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Abstract

Feedback controller design and process modeling methods using machine learning

by

Pratyush Kumar

The recent advances in the field of machine learning, the availability of powerful

computing resources, and growing data collection capabilities across industries present

new opportunities to upgrade the existing feedback control and automation methods

implemented in applications. This thesis presents novel approaches and methods to

use machine learning algorithms to develop feedback controllers and process models

for dynamical systems. In the first half of this thesis, we develop approaches to use re-

inforcement learning and neural networks to design feedback controllers for multivari-

able systems. We develop a novel model-free Q-learning approach suitable to estimate

linear, unconstrained feedback controllers from noisy process data. We present a neu-

ral network (NN) design approach to approximate the model predictive control (MPC)

feedback law for large-scale applications that may be out of reach with available QP

solvers. The proposed NN design approach is applied to a large industrial crude distil-

lation unit model, and we demonstrate that NNs can be used to execute MPC orders of

magnitude faster compared to an available QP solver.

The next half of this thesis focuses on developing hybrid model identification ap-

proaches that utilize both the advantages of neural networks and some first principles

process knowledge usually available in applications. We consider building systems af-

fected by large occupancy induced heat disturbances. For these systems, we develop

a novel two step grey-box dynamic and NN disturbance model identification frame-

work. We use a NN to model the heat disturbance so that it can be used to pro-

ix



vide feedforward predictions of the disturbance in an MPC controller for improved

energy cost optimization. We also present a hybrid modeling approach for nonlinear

chemical engineering processes. For this class of systems, we use NNs to approximate

some functions in the overall dynamic model, e.g, reaction kinetics, which may be

challenging to parameterize using the available domain knowledge. The estimated

hybrid models are used for steady-state economic optimization at the real time opti-

mization layer. Throughout this thesis, we present examples with heating, ventilation,

and air-conditioning and chemical engineering systems to demonstrate the effective-

ness of the proposed controller design and process modeling methods. We compare

the proposed methods with existing approaches and illustrate their potential to design

high-performance control systems.
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Chapter 1

Introduction

The automation of large, constrained industrial processes in modern markets with dy-

namically changing commodity prices is performed using an online optimization ap-

proach. This online optimization of a process is carried out using a hierarchy (Figure

1.1) of several layers that are designed based on a time scale separation of the process.

The real time optimization (RTO) and the model predictive control (MPC) layers are

crucial elements of the hierarchy, both of which aim to optimize process performance

online. These layers use mathematical models describing the process dynamics in an

optimization problem. The quality of the model used at the layers and the design of

the optimization problem solved are both influential to the performance of the overall

process operations system.

The RTO layer solves a steady-state optimization problem based on raw material

and product prices, product goals, etc, to determine an economically profitable steady

state of the plant. This layer uses a nonlinear model between the actuators and mea-

surements of the process, and the problem at the layer is solved approximately on a

time scale of hours. The computed steady state is passed as a collection of setpoints

to the MPC layer, which then dynamically drives and maintains the plant at the set-

points requested by the RTO layer. The MPC controller uses an approximate linear

model of the plant and solves a quadratic program (QP) at a time scale of minutes. The

1



Introduction Chapter 1

solutions of the MPC optimization problem are further passed as setpoints to regula-

tory layer proportional-integral (PI) controllers, which then regulate some single input

single output (SISO) processes and manipulate the final plant actuators.

Planning and Scheduling

Real time optimization

Model predictive control

Regulatory control

Plant

(days)

(hours)

(mins)

(seconds)

Figure 1.1: Diagram of a process operations hierarchy (Seborg et al., 2017, Chapter
19) typically implemented for the automation of large industrial systems.

The research in the field of process operations and control is often directed to-

wards developing technologies to improve the efficiency and performance of the pro-

cess operations hierarchy. In particular, process modeling or system identification is an

important area because accurate dynamic models are valuable to improve economic

performances of both the RTO and MPC layers. The development of advanced MPC

controller formulations is also an important topic that has an industrial impact for de-

signing high performance automation systems. In this thesis, we use modern machine

learning algorithms to develop (i) controller design methods for implementation at the

MPC layer, and (ii) novel approaches to construct dynamic process models for use in

both the RTO and MPC layers.

2



Introduction Chapter 1

The motivations for using ML algorithms for process modeling and control are as

follows. First, several algorithmic advances have been made in the field over the past

few decades that nowadays conveniently allow the development of sophisticated ML

models. Most notable advances are neural network (NN) training methods (LeCun

et al., 2015; Hinton et al., 2006; Srivastava et al., 2014), symbolic differentiation based

software (Abadi et al., 2015), and deep reinforcement learning approaches (Mnih et al.,

2015). The researchers in the field have leveraged the advances to demonstrate im-

pressive capabilities of ML algorithms for computer vision (Krizhevsky et al., 2017) and

autonomy tasks (Silver et al., 2016; Kober et al., 2013). Second, the computing power

available to implement ML algorithms using big data has also grown significantly in

the recent years. Powerful resources are available in applications for both online and

offline computations. And cloud computing services offered by large corporations pro-

vide unparalleled computational resources than available a few decades ago. Lastly,

the volume of data collection is also growing in this modern age across a range of

industries.

This thesis aims to leverage the above opportunities to develop advanced feedback

controller design and process modeling methods. In this introductory chapter, we first

give a brief overview of the existing methods for process modeling, model predictive

control, and machine learning. In Section 1.2, we discuss how the machine learning

algorithms can be used for feedback controller design and dynamic process modeling.

Then we outline the rest of the chapters and contributions of this thesis in that section.

The mathematical notation used for the rest of the thesis are discussed in Section 1.3.

3



Introduction Chapter 1

1.1 Background

1.1.1 Process modeling

Dynamic process modeling is the task of developing a continuous or discrete time

representation of the dynamics of some process. For example, consider a process de-

scribed by the ordinary differential equations (ODEs)

dx

dt
= f(x, u) + w (1.1)

y = h(x) + v (1.2)

in which, x is the state, y is the measurement, u is the control input, and w and v are

the process and measurement noises. In process modeling, we aim to develop a model

between the inputs (u) and measurements (y) that closely approximates the input to

measurement relationship of the above true dynamics (1.1) – (1.2). This task is also

called system identification (Ljung, 1999) and is studied widely in the control systems

literature due to the importance of dynamic models in control systems design.

A dynamic model can be developed using a first principles, grey-box, or a black-

box modeling approach. In the first principles approach, the model is developed using

rigorous domain knowledge about the process dynamics. The approach does not use

any data collected from the true process, and it is sometimes also referred as the white-

box approach. The grey-box and black-box modeling methods use some data collected

from the process and solve a data fitting problem to develop the dynamic model. To

perform grey-box modeling, a dynamic model is parameterized using the available

first principles knowledge. The unknown parameters in the model are subsequently

estimated by solving the data fitting problem. The black-box approach does not use

any first principles knowledge. A model is first parameterized using completely black-
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box linear or nonlinear function approximators, and the parameters are estimated by

solving the data fitting problem.

As mentioned previously, the RTO layer uses a nonlinear process model and the

MPC controller uses a linear dynamic model. In standard industrial practice, the non-

linear model for the RTO layer is typically developed using one of the first principles

or grey-box modeling approaches. These modeling approaches, however, have an issue

that the available first principles knowledge in applications can be often incorrect or

incomplete. And a model developed using these approaches can have a plant-model

mismatch, leading to a suboptimal economic performance. For the MPC controller,

a linear dynamic model can be estimated using black-box linear system identification

(Qin, 2006) methods available in the literature. The linear model almost always has

a mismatch with the actual plant, so integrating disturbance models are used in con-

junction with the main dynamic model. The disturbance model helps to achieve a zero

setpoint tracking error in the primary measurements during the online closed-loop im-

plementation.

1.1.2 Model predictive control

The MPC controller is a crucial element of the process operations hierarchy. The

controller uses a linear model and solves a dynamic optimization problem to manipu-

late the actuators for process operation. The ability of the MPC approach to systemati-

cally handle large multivariable systems and constraints led to its widespread adoption

in the process industries (Qin and Badgwell, 2003).

An industrial MPC controller has three components: a state estimator, a target se-

lector, and a regulator. The state estimator uses past observations of the control inputs

and measurements to obtain the best possible estimates of the state and disturbance.
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These two estimates correspond to the states in the main dynamic model and the dis-

turbance model. The target selector then uses the disturbance estimate and the desired

setpoints requested by the RTO layer to determine a target steady state. This target

is computed such that the actual plant measurements achieve a zero setpoint tracking

error at that steady state. The MPC regulator next solves a dynamic optimization prob-

lem based on the state estimate, the linear model forecasts, and the target steady state

to determine the control input to apply to the plant.

t

x̂

u

x+ = Ax+Bu

N

xs

Time

x

u

u

ū

Figure 1.2: Pictorial representation of a closed-loop MPC implementation. After every
sampling instant, the MPC optimizes over a future control input sequence based on
the state estimate, the linear model forecasts, and the target steady state. The first
input is applied to the plant and the optimization process is repeated online.

In Figure 1.2, we show a pictorial representation of an online MPC controller exe-

cution. After every sampling instant, the MPC regulator uses the state estimate (x̂) and

the linear model (x+ = Ax+Bu) in a dynamic optimization problem to decide the best

input sequence to drive the system to the target steady state (xs, us). The first input is
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applied to the system, and the dynamic optimization problem is resolved after the next

sampling instant.

The MPC regulator solves the following optimization problem

min
u

N−1∑
k=0

(
(x(k)− xs)′Q(x(k)− xs) + (u(k)− us)′R(u(k)− us)

)
+ (x(N)− xs)′P (x(N)− xs) (1.3)

s.t x+ = Ax+Bu, (1.4)

u ≤ u ≤ u (1.5)

x(0) = x̂ (1.6)

in which, N is the forecasting horizon length, [u, u] denote the actuator constraints,

Q, R, and P are the penalty matrices used in the stage costs. The future control

input sequence u = [u(0)′, u(1)′, . . . , u(N)′]′ is the decision variable. This optimization

problem is a quadratic program (QP). The first element of the optimal control input

sequence u0(0) is applied to the plant, and the QP is resolved online after the next

sampling instant. We note that the solution of the MPC optimization problem can

be explicitly characterized as a piecewise affine function over the state estimate and

the target steady-state pair. We refer to the first element of that function as the MPC

feedback law, denoted as u0(0) = κN(x̂, xs, us).

The MPC controller formulation above is a type of setpoint tracking formulation.

The MPC aims to drive the measurements to the setpoints requested by the RTO layer,

which are based on plant economics. An alternative strategy to the multi-layered RTO

and MPC approach can be to combine the two layers and use an “economic MPC"

formulation (Rawlings et al., 2012). In this formulation, the objective function in the

MPC optimization problem can be chosen directly based on the plant economics.
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The MPC approach has strong stability and robustness properties, which make the

technology reliable for implementation in industrial applications. Mayne et al. (2000)

reviews that an MPC formulated using an appropriate terminal cost and constraint

has a nominal stability property. The optimal cost function of the QP can be used as

a Lyapunov function to establish the nominal stability property. Allan et al. (2017)

discusses the inherent robustness property of a nonlinear MPC controller formulation

to small disturbances. The term “inherent robustness” refers to the robustness provided

by the MPC controller even when the optimization problem is not explicitly designed

to be robust to disturbances.

1.1.3 Machine learning

The field of machine learning focuses on developing methods and algorithms that

use data to improve performance on a specified task (Mitchell et al., 1997). This task

may be prediction, pattern recognition, control, etc. The types of ML algorithms can be

broadly categorized into supervised, unsupervised, and reinforcement learning.

Supervised learning algorithms aim to solve the problem of identifying relationships

between some labelled input and output data. That is, given a set of labelled pairs

(xi, yi), estimate a function that best approximates the true relationship between the

pairs. The estimated function may then be used subsequently to predict the output

when a label is not available. Examples of the types of supervised learning algorithms

are linear regression, artificial neural networks, support vector machines, etc. The

unsupervised learning algorithms are presented with only the inputs and without any

labelled outputs. The goal of these algorithms is to discover patterns in the inputs.

Reinforcement learning (RL) algorithms solve a decision-making problem that max-

imizes a reward when operating in an environment. The algorithms are allowed to in-
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teract with the environment using an action and obtain a measure of performance via

a reward function. The algorithm can choose a series of actions, and the final goal is to

learn the optimal way to choose the action that maximizes the reward. This objective

of RL algorithms is very similar to that of classical feedback control methods. In which

we assume that given the ability to interact with a process using a manipulated control

input, we would like to decide how to choose the control input in a way that minimizes

a cost function. Modern reinforcement learning algorithms have achieved remarkable

results for decision-making purposes when playing Go (Silver et al., 2016) and Atari

games (Mnih et al., 2015).

xi ŷi

Figure 1.3: Diagram of a feedforward neural network. An input vector xi is propa-
gated through the layers in the network to predict the output ŷi.

We use neural networks (NNs) as function approximators for the majority of the

approaches developed in this thesis. So we next describe the architecture and training

process of a standard feedforward NN. Figure 1.3 shows a diagram of a standard feed-

forward network. An input vector xi is provided to the network, which then undergoes

a series of operations to predict the output ŷi. The following operations are performed
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in the network

z0 = xi (1.7)

zl+1 = gl(Wlzl + bl), l ∈ [1, h] (1.8)

ŷi = zh+1 (1.9)

in which, Wl and bl are the weights and biases in the network at the layer l, and h is the

number of layers in the network. The function gl(·) is a nonlinear activation function,

which we consider as either the hyperbolic tangent or the ReLU activation function

defined as g(a) = max(0, a). We do not use an activation function in the last layer, i.e.,

gh(a) = a.

The recursive application of the series of operations at each layer enables a feed-

forward NN to represent complex nonlinear functions. And they are well-known for

their function approximation capabilities. The weights and biases in the network can

be estimated using a set of labelled data (xi, yi) by minimizing the prediction error of

the network as follows

min
Wl, bl

Ns∑
i=1

|yi − ŷi(xi)|2 (1.10)

in which, yi is the true label corresponding to the input xi, ŷi(xi) is the NN prediction

corresponding to that input, the symbol |·| denotes the norm of a vector, and Ns is the

total number of training data samples. The decision variables in this problem are the

weights and biases of all the layers (Wl, bl) in the network. The optimization problem

can be solved using a stochastic gradient algorithm such as Adam (Kingma and Ba,

2014).

The optimization algorithm uses gradients of the objective function computed over
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some small “batches” of the entire training data in the descent step. This approach

enables the algorithm to make faster progress to an optimum compared to if the entire

training data were used to compute the gradient in the descent step. The size of the

data over which the gradient is computed is referred as the “batch size”. The algorithm

uses gradients from multiple batches to complete one traversal over the entire training

data. Each complete traversal over the entire training data is referred as one “epoch”.

