other knowledge that we
have about the system’s behavior, is the task of state estimation.

To make these concepts precise, we consider a linear system. Let
x ∈ Rn be an n-vector containing all the relevant information about a
system of interest

x+ = Ax + Bu

The u variables are the input variables that also affect the evolution
of the system. If we control the inputs, they are called actuators, i.e.,
the valves in a chemical plant. If the inputs are not controlled by us,
they are regarded as disturbances, and often given another letter to in-
dicate this difference. We use w ∈ Rn to represent the disturbances.
Because of the central limit theorem, these will be considered normally
distributed random variables with zero mean and variance Q. The dy-
namic model is then

x+ = Ax + Bu+w

The initial state of the system x0 is also generally unknown and will be
considered a normally distributed random variable with mean x0 and
variance P(0). Now we consider the sensors. Lety ∈ Rp be thep-vector
of available measurements. Normally p < n indicating that we are not
measuring every relevant property of the system. Because sensors are
expensive, often p≪ n indicating that we have a complex system with
many states, but are information poor with few measurements. The
sensor is also affected by random disturbances, which we denote by v .
Because the input u is considered known, we can remove it from the
model for simplicity without changing any important features of the
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state estimation problem. The linear model of interest is then

x+ = Ax +w
y = Cx + v

and the disturbances and unknown initial condition satisfy

w ∼ N(0,Qw) v ∼ N(0, Rv) x(0) ∼ N(x0, P(0))

If the measurement process is quite noisy, then R is large. If the
measurements are highly accurate, then R is small. Similar considera-
tions apply for the process noise, Q. If the state is subjected to large
disturbances, then Q is large, and if the disturbances are small, Q is
small. Again we choose zero mean for w because the nonzero mean
disturbances should have been accounted for in the system model. The
variance P(0) reflects our confidence in the initial state. If we know
how the system starts off, P(0) is small. If we have little knowledge,
we take P(0) large. In industrial applications, the initial condition may
be known with high accuracy for batch processes. But the initial con-
dition is usually considered largely unknown when analyzing a dataset
taken from a continuous process.

We require three main results concerning normals, conditional nor-
mals, and linear transformation. These follow directly from the prop-
erties of the normal established in Chapter 4, but see Exercise 5.24 for
some hints if you have difficulty deriving any of these. Recall also the
normal function notation (4.13)

n(x,m,P) = 1
(2π)n/2(detP)1/2

exp
[
− 1

2
(x −m)TP−1(x −m)

]
which was introduced in Chapter 4, and will be used frequently in the
following discussion.

Joint independent normals. If px|z(x|z) is normal, and y is statisti-
cally independent of x and z and normally distributed

px|z(x|z) = n(x,mx, Px)
y ∼ N(my , Py) y independent of x and z

then the conditional joint density of (x,y) given z is

px,y|z(x,y|z) = n(x,mx, Px) n(y,my , Py)

px,y|z

([
x
y

]∣∣∣∣∣z
)
= n

([
x
y

]
,
[
mx
my

]
,
[
Px 0
0 Py

])
(5.64)
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Linear transformation of a normal. Ifx and z are jointly normally dis-
tributed with conditional density px|z(x|z) having mean m and
variance P , and y is a linear transformation of x, y = Ax, then
py|z(y|z) is normal with mean Am and variance APAT

px|z(x|z) = n(x,m,P) y = Ax
py|z(y|z) = n(y,Am,APAT ) (5.65)

Conditional of a joint normal. If the joint conditional density of (x,y)
given z is normal

px,y|z

([
x
y

]∣∣∣∣∣z
)
= n

([
x
y

]
,
[
mx
my

]
,
[
Px Pxy
Pyx Py

])

then the conditional density of x given (y, z) is also normal

px|y,z(x|y,z) = n(x,m,P) (5.66)

in which

m =mx + PxyP−1
y (y −my) P = Px − PxyP−1

y Pyx

Note that the conditional mean m is itself a random variable because
it depends on the random variable y .

5.4.2 Optimal Dynamic Estimator

We have specified the random process of interest

x+ = Ax +w (5.67)

y = Cx + v (5.68)

with known densities

w ∼ N(0,Qw) v ∼ N(0, Rv) x(0) ∼ N(x0, P(0))

We will next derive the optimal estimator for this process. As part of
this derivation, we will derive the probability densities of the state as a
function of time. This is the same pattern that we followed in the first
two sections on Brownian motion and stochastic kinetics. We started
with the random process (Wiener and Poisson processes), and then we
derived their probability density equations (Fokker-Plank and chemical
master equations).
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Because we have assumed a prior, the density of x(0), we are using
Bayesian estimation. The overall game plan is as follows. The initial
state x(0) is assumed normal. Our optimal estimate before measure-
ment is denoted x̂−(0). The minus sign indicates estimate before mea-
surement. We obtain from the sensor measurement y(0). We then
compute the conditional density of x(0)|y(0). We show that is also
normal. The maximum of that conditional density is our optimal es-
timate after measurement, denoted x̂(0). We are combining the mea-
surement with the prior to calculate the posterior. Then we use the
random process (5.68) to forecast the state forward one time step to
obtain x(1). We show that the density of x(1) (conditioned on y(0))
is also normal,3 and the maximum of that density is our estimate at
k = 1 before measurement, x̂−(1). Then we add measurement y(1)
and compute the conditional density of x(1)|y(0),y(1); its maximum
gives x̂(1), and we continue the iteration. So now we fill in the details.

Combining the measurement. We start off at k = 0 with estimate
x̂−(0) = x0 and consider the effect of adding the first measurement.
We obtain noisy measurement y(0) satisfying

y(0) = Cx(0)+ v(0)

in which v(0) ∼ N(0, R) is the measurement noise. Given the measure-
menty(0), we next obtain the conditional densitypx(0)|y(0)(x(0)|y(0)).
This conditional density describes the change in our knowledge about
x(0) after we obtain measurement y(0). This step is the essence of
state estimation. To derive this conditional density, first consider the
pair of variables (x(0),y(0)) given as[

x(0)
y(0)

]
=
[
I 0
C I

][
x(0)
v(0)

]
We assume that the noise v(0) is statistically independent of x(0),
and use the independent joint normal result (5.64) to express the joint
density of (x(0), v(0))[

x(0)
v(0)

]
∼ N

([
x0

0

]
,
[
Q(0) 0

0 R

])
From the previous equation, the pair (x(0),y(0)) is a linear transfor-
mation of the pair (x(0), v(0)). Therefore, using the linear transfor-
mation of normal result (5.65), and the density of (x(0), v(0)) gives

3Because we have linear transformations of normals at each step of the procedure,
every density in sight will be normal.
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the density of (x(0),y(0))[
x(0)
y(0)

]
∼ N

([
x0

Cx0

]
,
[
Q(0) Q(0)CT

CQ(0) CQ(0)CT + R

])

Given this joint density, we then use the conditional of a joint normal
result (5.66) to obtain

px(0)|y(0)
(
x(0)|y(0)

)
= n(x(0),m,P)

in which

m = x0 + L(0)
(
y(0)− Cx0

)
L(0) = Q(0)CT (CQ(0)CT + R)−1

P = Q(0)−Q(0)CT (CQ(0)CT + R)−1CQ(0)

We see that the conditional density px(0)|y(0) is normal. The optimal
state estimate is the value of x(0) that maximizes this conditional den-
sity. For a normal, that is the mean, and we choose x̂(0) = m. We
also denote the variance in this conditional after measurement y(0)
by P(0) = P with P given in the previous equation. The change in
variance after measurement (Q(0) to P(0)) quantifies the information
increase by obtaining measurement y(0). The variance after measure-
ment, P(0), is always less than or equal to Q(0), which implies that we
can only gain information by measurement; but the information gain
may be small if the measurement device is poor and the measurement
noise variance R is large.

Forecasting the state evolution. Next we consider the state evolution
from k = 0 to k = 1, which satisfies

x(1) =
[
A I

][x(0)
w(0)

]

in which w(0) ∼ N(0,Q) is the process noise. We next calculate the
conditional density px(1)|y(0). Now we require the conditional version
of the joint density (x(0),w(0)). We assume that the process noise
w(0) is statistically independent of both x(0) and v(0), hence it is
also independent of y(0), which is a linear combination of x(0) and
v(0). Therefore we use (5.64) to obtain[

x(0)
w(0)

]
∼ N

([
x̂(0)

0

]
,
[
P(0) 0

0 Q

])
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We then use the conditional version of the linear transformation of a
normal (5.65) to obtain

px(1)|y(0)(x(1)|y(0)) = n(x(1), x̂−(1), P−(1))

in which the mean and variance are

x̂−(1) = Ax̂(0) P−(1) = AP(0)AT +Q

We see that forecasting forward one time step may increase or decrease
the conditional variance of the state. The termAP(0)AT may be smaller
or larger than P(0), but the process noise Q always makes a positive
contribution.

Given that px(1)|y(0) is also a normal, we are situated to add mea-
surement y(1) and continue the process of adding measurements fol-
lowed by forecasting forward one time step until we have processed
all the available data. Because this process is recursive, the storage re-
quirements are small. We need to store only the current state estimate
and variance, and can discard the measurements as they are processed.
The required online calculation is minor. These features make the op-
timal linear estimator an ideal candidate for rapid online application.
We next summarize the state estimation recursion.

General time step k. Denote the measurement trajectory by

y(k) =
{
y(0),y(1), . . . y(k)

}
At time k the conditional density with data y(k− 1) is normal

px(k)|y(k−1)(x(k)|y(k− 1)) = n(x(k), x̂−(k), P−(k))

and we denote the mean and variance with a superscript minus to in-
dicate these are the statistics before measurement y(k). At k = 0,
the recursion starts with x̂−(0) = x0 and P−(0) = Q(0) as discussed
previously. We obtain measurement y(k), which satisfies[

x(k)
y(k)

]
=
[
I 0
C I

][
x(k)
v(k)

]

The density of (x(k), v(k)) follows from (5.64) since measurement
noise v(k) is independent of x(k) and y(k− 1)[

x(k)
v(k)

]
∼ N

([
x̂−(k)

0

]
,
[
P−(k) 0

0 R

])
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Equation (5.65) then gives the joint density[
x(k)
y(k)

]
∼ N

([
x̂−(k)
Cx̂−(k)

]
,
[
P−(k) P−(k)CT

CP−(k) CP−(k)CT + R

])

We note
{
y(k− 1),y(k)

}
= y(k), and using the conditional density

result (5.66) gives

px(k)|y(k) (x(k)|y(k)) = n(x(k), x̂(k), P(k))

in which

x̂(k) = x̂−(k)+ L(k)
(
y(k)− Cx̂−(k)

)
L(k) = P−(k)CT (CP−(k)CT + R)−1

P(k) = P−(k)− P−(k)CT (CP−(k)CT + R)−1CP−(k)

We forecast from k to k+ 1 using the model

x(k+ 1) =
[
A I

][x(k)
w(k)

]

Because w(k) is independent of x(k) and y(k), the joint density of
(x(k),w(k)) follows from a second use of (5.64)[

x(k)
w(k)

]
∼ N

([
x̂(k)

0

]
,
[
P(k) 0

0 Q

])

and a second use of the linear transformation result (5.65) gives

px(k+1)|y(k)(x(k+ 1)|y(k)) = n(x(k+ 1), x̂−(k+ 1), P−(k+ 1))

in which

x̂−(k+ 1) = Ax̂(k)
P−(k+ 1) = AP(k)AT +Q

and the recursion is complete.

Summary. We place all the required formulas for implementing the
optimal estimator in one place for easy reference. The initial conditions
for k = 0 are

x̂−(0) = x0 P−(0) = Q(0)

The update equations for time k ≥ 0 are
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x̂(k) = x̂−(k)+ L(k)
(
y(k)− Cx̂−(k)

)
(5.69)

L(k) = P−(k)CT (CP−(k)CT + R)−1 (5.70)

P(k) = P−(k)− P−(k)CT (CP−(k)CT + R)−1CP−(k) (5.71)

x̂−(k+ 1) = Ax̂(k) (5.72)

P−(k+ 1) = AP(k)AT +Q (5.73)

The full densities of the state before and after measurement are

px(k)|y(k−1)(x(k)|y(k− 1)) = n(x(k), x̂−(k), P−(k))
px(k)|y(k)

(
x(k)|y(k)

)
= n(x(k), x̂(k), P(k))

These formulas provide the celebrated Kalman filter (Kalman, 1960).
One of Kalman’s key contributions was to use the state-space model
to describe the system dynamics. As we see here, after that step, the
solution of the optimal filtering problem reduces to a few well-known
results about normals, linear transformation, and conditional density.
One of the main practical advantages of the Kalman filter is the ex-
tremely efficient implementation. One can update and store the con-
ditional mean and variance with only a few matrix multiplications and
finding one matrix inverse. This efficient recursion makes the Kalman
filter ideal for online state estimation where one would like to find the
optimal estimate in real time as the sensor measurements become avail-
able.

5.4.3 Optimal Steady-State Estimator

Notice from (5.70) that the optimal estimator has a time-varying gain,
L(k), coming from the time-varying recursion for P(k) and P−(k), given
by (5.71) and (5.73). If we are willing to give up a small amount of
performance during small initial times, we can obtain an even simpler
filter. Assume for the moment that these recursions converge to a
steady state. The steady state then satisfies

Ps = P−s − P−s CT (CP−s CT + R)−1CP−s
P−s = APsAT +Q

Substituting Ps from the first equation into the second equation and
eliminating Ps give the steady-state covariance before measurement as
the solution to the following algebraic Riccati equation

P−s = Q+AP−s AT −AP−s CT (CP−s CT + R)−1CP−s AT



5.4 Optimal Linear State Estimation 517

The steady-state filter gain then follows from (5.70)

Ls = P−s CT (CP−s CT + R)−1

and the optimal steady-state estimate before measurement, i.e., the
conditional mean of the state given measurements, is obtained by com-
bining (5.69) and (5.72) giving

x̂−(k+ 1) = Ax̂−(k)+ALs
(
y(k)− Cx̂−(k)

)
Implementing this filter as data y(k) become available is extremely ef-
ficient. Offline one solves the steady-state Riccati equation, P−s , and
computes the steady-state filter gain, Ls . Online one has to store only
Ls and current estimate x̂−(k), and implement a few matrix-vector mul-
tiplications and vector additions after y(k + 1) is measured to obtain
the next estimate, x̂−(k+1). We have an ideal algorithm that combines
extremely small storage requirements and extremely fast computation
making the steady-state Kalman filter ideal for many applications in
many engineering disciplines.

In any design problem, including state estimator design, we usu-
ally have many, sometimes conflicting, design objectives. Optimality is
certainly one desirable objective. But we would also like some perfor-
mance guarantees on the estimator. For example, if the disturbances
to the system are small does the estimate error become small as we
collect more measurements? We formulate this objective as a stability
question in the final section. To motivate that discussion, consider the
following case: A = I, C = 0, i.e., the system is an integrator and we are
not making any measurements. Even without disturbances, the system
evolution is x+ = x, and therefore x(k) = x0 for all k ≥ 0. But (5.70)
gives that Ls = 0, so the estimator equation is x̂+ = x̂ and therefore
x̂(k) = x0 for all k ≥ 0. Since the RV x(0) is not necessarily at its
mean, x(0) ≠ x0, and we see that the state estimate does not converge
to the system state no matter how many “measurements” we make.
This system needs to be redesigned before we can obtain a state esti-
mator that converges to the system state. It is clear what is wrong with
this system since C = 0 provides no information from the sensor, but
to detect all such badly designed systems, we introduce the concept of
observability.

5.4.4 Observability of a Linear System

The basic idea of observability is that any two distinct states can be
distinguished by applying some input and observing the two system
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outputs over some finite time interval (Sontag, 1998, p.262–263). The
general definition for nonlinear systems can be quite complex, but ob-
servability for linear systems is much simpler. First of all, the applied
input is irrelevant and we can set it to zero. Therefore consider the
linear time-invariant system (A,C) with zero input and disturbances

x+ = Ax
y = Cx

with initial condition x(0) = x0. The solution for the state is x(k) =
Akx0, and the output is therefore

y(k) = CAkx0 (5.74)

The system is observable if there exists a finite N, such that for every
x0, N measurements {y(0),y(1), . . . , y(N − 1)} distinguish uniquely
the initial state x0. As shown in Exercise 5.26, if we cannot determine
the initial state using n measurements, we cannot determine it using
N > n measurements. Therefore we can develop a convenient test for
observability as follows. For n measurements, the system model gives

y(0)
y(1)

...
y(n− 1)

 =


C
CA

...
CAn−1

x0 (5.75)

The question of observability is therefore a question of uniqueness of
solutions to these linear equations. The matrix appearing in this equa-
tion is known as the observability matrix O

O =


C
CA

...
CAn−1

 (5.76)

From Section 1.3.6 of Chapter 1, we know that the solution to (5.75) is
unique if and only if the columns of the np × n observability matrix
are linearly independent. Therefore, we have that the system (A,C) is
observable if and only if

rank(O) = n
We see in the next section that observability is a sufficient condition
for estimator stability.
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To illustrate this observability analysis in a chemical engineering
context, we present the following example (Ray, 1981, p.58).