The batch size and the number of epochs are hyperparameters that can be tuned to

achieve a good model fit.

During the training, one must take precaution that the model does not overfit to the

training data. And that it also generalizes to similar data not available in the training

set. For this purpose, we always separate a holdout data set from the entire training set.

On the holdout data set, the optimization problem loss metric is computed at the end

of every epoch. At the end of training, we use the NN weights and biases that have the

best loss metric on the holdout data set for further validation. This approach ensures

that the developed NN is not overfitted to the training data and also generalizes to

samples not available in the training set.

1.2 Overview of thesis

Machine learning methods can be used for process modeling and control in the

following three approaches. First, reinforcement learning methods may be used for

model-free feedback controller design from process data without estimating a dynamic

model. The motivation for this approach is that a model-free method avoids the model

identification step, which can sometimes be considered a challenging step for feedback

controller design in process control applications. Second, neural networks (NNs) may

be used to approximate the MPC feedback law (κN(·)) offline using the solutions of
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the MPC optimization problem as labelled data. The offline trained network can then

be used online to implement an “approximate” MPC controller in place of using QP

solvers. The advantage of this approach is that NNs can execute MPC faster than

online QP solvers, and allow practitioners to implement MPC controllers on large-scale

applications. Third, neural networks may be used to estimate dynamic process models

from data, which can then be used at the RTO and MPC layers. The motivation for this

approach is that NNs can allow the development of accurate models, and thus provide

an improved economic performance of the process operations hierarchy.

We follow the above three approaches to develop the process modeling and con-

troller design methods proposed in this thesis. For reinforcement learning, we focus on

estimating the linear quadratic regulator (LQR) using Q-learning from noisy data. For

the MPC feedback law approximation, we consider large-scale applications that may be

out of reach for available online QP solvers. For process modeling, we develop hybrid

modeling approaches using NNs that also utilize some first principles knowledge to

develop the process model.

The rest of this thesis is organized into five more chapters. The first two chapters

focus on using reinforcement learning and neural networks for feedback controller

design for multivariable processes. And the next two chapters develop hybrid modeling

methods for building applications and nonlinear chemical engineering processes. We

next highlight the contributions and contents of each chapter.

Chapter 2: Model-free controller design using Q-learning from noisy data.

In this chapter, we start with a discussion on the related research in the area of

model-free RL for feedback controller design. We discuss an existing Q-learning al-

gorithm to estimate the nominal LQR feedback law from data. We highlight via a

simulation study that this RL algorithm is not suitable to estimate the LQR feedback
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law from noisy data.

Next, we discuss an available algorithm to estimate the stochastic LQR feedback

law, which was developed for linear systems with Gaussian process noise of known co-

variance. We build upon this algorithm and propose to extend it to treat the case of an

unknown noise covariance. Then, we use the extended algorithm to estimate a feed-

back controller for linear systems with both process and measurement noise and only

output measurements. For comparative studies, we also discuss a maximum likelihood

estimation (MLE) algorithm to estimate a model-based controller. Simulation studies

are presented using a linear heating, ventilation, and air-conditioning (HVAC) example

system. We demonstrate the suitability of the developed model-free Q-learning ap-

proach to estimate a reasonable feedback controller from a viable amount of training

data. We show that a controller estimated with the proposed model-free Q-learning ap-

proach provides a very similar closed-loop performance as a controller estimated using

the model-based MLE method.

Chapter 3: Fast, large-scale model predictive control using deep neural networks.

This chapter presents the design of neural networks (NNs) to approximate the MPC

feedback law so that NNs can be used to implement MPC for large-scale industrial

applications.

We start with examining the MPC feedback law approximation approach with a

small double integrator example and on the control problem of regulation to the origin.

We analyze the quality and the nature of the function approximations by NNs in this

example. Then, we present the design of NNs to approximate the feedback law for the

industrially relevant offset-free MPC formulation. We propose a novel structured NN

architecture that can be used to achieve offset free closed-loop performance in applica-

tions. We discuss the data generation approach to sample the relevant state space for
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NN training based on the anticipated plant setpoints and disturbances. In this chapter,

we also establish an inherent robustness property of approximate NN controllers using

the input-to-state stability results available within the MPC literature. We show that

if NNs are sufficiently trained and have low enough MPC feedback law approximation

errors, then they are robust to small disturbances.

The application of the proposed NN controller design approach is demonstrated via

simulation studies on two large-scale application examples. Specifically, we apply the

NN design approach on an industrial crude distillation unit model with 252 states, 32

control inputs, and a control sample horizon length of 140. We demonstrate that NNs

can be used to execute MPC around four orders of magnitude faster than an available

QP solver.

Chapter 4: Grey-box modeling and disturbance forecasting in building energy

systems.

Building systems comprise a large portion of the United States energy usage. For

modern markets with dynamically changing energy prices, researchers have proposed

the use of economic MPC to optimize energy cost in real time. Buildings systems are

affected by disturbances such as the ambient temperature and the heat load generated

by occupants. Both these disturbances have a significant contribution to the building

dynamics. And the performance of an economic MPC controller depends on the quality

of both the building dynamic model and the disturbance forecasts.

In this chapter, we propose a novel two-step method to estimate a grey-box build-

ing dynamic model and a neural network to predict the large occupancy generated

heat disturbance. In the first step, a grey-box building model is estimated using some

input excitation data. We treat the unmeasured heat disturbance in this step by esti-

mating a piecewise constant signal for the disturbance in the same grey-box building
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model identification problem. We also present an approach to compute approximate

confidence intervals on the physical parameters in the grey-box building model. In the

second identification step, we use historical operational data to identify patterns in the

occupancy generated heat disturbance using a NN.

We present case studies using a two time scale building system to demonstrate the

efficacy of the proposed model identification approach. The subsequent use of the com-

posite building and NN disturbance model for economic MPC is also demonstrated via

closed-loop simulation studies. We illustrate that modeling and forecasting the occu-

pancy generated heat disturbance in the MPC problem is valuable to attain improved

energy cost savings.

Chapter 5: Hybrid process modeling with application to economic optimization.

The chapter develops a hybrid modeling approach to estimate nonlinear process

models for use in steady-state economic optimization at the RTO layer.

As mentioned earlier, developing a fully first principles based or a grey-box dy-

namic model can be challenging for many industrial processes due to incomplete or

incorrect process knowledge. We present a modeling approach that utilizes both the

available process knowledge and the advantages of neural networks. The NNs are used

to approximate some complex unknown functions in the dynamic model that may be

challenging to parameterize using the available process knowledge. We consider two

nonlinear chemical process examples and demonstrate the suitability of the modeling

approach to estimate accurate dynamic models from process data.

We also examine the performance of the hybrid models when used in a steady-state

economic optimization problem typically solved at the RTO layer in the process indus-

tries. We elucidate the type of data that should be collected from the process if the

final goal is to use an estimated hybrid model in steady-state optimization. In the case
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studies, we also develop multiple hybrid models with different NN function parameter-

ization choices along with a fully black-box NN model. We show that hybrid models

that have the most possible information about the functions being approximated by the

NNs provide good steady-state economic performance. We emphasize that structural

insights are crucial to obtain high performance using the hybrid models.

Chapter 6: Concluding remarks.

This chapter first summarizes the results and contributions of this thesis. Then, we

provide future research directions for each approach discussed in this thesis on using

machine learning methods for process modeling and control.

1.3 Notation

We use the symbols I and R denote integers and reals respectively. Subscripts on

these symbols denote restrictions, e.g., Ia:b denotes integers in the closed interval [a, b].

The symbol Rn denotes a vector of real numbers in n dimensions.

We use a bold symbol d to denote a time sequence, and a vector d(k) denotes an

element of d at time k ≥ 0. We use di to denote a subsequence or the collection of

elements of d for k ∈ I0:i−1. We also define the norm of a sequence (or subsequence)

as follows ||di|| = maxk∈I0:i−1
|d(k)|.

The symbol xi:j denotes a sub-vector of x ∈ Rn containing the elements in the index

range i to j, with elements at both the end indices included. The symbol ⊗ denotes

the Kronecker product. We use vec(M) to represent the vector obtained by a vertical

concatenation of all the columns in the matrix M . We use In to denote an identity

matrix of size n × n. The symbol |M | denotes the Frobenius norm of a matrix M . The

symbol diag(v) denotes a diagonal matrix containing the elements of the vector v on
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the diagonal. We use the notation dxe to represent the ceiling function that maps the

argument x to the smallest integer that is greater than or equal to x.

For a given vector a ∈ Rn, and lower and upper bounds [a, a], we define the satu-

ration function as sat(a, a, a) = {a if a ≤ a ≤ a; a if a < a; a if a < a}.

17



Chapter 2

Model-free controller design using
Q-learning from noisy data

As discussed in Chapter 1, the standard approach to develop an MPC controller for mul-

tivariable processes is to first estimate a dynamic model of the process from data, then

solve an optimal control problem in real time for the process operation. Reinforce-

ment learning algorithms (RL) that avoid the model identification step have gained

significant attention recently for model-free controller design as an alternative to the

model-based approach. The drivers behind this interest are, (i) the impressive results

obtained by model-free RL algorithms for playing Go (Silver et al., 2016) and Atari

games (Mnih et al., 2015), and performing robotic tasks (Kober et al., 2013; Levine and

Koltun, 2014; Levine et al., 2016), and (ii) dynamic model development can sometimes

be considered a challenging step in industrial applications, and model-free RL methods

may have the potential to avoid that step altogether. Several researchers in the field of

process systems engineering are currently investigating the applications of model-free

RL algorithms for process control (Shin et al., 2019; Nian et al., 2020; Jiang et al.,

2021; Raman et al., 2020; Buşoniu et al., 2018), real time optimization (Powell et al.,

2020), and scheduling (Hubbs et al., 2020).

For an industrial deployment of a controller design algorithm, it must be suitable to

18



Model-free controller design using Q-learning from noisy data Chapter 2

estimate a controller from noisy data containing both process and measurement noise.

To the best of our knowledge, no previous work in the literature has demonstrated the

efficacy of a model-free RL algorithm to give a reasonable controller from data sets

that contain both those types of noise sources. Standard model-based methods con-

veniently handle, and are robust to both the noise sources in the model identification

step. Therefore, the model-free RL methods must demonstrate the same capability for

them to be competitive for consideration in an industrial deployment.

In this chapter, we develop a novel model-free approach to estimate linear, uncon-

strained feedback controllers from noisy process data. The developed approach is based

on an extension of an available Q-learning algorithm in the literature developed to es-

timate the linear quadratic regulator (LQR) for linear systems with Gaussian process

noise of known covariance. In applications, however, the noise covariance is almost

always unknown. So we first extend the algorithm to handle the case of an unknown

noise covariance. Then, we use the extended algorithm to estimate a feedback con-

troller for linear systems with both process and measurement noise and only output

measurements. We use a linear heating, ventilation, and air-conditioning (HVAC) ex-

ample to demonstrate the suitability of the proposed approach to estimate a controller

from noisy data.

For the above-mentioned developments, we build upon the Q-learning algorithm

from Tu and Recht (2018) that estimates the stochastic LQR feedback law from data.

The LQR formulation considers linear systems with Gaussian process noise and uses a

discounted, infinite horizon, expected value objective. In the literature, there is also a

model-free Q-learning algorithm to estimate the nominal LQR feedback law from data

(Bradtke et al., 1994). Nominal MPC type controller implementations that do not ex-

plicitly account for disturbances in the MPC optimization problem are more prevalent

in applications. A practitioner may be encouraged to apply the model-free RL algorithm

19



Model-free controller design using Q-learning from noisy data Chapter 2

for the nominal LQR to estimate a feedback controller in applications. The model-free

algorithm available in the literature to estimate the nominal LQR, however, cannot

handle noisy training data because it does not model any noise sources in the data

generating system. In addition to the main contribution of this chapter on estimating a

feedback controller based on a stochastic LQR formulation, we also present a simula-

tion study to examine the performance of the model-free RL algorithm to estimate the

nominal LQR. We show that the algorithm to estimate the nominal LQR cannot handle

noisy data and is not suitable for industrial implementations.

In the next section, we begin with a discussion on the different types of model-free

RL algorithms and previous work on their applications in feedback controller design.

Then, in Section 2.2, we discuss the Q-learning algorithm for the nominal LQR and

demonstrate that it cannot be used to estimate a feedback controller from noisy data.

We discuss the Q-learning algorithm to estimate the stochastic LQR feedback law and

our proposed modifications to treat both process and measurement noise and only out-

put measurements in Section 2.3. We also present a maximum likelihood estimation

(MLE) method to estimate a linear dynamic model and noise covariances for com-

parison with the model-free Q-learning approach in Section 2.4. Simulation studies

to demonstrate the effectiveness of the proposed model-free controller estimation ap-

proach are presented in Section 2.5. We discuss the conclusions of this thesis chapter

in Section 2.6.

Portions of the developments and results presented in this chapter appear in Rawl-

ings and Maravelias (2019) and are to appear in Kumar and Rawlings (2023b). The

mathematical notation used in this chapter are given in Section 1.3.
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2.1 Literature review

Researchers have studied model-free RL algorithms in the machine learning liter-

ature for decades using Markov decision processes as the underlying system. Sutton

and Barto (2018) give an introduction to the theory and applications of modern RL

algorithms. Broadly, the model-free RL algorithms for decision-making and control

purposes can be categorized into value function and policy gradient based methods.

For the value function methods, some data collected from the system and an appropri-

ate Bellman equation is used to estimate a state or state-control value function. The

estimated value function is used to determine the optimal feedback policy or the con-

trol input in real time. To determine the optimal feedback policy, an iterative approach

typically known as policy iteration is used. The state-action value function is known

as the Q-function, and the algorithms that use this function are also called Q-learning

(Watkins and Dayan, 1992). For the policy gradient based model-free RL methods

(Williams, 1992; Silver et al., 2014; Lillicrap et al., 2015), a feedback policy is first

parameterized using a function approximator. Then, an optimization problem is solved

to determine the parameters in the policy. This problem is solved using an approximate

gradient descent approach.

Several approaches have been proposed in the literature to apply both the value

function and policy gradient methods for feedback control problems. Bradtke et al.