Example 5.7: Observability of a chemical reactor

Consider an isothermal, continuous well-stirred tank reactor (CSTR)
with first-order liquid-phase reactions

A
k1-→ B B

k2-→ C

The volumetric flowrate Qf and tank volume VR are constant. The
concentration of A in the feed cAf is the manipulated variable, and

cBf = 0. Let x =
[
cA cB

]T
.

(a) Write down the mass balances for species A and B and show that

ẋ = Acx + Bcu

What are matrices Ac and Bc for this problem?

(b) Consider measuring only species A reactor concentration with
sample time ∆t > 0. What is matrix Cc in this case? Is the system
with this sampled measurement observable?

(c) Consider measuring only species B reactor concentration. What is
matrix Cc in this case? Is the system with this sampled measure-
ment observable? Provide a physical explanation if this answer
differs from the answer to the previous part.

Solution

(a) Assuming constant density, the mass balances for A and B are

d
dt

[
cA
cB

]
=
[
−(F/V + k1) 0

k1 −(F/V + k2)

][
cA
cB

]
+
[
k/V

0

]
cAf

Ac =
[
−(F/V + k1) 0

k1 −(F/V + k2)

]
Bc =

[
k/V

0

]
We can convert this continuous time system into a discrete time
system by approximating the time derivative with an explicit Euler
method4

dx
dt
≈ x(k+ 1)− x(k)

∆t
4Improving the numerical approximation does not change the observability analysis

that follows.
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giving

x+ = Ax y = Ccx

A =
[

1− (∆t)(F/V + k1) 0
(∆t)k1 1− (∆t)(F/V + k2)

]

(b) For measuring only species A we haveCc =
[
1 0

]
. We then check

the observability matrix for the DT system, giving

O(A,Cc) =
[

1 0
1− (∆t)(F/V + k1) 0

]

which has rank one. Since rank(O) < n, the system is not observ-
able.

(c) For measuring only species B we have Cc =
[
0 1

]
. This gives the

observability matrix

O(A,Cc) =
[

0 1
(∆t)k1 1− (∆t)(F/V + k2)

]

which has rank two for all sample times ∆t > 0. Since rank(O) =
n, the system is observable.

The answers are different because measuring A tells us how much
total B we have produced, but we have no information about how
much B was present initially nor how much was consumed to pro-
duce C. Therefore we cannot reconstruct the B concentration from
the model and the A concentration. Measuring species B, how-
ever, provides information about how much A is in the reactor,
because the A concentration affects the production rate of B. The
B measurement information plus the mass balances enable us to
reconstruct the A concentration. The value of the rank condition
of the observability matrix is that it makes rigorous this kind of
physical intuition and reasoning. □

5.4.5 Stability of an Optimal Estimator

Optimality of a filter is one desirable characteristic, but systems engi-
neers often care about other characteristics such as stability. Stability
in this situation means that the state estimate “gets close” (in some
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sense that we make precise shortly) to the true state as more measure-
ments become available. As shown previously with an unobservable
system (A = I, C = 0), we can have situations in which optimal estima-
tors are not stable. In these situations, optimality is small consolation,
and the estimator is not useful.

We define estimate error as the difference between the true system
state and our estimate of the state. We shall use the estimate before
measurement to illustrate

x̃(k) = x(k)− x̂−(k)

The evolution of the estimate error can be given by substituting the

x̃(k+ 1) = Ax(k)+w(k)−Ax̂−(k)−ALs
(
y(k)− Cx̂−(k)

)
Substituting the system measurement y(k) = Cx(k)+ v(k) and com-
bining terms gives

x̃(k+ 1) = (A−ALsC)x̃(k)+w(k)−ALsv(k)

Estimator stability is the question of whether (A − ALsC) is a stable
matrix, i.e., has all its eigenvalues inside the unit circle.

We have the following theorem covering the stability of the steady-
state estimator.

Theorem 5.8 (Riccati iteration and estimator stability). Given (A,C)
observable, Q > 0, R > 0, P−(0) ≥ 0, and the discrete Riccati equation

P−(l+ 1) = Q+AP−(l)A′−
AP−(l)C′(CP−(l)C′ + R)−1CP−(l)A′, l = 0,1, . . .

Then

(a) There exists P−s ≥ 0 such that for every P−(0) ≥ 0

lim
l→∞

P−(l) = P−s

and P−s is the unique solution of the steady-state Riccati equation

P−s = Qw +AP−s A′ −AP−s C′(CP−s C′ + R)−1CP−s A′

among the class of positive semidefinite matrices.
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Figure 5.16: The change in 95% confidence intervals for x̂(k|k) ver-
sus time for a stable, optimal estimator. We start at
k = 0 with a large initial variance P(0), which gives a
large confidence interval.

(b) The matrix A−ALsC in which

Ls = P−s C′(CP−s C′ + R)−1

is a stable matrix.

Bertsekas (1987, pp. 59-64) provides a proof of the “dual” of this
theorem, which can be readily translated to this case.

So what is the payoff for knowing how to design a stable, optimal
estimator? Assume we have developed a linear empirical model for a
chemical process describing its normal operation around some nominal
steady state. After some significant unmeasured process disturbance,
we have little knowledge of the state. So we take initial variance P−(0)
to be large. Figure 5.16 shows the evolution of our 95% confidence inter-
vals for the state as time increases and we obtain more measurements.
We see that the optimal estimator’s confidence interval returns to its
steady-state value after about only 10 measurements. Recall that the
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conditional variances of state given measurement do not require the
measurements. Only the optimal estimates x̂(k) depend on the data.
So we can assess the information quality of our sensor system before
we even examine the data. But realize that the noise parametersQ and
R almost always need to be determined from process data before we
can perform this analysis. Moreover, if we plan to use feedback control
to move the disturbed process back to its optimal operating point, the
better our estimate of the state, the better our control and therefore
process performance.

State estimation is a fundamental topic appearing in many branches
of science and engineering, and has a large literature. A nice and brief
annotated bibliography describing the early contributions to optimal
state estimation of the linear Gaussian system is provided by Åström
(1970, pp. 252-255). Kailath (1974) provides a comprehensive and his-
torical review of linear filtering theory including the historical devel-
opment of Wiener-Kolmogorov theory for filtering and prediction that
preceded Kalman filtering (Wiener, 1949; Kolmogorov, 1941). Jazwinski
(1970) provides an early and comprehensive treatment of the optimal
stochastic state estimation problem for linear and nonlinear systems.
Many optimal control texts contain discussions of the nonlinear state
estimation problem (Bryson and Ho, 1975; Stengel, 1994). The moving
horizon estimation (MHE) method, which uses online optimization to
address system nonlinearity and constraints, is presented by Rawlings,
Mayne, and Diehl (2020, Ch. 4).

5.5 Exercises

Exercise 5.1: Random walk with the uniform distribution

Consider again a discrete-time random walk simulation

x(k+ 1) = x(k)+ v∆t +
√

2D∆t w(k) (5.77)

in which x,w ∈ R2, k is sample number, ∆t is the sample time with t = k∆t. Instead
of using normally distributed steps as in Figure 5.3, let w = 2

√
3(u − 1/2) in which

u ∼ U(0,1)

pu(a1, a2) =

1 0 ≤ a1, a2 ≤ 1

0 otherwise

We then have that w ∼ U(−
√

3,
√

3) with zero mean and unit variance. The Octave or
MATLAB function rand generates samples of u, from which we can generate samples of
w with the given transformation.

(a) Calculate a trajectory for this random walk in the plane and compare to Figure 5.3
for the normal distribution.
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(b) Calculate the mean square displacement for 500 trajectories and compare to
Figure 5.4 for the normal distribution.

(c) Derive the evolution equation for the probability densitypx(x, t) for this process
in the limit as ∆t goes to zero. How is this model different from the usual
diffusion equation given by (5.30) for the random walk with normally distributed
steps?

Exercise 5.2: The different diffusion coefficients D and D
In the chapter we compared two models for the evolution of concentration undergoing
convection and diffusion processes

∂c
∂t
= − ∂

∂x
(v(x, t)c)+ ∂

∂x
(D(x, t)

∂c
∂x
)

and

∂c
∂t
= − ∂

∂x
(v(x, t)c)+ ∂2

∂x2 (D(x, t)c)

in which we consider x, v , andD scalars. The first is derived from conservation of mass
with a flux law defined by N = −D∂c/∂x. The second is the Fokker-Planck equation
corresponding to the following random walk model of diffusion

dx = v(x, t)dt +
√

2D(x, t) dW
(a) Show that when the diffusivity D(x, t) does not depend on x, these two models

are equivalent and D(t) = D(t).

(b) Show that the Fokker-Planck equation can always be written in the following
convection-diffusion form with a modified drift term

∂c
∂t
= − ∂

∂x
(ṽ(x, t)c)+ ∂

∂x
(D(x, t) ∂c

∂x
)

and find the expression for ṽ(x, t).

Exercise 5.3: The diffusion coefficient matrices D and D
Repeat Exercise 5.2 but for the case in which x and v are n-vectors and D and D are
n×n diffusion coefficient matrices

∂c
∂t
= −∇ · (v(x, t)c)+∇ · (D(x, t) ·∇c)

and
∂c
∂t
= −∇ · (v(x, t)c)+∇∇ : (D(x, t)c)

Exercise 5.4: Continuity of random processes

We know that the Wiener process is too rough to be differentiated, but is it even con-
tinuous? To answer this question, we first have to extend the definition of continuity
to cover random processes such as W(t). We use the following definition.

Definition 5.9 (Continuity (with probability one)). A scalar random process r(t) is
continuous (with probability one) if for all ε > 0 and α < 1, there exists δ > 0, which
generally depends on ε and α, such that

Pr(|r(t)− r(s)| ≤ ε) ≥ α for all t, s satisfying |t − s| ≤ δ
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In other words, a random process is continuous if squeezing the times close enough
together squeezes the values of the random process together, with probability as close
to one as desired.

Using this definition, prove that the Wiener processW(t) is continuous (with prob-
ability one) and that the white-noise process dW(t) is discontinuous, i.e., not continu-
ous. Hence, establish that integrating the discontinuous white-noise process smooths
it enough to creates a continuous Wiener process.

Exercise 5.5: Multidimensional Itô formula and moments of multidimen-
sional SDEs

(a) Use Itô’s formula to derive (5.33) and (5.34).

(b) Derive the multidimensional form of Itô’s formula, (5.38), for an SDE in the form

dxi =Ai(x, t)dt +Bij(x, t)dWj
Recall (5.20).

(c) Use this formula to derive the multidimensional versions of (5.33) and (5.34):

E
d(xi − x′i)(xj − x′j)

dt

∣∣∣∣∣∣
t=t′

= 2Dij(x′, t′)

E
(
d(xi − x′i)

dt

)∣∣∣∣∣
t=t′

=Ai(x′, t′)

Exercise 5.6: Diffusion equation in one dimension with Laplace transform

Consider the diffusion equation on the line

∂c
∂t
= D∇2c 0 < t, −∞ < x <∞

We wish to calculate the response c(x, t) to an impulse source term at t = 0, c(x,0) =
δ(x).

(a) In Chapter 3, we already solved this problem using the Fourier transform. Here
we try the Laplace transform. Take the Laplace transform of the one-dimensional
diffusion equation with this initial condition and show

D
d2c(x, s)
dx2 − sc(x, s) = −δ(x) (5.78)

(b) What are the two linearly independent solutions to the homogeneous equation?
Break the problem into two parts and solve the differential equation for x > 0
and x < 0. You have four unknown constants at this point.

(c) Which of the two linearly independent solutions is bounded for x → ∞? Which
of these two solutions is bounded for x → −∞? Use this reasoning to find two
of the unknown constants.

(d) Use continuity of c(x, s) at x = 0 to find one more unknown constant. Integrate
(5.78) across a small interval containing zero to obtain a condition on the change
in the first derivative

dc(x = 0+, s)
dx

− dc(x = 0−, s)
dx
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(e) Use this jump condition to find the last constant and obtain the full transform
c(x, s) valid for all x.

(f) Invert this transform and show

c(x, t) = 1
2
√
πDt

e−x
2/(4Dt) 0 < t, −∞ < x <∞ (5.79)

State which inversion formula you are using.

(g) Compute the mean square displacement for this concentration profile.

p(x, t) = c(x, t)

⟨x2⟩ =
∫∞
−∞
p(x, t)x2dx

Exercise 5.7: Random walk in one dimension

Prepare a simulation of a random walk in one dimension for D = 2. Start the particles
at x = 0 at t = 0 and simulate until t = 1000.

(a) Show the trajectories of the random walks for five particles on the same plot.

(b) Plot the mean square displacement versus time for 1000 particles. Compare this
result to the analytical solution given in Exercise 5.6(g). Describe any differences.

(c) Plot the histogram of particle locations at t = 1000 for 1000 particles. On the
same plot, compare this histogram to the analytical result given in (5.79). De-
scribe any differences.

Exercise 5.8: More useful integrals

Use the definition of the complete gamma function and establish the following integral
relationship ∫∞

0
xpe−ax

n
dx =

Γ(p+1
n )

na(p+1)/n a > 0

For the case n = 2, this relation reduces to∫∞
0
xpe−ax

2
dx =

Γ(p+1
2 )

2a(p+1)/2 a > 0 (5.80)

which proves useful in the next exercises.

Exercise 5.9: Diffusion equation in cylindrical coordinates with Laplace
transform

Consider the diffusion equation in cylindrical coordinates with symmetry in the θ co-
ordinate

∂c
∂t
= 1
r
∂
∂r
rD
∂c
∂r

0 < t, 0 < r <∞

We wish to calculate the response c(r , t) to an impulse source term at t = 0,
c(r ,0) = 1

2πr δ(r).
(a) Take the Laplace transform of the diffusion equation with this initial condition

and show

D
1
r
d
dr
r
dc(r , s)
dr

− sc(r , s) = − 1
2πr

δ(r) (5.81)
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(b) What are the two linearly independent solutions to the homogeneous equation?

(c) Which of the two linearly independent solutions is bounded for r →∞? Use this
reasoning to determine one of the unknown constants.

(d) Integrate (5.81) across a small interval containing zero to obtain a condition on
the change in the first derivative

lim
r→0+

r
dc(r , s)
dr

− lim
r→0−

r
dc(r , s)
dr

(e) Use this jump condition to find the second constant and obtain the transform

c(r , s) = 1
2πD

K0

(√
s
D
r
)

(f) Invert this transform and show

c(r , t) = 1
4πDt

e−r
2/(4Dt) 0 < t, 0 < r <∞

State which inversion formula you are using.

(g) Compute the mean square displacement for this concentration profile

⟨r2⟩ =
∫ 2π

0

∫∞
0
r2c(r , t)r dr dθ

Exercise 5.10: Diffusion equation in spherical coordinates with Laplace
transform

Consider the diffusion equation in spherical coordinates with symmetry in the θ and
φ coordinates

∂c
∂t
= 1
r2

∂
∂r
r2D

∂c
∂r

0 < t, 0 < r <∞

We wish to calculate the response c(r , t) to an impulse source term at t = 0,
c(r ,0) = 1

4πr2 δ(r).

(a) Take the Laplace transform of the diffusion equation with this initial condition
and show

D
1
r2

d
dr
r2 dc(r , s)

dr
− sc(r , s) = − 1

4πr2 δ(r) (5.82)

(b) What are the two linearly independent solutions to the homogeneous equation?

(c) Which of the two linearly independent solutions is bounded for r →∞? Use this
reasoning to find one of the unknown constants.

(d) Integrate (5.82) across a small interval containing zero to obtain a condition on
the change in the first derivative

lim
r→0+

r2 dc(r , s)
dr

− lim
r→0−

r2 dc(r , s)
dr

(e) Use this jump condition to find the second constant and obtain the full transform
c(r , s) valid for all r .
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(f) Invert this transform and show

c(r , t) = 1

8(πDt)
3
2

e−r
2/(4Dt) 0 < t, 0 < r <∞

State which inversion formula you are using.

(g) Compute the mean square displacement for this concentration profile

⟨r2⟩ = 4π
∫∞

0
r2c(r , t) r2 dr

Exercise 5.11: Probability distributions for diffusion on the plane

This exercise provides another view of the issues raised in Example 5.4. Consider again
the diffusion equation, (5.30), repeated here

∂p
∂t
= D∇2p

subject to a unit impulse at the origin at t = 0.
We consider solving this equation in the plane using both rectangular coordinates

(x,y) and polar coordinates (r , θ).