(1994) proposed a Q-learning based algorithm to estimate the nominal LQR feedback

law from process data. This algorithm uses a policy iteration approach based on succes-

sive Q-function approximations. The convergence of the iterative approach to the opti-

mal LQR feedback law is also established in that work. Lewis and Vamvoudakis (2011)

and Rizvi and Lin (2017) treat the case of output measurements in the Q-learning algo-

rithm to estimate the nominal LQR feedback law. A surrogate state containing a recent
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history of past measurements and control inputs is used as the state to treat the output

measurement case. All these papers that develop approaches to estimate the nominal

LQR feedback law assume that the plant generating the training data is a determin-

istic linear system. The algorithms in the papers cannot handle noise in the training

data (Rawlings and Maravelias, 2019) used to estimate the feedback controller. This

limitation means that the algorithms are not suitable for an industrial deployment.

Tu and Recht (2018) applies the least squares policy iteration (LSPI) approach of

Lagoudakis and Parr (2003) to estimate the stochastic LQR (Bertsekas, 1995) feedback

law from data. The work treats linear systems driven by Gaussian process noise of

known covariance. This approach is also not suitable for an industrial implementation,

because the both process and measurement noise are present in applications. Addi-

tionally, the covariances in the noise statistics are almost always unknown. The recent

work Yaghmaie et al. (2022) presents two value function based algorithms to estimate

the LQR feedback law. The paper considers linear systems with state measurements

and both process and measurement noise. The proposed algorithms are implemented

in an on-policy approach (which we discuss subsequently), and can require infeasible

amounts of training data for an industrial deployment.

The applications of the policy gradient methods to estimate the LQR feedback law

has also been studied in the literature (Fazel et al., 2018; Hambly et al., 2021). These

algorithms use an iterative approach to estimate the optimal feedback law. At each

iteration of the algorithm, an approximate gradient of the value function is computed

based on the data collected by implementing the current feedback law in the iteration

to the system. This approach of data collection at each iteration of the algorithm is

called an on-policy approach, which can be impractical for industrial deployment be-

cause a new training data set should be generated for implementing each iteration

of the algorithm. In addition, the entire controller estimation and training data set
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collection process should be repeated even for changes in the LQR problem tuning pa-

rameters. This repetition may be required because the tuning parameters affect the

stage costs, and thus also the value functions used to compute the successive feedback

laws in the iterative algorithm. We note that the Q-learning algorithms, on the other

hand, can also be implemented in an off-policy approach (Krauth et al., 2019). Here,

the training data for the controller estimation can be generated using a totally indepen-

dent control input sequence. Hence, an off-policy based model-free RL algorithm can

have an improved data efficiency and is more suitable for industrial implementation.

Due to this reason, we focus on using Q-learning for model-free controller estimation

in this thesis as opposed to policy gradient.

Other researchers have applied deep RL algorithms for a nonlinear MPC controller

formulation, feedback controller tuning, and merging the RL and MPC approaches. The

term “deep” is used when a deep NN is employed to approximate the value function or

the feedback policy in the model-free RL algorithm. Spielberg et al. (2019) and Wang

et al. (2018) propose to use deep Q-learning for feedback control of nonlinear chemical

engineering processes. Yoo et al. (2021) develops a policy gradient algorithm using

Monte-Carlo simulations to control batch processes. All these above works, however,

have only examined the performance of the algorithm in noise-free simulation studies.

Morinelly and Ydstie (2016) and Zanon and Gros (2020) develop methods to utilize

the advantages of both model-free RL and model-based MPC approaches. The work

by Dogru et al. (2022) develops an approach to use model-free RL for the tuning of PI

controllers in industrial applications.
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2.2 Estimation of nominal linear quadratic regulator

In this section, we discuss the Q-learning algorithm from Bradtke et al. (1994) to

estimate the nominal LQR feedback law. Then, we illustrate via a simulation study that

the algorithm cannot handle noise in the training data and is therefore not suitable for

industrial implementation.

2.2.1 Linear quadratic regulator formulation

The linear quadratic regulator has been studied in the control systems literature

for decades. The control objective is to regulate the system to a desired steady state,

which is often redefined as the origin after transforming all the variables in deviation

from that steady state. The following infinite horizon optimization problem is solved

to regulate the system state to the origin

min
u

∞∑
k=0

(x(k)′Qx(k) + u(k)′Ru(k)) (2.1)

x+ = Ax+Bu (2.2)

x(0) = x (2.3)

in which, A and B are the dynamic model matrices, x is the initial state, Q and R are

the penalty matrices used for the stage costs, and the infinite horizon sequence u is

the decision variable. We assume that the pair (A,B) is stabilizable, R > 0, Q ≥ 0,

and (A,Q) is detectable for the LQR feedback law to result in a stabilizing controller

(Rawlings et al., 2020, Exercise 1.20b). The optimization problem can be solved using

a dynamic programming approach (Rawlings et al., 2020, Pages 18-20), which yields
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the solution

u(k) = K?x(k) (2.4)

Here, the matrix K? is the optimal LQR feedback law that can be obtained by solving

the equations

Π? = Q+ A′Π?A− A′Π?B(B′Π?B +R)−1B′Π?A (2.5)

K? = −(B′Π?B +R)−1B′Π?A (2.6)

The equation (2.5) is a type of the discrete algebraic Riccati equation (DARE). We also

define the value function for any suboptimal, stabilizing feedback law K as follows

VK(x) =
∞∑
k=0

(
x(k)′Qx(k) + (Kx(k))′R(Kx(k))

)
= x′Πx (2.7)

in which, Π is the cost-to-go matrix corresponding to the feedback law K. This matrix

is obtained by solving the Lyapunov equation

Π = Q+K ′RK + (A+BK)′Π(A+BK) (2.8)

The standard model-based approach to determine the optimal LQR feedback law

K? is to first estimate the dynamic model matrices A and B using black-box linear

system identification methods. Then, solve the equations (2.6) – (2.5) to determine

the feedback law.
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2.2.2 Model-free Q-learning for nominal LQR

We now discuss the model-free Q-learning algorithm proposed in Bradtke et al.

(1994) to estimate the nominal LQR feedback law K? from data. The algorithm is

based on a policy iteration approach. Each iteration of the algorithm consists of a

policy evaluation step and an improvement step. In the policy evaluation step, a Q-

function for the current feedback law in the iteration is estimated. The estimated

function is then used in the policy improvement step to determine the feedback law for

the next iteration. The algorithm is initialized with a stabilizing feedback law and the

iterations are repeated until the convergence of the feedback law. In this subsection, we

first derive the Q-function structure for the nominal LQR problem, and subsequently

discuss both the policy evaluation and improvement steps.

The Q-function for any state x ∈ Rn, control input u ∈ Rm, and a feedback law

Ki is defined as: the infinite horizon cost when the linear system (x+ = Ax + Bu) is

initialized at the state x, the control input u is implemented at the first time step, and

the feedback law Ki is followed thereafter. Based on this definition, the Q-function can

be mathematically written as

QKi
(x, u) = x′Qx+ u′Ru+

∞∑
k=1

(
x(k)′Qx(k) + (Kix(k))′R(Kix(k))

)
(2.9)

QKi
(x, u) = x′Qx+ u′Ru+ VKi

(x+) (2.10)

QKi
(x, u) = x′Qx+ u′Ru+ (x+)′Πix

+ (2.11)

We use the subscript i to denote the iteration number in the algorithm. The equation

(2.11) is obtained by substituting for the value function corresponding to the feedback

law Ki using (2.7) and (2.8). The matrix Πi denotes the cost-to-go matrix correspond-

ing to the feedback law Ki. The state x+ can be substituted using the dynamic model
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(x+ = Ax+Bu) to derive the following structure of the Q-function

QKi
(x, u) =

x
u


′ Q+ A′ΠiA A′ΠiB

B′ΠiA R +B′ΠiB


x
u

 (2.12)

This Q-function for the nominal LQR is quadratic in the state (x) and control input (u).

We subsequently refer to the matrix characterizing the quadratic Q-function as

Si =

Sixx Sixu

Siux Siuu

 =

Q+ A′ΠiA A′ΠiB

B′ΠiA R +B′ΠiB

 (2.13)

Policy evaluation. Based on the structural knowledge of the Q-function, the goal of

the policy evaluation step is to estimate this function from process data. This estimation

step utilizes the following Bellman equation for the Q-function

QKi
(x, u) = x′Qx+ u′Ru+QKi

(x+, Kix
+) (2.14)

We note that this equation can be obtained by observing that VKi
(x) = QKi

(x,Kix)

and substituting this relation in (2.10). The Q-function function is next parameterized

using a linear function approximator and the Bellman equation is used to estimate

the unknown parameters in the function from process data. The following Q-function

approximation architecture is used

QKi
(x, u) =

(x
u


′

⊗

x
u


′)

vec(Si) (2.15)

QKi
(x, u) = φ(x, u)′svec(Si) (2.16)
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in which, φ(·) is a basis function that contains all the unique quadratic terms in the

Kronecker product in (2.15). The notation svec(Si) denotes a vector transformation of

the symmetric matrix Si containing all the diagonal elements and doubled off diagonal

elements. This vector characterizes all the unknown parameters in the Q-function. To

estimate these parameters, we first collect a training data trajectory by simulating the

linear system x+ = Ax+Bu using some control input sequence. Based on the generated

training data and the Bellman equation (2.14), we construct the following equation for

each time step k in the available training data

[
φ(x(k), u(k))′ − φ(x(k + 1), Kix(k + 1))′

]
svec(Si) = x(k)′Qx(k) + u(k)′Ru(k)

(2.17)

Further, we define the following two matrices

Ã =



φ(x(0), u(0))′ − φ(x(1), Kix(1))′

φ(x(1), u(1))′ − φ(x(2), Kix(2))′

...

φ(x(Ns), u(Ns))
′ − φ(x(Ns + 1), Kix(Ns + 1))′


(2.18)

b̃ =



x(0)′Qx(0) + u(0)′Ru(0)

x(1)′Qx(1) + u(1)′Ru(1)

...

x(Ns)
′Qx(Ns) + u(Ns)

′Ru(Ns)


(2.19)

in which, Ns is the total number of time steps in the data set used to estimate the Q-

function. The unknown parameters in the Q-function can be estimated by solving the
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least squares problem

Ã svec(Si) = b̃ (2.20)

The estimated parameters are transformed back to the symmetric matrix form to char-

acterize the complete estimate of the quadratic Q-function at the current iteration i.

Policy improvement. Based on the Q-function estimate, the goal of the policy im-

provement step is to obtain an improved feedback law that has a smaller infinite hori-

zon cost than the current feedback law in the iteration. This improved feedback law is

defined as follows

Ki+1x = min
u
Q̂Ki

(x, u), ∀x ∈ Rn (2.21)

This step yields the following feedback law for the next iteration in the algorithm

Ki+1 = −Ŝ−1iuuŜiux (2.22)

in which, Ŝi is the estimate of the Q-function matrix obtained by solving the least

squares problem (2.20).

The above described policy evaluation and improvement steps can be repeated for

some specified number of iterations or until the estimated feedback law stops changing

significantly. The algorithm proposed in Bradtke et al. (1994) is implemented in an on-

policy approach. At each iteration i of the algorithm, a new training data set containing

Ns samples is generated by applying control inputs using the relation u = Kix + d to

the plant. Here, d can be sampled from a Gaussian distribution with large enough co-

variance such that the plant dynamics are sufficiently excited in the training data. The

least squares problem (2.20) is solved based on the Ns training data samples generated
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for the current iteration of the algorithm. The feedback law is improved based on the

solution of the least squares problem, and the data collection and policy improvement

processes are repeated online.

We also note that the paper Bradtke et al. (1994) uses a recursive least squares

approach to solve the problem (2.20) iteratively as new training data samples become

available. In this chapter, we solve the problem with a batch least squares approach

after all the training samples for the current iteration have been collected.

2.2.3 Simulation study

We now present a simulation study to compare the model-based and model-free

approaches to estimate the nominal LQR feedback law. The main purpose of this study

is to elucidate that the model-free algorithm to estimate the nominal LQR feedback law

fails with noisy training data.

Zone 1
Tz1

Zone 2
Tz2

HVAC
Radiation

Convection

Ambient

Heat
Generation

Heat Transfer
Between Zones

Power

Rejection
to Ambient

Cooling

Air

Mass

Ta

Tm1 Tm2Q̇c1 Q̇c2

Figure 2.1: A diagram of the HVAC building system considered for simulation studies
in this chapter.
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Ci
dTi
dt

= −Hi(Ti − Ta)−
∑
j 6=i

βi−j(Ti − Tj)− Q̇ci + Q̇ai (2.23)

Ti ∈ {Tz1, Tm1, Tz2, Tm2}

We consider a linear heating, ventilation, and air-conditioning (HVAC) system shown

in Figure 2.1, which is simulated using the ODEs (2.23). The plant has four states

x =

[
Tz1, Tm1, Tz2, Tm2

]′
, and two control inputs u =

[
Q̇c1, Q̇c2

]′
. We assume that

the disturbances ambient temperature (Ta) and heat loads (Q̇ai) remain constant. The

plant model is converted into the following linear, discrete time state space form

x+ = Ax+Bu (2.24)

The sample time used to obtain this discrete time model is 0.5 hours. The state and

control inputs in this model are considered in deviation from a fixed steady state.

To develop a model-based controller, we first estimate the linear model matrices

(A,B) using training data collected from the HVAC system. The model estimates are

then used to obtain the nominal LQR feedback law by solving the DARE (2.5). We

use MATLAB’s linear system identification toolbox for this model identification step. To

determine the LQR feedback law without estimating a dynamic model, we apply the

Q-learning algorithm discussed in the previous subsection.

We first examine the performances of the model-based and model-free algorithms

with noise-free training data. Figure 2.2 shows a comparison of the two algorithms for

this noise-free case. We show the control inputs (top left), state measurements (top

right), and the errors in the estimated feedback laws (center bottom) compared to the

optimal LQR feedback law for both the algorithms. We also show the training data
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Figure 2.2: Comparison of model-based system identification (ID) and model-free
(RL) controller design methods using noise-free training data. Input data (top left),
state measurements (top right), model fit using system identification (solid lines in
top right), log plot of the error in estimated optimal feedback laws from both the
methods (center bottom).
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Figure 2.3: Comparison of model-based system identification (ID) and model-free
(RL) controller design methods using noisy training data. Input data (top left), state
measurements (top right), model fit using system identification (solid lines in top
right), log plot of the error in estimated optimals feedback laws from both the methods
(center bottom).
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fit (solid black lines in top right) obtained by the estimated model in the model-based

algorithm in the state measurement plots. The log plots of the feedback law estimation

errors (center bottom) show that both the model-based and model-free methods are

successful to obtain the optimal LQR feedback law. Both the methods show conver-

gence to the optimal feedback law in a reasonable number of data samples.