(a) Using rectangular coordinates, let p(x,y, t) satisfy (5.30)

∂p
∂t
= D

(
∂2p
∂x2 +

∂2p
∂y2

)
with initial condition

p(x,y, t) = δ(x)δ(y) t = 0

Solve this equation and show

p(x,y, t) = 1
4πDt

e−(x
2+y2)/(4Dt) (5.83)

Notice this p(x,y, t) is a valid probability density (positive, normalized).

(b) If we consider the two components (x,y) as time-varying random variables with
the probability density given by (5.83)

ξ =
[
x
y

]

pξ(x,y, t) =
1

4πDt
e−(x

2+y2)/(4Dt)

then we say ξ is distributed as follows

ξ ∼ N(0, (2Dt)I)

in which I is a 2×2 identity matrix. The position random variable in rectangular
coordinates is normally distributed with zero mean and covariance (2Dt)I.

(c) Next define a new random variable,

η =
[
r
θ

]
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as the (invertible) transformation from rectangular to polar coordinates. We
have for the transformation, inverse transformation and Jacobian

η = f(ξ)
[
r
θ

]
=
[ √

x2 +y2

tan−1(y/x)

]

ξ = f−1(η)
[
x
y

]
=
[
r cosθ
r sinθ

]
df−1(η)
dη

=
[

cosθ −r sinθ
sinθ r cosθ

] ∣∣∣∣∣∂f−1(η)
∂η

∣∣∣∣∣ = r
Use the rule for finding the probability density of a transformed random vari-
able5 and show

pη(r , θ, t) =
1

4πDt
re−r

2/(4Dt)

This is the quantity denoted pP in Example 5.4. Calculate the marginal pr by
integration and show

pr (r , t) =
1

2Dt
re−r

2/(4Dt)

Note that these are both well-defined probability densities (positive, normalized).
The first is the probability density of the pair of random variables (r , θ), and the
second is the marginal density of the random variable r for particles undergoing
the Brownian motion.

Exercise 5.12: Mean and variance of the Poisson distribution

Given that discrete random variable Y has the Poisson density

pY (n) =
an

n!
e−a

for n = 0,1, . . ., and parameter a ∈ R ≥ 0, show that

E(Y) = a var(Y) = a

Exercise 5.13: Alternate derivation of Poisson process density

Consider the Poisson process probability Pr(Y(t) = n) for n ≥ 0. Show that

Pr(Y(t) = n) = Pr(Y(t) ≥ n)− Pr(Y(t) ≥ n+ 1)

You may want to review Exercise 4.1(a). Using the definition of the event time τn, show
that

Pr(Y(t) = n) =
∫ t

0
pτn(t)dt −

∫ t
0
pτn+1(t)dt

Substitute (5.49) and use integration by parts to show (5.50)

Pr(Y(t) = n) = (λt)
n

n!
e−λt

5pη(y) = pξ(f−1(y))
∣∣∣∣det

(
∂f−1(y)
∂y

)∣∣∣∣. See (4.23).
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Exercise 5.14: Generating samples from an exponential distribution

Let random variable u be distributed uniformly on [0,1]. Define random variable τ by
the transformation

τ = −1
λ

lnu

Show that τ has density (see Section 4.3.2)

pτ(t) = λe−λt

Thus uniformly distributed random samples can easily be transformed to give expo-
nentially distributed random samples as required for simulating Poisson processes and
stochastic kinetics.

Exercise 5.15: State-space form for master equation

Write the linear state-space model for the master equation in the extent of the reaction
describing the single reaction

A+ B
k1-⇀↽-
k−1

C (5.84)

Assume we are not measuring anything.

(a) What are x,A, B,C,D for this model?

(b) What is the dimension of the state vector in terms of the initial numbers of
molecules in the system.

Exercise 5.16: Properties of the kinetic matrix

(a) Show that for a valid master equation the row sum is zero for each column of
the A matrix in (5.56).

(b) Show that this result holds for the A given in (5.55) for the reaction A+ B -⇀↽- C .

(c) What is the row sum for each column of theAθ matrix in the sensitivity equation?
Show this result.

Exercise 5.17: Reaction probabilities in stochastic kinetics

Consider a stochastic simulation of the following reaction

a A+ b B
k1-⇀↽-
k−1

c C+ d D

(a) Write out the two reaction probabilitieshi(nj), i = 1,−1 considering the forward
and reverse reactions as separate events.

(b) Compare these to the deterministic rate laws ri(cj), i = 1,−1 for the forward and
reverse reactions considered as elementary reactions. Why are these expressions
different? When do they become close to being the same?
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Exercise 5.18: Sampling to solve the master equation

Consider the stochastic simulation method described in the chapter. We may view the
trajectory of each simulation using this method as a sample of the probability density
of the system. Show that the expectation of this sampling process satisfies the chemical
master equation, (5.53).

Exercise 5.19: The evolution of the mean concentration

Consider the simple irreversible reaction

A
k
-→ B r = knA

in which nA is the number of A molecules and k is a rate constant. The reactor volume
starts withnA0 A molecules. Consider p(nA, t), the probability that the reactor volume
contains nA molecules at time t.

(a) Over what range of nA is p(nA, t) defined? Call this set N. Write the evolution
equation for p(nA, t),nA ∈ N.

(b) Define the mean of A’s probability density by

⟨nA(t)⟩ =
∑
nA∈N

nAp(nA, t)

From this definition and the evolution of the probability density, write an evo-
lution equation for ⟨nA(t)⟩. The probability density itself should not appear in
the evolution equation for the mean.

(c) How is the mean’s evolution equation related to the usual mass action kinetics
governing the macroscopic concentration cA(t)?

Exercise 5.20: Stochastic simulation for nonlinear kinetics6

Consider the reversible, second-order reaction

A+ B
k1-⇀↽-
k−1

C r = k1cAcB − k−1cC

(a) Solve the deterministic material balance for a constant-volume batch reactor
with

k1 = 1 L/mol·min k−1 = 1 min−1

cA(0) = 1 mol/L cB(0) = 0.9 mol/L cC(0) = 0 mol/L

Plot the A, B, and C concentrations out to t = 5 min.

(b) Compare the result to a stochastic simulation using an initial condition of 400 A,
360 B and zero C molecules. Notice from the units of the rate constants that k1
should be divided by 400 to compare simulations. Figure 5.17 is a representative
comparison for one sequence of pseudorandom numbers.

(c) Repeat the stochastic simulation for an initial condition of 4000 A, 3600 B, zero C
molecules. Remember to scale k1 appropriately. Are the fluctuations noticeable
with this many starting molecules?
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Figure 5.17: Deterministic simulation of reaction A + B -⇀↽- C com-

pared to stochastic simulation starting with 400 A
molecules.
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Figure 5.18: Species A and B in a well-mixed volume element. Con-
tinuum and molecular settings.
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Exercise 5.21: What happened to my rate?

Consider a well-mixed continuum setting in which we have positive, real-valued con-
centrations of reacting molecules of two types, A and B, as depicted in Figure 5.18.
Let the concentration of A and B molecules in the volume of interest be denoted cA0,
cB0. Consider the three possible irreversible reactions between these species using the
elementary rate expressions

A+A
k1-→ C r1 = k1c2

A

A+ B
k2-→ D r2 = k2cAcB (5.85)

B + B
k3-→ E r3 = k3c2

B

Consider also the total rate of reaction

r = r1 + r2 + r3

(a) If the A and B species are chemically similar so the different reactions’ rate
constants are all similar, k1 = k2 = k3 = k, and the concentrations of A and B
are initially equal, the total rate is given by

r = 3kc2
A0

But if we erase the distinctions between A and B completely and relabel the B
molecules in Figure 5.18 as A molecules, we obtain the new concentrations of A
and B as cA = 2cA0, cB = 0 and the total rate is then

r = r1 + r2 + r3

r = k1c2
A + k2cAcB + k3c2

B

r = k(2cA0)2 + k(2cA0 · 0)+ k(0)2

r = 4kc2
A0

Why are these two total rates different and which one is correct?

(b) Repeat your analysis of the reaction rates if we reduce the length scale and
consider the molecular kinetic setting in which we have integer-valued nA0, nB0
molecules of A and B in the volume of interest.

(c) Perform a stochastic simulation of the molecular setting using the following
parameters

nA0 = 50 nB0 = 60 nC0 = nD0 = nE0 = 0

k1 = k2 = k3 = k = 10sec−1

Make a plot of all species versus time. Print the plot and the simulation code.

Exercise 5.22: Cumulative distribution for the omega expansion

Given the governing equation for the fluctuation density in the omega expansion

∂
∂t
Π = − ∂

∂ξ
(
− 2kcξ Π

)
+ ∂2

∂ξ2

(
kc2 Π

)
Define the cumulative distribution

F(x, t) =
∫ x
−∞

Π(ξ, t)dξ

6See also Exercise 4.17 in (Rawlings and Ekerdt, 2020).
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V

A vAi
mA

Figure 5.19: Molecular system of volume V containing molecules of
mass mA with velocity vAi.

(a) Derive the PDE governing F ’s evolution. What are the corresponding boundary
conditions and initial condition?

(b) Solve this PDE numerically and compare to Figure 5.15 in the text. Increase Ω
holding c0 = n0/Ω fixed and describe the effect on F .

Exercise 5.23: Properties of the Maxwell-Boltzmann distribution

Consider the simple molecular system depicted in Figure 5.19 with a large number
of ideal gas molecules of species A with molecular weight mA. The system volume
is V . Molecule i has velocity vAi, i = 1,2, . . . n. A velocity vector is denoted v =[
vx vy vz

]T
with corresponding x,y, z components. These velocities are consid-

ered samples of a random variable with fixed and known distribution.
The Maxwell-Boltzmann distribution for the zero mean fluctuation velocity in an

ideal gas is

pu(ux , uy , uz) =
(

m
2πkBT

)3/2
e−

1
2
m
kBT

(u2
x+u2

y+u2
z)

in which m is the molecule mass, T is absolute temperature, and kB is the Boltzmann
constant, kB = R/NAv. This distribution is a multivariate normal with zero mean and
variance matrix kBT

m I, which we write as

u ∼ N
(

0,
kBT
m
I
)

Denote the A species mean velocity (drift term) as vA. The A molecule velocities are
then distributed as

vAi ∼ N
(
vA,

kBT
mA

I
)

all i (5.86)

Starting from the distribution (5.86), derive the following expectations in terms of the
mean species velocity vA and kB , T ,mA.

1. E(vAi)
2. E(vAivTAi)

3. E(v2
Ai) in which v2

Ai = vAi · vAi = v
T
AivAi
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4. E(v2
AivAi)

Exercise 5.24: The normal’s properties for optimal linear estimation

Establish the three properties (5.64)–(5.66) used in deriving the optimal linear estima-
tor. Some hints follow.

(a) For (5.64), use the independence of y to establish that

px,y,z(x,y, z) = px,z(x, z)py(y)

and divide both sides by pz(z).

(b) For (5.65), we are given that (x, z) is jointly distributed as

px,z(x, z) = n
([x
z

]
,
[
mx
mz

]
,
[
Px Pxz
Pzx Pz

])
Consider the linear transformation[

y
z

]
=
[
A 0
0 I

][
x
z

]
and show that [

y
z

]
∼ N

([Amx
mz

]
=
[
APxAT APxz
PzxAT Pz

])
Now use the conditional density formula to obtain py|z .

(c) For (5.66), note that this property is derived in Example 4.20.

Exercise 5.25: Observability, controllability, and duality

Review the concept of controllability presented in Exercise 1.26. Show that (A,C) is
observable if and only if (AT , CT ) is controllable. This result marks the beginning of
the interesting story of the duality between regulation and estimation.

Exercise 5.26: Observability with N measurements

Consider the linear system
x+ = Ax y = Cx

Prove the statement made in the text that if x(0) ∈ Rn cannot be uniquely determined

by n measurements
(
y(0),y(1), . . . , y(n− 1)

)
, then it cannot be determined by N

measurements for any N.

Exercise 5.27: Mean and variance of a controller cost function

When controlling the state x of a system to the origin subject to random disturbances,
the best that a controller can do is usually obtain x ∼ N(0, P) where the variance
P depends on the controller and the variance of the random disturbances. Given a
quadratic cost function for the controller, ℓ = xTQx, show that (Zagrobelny, Ji, and
Rawlings, 2013)

E(ℓ) = tr(QP) var(ℓ) = 2tr(QPQP)

Note that ℓ is distributed as a generalized chi-squared distribution. Hint: the result
in Exericse 4.32 may prove useful.
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Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten
Teilchen. Annalen der Physik, 17:549, 1905.

C. W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry, and the
Natural Sciences. Springer-Verlag, Berlin, Germany, second edition, 1990.

M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical
systems with many species and many channels. J. Phys. Chem. A., 104:
1876–1889, 2000.

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem., 81:2340–2361, 1977.

A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press,
New York, 1970.

T. Kailath. A view of three decades of linear filtering theory. IEEE Trans. Inform.
Theory, IT-20(2):146–181, March 1974.

R. E. Kalman. A new approach to linear filtering and prediction problems.
Trans. ASME, J. Basic Engineering, pages 35–45, March 1960.

536



Bibliography 537

P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equa-
tions. Springer Verlag, Berlin, 1992.

A. N. Kolmogorov. Interpolation and extrapolation of stationary random se-
quences. Bull. Moscow Univ., USSR, Ser. Math. 5, 1941.

T. G. Kurtz. The relationship between stochastic and deterministic models for
chemical reactions. J. Chem. Phys., 57(7):2976–2978, 1972.

A. Lasota and M. C. Mackey. Chaos, Fractals and Noise: Stochastic Aspects of
Dynamics. Springer-Verlag, New York, second edition, 1994.

J. B. Rawlings and J. G. Ekerdt. Chemical Reactor Analysis and Design Funda-
mentals. Nob Hill Publishing, Santa Barbara, CA, 2nd, paperback edition,
2020. 664 pages, ISBN 978-0-9759377-4-7.

J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive Control: Theory,
Design, and Computation. Nob Hill Publishing, Santa Barbara, CA, 2nd, pa-
perback edition, 2020. 770 pages, ISBN 978-0-9759377-5-4.

W. H. Ray. Advanced Process Control. McGraw-Hill, New York, 1981.

Z. Schuss. Theory and Applications of Stochastic Processes. Springer, New York,
2010.

E. D. Sontag. Mathematical Control Theory. Springer-Verlag, New York, second
edition, 1998.

R. F. Stengel. Optimal Control and Estimation. Dover Publications, Inc., 1994.

N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier
Science Publishers, Amsterdam, The Netherlands, second edition, 1992.

N. Wiener. The Extrapolation, Interpolation, and Smoothing of Stationary Time
Series with Engineering Applications. Wiley, New York, 1949. Originally
issued as a classified MIT Rad. Lab. Report in February 1942.

M. A. Zagrobelny, L. Ji, and J. B. Rawlings. Quis custodiet ipsos custodes?
Annual Rev. Control, 37(2):260–270, 2013.



A
Mathematical Tables

A.1 Laplace Transform Table

The Laplace transform pairs used in the text are collected in Table A.1
with a reference to the page in the text where they are derived or first
stated.

f(t) f (s) Page

1 αf(t)+ βg(t) αf(s)+ βg(s) 106

2
df(t)
dt

sf (s)− f(0) 107

3
d2f(t)
dt2 s2f(s)− sf (0)− f ′(0) 107

4
dnf(t)
dtn

snf(s)−
n∑
i=1

sn−if (i−1)(0) 107

5
∫ t

0
f(t′)dt′

1
s
f (s) 107

6 tnf(t) (−1)n
dnf(s)
dsn

107, 228

7 f(t − a)H(t − a) e−asf(s) 108

8 eatf(t) f (s − a) 108

9
∫ t

0
f(t′)g(t − t′)dt′ f(s)g(s) 108, 226

10 lim
t→0+

f(t) initial value theorem lim
s→∞

sf (s) 108, 227

11 lim
t→∞

f(t) final value theorem lim
s→0
sf (s)† 108, 227

12 H(t)
1
s

109

13 δ(t) 1 115

14 δ(n)(t) n ≥ 0 sn 115

continued on next page
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continued from previous page

f(t) f (s) page

15 t
1
s2 109

16 tn n > −1
Γ(n+ 1)
sn+1 109

17 eat
1

s − a 109

18 eAt A ∈ Rn×n (sI −A)−1 112

19 teat
1

(s − a)2 109

20 sinωt
ω

s2 +ω2 109

21 cosωt
s

s2 +ω2 109

22 sinhωt
ω

s2 −ω2 109

23 coshωt
s

s2 −ω2 109

24 eat sinωt
ω

(s − a)2 +ω2 109

25 eat cosωt
s − a

(s − a)2 +ω2 109

26
m∑
n=1

p(sn)
q′(sn)

esnt q(sn) simple zero
p(s)
q(s)