Next, we add measurement noise to all the states and reimplement the model-based

and model-free controller estimation algorithms. Figure 2.3 shows a comparison of the

two algorithms with noisy data. We observe that the model-free RL algorithm does

not find the LQR feedback law and has almost 100% estimation errors even with large

number of data samples. The model-based algorithm shows convergence to the optimal

feedback law upto a reasonable accuracy from a viable number of data samples.

The feedback law estimation error plots in Figure 2.3 suggests that the model-free

Q-learning algorithm to estimate the nominal LQR cannot handle noise in the training

data. This failure is particularly because the algorithm assumes that a deterministic

linear system without any noise term is generating the training data. The goal of the

rest of this thesis chapter is to propose a model-free Q-learning approach that does

appropriately model the noise to overcome the failure in this section with noisy data.

2.3 Estimation of stochastic linear quadratic regulator

To estimate a model-free controller from noisy data, we use an algorithm that also

models the noise in the data generating system. Tu and Recht (2018) developed a Q-

learning algorithm to estimate the stochastic LQR feedback law for linear systems with

full state measurements driven by Gaussian process noise. The algorithm, however,

cannot be applied directly in applications because it assumes that the process noise

covariance is known a-priori. We first propose an extension of the algorithm in Tu
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and Recht (2018) using a modified Q-function approximation architecture to treat the

case of an unknown covariance. Then, we use the extended algorithm to design a

feedback controller for the more general class of linear systems with both process and

measurement noise and only output measurements.

2.3.1 Linear quadratic regulator formulation

We now discuss the stochastic LQR formulation considered in the rest of this chapter

for controller design. The objective function of this LQR problem is the expected value

of an infinite horizon sum of discounted, quadratic stage costs. We solve the following

optimization problem to determine the LQR feedback law

min
u

Ew

[ ∞∑
k=0

γk(x(k)′Qx(k) + u(k)′Ru(k) + 2x(k)′Mu(k))
]

(2.25)

subject to x+ = Ax+Bu+ w, w ∼ N(0, Qw) (2.26)

x(0) = x (2.27)

in which, x is the state, u is the control input, and w is the process noise. The matrices

A,B characterize the linear dynamic model, and Q,R,M are used to penalize the state,

control input, and the cross term in the stage costs. The process noise is of zero mean

and its covariance is Qw ≥ 0. We use the discount factor γ < 1 in the stage costs to

ensure that the objective function remains finite for any stabilizing feedback law. The

expectation in the objective function is performed over the process noise sequence w.

The decision variable in the optimization problem is the control input sequence u. The

problem can be solved using dynamic programming (Bertsekas, 1995, Pages 150-152)
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to obtain the solution

u0(k) = K?x0(k) (2.28)

in which, x0(k) and u0(k) denote the optimal state and control input at the time step k.

The matrix K? is the optimal stochastic LQR feedback law, which can be obtained by

solving the equations

Π? = Q+ γA′Π?A− (M + γA′Π?B)(γB′Π?B +R)−1(M ′ + γB′Π?A) (2.29)

K? = −(R + γB′Π?B)−1(γB′Π?A+M ′) (2.30)

The first equation is also a type of discrete algebraic Riccati equation (DARE), mod-

ified for the stochastic LQR problem considered in this section. Further, we also define

the value function corresponding to any stabilizing feedback law K as follows

VK(x) = Ew

[ ∞∑
k=0

γk`(x(k), Kx(k))
]

(2.31)

VK(x) = x′Πx+ η tr(ΠQw) (2.32)

Here, `(·) is the stage cost (without the discount factor) in the LQR problem (2.25), and

η = γ/(1 − γ). The value function denotes the expected value of the infinite horizon

objective when control inputs according to the feedback law K, starting from the state

x are applied to the linear system x+ = Ax + Bu + w. We note that the value function

of this stochastic LQR formulation has an additional trace term, which corresponds to

the contribution of the process noise. The matrix Π is called the cost-to-go matrix that

36



Model-free controller design using Q-learning from noisy data Chapter 2

can be obtained by solving the Lyapunov equation

Π = Q+K ′RK +MK +K ′M ′ + γ(A+BK)′Π(A+BK) (2.33)

The cross term in the LQR problem is used particularly to implement a rate-of-

change penalty on the control input. For example, we may be interested in imple-

menting a rate-of-change penalty on the control input using a matrix SR as follows:

(u(k)− u(k − 1))′SR(u(k)− u(k − 1)). To include this penalty, we augment the system

state x(k) with the previous control input u(k − 1). The dynamic model matrices and

the control problem penalty matrices are derived for the augmented state such that the

final LQR problem is of the type (2.25) (Rawlings et al., 2020, Exercise 1.25). We solve

the DARE equation for the problem with the augmented state to determine the optimal

LQR feedback law.

2.3.2 Least squares policy iteration

Next, we outline the least squares policy iteration (LSPI) algorithm proposed in

Tu and Recht (2018) to estimate the stochastic LQR feedback law K? in (2.30). This

algorithm is also implemented in a policy iteration framework, similar to the algo-

rithm discussed previously to estimate the nominal LQR feedback law. We derive the

Q-function equations below and describe the LSPI algorithm for the stochastic LQR de-

scribed in the previous subsection. We note that the Q-function equations derived here

differ slightly from Tu and Recht (2018) because we consider also the cross term in the

LQR problem and any general positive semidefinite process noise covariance.

The Q-function for the stochastic LQR formulation for any state x, control input u,
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and feedback law Ki is defined as follows

QKi
(x, u) = `(x, u) + Ew

[ ∞∑
k=1

γk`(x(k), Kix(k))
]

(2.34)

which is equivalent to the expected infinite horizon cost obtained for the linear system

x+ = Ax + Bu + w when starting from the state x, applying the control input u at the

first time step, and following the feedback law Ki thereafter. The subscript i is used to

denote the current iteration number in the LSPI algorithm. The second term in (2.34)

can also be written as the discount factor times the expectation over the value function

for the state x+ and feedback law Ki as follows

QKi
(x, u) = `(x, u) + γEw[VKi

(x+)] (2.35)

The expectation in this equation is now performed over the process noise at only the

first time step. We substitute for the value function corresponding to the feedback law

Ki using (2.32). And after evaluating the expectation over the process noise w, we

obtain the following structure of the Q-function

QKi
(x, u) =

x
u


′  Q+ γA′ΠiA γA′ΠiB +M

γB′ΠiA+M ′ R + γB′ΠiB


x
u

+ η tr(ΠiQw) (2.36)

in which, Πi is the cost-to-go matrix corresponding to the feedback law Ki. This Q-

function also quadratic in the state (x) and control input (u). We note that an ad-

ditional trace term appears in this equation compared to the Q-function of the nom-

inal LQR in (2.12). We denote the matrix characterizing the quadratic term in the
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Q-function as follows

Si =

Sixx Sixu

Siux Siuu

 =

 Q+ γA′ΠiA γA′ΠiB +M

γB′ΠiA+M ′ R + γB′ΠiB

 (2.37)

In addition, we also note the following relation between the cost-to-go matrix Πi and

the Q-function matrix Si

Πi =

 I
Ki


′

Si

 I
Ki

 (2.38)

This relation can be verified by substituting for the matrix Si from (2.37) and using the

Lyapunov equation (2.33) for the feedback law and cost-to-go matrix pair (Ki,Πi).

Policy evaluation. The goal of the policy evaluation step is to utilize the structural

knowledge of the Q-function and a Bellman equation to estimate that function from

data. We use the following Bellman equation

QKi
(x, u) = `(x, u) + γEw[QKi

(x+, Kix
+)] (2.39)

This equation can be obtained by noting that VKi
(x) = QKi

(x,Kix), and substituting

this relation in (2.35). The Q-function is first parameterized using a linear function

approximation architecture. Then, the unknown parameters in the architecture are

estimated by solving a least squares problem formulated based on the Bellman equa-

tion. We use the following linear function approximation architecture to estimate the
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Q-function

QKi
(x, u) =

[x
u


′

⊗

x
u


′

+ ηvec(Qw)′
( I

Ki


′

⊗

 I
Ki


′ )]

vec(Si) (2.40)

QKi
(x, u) = φ(x, u)′svec(Si) (2.41)

The first equation is obtained by expanding the quadratic and trace terms in (2.36).

Equation (2.38) is used to expand the trace term. The basis function φ(x, u) con-

tains all the unique quadratic terms of the row vector in (2.40) that has the Kronecker

products and the process noise covariance. The unknown parameters in the function

approximation architecture are denoted by svec(Si), which contains all the diagonal

elements and doubled off diagonal elements of the symmetric Q-function matrix Si.

To estimate the Q-function from data, we collect a training data trajectory by simu-

lating the linear system x+ = Ax+Bu+w using a specified control input and Gaussian

process noise sequences u and w. The data generation step gives a state sequence x.

For the LSPI algorithm to estimate the stochastic LQR, we generate the training data

using an arbitrary control input sequence that is independent of the feedback laws gen-

erated for the iterations of the algorithm. Additionally, the entire training data set is

used to estimate the Q-functions in all the iterations of the algorithm.

We use the linear function approximation architecture in (2.41) and the generated

training data to construct the following two matrices

Ã =
1

Nt

Nt∑
k=0

φ(x(k), u(k))
(
φ(x(k), u(k))′ − γφ(x(k + 1), Kix(k + 1))′

)
(2.42)

b̃ =
1

Nt

Nt∑
k=0

φ(x(k), u(k))`(x(k), u(k)) (2.43)
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in which, Nt is the total number of time steps in the training data trajectory, and x(k)

and u(k) are the state and control input at the time step k in the training data. These

two matrices are used to solve the following least squares problem to estimate the

unknown parameters in Q-function

Ã svec(Si) = b̃ (2.44)

The parameter estimate obtained by solving this problem is transformed back to the

symmetric matrix form to characterize the full Q-function estimate at the current iter-

ation i. We refer the reader to Lagoudakis and Parr (2003) for a detailed derivation

of the regressor (Ã) and target (b̃) matrices for this Q-learning least squares problem.

The matrices are derived by enforcing the Q-function approximation to be a fixed point

of the Bellman equation (2.39) in the space of representable functions by the linear

function approximation architecture (2.41). The Q-function parameters estimated us-

ing the above least squares problem converge to the true parameters for large number

of training data samples. This convergence property and the treatment of the noise us-

ing the stochastic LQR formulation is an initial step towards developing an industrially

implementable algorithm. We show in Subsections 2.3.3 – 2.3.4 how to further modify

this algorithm so that it is suitable for use in applications.

Policy improvement. Similar to the policy evaluation step in the previous algorithm

for the nominal LQR, we use the estimated Q-function to obtain an improved feedback

law as follows

Ki+1x = min
u
Q̂Ki

(x, u), ∀x ∈ Rn (2.45)

Ki+1 = −Ŝ−1iuuŜiux (2.46)
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in which, Ŝi is the estimate of the Q-function matrix obtained by solving the least

squares problem (2.44).

The two policy evaluation and improvement steps can be implemented for some

specified large number of iterations or until the feedback law stops changing notice-

ably. Tu and Recht (2018) generate the training data for the LSPI algorithm by simu-

lating the linear system in an episodic approach. The initial states in the episodes are

sampled from some specified Gaussian distribution. We note that “resetting" the initial

plant state in this approach is typically not possible for industrial processes. We also

emphasize that the algorithm does not require the training data to be generated using

an episodic approach. The data can also be collected from the plant in the form of a

single of multiple trajectories without any control on the initial states.

2.3.3 Q-function approximation under unknown process noise co-

variance

The LSPI algorithm for the stochastic LQR discussed in the previous subsection re-

quires a-priori knowledge of the process noise covariance Qw, which is used in the

linear function approximation architecture (2.41) to formulate the Q-learning least

squares problem. In applications, however, the noise covariance is almost always un-

known. And the methods available in the literature to estimate noise covariances, such

as the autocovariance least squares (Odelson et al., 2003), assume that a linear dy-

namic model is available. Therefore, the algorithm in Tu and Recht (2018) cannot be

directly applied in process control applications. We now propose an approach to han-

dle an unknown noise covariance in the LSPI algorithm for linear systems of the type

x+ = Ax+Bu+ w, driven by Gaussian process noise and full state measurements.

To estimate the Q-function for the stochastic LQR under an unknown process noise

42



Model-free controller design using Q-learning from noisy data Chapter 2

covariance, we propose to use the following modified linear approximation architecture

QKi
(x, u) =

[x
u


′

⊗

x
u


′

, 1

] vec(Si)

η tr(ΠiQw)

 (2.47)

QKi
(x, u) = φ(x, u)′

 svec(Si)

η tr(ΠiQw)

 (2.48)

in which, φ(x, u) is a basis function that contains all the unique quadratic terms of the

Kronecker product in (2.47), and concatenated with the scalar unity. An LSPI algo-

rithm using this modified Q-function approximation architecture can be implemented

in a similar approach as the algorithm discussed in the previous subsection. The data

generation and policy improvement steps remain the same, and we only change the ba-

sis function to the one in (2.48) to construct the regressor (Ã) and target (b̃) matrices

for the least squares problem.

In the modified least squares problem for this unknown process noise covariance

case, we estimate another parameter η tr(ΠiQw) in addition to the parameters in the

Q-function matrix Si. The additional parameter corresponds to the contribution of the

process noise to the Q-function. The parameter is not used in the policy improvement

step to obtain the feedback law for the next iteration. However, an estimation of this

parameter is required to systematically estimate the Q-function matrix Si. We refer to

the noise parameter as β in the rest of this chapter.
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2.3.4 Extension to output measurements and process and mea-

surement noises

Both the algorithms discussed in the previous subsections assume that the linear

system is driven by only process noise, and full state measurements are available. In

process control applications, the sensor noise also contributes significantly to the mea-

surements. In addition, not all but only some subset or linear combination of the states

are measured. For these reasons, we aim to develop a feedback controller for the fol-

lowing class of linear systems

x+ = Ax+Bu+ w, (2.49)

y = Cx+ v, (2.50)

w ∼ N(0, Qw), v ∼ N(0, Rv) (2.51)

in which, y ∈ Rp denote the measurements, C ∈ Rp×n is the matrix that characterizes

the measurements, and v is the measurement noise of zero mean and covariance Rv.

To develop a feedback controller for this output measurement case, we use a vector

containing a recent history of past measurements and control inputs as a surrogate

state. Then, we apply the LSPI algorithm discussed in Subsection 2.3.3 that does not

assume any value of the noise covariance. The surrogate state is defined for every time

step k as follows

z(k) =

[
y(k −Np)

′, ..., y(k − 1)′, u(k −Np)
′, ..., u(k − 1)′

]′
(2.52)

in which, Np is a parameter that characterizes the number of past measurements and

control inputs used to construct the state. This method of using a recent history of mea-
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surements and control inputs to replace the state has been used in both the system iden-

tification (Ho and Kalman, 1966; Qin, 2006) and Q-learning (Lewis and Vamvoudakis,

2011; Rizvi and Lin, 2017) research literatures for many years for model and controller

identification purposes.