315

27
m∑
n=1

esnt
rn∑
i=1

aniti−1 q(sn) zero of order rn
p(s)
q(s)

∗
316

28
k

2
√
πt3

e−
k2
4t e−k

√
s k > 0 337

29
1√
πt

e−
k2
4t

e−k
√
s

√
s

k > 0 337

30 erfc
(
k

2
√
t

)
e−k

√
s

s
k > 0 337

31
1

2
√
α
eαt

{
e−k

√
αerfc

(
k

2
√
t
−
√
αt
)
− e−k

√
s

(s −α)√s k > 0 337

ek
√
αerfc

(
k

2
√
t
+
√
αt
)}

32
1
2t
e−
k2
4t K0(k

√
s) k > 0 338

33
1
k
e−
k2
4t

K1(k
√
s)√

s
k > 0 338

34
sinh(x

√
k)

sinh
√
k
− sinh(x

√
s + k)

s sinh
√
s + k

340

2
∞∑
n=1

(−1)n+1nπ
n2π2 + k sin(nπx) e−(n

2π2+k)t

35 1− 2
∞∑
n=1

(−1)n+1

nπx
sin(nπx) e−n

2π2t sinh(x
√
s)

xs sinh
√
s

342

36 1− 2
∞∑
n=0

(−1)n

(n+ 1/2)π
cos((n+ 1/2)πx) e−((n+1/2)π)2t cosh(x

√
s)

s cosh
√
s

340

37 1− 2
∞∑
n=1

1
αnJ1(αn)

J0(αnx) e−α
2
nt J0(αn) = 0

I0(x
√
s)

sI0(
√
s)

342

38 2
∞∑
n=1

(−1)n+1 sin(nπa) sin(nπb) cos(nπt)
sinh(as) sinh(bs)

sinh s
322

continued on next page
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continued from previous page

f(t) f (s) page

39 2
∞∑
n=1

(−1)n+1

nπ
sin(nπa) sin(nπb) sin(nπt)

sinh(as) sinh(bs)
s sinh s

348

Table A.1: Larger table of Laplace transforms.

† Final value exists if and only if sf (s) is bounded for Re(s) ≥ 0.
∗ ani = φ(rn−i)(sn)

(rn−i)!(i−1)! φ(s) = (s − sn)rnp(s)/q(s).
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A.2 Statistical Distributions

Distribution Density Page

uniform p(x) = 1/(b − a) x ∈ [a, b] 391

normal p(x) = 1√
2πσ2

exp
(
− 1

2
(x−m)2
σ2

)
360

multivariate p(x) = 1
(2π)n/2|P |1/2

exp
[
− 1

2 (x −m)TP−1(x −m)
]

367
normal

exponential p(x) = λe−λx x ≥ 0, λ > 0 488

Poisson p(n) = an
n! e

−a n = 0,1,2, . . . , a > 0 491

chi p(x) = 2x
(

1
2

)n/2
Γ(n/2) x

n−2e−
1
2 x

2
450

chi-squared p(x) =
(

1
2

)n/2
Γ(n/2) x

n/2−1e−x/2 x ≥ 0, n ≥ 1 450

generalized (no analytical expression) 535
chi-squared

F p(x) =

√
(xn)nmm
(xn+m)n+m

xB(n2 ,
m
2 )

x ≥ 0, n,m ≥ 1 451

Student’s t p(x) = Γ
(n+1

2

)
√
nπ Γ

(n
2

) (1+ x2

n

)−n+1
2

450

multivariate t p(x) =
Γ
(n+p

2

)(
1+ 1
n (x−m)T Σ−1(x−m)

)−n+p2

(nπ)p/2 Γ
(n

2

)
|Σ|1/2

455

Wishart p(X) = |X|
n−p−1

2

2
np
2 |R|

n
2 Γp

(n
2

) e− 1
2 tr(R−1X) X > 0 421

Maxwell p(x) = x2e−
1
2 x

2
534

Maxwell- pu(ux , uy , uz) =
(

m
2πkBT

)3/2
e
− 1

2
m
kBT

(u2
x+u2

y+u2
z) 534

Boltzmann

Table A.2: Statistical distributions defined and used in the text and
exercises.

The different probability distributions that have been discussed in
the text are summarized in Table A.2.

A.3 Vector and Matrix Derivatives

Definition. First consider s(t), a real-valued, scalar function1 of a real-
valued scalar, s : R → R. Assume the derivative, ds(t)/dt exists. We

1All of the formulas in this section are readily extended to complex-valued functions
of a complex variable.
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wish to extend the definition of the derivative to vector and matrix-
valued functions of vector and matrix-valued arguments. Many of the
derivative operations, such as derivative of scalar-valued functions with
respect to scalars, vectors, and matrices, can be conveniently expressed
using the rules of vector/matrix operations. Other derivative opera-
tions, such as the derivative of matrix-valued functions with respect to
vectors and matrices, produce tensors having more than two indices.
We summarize here the most important formulas that can be expressed
in matrix/vector calculus. To state how the derivatives are arranged
into vectors and matrices, we require a more precise notation than we
used in the text. Moreover, several different and conflicting conven-
tions are in use in different fields; these are briefly described in Section
A.3.1. So we state here the main results in a descriptive notation, and
expect the reader can translate these results into the conventions of
other fields.

We require a few preliminaries. Now let s(x) be a scalar-valued
function of vector x, s : Rn → R. Assume that all partial derivatives,
∂s/∂xi, i = 1,2, . . . , n exist. The derivative ds/dx is then defined as
the column vector

ds
dx
=



∂s
∂x1
∂s
∂x2

...
∂s
∂xn


scalar-vector derivative

The derivative ds/dxT is defined as the corresponding row vector

ds
dxT

=
[ ∂s
∂x1

∂s
∂x2

· · · ∂s
∂xn

]
and note that (ds/dx)T = dsT/dxT = ds/dxT . Next let s(A) be a
scalar-valued function of matrix A, s : Rm×n → R. Again, assuming all
partial derivatives exist, the derivative ds/dA is then defined as

ds
dA

=



∂s
∂A11

∂s
∂A12

· · · ∂s
∂A1n

∂s
∂A21

∂s
∂A22

· · · ∂s
∂A2n

...
...

. . .
...

∂s
∂Am1

∂s
∂Am2

· · · ∂s
∂Amn


scalar-matrix derivative
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As in the vector case, we define ds/dAT as the transpose of this result,
or ds/dAT = (ds/dA)T . These more general matrix derivatives do
specialize to the two vector derivatives previously defined.

Next up is the vector-valued function of a vector, f(x). Let f : Rn →
Rm. The quantity of most interest is usually the Jacobian matrix, which
we denote by df/dxT , defined by

df
dxT

=



∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn
...

...
. . .

...
∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn


vector-vector derivative
(Jacobian matrix)

The notation df/dxT serves as a convenient reminder that the col-
umn vector f is distributed down the column and the row vector xT

is distributed across the row in the entries in the Jacobian matrix. The
transpose of the Jacobian is simply df T/dx = (df/dxT )T , which is
easy to remember. Note that df/dx is a long column vector with mn
entries coming from stacking the columns of the Jacobian matrix. This
is the vec operator, so we have

df
dx
= vec

(
df
dxT

)
The transpose, denoted df T/dxT , is a long row vector. These vector
arrangements of the derivatives are not usually of much interest com-
pared to the Jacobian matrix, as we shall see when we discuss the chain
rule.

Inner product. The inner product of two vectors was defined in Chap-
ter 1

(a, b) = aTb =
n∑
i=1

aibi a,b ∈ Rn

We can extend this definition to linear spaces of matrices as follows

(
A,B

)
= tr(ATB) =

m∑
i=1

n∑
j=1

AijBij A,B ∈ Rm×n

Because tr(C) = tr(CT ) for any square matrix C , the matrix inner prod-
uct can also be expressed as

(
A,B

)
= tr(BTA), which is valid also in the

vector case.
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Chain rules. One of the most important uses of these derivative for-
mulas is a convenient expression of the chain rule. For scalar-valued
functions we have two common forms.

ds =
( ds
dx
, dx

)
= ds
dxT

dx scalar-vector (A.1)

ds =
( ds
dA
, dA

)
= tr

(
ds
dAT

dA
)

scalar-matrix (A.2)

Notice that when written with inner products, these two formulas are
identical. The vector chain rule can be considered a special case of
the matrix chain rule, but since the vector case arises frequently in
applications and doesn’t require the trace, we state it separately. For
vector-valued functions we have one additional form of the chain rule

df = df
dxT

dx vector-vector (A.3)

which is a matrix-vector multiplication of the Jacobian matrix of f with
respect to x with the column vector dx. Because df is a vector, this
chain rule is not expressible by an inner product as in the scalar case.
But notice the similarity of the vector chain rule with the second equal-
ities of the two scalar chain rules. Because of this similarity, all three
important versions of the chain rule are easy to remember using this
notation. There is no chain rule for matrix-valued functions that does
not involve tensors.