The parameter Np used to construct the surrogate state characterizes the assumed

model order of the plant. That parameter should be chosen large enough such that the

state contains enough information about the plant dynamics. But small enough so that

the Q-function parameter estimates do not become sensitive to noise in the training

data. We choose the parameter by examining the condition number of the data matrix

that is constructed using samples of the surrogate state. We describe this approach in

detail in Appendix 2.6.

For feedback controller design using output measurements, we consider an output

tracking penalty y(k)′Qyy(k) in the stage cost of the LQR problem. The training data

is generated from a linear system of the type in equations (2.49) – (2.50). We use

observations of the surrogate state z(k) and stage cost values with the output tracking

penalty to construct the matrices Ã and b̃ for the Q-learning least squares problem.

Both the policy evaluation and improvement steps are implemented similarly as the

algorithms discussed in the previous two subsections. The algorithm yields a feedback

controller that uses the surrogate z to compute the control input u during the online

closed-loop implementation.

We note that a linear system with the surrogate state does not evolve similarly as

the assumed model in the LSPI algorithm. The linear model assumed in the algorithm

is of the type x+ = Ax + Bu + w. So the use of the surrogate state results in both

a dynamic and noise model mismatch between the plant and model assumed in the

LSPI algorithm. However, we show in the simulation studies in Section 2.5 that this

model mismatch is not crucial. The proposed approach of using a surrogate state in the
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LSPI algorithm for the output measurement case is still suitable to yield a reasonable

feedback controller.

All the LSPI algorithms discussed in this chapter estimate only a regulator and not

an estimator that can be used for noise filtering during the online closed-loop imple-

mentation. A notable advantage of the model-based controller design approach is that

since it also estimates a dynamic model (possibly also noise covariances), a Kalman

filter can be constructed using the estimated model and noise covariances. The fil-

ter can then be used to perform optimal state estimation during the online controller

estimation. The LSPI algorithms lose this ability of using a Kalman filter for state esti-

mation. So for the online closed-loop implementation in the simulation studies with the

model-free controllers, we implement a heuristic noise filtering approach. We use an

exponential moving average of the measurements during the online implementation.

The filtered estimates of the measurements are obtained using

ŷ+ = αŷ + (1− α)y+ (2.53)

in which, ŷ and ŷ+ denote the filtered measurements at the current and next time step

respectively, y+ denotes the measurements at the next time step, and α is a parameter

in the heuristic filter. This parameter controls the sensitivity of the filtered estimates

to new measurements. During the online implementation, the filtered measurements

obtained with this approach are used to construct the surrogate state z, which is then

finally used to compute the control input. In the simulation studies, we also consider

the case of full state measurements when the plant as a linear system of the type

x+ = Ax + Bu + w. For this case, the heuristic noise filtering approach is applied

over the state measurements. The filtered estimates are then used to compute the

control inputs during the online implementation.
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2.4 Maximum likelihood estimation of linear dynamic

model and noise covariances

For comparative simulation studies in this chapter, we wish to compare the perfor-

mance of the model-free LSPI algorithms developed above with a model-based method

that also systematically treats the noise in the training data. We now discuss a max-

imum likelihood estimation (MLE) method to estimate a linear dynamic model and

noise covariances from plant data. We choose this method because it also estimates the

noise covariances in addition to the dynamic model. The noise covariances are used to

systematically develop a Kalman filter to perform state estimation during the closed-

loop implementation. The MLE algorithm is discussed next. The algorithm is similar

to the Larimore’s subspace method (Larimore, 1990; Qin, 2006), and was proposed

recently in Kuntz and Rawlings (2022).

We assume that a linear dynamic model of the type (2.49) – (2.50) is used to

generate the training data. We construct the following equation for each time step k in

the training data

s(k) = Θt(k) + e(k), e(k) ∼ N(0, Swv) (2.54)

in which, s =

x+
y

, t =

x
u

, e =

w
v

, and Θ =

A B

C D

. The dynamic model

Θ and noise covariances Swv are assumed to be unknown. The MLE estimates can be

determined by maximizing the probability of the observed measurements (Graham and

Rawlings, 2022, Chapter 4. 7) over the unknown parameters. The estimates can then
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be computed using the equations

Θ̂ =
(Ns−1∑

k=0

s(k)t(k)′
)(Ns−1∑

k=0

t(k)t(k)′
)−1

(2.55)

Ŝwv =
1

Ns − (n+m)

Ns−1∑
k=0

(s(k)− Θ̂t(k))(s(k)− Θ̂t(k))′ (2.56)

in which, Ns is the number of training data samples. The state x of the linear system

(2.49) – (2.50) is not measured, so we use the surrogate state defined in (2.52) to

construct samples of the vectors s and t for the above equations. This approach is

similar to the method discussed previously for the output measurement case in the LSPI

algorithm. The parameter Np to construct the surrogate state can be chosen similarly as

the approach used for the LSPI algorithm, which is discussed in Appendix 2.6. For the

simulation case in which we assume full state measurements and the plant is a linear

system of the type x+ = Ax + Bu + w, we use s = x+ and t = x. The MLE algorithm

for this case is used to estimate only the dynamic model matrices A and B, and the

process noise covariance Qw.

2.5 Simulation studies

In this section, we demonstrate the effectiveness of the proposed LSPI algorithms to

successfully estimate reasonable feedback controllers from noisy process data. We use

the same linear heating, ventilation, and air-conditioning (HVAC) example considered

for the previous simulation study to estimate the nominal LQR feedback law.

We present simulation studies for two cases of the plant used for the data generation

and closed-loop simulations. In the first case, we assume that the plant is a linear

system of the type x+ = Ax + Bu + w driven by only Gaussian process noise and all
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Parameter Value Parameter Value
H1/Cz1 6× 10−4 sec−1 H2/Cz2 1× 10−3 sec−1

βz1−m2/Cz1 2× 10−4 sec−1 βz2−m2/Cz2 5× 10−4 sec−1

βz1−m2/Cm1 3× 10−4 sec−1 βm1−m2/Cm2 2× 10−4 sec−1

βm1−m2/Cm1 6× 10−4 sec−1 βz2−m2/Cm2 4× 10−4 sec−1

1/Cz1 2.5× 10−4 ◦C/kJ 1/Cz2 2× 10−4 ◦C/kJ
us = [50kW, 40kW]′

ps = [60kW, 40kW, 22◦C]′

xs = [25.53◦C, 23.65◦C, 22.23◦C, 22.70◦C]′

Table 2.1: Parameters used to simulate the ODEs (2.23) of the HVAC building system,
and the steady state used to obtain deviation variables. The interaction coefficients
(βij) for the combination of temperature states not shown in this Table are zero.

the states are measured. This case is considered so that the performances of the LSPI

algorithms can be examined in a scenario when there is no mismatch between the plant

and the model assumed in the algorithms. For the second simulation case, we assume

that the HVAC plant is a linear system of the type (2.49) – (2.50) with both process

and measurement noise and only output measurements. For both the simulation cases,

we examine (i) the data requirements of the algorithms to obtain a reliable controller,

and (ii) the closed-loop performance compared to a perfect model-based controller that

uses the true plant model and noise covariances.

The HVAC model parameters used for the simulation study in this section are given

in Table 2.1. Similar to the previous example, we assume that the disturbances ambient

temperature (Ta) and heat loads (Q̇a1, Q̇a2) to the HVAC system remain constant during

the training data generation and closed-loop simulations. We convert the plant model

to the linear discrete time state space form for the simulation study. The states and

control inputs in the discrete time linear model are considered in deviation from the

steady state shown in Table 2.1. The sample time used to convert the ODEs to the dis-

crete time model and to obtain measurements from the HVAC system is 1 minutes. For

49



Model-free controller design using Q-learning from noisy data Chapter 2

the full state measurement case, we measure all the zone and mass temperature states

x = [Tz1, Tm1, Tz2, Tm2]
′. While for the output measurement case, the zone temperatures

are the only measurements y = [Tz1, Tz2]
′.

2.5.1 State measurements with process noise

First, we examine the performances of the LSPI and MLE algorithms to obtain a

reliable controller for the case in which the HVAC plant is driven by only Gaussian

process noise and all the states are measured. We generate a total of 60 hours (3600

samples) of training data by simulating the plant using Gaussian random control input

and process noise sequences. The HVAC plant is initialized at the origin for this training

data generation. Both the random sequences are of zero mean, and the covariances are

given in Table 2.2. The first 2 hours from the entire training data set is shown in Figure

2.4.

After the training data generation, we implement the following three algorithms to

estimate a feedback controller

1. SYSID: The MLE algorithm discussed in the previous section is implemented to

estimate the linear dynamic model matrices (A, B) and the process noise co-

variance Qw. The estimates are then used to develop an LQR feedback law for

regulation and a Kalman filter for state estimation.

2. LSPI-KQW: The LSPI algorithm discussed in Subsection 2.3.2 that assumes a

known value of the process noise covariance is implemented to estimate the LQR

feedback law. We assume that the noise covariance used in the plant for the data

generation is known exactly for this algorithm.

3. LSPI-UQW: We implement the LSPI algorithm in Subsection 2.3.3 that does not

50



Model-free controller design using Q-learning from noisy data Chapter 2

−2

0

2

Tz1(◦ C)

−1.0

−0.5

0.0

Tm1(◦ C)

−2

0

Tz2(◦ C)

−1.0

−0.5

0.0

Tm2(◦ C)

0 50 100

Time (min)

−50

0

50

Q̇c1 (kW)

0 50 100

Time (min)

−50

0

50

Q̇c2 (kW)

Figure 2.4: Sample training data set used for the case of full state measurements with
process noise.

assume a known value of the process noise covariance, and also estimates the

contribution of the noise (β) to the Q-function.

A comparison between the LSPI-KQW and LSPI-UQW algorithms elucidates the achiev-

able performance with an LSPI algorithm that does not utilize any knowledge of process

noise statistics.

The three algorithms discussed above are implemented with varying amounts of
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Parameter Value

State measurement with process noise

Σu 400I2

Qw diag([0.08, 0.01, 0.09, 0.01]’)

Q 103Qs

R 102Rs

SR 102Rs

γ 0.98

Output measurement with process and measurement noises

Σu 625I2

Qw diag([0.08, 0.01, 0.09, 0.01]’)

Rv diag([0.3, 0.2]’)

Qy 103Qys

R 102Rs

SR 102Rs

γ 0.98

Table 2.2: Covariances used to generate the training data, and the tuning parameters
for the LQR used for the simulation studies in Section 2.5. The covariance used to
generate the control input sequence is Σu. The penalty matrices Qs, Qys, and Rs
are diagonal and contain the inverse of the squares of the state, measurement, and
control input at the steady state shown in Table 2.1.

training data starting from 3 to 60 hours, in increments of 3 hours. The tuning param-

eters used for the LQR problem are provided in Table 2.2. A rate-of-change penalty

is also considered in the LQR problem, so we use samples of the augmented state

x̃ =

[
x′, u′−1

]′
in the two LSPI algorithms. The optimal LQR feedback law uses this

state to compute the control input. The feedback law is of size 2×6, and the Q-function

matrix S required to be estimated in the two LSPI algorithms is of dimensions 8 × 8.

We use a matrix of zeros as the initial feedback law for the LSPI algorithms. And the

two policy evaluation and improvement steps in the algorithms are executed for a total

of 15 iterations.

The quality of the optimal Q-function and the LQR feedback law obtained with all
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Figure 2.5: The errors in the Q-function and LQR feedback law estimates obtained us-
ing the SYSID, LSPI-KQW, and LSPI-UQW algorithms with varying amounts of training
data for the case of full state measurements and process noise. We also show the vari-
ation in the % closed-loop performance loss compared to the perfect model-based
controller that uses the true plant model and noise covariance.
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the algorithms for varying amounts of training data is examined first. To gauge the

quality of the Q-function estimates, we compare the estimated S matrix and the noise

term β with the corresponding true quantities obtained using the actual plant model.

The SYSID algorithm does not directly estimate these two quantities, so we use the

estimated model and noise covariance to construct the S matrix and noise term β. In

Figure 2.5, we show the variations in the estimation errors of the S matrix, noise term

β, and the LQR feedback law K?. We observe that for a small amount of 3 hours of

training data, the estimation errors in the three quantities obtained with the two LSPI

algorithms are unacceptably large, and around 60 − 110%. The quality of the esti-

mates obtained with the LSPI algorithms improve with an increase in the training data.

When using the full 60 hours of training data, the LQR feedback law estimation errors

with the two LSPI algorithms is around 10 − 20%. The SYSID algorithm consistently

provides similar or better estimates of all the three quantities for varying amounts of

training data. The performances of the LSPI-KQW and LSPI-UQW are similar, which

illustrates that the approach proposed in this chapter of using a modified Q-function

approximation architecture to treat an unknown noise covariance is effective.

Next, we examine the closed-loop performances of the controllers estimated with

the LSPI and MLE algorithms compared to a perfect model-based controller that uses

the true dynamic model and noise covariances. For these comparisons, we perform

multiple closed-loop simulations with each estimated controller starting from some

different initial states of the HVAC plant. All these initial states are sampled randomly

from a uniform distribution in the range -10 to 10◦C. We use (2.53) for noise filtering

during the closed-loop implementation using the model-free controllers, with α = 0.2.

Based on all the closed-loop simulations, we compute the following performance metric
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to gauge the overall performance of an estimated controller

ΛC
T =

1

NtrNt

Ntr∑
j=1

Nt∑
k=0

`(xj(k), uj(k),∆uj(k)) (2.57)

in which, we use the subscript j to denote the trajectory number of a closed-loop simu-

lation, Ntr is the total number of simulations, andNt is the number of time steps in each

closed-loop simulation. We perform Ntr = 500 simulations, and each for Nt = 240 (4

hours) number of time steps. We choose this length of each simulation so that enough

closed-loop transient and steady-state data is captured in the performance metrics. For

each estimated controller, we also compute the following metric that quantifies the

performance loss compared to the perfect model-based controller

% Performance Loss = 100(λCT − ΛP
T )/ΛP

T (2.58)

in which, ΛP
T denotes the overall performance of the perfect model-based controller

obtained using (2.57). In Figure 2.5 (top-right), we show the variation in the above

performance loss metric for the estimated controllers using the three algorithms for

varying amounts of training data. We notice that after approximately 15 hours of

data, the performances of the controllers estimated using the two LSPI algorithms are

close to the perfect model-based controller, with the loss metrics less than 5%. The

performances further improve with an increase in the training data.

In Table 2.3, we summarize the loss metrics obtained by the estimated controllers

using the three algorithms when using the full 60 hours of training data. The controller

obtained with the SYSID algorithm provides the best performance with the loss metric

of only 0.52%. The controllers obtained with the two LSPI algorithms also provide

good performance with the loss metrics of 1.4% and 1.25%. The higher performance of
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Controller % Performance
Loss

Controller
estimation time

(seconds)

State measurement with process noise
SYSID 0.52 0.05

LSPI-KQW 1.4 12.02
LSPI-UQW 1.25 6.97
Output measurement with process and measurement noises

SYSID 2.68 0.02
LSPI 3.55 3.2

Table 2.3: Summary of the simulation study performed to compare the performances
of the SYSID and LSPI algorithms.

the model-based controller obtained using the SYSID algorithm is because it estimates

a more accurate LQR feedback law as observed in Figure 2.5. In addition, we also

perform state estimation systematically using a Kalman filter during the closed-loop

implementation of the model-based controller obtained using the SYSID algorithm.

We also summarize the time required by the three algorithms for the controller es-

timation in Table 2.3. The estimation times are shown for the case when the entire 60

hours of training data is used by the algorithms. We notice that the SYSID algorithm is

the fastest and only requires 0.05 seconds. The two LSPI algorithms require around 7

and 12 seconds for the controller estimation. The LSPI algorithms solve multiple least

squares problems in an iterative approach, which leads to the larger time required

for estimating a feedback controller. We notice that the LSPI-KQW uses slightly more

time than the LSPI-UQW, which is due to the fact that the Q-function approximation

architecture used for the LSPI-KQW has more Kronecker products that need to be eval-

uated when constructing the least squares problem. Nonetheless, all the algorithms are

suitable for controller estimation in applications.
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Figure 2.6: Sample training data set for the case of output measurements and both
process and measurement noise. The black dots in the zone temperature plots show
the measurements, and the blue lines depict the actual state.

2.5.2 Output measurements with both process and measurement

noises

The effectiveness of the proposed LSPI algorithms to estimate a reasonable feedback

controller is demonstrated next on the case of only output measurements and both

process and measurement noise. We generate a total of 24 hours (1440 samples) of
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training data set by simulating the HVAC plant using Gaussian random control input,

process noise, and measurement noise sequences. The mean of these sequences are

chosen to be zero and covariances are given in Table 2.2. The HVAC plant is initialized

at the origin for the training data generation. We show the first 2 hours of the generated

training data in Figure 2.6.

We implement the following two controller estimation algorithms based on the gen-

erated training data

1. SYSID: The MLE algorithm discussed in Section 2.4 is used to estimate the linear

dynamic model matrices (Θ) and the noise covariances (Swv), which are then

used to construct a regulator and state estimator.

2. LSPI: We implement the model-free algorithm for the output measurement case

discussed in Subsection 2.3.4 to estimate a feedback controller.

For both the algorithms, we choose Np = 2 using the method discussed in Appendix

2.6. The LSPI algorithm is started with a matrix of zeros as the initial feedback law. And

the two policy evaluation and improvement steps in the algorithm are implemented for

a total of 15 iterations.

An output tracking penalty is considered in the LQR problem for this output mea-

surement case. The tuning parameters used for the LQR problem are given in Table

2.2. The dimension of the surrogate state z is 8, which requires the LSPI algorithm to

estimate a Q-function matrix S of dimensions 10 × 10, and a feedback law matrix of

size 2 × 8. As noted previously, the use of the surrogate state z in the LSPI and SYSID

algorithm results in a dynamic and noise model mismatch between the plant and model

assumed in the algorithms. Thus, the estimated Q-function and feedback law cannot

be compared to some true quantities. So to evaluate the quality of the estimated feed-

back controllers, we directly compare the closed-loop performances of the estimated

58



Model-free controller design using Q-learning from noisy data Chapter 2

controllers with a perfect model-based controller that uses the true HVAC plant model

and noise covariances. We refer to this perfect controller as the PLQG controller in the

subsequent discussion in this chapter.
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Figure 2.7: A sample closed-loop simulation performed using the PLQG controller,
and the controllers estimated with the SYSID and LSPI algorithms. The performance
of the controller estimated using the LSPI algorithm is almost the same as the other
two model-based controllers.

We first compare the closed-loop performances obtained with the controllers esti-

mated using the two algorithms with the PLQG controller. For this study, the two algo-

rithms are implemented using the full 24 hours of the generated training data. Next,
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we perform multiple closed-loop simulations using the estimated controllers starting

from some random initial states. All the initial states for these closed-loop simulations

are sampled from a uniform distribution in the bounds −10 to 10◦C. We conduct 500

closed-loop simulations, each for a length of 4 hours. We choose α = 0.2 for noise

filtering using (2.53) during the closed-loop implementation of the model-free feed-

back controller estimated using the LSPI algorithm. In Figure 2.7, we show one sample

closed-loop simulation obtained with the three controllers. We notice that model-free

controller estimated using the LSPI algorithm provides almost the same performance

as the other two model-based controllers.

In addition to examining the closed-loop trajectories, we also compute the following

metric for each closed-loop simulation conducted using the three controllers

ΛC
Tj

=
1

Nt

Nt∑
k=0

`(yj(k), uj(k),∆uj(k)) (2.59)

in which, we use the subscript j to denote the trajectory number of a simulation. Fig-

ure 2.8 shows the histograms of the above performance metric for the three controllers.

The histograms illustrate that the model-free controller estimated using the LSPI algo-

rithm has a similar performance as the other two model-based controllers across all the

conducted closed-loop simulations.

The data efficiency of the SYSID and MLE algorithms is studied next. For this anal-

ysis, we implement the two algorithms for varying amounts of training data starting

from 2 to 24 hours, in increments of 2 hours. For each estimated controller, we con-

duct multiple closed-loop simulations similar to the previous analysis. Then, we eval-

uate the loss metric shown in (2.58) that compares the performance of the estimated

controllers compared to the PLQG controller. We plot the loss metric for the estimated

controllers using the two algorithms for varying amounts of training data in Figure 2.9.

60



Model-free controller design using Q-learning from noisy data Chapter 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

ΛTj

0

5

10

15

20

25

Fr
eq

ue
nc

y

PLQG
SYSID
LSPI

Figure 2.8: Histogram of the closed-loop performance metrics obtained with the con-
trollers estimated using the SYSID and LSPI algorithms, and the PLQG controller.

We observe that for a small amount of 2 hours of training data, the performance of the

controller estimated using the LSPI algorithm is noticeably worse with about 14% loss.

The performance of the controllers estimated using the LSPI algorithm improves with

an increase in the training data. The SYSID algorithm is more data efficient than the

LSPI approach. With only 2 hours of training data, the controller estimated with SYSID

algorithm provides a performance loss of less than 4%

We summarize the loss metric and the controller estimation times of the two al-

gorithms when using the full 24 hours of training data in Table 2.3. The controller

obtained using the SYSID approach provides a performance loss of 2.68%, whereas,

the LSPI algorithm also provides a good performance with a loss metric of only 3.55%.

The time required for the controller estimation by the SYSID and LSPI algorithms are
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Figure 2.9: Plot of the overall closed-loop performance loss for the controllers esti-
mated using the SYSID and LSPI algorithms with varying amounts of training data.

0.02 and 3.2 seconds, which show that both the algorithms are suitable for implemen-

tation in process control applications.

2.6 Conclusions

In this chapter, a new model-free controller estimation algorithm using Q-learning

and least squares policy iteration (LSPI) has been presented.

We started with discussing an available algorithm in the literature to estimate the

nominal LQR feedback law. A simulation study was presented to elucidate that the

algorithm to estimate the nominal LQR is not suitable to estimate a controller from

noisy data, and thus cannot be deployed in industrial applications.
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Then, we proposed an approach that is suitable to estimate a feedback controller

from noisy data. The approach is based on an extension of an available algorithm to

estimate the stochastic LQR feedback law for linear systems driven by Gaussian process

noise and full state measurements. We discussed how that algorithm can be extended

to design a controller from data containing both process and measurement noise and

only output measurements. We developed a modified Q-function approximation ar-

chitecture to first treat the case of an unknown process noise covariance in the full

state measurement case. Then, we used a surrogate state containing a recent history of

past measurements and control inputs and applied the extended algorithm to design a

controller for the output measurement case with both process and measurement noise.

Such a model-free controller estimation algorithm that can handle both those noise

sources has not been previously proposed in the literature.

We presented simulation studies using a linear HVAC example system to demon-

strate the effectiveness of the proposed model-free feedback controller design approach.

In the case of full state measurements with process noise, we illustrated that the con-

trollers estimated using the LSPI algorithms provide good performance with the loss

metrics of 1.2 and 1.4% compared to the perfect PLQG controller. For the output mea-

surement case with both process and measurement noise, we demonstrated that the

controllers estimated using the SYSID and LSPI algorithm provide performance losses

of 2.68% and 3.55%. A total of 24 hours of training data was used to achieve this perfor-

mance using the LSPI algorithm. The performance and data requirement demonstrate

that the model-free controller design approach proposed in this chapter can be a viable

option for implementation in process control applications.

The reasons for the success of the algorithm proposed in Section 2.3 compared

to the failure of the algorithm of Bradtke et al. (1994) as pointed out (Rawlings and

Maravelias, 2019) in Section 2.2 are two-fold. First, we build upon an algorithm that
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considers a stochastic LQR formulation to estimate a feedback controller. Linear sys-

tems with Gaussian process noise are considered in the algorithm. This treatment of

the noise enables some robustness of the algorithm to noisy data, however, it cannot

be applied directly in applications because it assumes full state measurements and that

the covariance of the process noise is known. Second, we extended that algorithm to

treat an unknown process noise covariance. The modified approach was then used to

estimate a feedback controller for systems with both process and measurement noise

and only output measurements.

The model-free approach discussed in this chapter is a step towards an algorithm

that may be suitable for deployment in process control applications. We discuss some

directions for future work by pointing out the remaining advantages of the model-based

approaches in Chapter 6 of this thesis.

The next chapter develops a method to use neural networks to approximate the

constrained, nonlinear MPC feedback law to enable MPC implementation in large-scale

industrial applications.

Appendix

Model order selection

The parameter Np in (2.52) to construct the surrogate state (z) characterizes the

assumed model order of the plant. To choose this parameter for both the LSPI and MLE

algorithms, we first construct the data matrix

H =

[
z(Np), z(Np + 1), ..., z(Nt)

]
(2.60)
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in which, Nt is the total number of time steps in the training data. Each column in this

data matrix contains Np number of past measurements and control inputs. For a large

Np, the rows of the data matrix become nearly linearly independent, and the condition

number becomes large. In this case, the estimates of the linear dynamic model in the

MLE algorithm or the Q-function in the LSPI approach become sensitive to noise. For

a small Np, the surrogate state does not contain enough information about the plant

dynamics, and accurate estimates of the linear dynamic model or the Q-function cannot

be obtained. So the tradeoff in choosing the value of Np is accuracy vs sensitivity to

noise. To evaluate this tradeoff, we plot the condition number of the data matrix for

various values of the parameter Np starting from unity to a large integer. We choose

the value of Np around the “knee” of the curve when the condition number increases

rapidly and saturates for larger values of Np.
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Figure 2.10: Plot of the condition number of the data matrix (2.60) for various values
of the parameter Np in the HVAC example.
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In Figure 2.10, we show the condition number plot used to select the order in the

output measurement case studies presented in Subsection 2.5.2. We choose Np = 2,

which is approximately around the value at which the condition number of the data

matrix is increasing rapidly before saturating to large values.

66



Chapter 3

Fast, large-scale model predictive
control using deep neural networks

3.1 Introduction

A model predictive controller (MPC) is implemented by solving an optimization

problem in real time. A dynamic model of the plant is used to predict the future

measurements in response to the actuators. The optimization problem determines the

best possible future actuator sequence to drive the plant to some steady state. The

first move is applied to the plant, and the optimization problem is re-solved after every

measurement sampling instant in real time. A majority of industrial MPC controllers

use a linear plant model, and require solutions to quadratic programs (QP) in real time.

Several advances have been made over the years to efficiently solve QPs (Kouzoupis

et al., 2018; Wright, 2019), which have enabled control practitioners to implement the

MPC technology in industrial applications.

The solution of the QP solved by a linear MPC controller can be characterized as a

piecewise affine function defined over some set of feasible initial states and steady-state

targets computed for offset-free control (Bemporad et al., 2002; Seron et al., 2003). We

refer to this optimal solution of the MPC optimization problem as the MPC feedback
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law in this chapter. When implementing an MPC controller in applications, an alter-

native approach to online optimization can be to store all the regions in the piecewise

affine MPC feedback law. And in real time, traverse all the regions to determine in

which region the current state lies. The control input can then be computed using the

feedback law for the region in which the current state lies. A drawback of this approach

is that the number of regions in the MPC feedback law grows exponentially with both

the model dimensions and the horizon length in the MPC problem. Thus, the approach

cannot be implemented for feedback control of large-scale systems.

To overcome the above issue with storing and traversing all the regions in the entire

MPC feedback law, Pannocchia et al. (2007) proposed a partial enumeration approach

in which only some relevant regions of the state space are stored. During the online

implementation, the shorter number of relevant regions are traversed to determine

the control input. These relevant regions are determined based on the states that are

recently encountered during the closed-loop implementation. If a state is not found in

the list of relevant regions, then the MPC optimization problem is solved to find the

region and the feedback law corresponding to that state. The new region is inserted

to the list of relevant regions. And to prevent the list from growing further, another

region in which a state has not been encountered recently is replaced from the list.

The MPC feedback law may be approximated using parametric function approxima-

tors such as polynomials (Kvasnica et al., 2011), other types of piecewise affine func-

tions (Bemporad et al., 2011; Wen et al., 2009), and neural networks (Cavagnari et al.,

1999). The motivation of these approaches is to use the approximate MPC feedback

law represented by the function approximator during the online closed-loop implemen-

tation. In this approximate MPC approach, the use of NNs to approximate the MPC

feedback law has gained significant attention recently (Chen et al., 2018; Karg and Lu-

cia, 2020; Paulson and Mesbah, 2020; Lovelett et al., 2020). Feedforward NNs that use
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the rectified linear unit (ReLU) as the activation function represent a piecewise affine

function. The complexity of the representable functions also grows exponentially with

the addition of more layers and nodes in the NN (Montufar et al., 2014). This property

makes NNs an attractive candidate to approximate the MPC feedback law. The NN de-

sign approach proposed in many of the recent literature is to generate the training data

for the NN by solving numerous QPs offline for a set of feasible initial states of the QP.