Finally, we collect here the different matrix and vector differentia-
tion formulas that have been used in the text and exercises. These are
summarized in Table A.3, with a reference to the page in the text where
they are first mentioned or derived.

Derivative Formula Page

1 ds = ds
dxT

dx (chain rule 1)

2 ds = tr
(
ds
dAT

dA
)

(chain rule 2)

continued on next page
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continued from previous page

Derivative Formula Page

3 df = df
dxT

dx (chain rule 3)

4
d
dx
f Tg = df

T

dx
g + dg

T

dx
f (product rule)

5
d
dx
xTb = b

6
d
dxT

bTx = bT

7
d
dx
xTAx = Ax +ATx

8
d
dxT

Bx = B

9
d
dx
xTBT = BT

10
d
dt
p(A) = q(A) d

dt
A, q(·) = d

d(·)p(·) 335

11
d
dt

detA = det(A) tr
(
A−1 d

dt
A
)
, detA ≠ 0 335

12
d
dA

tr(p(A)) = q(AT ), q(·) = d
d(·)p(·) 440

13
d
dA

detA = (A−1)T detA, detA ≠ 0 440

14
d
dA

ln(detA) = (A−1)T , detA ≠ 0 440

15
d
dA

tr(AB) = d
dA

tr(BA) = BT

16
d
dA

tr(ATB) = d
dA

tr(BAT ) = B

17
d
dA

tr(ABAT ) = A(BT + B)

18
d
dA

tr(ATBA) = (B + BT )A

continued on next page
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continued from previous page

Derivative Formula Page

19
d
dA

tr(A−1B) = −(A−1)TBT (A−1)T 420

20
d
dA
xTA−1x = −(A−1)TxxT (A−1)T

Table A.3: Summary of vector and matrix derivatives defined and
used in the text and exercises; s, t ∈ R, x,b ∈ Rn,
A ∈ Rm×n, B ∈ Rm×n, f(·) and g(·) are any differen-
tiable functions, and p(·) is any matrix function defined
as a power series.

A.3.1 Derivatives: Other Conventions

Given the many scientific fields requiring vector/matrix derivatives,
chain rules, and so on, a correspondingly large number of different
and conflicting notations have also arisen. We point out here some of
the other popular conventions and show how to translate them into the
notation used in this section.

Optimization. The dominant convention in the optimization field is
to define the scalar-vector derivative ds/dx as a row vector instead of
a column vector. The nabla notation for gradient, ∇s, is then used to
denote the corresponding column vector. The Jacobian matrix is then
denoted df/dx. So the vector chain rule reads in the optimization
literature

df = df
dx

dx optimization convention

Given that ds/dx is a row vector in the optimization notation, the first
scalar chain rule reads

ds =
(( ds
dx

)T
, dx

)
= ds
dx
dx optimization convention
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The biggest problem with adopting the optimization field’s conventions
arises when considering the scalar-matrix derivative. The derivative
ds/dA has the same meaning in the optimization literature as that used
in this text. So the second scalar chain rule is also the same as in this
text

ds =
( ds
dA
,dA

)
= tr

(
ds
dAT

dA
)

optimization convention

Notice the inconsistency in the chain rules: the scalar-matrix version
directly above contains a transpose and the scalar-vector and vector-
vector versions do not. The burden rests on the reader to recall these
different forms of the chain rule and remember which ones require the
transpose. The advantage of the notation used in this section is that all
chain rules appear with a transpose, which is what one might anticipate
due to the chain rule’s required summation over an index. Also, in the
notation used in this section, the ∇ operator is identical to d/dx and
neither implies a transpose should be taken. Finally, there is no hint
in the optimization field’s notation ds/dx and ∇s as to which should
be a column vector and which a row vector. The notation used in this
section, ds/dx and ds/dxT , makes that distinction clear.

Field theories of physics (transport phenomena, electromagnetism)
As noted in Chapter 3, the literature in these areas primarily uses Gibbs
vector-tensor notation and index notation. For example, the derivative
of a scalar function s with regard to a vector argument x is

∇s or
∂s
∂x

In Cartesian coordinates (
∂s
∂x

)
i
= ∂s
∂xi

The derivative of a scalar s with respect to a tensor argument is similar(
∂s
∂A

)
ij
= ∂s
∂Aij

The derivative of a vector function f with respect to a vector x is

∇f or
∂f
∂x

where

(∇f )ij =
(
∂f
∂x

)
ij
= ∂fj
∂xi
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so
(
∂f
∂x

)
is the transpose of the Jacobian. Therefore, the chain rule

becomes
df = dx ·∇f = (∇f )T · dx

Consistent with this notation, one can write the Taylor-series expan-
sion of a vector field f around the origin as

f (x) = f (0)+ x ·∇f + 1
2
xx : ∇∇f + . . .

where derivatives are evaluated at the origin and

(∇∇f )jki =
∂2fi
∂xj∂xk

One must beware, however, that this ordering of indices is not used
universally, primarily because some authors write the Taylor expansion
as

f (x) = f (0)+ J · x + 1
2
K : xx + . . .

where

Jij =
∂fi
∂xj

Kijk =
∂2fi
∂xj∂xk

A.4 Exercises

Exercise A.1: Simple and repeated zeros

Assume all the zeros of q(s) are first-order zeros, rn = 1, n = 1,2, . . . ,m, in entry 27
of Table A.1, and show that it reduces to entry 26.

Exercise A.2: Deriving the Heaviside expansion theorem for repeated roots

Establish the Heaviside expansion theorem for repeated roots, entry 27 in Table A.1.
Hints: Close the contour of the inverse transform Bromwich integral in (2.7) to the

left side of the complex plane. Show that the integral along the closed contour except
for the Bromwich line goes to zero, leaving only the residues at the singularities, i.e.,
the poles s = sn, n = 1,2, . . . ,m. Since φ(s) has no singularities, expand it in a
Taylor series about the root s = sn. Find the Laurent series for f(s) and show that
the residues are the coefficients ain given in the expansion formula. Note that this
procedure remains valid if there are an infinite number of poles, such as the case with
a transcendental function for q(s).

Exercise A.3: Laplace transform relations

Take the limit k→ 0 in entry 34 of Table A.1 and show that it produces entry 35.
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Exercise A.4: Some invalid derivative formulas

Notice that entry 5 in Table A.3 is a special case of entry 9 with BT = b. Also, entry 6
is a special case of entry 8 with B = bT . Consider the following derivatives that could
be included in Table A.3 in place of entries 5 and 6

d
dx
bTx = b d

dxT
xTb = bT

These can be derived by transposing the scalar numerators in entries 5 and 6, respec-
tively. But notice that we do not find companion forms for these listed in Table A.3
with general matrix B replacing column vector b. Compute the following matrix deriva-
tives and show that simply replacing b with general matrix B above does not generate
correct formulas

d
dx
BTx ≠ B

d
dxT

xTB ≠ BT

Note that you may want to use the vec operator to express the correct formulas. Next
show that the correct matrix versions of these derivatives do reduce to the above for-
mulas for B = b, a column vector.

Exercise A.5: Companion trace derivatives

(a) Use the fact that tr(AB) = tr(BA) to establish that Formulas 15 and 16 in Table
A.3 are equivalent formulas, i.e., assuming one of them allows you to establish
the other one.

(b) On the other hand, show that Formulas 17 and 18 are equivalent by taking trans-
poses of one of them to produce the other one.

Exercise A.6: Derivative of matrix inverse

Derive Formula 19 in Table A.3.
Hint: First derive the following component formula for differentiating the inverse

of a matrix with respect to the matrix

d(A−1)ij
dAab

= −A−1
ia A

−1
bj

This result can be derived by differentiating the product AA−1 = I which in component
form is Aij(A−1)jk = δik. Then differentiate the product to obtain 19.
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