A standard feedforward NN is trained offline using the labelled state to optimal control

input samples, and the NN is finally used online for the MPC controller implementation

in place of a QP solver.

To enlarge the class of applications achievable using MPC, large-scale problems in

which the state-of-the-art QP solvers fail to deliver the control input in the available

sample time should be addressed. The literature in the area of MPC feedback law

approximation using NNs has not demonstrated the scalability of the approach to such

large problems. The following two issues arise in these problems

• In a large dimensional state space, the entire feasible state space of the QP cannot

be sampled densely due to the well-known curse of dimensionality.

• The state space can be sampled partially to avoid this problem, however, the time

required to solve a QP for each sampled state may still be too large to render the

offline NN design approach challenging.

We demonstrate in this chapter that the first issue can be resolved by sampling

only the relevant state space based on the anticipated plant operational scenarios. The

second issue can be mitigated with the use of parallel computing when solving the large

QPs for the sampled states during the data generation. For an industrial deployment of

the NN design approach proposed in this chapter, the following feature must be present

in the large-scale application of interest: In a particular operating mode of the process,
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the number of time varying disturbances and setpoints should be reasonably small such

that only a small fraction of the entire state space is visited during that operation mode.

The MPC feedback law can then be approximated for the different operating modes of

the plant, each driven by their respective set of setpoints and disturbances.

Based on the above viewpoint, this thesis chapter presents the design of NNs to ap-

proximate the MPC feedback law for large-scale applications. The industrially relevant

offset-free MPC formulation is considered. For the NN controller design, we propose

to use a modified structured NN architecture to achieve offset-free closed-loop perfor-

mance. We emphasize that the structured NN architecture is advantageous, and high

quality closed-loop performance cannot be obtained using a standard feedforward ar-

chitecture. Simulation studies are presented with large-scale application examples to

demonstrate the scalability of the proposed NN controller design approach. In partic-

ular, we present a large-scale industrial crude distillation example with 252 states, 32

control inputs, and a horizon length of 140 in the MPC problem. We utilize parallel

computing for the offline data generation and graphical processing units (GPU) for the

NN training. We show that after the offline design step, the trained NNs execute MPC

around 4 orders of magnitude faster than an available QP solver. The performance loss

of the NNs compared to the optimal MPC controller is also less than 1%.

We begin by considering a small scale double integrator example to gain insights

into the optimal MPC feedback law, and the corresponding possible approximations

that can be attained using NNs. In this chapter, we also establish conditions under

which a closed-loop system under feedback with a NN controller is robust to distur-

bances and MPC feedback law approximation errors. Input-to-state stability results

available in the MPC literature are used to analyze the robustness of NN controllers.

A related work Chen et al. (2022) considers the MPC feedback law approximation

using NNs on the control problem of regulation to the origin. The paper examines the
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approach on an example system with a state dimension of 36. By contrast, we consider

the offset-free MPC formulation and demonstrate the scalability of the NN controller

design approach on an industrial example with a state dimension of 252. Drgoňa et al.

(2018) also treat large MPC applications using NNs. This work proposes to reduce

the dimensionality of the state in the QP using principal component analysis, and de-

velops the approximate NN controller in the low dimensional state space. Chan et al.

(2021) present a similar structured NN architecture as the one proposed in this chapter.

However, the work does not consider plant disturbances and does not demonstrate the

scalability of the approach to large applications.

The rest of this thesis chapter is organized as follows. In Section 3.2, we analyze the

nature of the MPC feedback law and possible approximations by NNs on a small scale

double integrator example. In Section 3.3, we discuss the offset-free MPC formulation

considered for NN controller design for large-scale application examples. We discuss

the structured NN architecture, the offline data generation, and the network training

in Section 3.4. The robustness property of approximate NN controllers is analyzed

in Section 3.5. Simulation studies to demonstrate the scalability and effectiveness of

the proposed NN controller design approach on large-scale examples are presented in

Section 3.6. Conclusions of this chapter are given in Section 3.7.

Results from this chapter appear in the papers Rawlings and Maravelias (2019)

and Kumar et al. (2021). The mathematical notation used in this chapter are given in

Section 1.3.

3.2 Illustrative double integrator example

We begin by examining the MPC feedback law approximation approach on a two

dimensional example, in which the optimal and approximate NN feedback laws can
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be examined visually. We consider a double integrator system (unstable) with the

following linear dynamics (Mayne and Raković, 2003)

x+ =

1 0.1

0 1

x+

 0

0.0787

u (3.1)

The goal of the MPC controller is to stabilize the system using the control input (u) for

some set of initial states. The following MPC optimization problem is solved

min
u

N−1∑
k=0

`(x(k), u(k)) + Vf (x(N)) (3.2)

s.t x+ = Ax+Bu, (3.3)

− 1 ≤ u ≤ 1 (3.4)

ANx(N) ≤ bN (3.5)

x(0) = x (3.6)

in which, `(·) is the stage cost, Vf (·) is the terminal cost, A,B are the linear dynamic

model matrices shown in (3.1), N = 10 is the control horizon length, and the matrices

AN , bN are used to implement a terminal state constraint. These matrices are chosen

so that the terminal constraint represents the maximal output admissible set (Gilbert

and Tan, 1991) for the optimal unconstrained LQR. We use the following stage cost in

the optimization problem

`(x, u) = x21 + 0.1u2 (3.7)

The terminal cost is also quadratic, i.e, Vf (x) = x′Px, and the penalty matrix P is

chosen as the solution of the DARE equation.
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Figure 3.1 (left) shows the polytopic regions in the piecewise affine MPC feedback

law, which is defined over a set of feasible initial states of the QP (XN). We note that

the polytopic regions in the MPC feedback law are typically defined in the literature

such that the optimal solution for the full control input sequence (u0(·)) in the horizon

length is different across the regions. But the optimal solution of the first control input

(u0(·)) can still be the same across the regions. For Figure 3.1, we have merged the

regions for which the optimal solution of the first control input were the same.
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Figure 3.1: Partition of the state space for the optimal feedback law (left); partition
of the state space in the NN approximation of the feedback law (right).

To obtain an NN approximation of the MPC feedback law, we sample a set of initial

states in the feasible region (XN), and solve the MPC problem to compute the corre-

sponding optimal control inputs. We sample 100 initial states uniformly in the feasible

region. For each sampled state, we perform closed-loop simulations using the optimal

MPC controller for Nt = 10 time steps and obtain a total of 1000 states shown in Fig-

ure 3.2 (left) for the NN training. A standard feedforward network is trained using

the 1000 state (x) and control input (u0(x)) pairs as labelled data. We choose a NN

of architecture [2, 6, 1], i.e, an input layer of 2 nodes, one hidden layer containing 6
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Figure 3.2: Data set used for training, in which the color indicates the value of feed-
back law κN (x) (left); closed-loop trajectories obtained using the optimal and approx-
imate NN controllers (right).

nodes, and an output layer of 1 node. The NN is trained using the stochastic gradient

algorithm Adam (Kingma and Ba, 2014).

After the NN training, we examine the polytopic regions in the NN approximation

of the MPC feedback law. To determine the polytopic regions of the piecewise affine

feedback law represented by the NN, we enumerate all the possible combinations of

active/inactive nodes in the hidden layer. Each such combination maps to a polytopic

region of the two dimensional state space and a corresponding feedback law. We show

the polytopic regions in the approximate NN feedback law in the feasible region XN
in Figure 3.1 (right). We observe that the NN does not recover all the regions in

the optimal MPC feedback law, but retains a crude structure of the regions. We also

show the root mean squared error metric (RMSE) obtained by the NN on the training

data in the Figure 3.1. Next, we use the NN approximation of the MPC feedback

law in some closed-loop simulations and examine its performance. Figure 3.2 (right)

shows closed-loop trajectories obtained using the optimal and NN controllers starting

from four arbitrary initial states. We observe that the difference in the closed-loop
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Figure 3.3: Other partitions of the state space obtained using the approximate NN
feedback laws for identical training data but with different initialization of the weights
and biases during training.
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Figure 3.4: Comparison of closed-loop state trajectories obtained using the neural net-
work solutions corresponding to Figure 3.3 with the optimal closed-loop trajectories.
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trajectories obtained using the two controllers is barely noticeable.

We note that the quality of the MPC feedback law approximation by the NN can

depend on some other factors as well. Such as the initial weights and biases used for

training, the batch size in the stochastic gradient algorithm, the total number of epochs,

etc. To illustrate that different approximate feedback laws (possibly worse) can also be

obtained, we train nine more NNs with the same architecture ([2, 6, 1]) but with differ-

ent initial guesses of the weights and biases in the NNs. All the other hyperparameters,

such as the batch size, number of epochs, etc are kept the same in these different NN

training problems. Figure 3.3 shows the MPC feedback approximation by these nine

other trained NNs, and Figure 3.4 shows the corresponding closed-loop trajectories ob-

tained with those NNs. We notice particularly that the NNs in the middle rows have

a poor approximation of the optimal MPC feedback law, and also provide a noticeably

poor closed-loop performance. The poor closed-loop performances by the middle row

NNs caution that the NN controllers should be validated properly during or after the

training phase before the final online deployment. In the simulation studies in Section

3.6, we also discuss how the trained NNs can be validated before the final deployment

at the plant.

3.3 Linear offset-free model predictive control

In this section, we describe the linear offset-free MPC controller formulation used

for the subsequent studies in this chapter to examine the NN controller design approach

on large-scale application examples. We consider linear plant models augmented with

an integrating disturbance model to achieve offset-free closed-loop performance (Pan-
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nocchia and Rawlings, 2003; Morari and Maeder, 2012)

x+ = Ax+Bu+Bdd (3.8)

d+ = d (3.9)

y = Cx+ Cdd (3.10)

in which, x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rp is the measurement,

and d ∈ Rd is the state in the disturbance model. The matrices (A,B,C) characterize

the control input to measurement model, and (Bd, Cd) characterize the integrating dis-

turbance model. The purpose of using the disturbance model is particularly to remove

offset in some controlled measurements during the closed-loop operation, despite the

presence of any unmeasured disturbances and plant-model mismatch. Given a time

series of data collected from the plant, we construct a Kalman filter to estimate the

state and disturbance in the two models as follows

x̂
d̂


+

=

A Bd

0 I


x̂
d̂

+

B
0

u+

Lx
Ld

(y − [C Cd

]x̂
d̂

) (3.11)

Here, the variables x̂ = x̂(k|k − 1), d̂ = d̂(k|k − 1) denote the predicted state and dis-

turbance estimates at the current time step k, given measurements up to the time step

k − 1. The variables (x̂, d̂)+ are defined similarly, and denote the predicted estimates

at the next time step given measurements up to the current time step. We convert

the predicted estimates to filtered estimates based the current measurement, which are

then finally used in the MPC target selector and regulator formulations. The gains Lx

and Ld are computed by solving a discrete algebraic Riccati equation (DARE) for the
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steady-state Kalman filter (Rawlings et al., 2020, Pages 32-33) using the augmented

linear model in (3.8) – (3.10). The noise covariances used in the DARE to obtain the

filter gains are chosen heuristically for the simulation studies in this chapter. The gains

computed using the DARE are appropriately converted to obtain the predictor form of

the Kalman filter shown in (3.11).

Based on the disturbance estimate d̂, and the setpoints for the input and controlled

measurements (usp, rsp), we solve the following target selector QP

min
xs, us

|usp − us|2Rs
(3.12)

s.t

I − A −B

HC 0


xs
us

 =

 Bdd̂

rsp −HCdd̂

 (3.13)

u ≤ us ≤ u (3.14)

in which, the target steady-state pair (xs, us) is the decision variable, r = Hy are the

controlled measurements that are typically chosen as some subset or linear combina-

tion of all the measurements, and [u, u] are the input constraints. We note that the

constraint rsp = H(Cxs+Cdd̂) may be difficult to satisfy in real time based on the value

of the setpoint and input constraints. To handle this case, we move this setpoint con-

straint in the stage cost and also minimize the offset in the controlled measurements

when determining the target steady state. For the simulation studies in this chapter,

we assume that the input setpoint usp is fixed at some steady state of the system. And

only the controlled measurement setpoint rsp changes in real time during the process

operation.

The goal of the MPC regulator is to determine the control input to apply to the

plant. We use the state estimate (x̂) and the target steady-state pair (xs, us) to solve
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the following regulator QP

min
ũ

N−1∑
k=0

(
|x̃(k)|2Q + |ũ(k)|2R

)
+ |x̃(N)|2P (3.15)

x̃+ = Ax̃+Bũ (3.16)

u ≤ ũ+ us ≤ u (3.17)

x̃(0) = x̂− xs (3.18)

in which, the state x̃ and control input ũ are considered in deviation from the tar-

get steady state (xs, us), and Q,R are the penalty matrices in the QP. The matrix

P for the terminal cost is chosen as the optimal cost-to-go matrix of the optimal

unconstrained LQR. The decision variable in the QP is control input sequence ũ =

[ũ(0)′, ũ(1)′, ..., ũ(N − 1)′]′. The first element of the optimal input sequence is applied

to the plant. The function map from the parameters (x̂, xs, us) to the first control input

is the MPC feedback law defined as κN(x̂, xs, us) = ũ0(0; x̂, xs, us) + us. We can also im-

plement a rate-of-change penalty in the QP by augmenting state system state with the

control input at one previous time step (u−1) (Rawlings et al., 2020, Exercise 1.25).

The MPC feedback law in this case becomes also a function of the previous control

input in addition to the state estimate and the target steady-state pair.

Several algorithms have been proposed in the literature to solve the above MPC reg-

ulator QP. The papers Kouzoupis et al. (2018) and Wright (2019) review the different

convex optimization methods available to solve the linear MPC QP. In this chapter, we

use a “dense" formulation of the regulator QP in which the state sequence is eliminated

from the set of decision variables. And the future control input sequence ũ is the only

decision variable in the problem. We use the QP solver CVXOPT (Vandenberghe, 2010)

for the training data generation and online timing comparisons. The solver is tailored
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for dense problems, similar to the MPC regulator QP considered in this chapter. We

note that if a more efficient QP solver is available, then it is advantageous for both the

online QP and approximate NN based MPC approaches, because a fast QP solver can

be used to reduce the offline training data generation time for NNs.

3.4 Neural network controller design

The target selector QP discussed in the previous section is typically small compared

to the regulator QP. The latter QP accounts for most of the online computation time for

the MPC controller execution. Therefore, we focus on replacing only the MPC regula-

tor QP using NNs by approximating the feedback law κN(·) for a set of operationally

relevant states and steady-state targets.

3.4.1 Structured neural network

An intuitive approach to approximate the feedback law may be to develop a stan-

dard feedforward NN that takes the vector [x′, x′s, u
′
s]
′ as the input, and produces an

approximate control input that is close to the optimal input. This approach has been

proposed by several researchers (Karg and Lucia, 2020; Chen et al., 2018). But the

scalability of the approach has not been demonstrated to large-scale systems. A major

issue with the approach is that the NN controller has no insights about the structure of

the optimal MPC feedback law. At a minimum, the MPC feedback law outputs a zero

control at the origin. And for the offset-free setpoint tracking problem discussed in the

previous section, the MPC feedback law satisfies κN(x = xs, us, us) = us, i.e, the MPC

controller uses the steady-state control input to maintain the system at a steady state.

This structure should be incorporated in an approximate NN controller to improve the
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training data requirements.

To incorporate the steady-state feedback law information in a NN controller, we

introduce the following structured architecture

z0 =

[
x′, x′s, u′s, x′s, x′s, u′s

]′

fi(zi−1) =

Wi 0

0 Wi

 zi−1 +

bi
bi


zi = g(fi(zi−1)), for i ∈ I1:h

u = us +

[
Wh+1, −Wh+1

]
zh (3.19)

in which, g(a) = max(0, a) is the rectified linear unit (ReLU) activation function applied

element wise on the vector a, the subscript i is used to represent the different hidden

layers, zi is the output of the hidden layer i, z0 is the input to the network, and h is

the number of hidden layers. The unknown parameters in the NN are the weights and

biasesWi, bi, Wh+1, which are subsequently determined by solving the NN training opti-

mization problem. At a steady state when x = xs in the input z0, the NN (3.19) outputs

us regardless of the choices of the weights and biases. The top and bottom half in the

output zi of each layer contain a repeated subvector and the term
[
Wh+1, −Wh+1

]
zh

equals zero. We note that the structure architecture proposed above can also be viewed

as follows

u = us + fN(x, xs, us)− fN(xs, xs, us) (3.20)

Here, fN is a standard feedforward NN without any bias term in the last layer. The

structured NN architecture (3.19) can be developed using the symbolic differentiation

software Tensorflow (Abadi et al., 2015). And the training optimization problem can
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be solving using customizable feedforward network classes available in the software.

When implementing a rate-of-change penalty on the control input, the optimal MPC

feedback law becomes a function of the previous control input (u−1) as well in addition

to the state and steady-state targets. So we also provide the previous control input to

the NN if a rate-of-change penalty on the control input is implemented in the MPC

regulator. We modify the input to the NN (3.19) as follows

z0 =

[
x′, u′−1, x′s, u′s, x′s, u′s, x′s, u′s

]′

The weights and biases Wi, bi,Wh+1 are modified to be of appropriate dimensions.

We note that even after training with a sufficient amount of data, the obtained

NN may not produce a control within the constraints [u, u]. And to ensure that the

NN outputs a control input within the constraints, we apply the saturation function

(sat(u, u, u)) to the output of the NN. We use κNN(·) to denote the approximate feed-

back law represented by a NN in the subsequent discussion in this chapter.

3.4.2 Data generation

The feasible region of the MPC regulator QP (3.16) – (3.18) for a fixed steady state

is Rn, i.e, the entire n-dimensional state space. The target steady state for the QP also

changes at almost every time step in industrial applications due to time varying distur-

bances and setpoints. The full domain of the MPC feedback law is therefore the com-

bination of the state space Rn and the possible set of steady-state target pairs. Densely

sampling this entire domain of the MPC feedback law is not possible for large applica-

tions due to the curse of dimensionality. We show in the simulation studies in Section

3.6 that sampling the entire domain is also not required for practical applications.

Large industrial chemical plants often operate in different operating regimes or
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scenarios. Each operating scenario is driven by only a few controlled measurement set-

points and large magnitude disturbances that change frequently. The controlled mea-

surement setpoints may change based on product goals, but the setpoints for a large

number of measurements other than the controlled measurements remain constant for

long periods of time. The states and steady-state targets actually visited during the

closed-loop operation is thereby considerably less than the entire domain of the MPC

feedback law. We use this insight about the typical operation of large chemical plants,

and sample only the relevant states and steady-state targets for a particular operating

mode of the plant. We generate the training data for NNs as follows

1. First, we determine the controlled measurements (r) and an anticipated range

[rsp, rsp] in which their setpoints may change during the plant operation.

2. Next, we determine the large magnitude disturbances (d), their effect on the

plant dynamics via a disturbance model (Bd, Cd), and the range [d, d] in which

those disturbances can change during the operation.

3. We obtain pseudo random binary signals (PRBS) for the setpoints (rsp) and dis-

turbances (d) in their respective ranges.

4. We perform an offline closed-loop simulation using the plant model and MPC con-

troller by solving the target selector and regulator QPs for all the transient states

and steady-state targets encountered during the simulation. All these states,

steady-state targets, and corresponding optimal control inputs are gathered as

the training data set.

In the step (2) above, we assume that the disturbances have a physical meaning and

assume that the matrices (Bd, Cd) are obtained from a prior disturbance model identi-

fication step. The simulation in the step (4) is performed offline using the linear plant

84



Fast, large-scale model predictive control using deep neural networks Chapter 3

model, and we do not perform Kalman filtering for state and disturbance estimation.

The known states of the linear model and disturbances are directly used in the target

selector and MPC regulator.

During the plant operation, it is expected that the NN controller does not encounter

the states and steady-state targets used in the training data. But similar values are ex-

pected because an adequate dynamic model, and setpoint and disturbances are used for

the data generation. The NN controller after the training step produces approximate,

interpolated control inputs in real time during the process operation.

For large MPC problems, the training data generation step can start to take imprac-

tical amounts of time if performed serially because of long time (e.g, minutes) required

to solve each QP. We parallelize the data generation step by simultaneously performing

multiple offline closed-loop simulations over different cores within a CPU and across

multiple CPUs as well. The data generated from all these parallel closed-loop simula-

tions are used for the NN controller training.

3.4.3 Training optimization problem

After the training data generation, the next step is to determine the unknown

weights and biases such that the NN obtains an approximation of the optimal MPC

feedback law. To achieve this goal, we solve the following optimization problem

min
θ

1

Ns

Ns∑
j=1

[κNN(xj, xsj, usj; θ)− κN(xj, xsj, usj)]
2 (3.21)

in which, the decision variable θ contains the weights and biases Wi, bi,Wh+1, the sub-

script j is used to denote a particular training data sample, and Ns is the total number

of training samples. The optimization problem is solved using the stochastic gradient
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algorithm Adam. We do not consider any regularization penalty in the problem. The

recent theoretical and empirical works in the machine learning literature have demon-

strated that large NNs have good interpolation capabilities (Belkin et al., 2019; Zhang

et al., 2017; Arora et al., 2019; Allen-Zhu et al., 2019) without any explicit form of

regularization in the training problem.

3.5 Robustness of neural network controllers

In this section, we establish that under sufficiently small approximation errors of

the MPC feedback law, the NN controllers satisfy a closed-loop inherent robustness

property. The optimal MPC controller designed for a linear system is known to be

robust to sufficiently small state estimation errors and disturbances (Heath and Wills,

2005; Pannocchia et al., 2011). The approximation error of the MPC feedback law

by a NN can be treated as an additional disturbance to the system, and the existing

input-to-state stability (Sontag and Wang, 1995) results available in the literature can

be used to establish the robustness of NN controllers. We show that the allowable

approximation error by a NN controller to achieve the closed-loop robustness property

can also be established.

We first discuss some required preliminary results, then present a theorem to char-

acterize the robustness property of approximate NN controllers.

3.5.1 Preliminaries

We use the following definitions of K, K∞, and KL functions (Rawlings et al., 2020,

Page 695).

• A function α : R≥0 → R≥0 is of class K if it is continuous, zero at zero, and strictly
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increasing.

• A function is of class K∞ if it is of class K and unbounded (α(s)→∞ as s→∞).

• A function β : R≥0× I≥0 → R≥0 is of class KL if it is continuous, for each k ∈ I≥0,

β(·, k) is of class K, and for each s ≥ 0, β(s, ·) is non-increasing and satisfies

limk→∞β(s, k) = 0.

We define the level set of a function as follows. Given V : X → R≥0 and τ > 0,

levτV = {x ∈ X | V (x) ≤ τ}.

We use the definitions described next about (i) robust positive invariance of a set,

(ii) input-to-state stability (ISS), (iii) ISS-Lyapunov function, and (iv) a known result

that if a system admits an ISS-Lyapunov function then it is ISS (Jiang and Wang (2001);

Rawlings et al. (2020), Appendix B).

Definition 3.1. (Robust positive invariance of a set). A closed set X is robustly positive

invariant for the system x+ = f(x,w), w ∈ W if x ∈ X implies that f(x,w) ∈ X for all

w ∈W.

Definition 3.2. (Input-to-state stability (ISS) of a system). Given that W is a compact

set containing the origin and that X is a closed robustly positive invariant set for x+ =

f(x,w), w ∈W. The system is ISS in X if there exist functions β(·) ∈ KL and σ(·) ∈ K,

such that for all x ∈ X and w(i) ∈ W, i ∈ I0:k−1, |ψ(k;x,wk)| ≤ β(|x| , k) + σ(||wk||).

Here, ψ(k;x,wk) is the solution of the system at time k, starting from an initial state x,

and with the disturbance sequence wk affecting the system.

Definition 3.3. (ISS-Lyapunov function). A function V : X → R≥0 is an ISS-Lyapunov

function in X for the system x+ = f(x,w), w ∈ W if there exist four functions

α1(·), α2(·), α3(·) ∈ K∞ and σ(·) ∈ K such that for all x ∈ X and w ∈ W, we have
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the following

α1(|x|) ≤V (x) ≤ α2(|x|)

V (f(x,w))− V (x) ≤ −α3(|x|) + σ(|w|)

Proposition 3.4. (Existence of an ISS-Lyapunov function implies ISS). Given that W is a

compact set containing the origin, and that X is a closed robustly positive invariant set

for x+ = f(x,w), w ∈ W. If the function f(·) is continuous and there exists a continuous

ISS-Lyapunov function in X for x+ = f(x,w), w ∈W, then the system is ISS in X.

We also use the following two propositions from Allan et al. (2017) and Rawlings

and Ji (2012). First proposition is useful to bound values of continuous functions, and

the next one is an inequality for K functions.

Proposition 3.5. Given sets C ⊆ D ⊆ Rn, C compact, D closed, and a continuous

function f : D → Rn. Then there exists a function σ(·) ∈ K∞, such that for all x ∈ C and

y ∈ D, we have the following

|f(x)− f(y)| ≤ σ(|x− y|) (3.22)

Proposition 3.6. Given that σ(·) ∈ K, the following relation holds for all ai ∈ R≥0,

i ∈ I1:n

σ(a1 + a2 + · ·+an) ≤ σ(na1) + σ(na2) + · ·+σ(nan) (3.23)

3.5.2 Robustness property

We next use the results discussed above to establish the robustness property of

approximate NN controllers. We consider the control problem of regulating the state
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of a linear system to some fixed steady state (xs, us). And the state and control input

are defined in deviation from that steady state as

x := x− xs, u := u− us (3.24)

We denote the optimal MPC feedback law using κN(x), and the approximate NN feed-

back law as κNN(x) = κN(x) + eNN(x). Here, eNN(x) is the approximation error in

the NN feedback law that may depend on the state of the linear system. We assume in

the analysis below that the target steady state (xs, us) is such that the optimal uncon-

strained LQR feedback law is a feasible controller within some neighborhood around

the origin.

Nominal stability properties of an MPC controller have been well studied in the

literature (Mayne et al., 2000). The optimal cost of the MPC regulator QP can be

used as a Lyapunov function to establish nominal stability. When no hard terminal

region constraint is used in the QP, the level set levτ x′Px can be used as an implicit

terminal region (Xf) to establish nominal stability. Here, d > 0 is a constant such that

`(x, u) ≥ d for all x ∈ Rn \ Xf , and u ≤ u + us ≤ u. We choose the parameter τ such

that the optimal LQR is a feasible controller for all x ∈ Xf . The region of attraction

of the closed-loop system x+ = Ax + BκN(x) under feedback with an MPC controller

when no hard terminal constraint is used in the QP can be characterized as the level

of the optimal cost function as follows XN = levNd+τ V 0
N(x) (Limon et al., 2006). The

optimal cost function also satisfies the following requirements of a Lyapunov function

c1 |x|2 ≤ V 0
N(x) ≤ c2 |x|2 and V 0

N(x+) − V 0
N(x) ≤ −c1 |x|2 for some c2 ≥ c1 > 0, in the

region of attraction XN . This property is used to establish the nominal stability of the

closed-loop linear system in feedback with the MPC controller.

For the robustness analysis, we assume that the NN controller uses a state estimate
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(x̂) to compute the control input. We examine the following closed-loop system under

feedback with the approximate NN controller to analyze robustness

x̂+ = Ax̂+BκN(x̂) +BeNN(x̂) + w − Ae+ e+, (3.25)

in which, x̂ = x+ e is the state estimate, e, e+ are the state estimation errors at the cur-

rent and next time steps, and w is a process disturbance. We use φd(k; x̂) to denote the

solution of the above closed-loop system with disturbances at the time step k starting

from an initial state x̂. Additionally, we denote the solution of the nominal closed-loop

system x+ = Ax+BκN(x) +BeNN(x) at the time step k starting from an initial state x

as φ(k;x).

The Theorem 3.7 characterizes the inherent robustness of approximate NN con-

trollers and the allowable bound on the approximation error for which the NN is robust

to disturbances. The result holds also for other approximate MPC approaches that use

different parametric functions to approximate the feedback law such as polynomials

and other piecewise affine functions.

We note that a related work Hertneck et al. (2018) also examines the robustness

of approximate MPC controllers. The work considers nonlinear systems and also treats

the feedback law approximation error as an additional disturbance to the system. The

work, however, uses a robust MPC formulation using constraint tightening procedures

to determine the allowable approximation error in the NN. The robustness of NN con-

trollers trained using samples of a nominal MPC controller formulation with both state

estimation errors and process disturbances has not been discussed in the literature.

Theorem 3.7. For all ρ ∈
(

0, Nd + τ
]
, there exist constants δ1, δ2, δ3 > 0, functions

β(·) ∈ KL and αe(·), αw(·), αn(·) ∈ K, such that for all disturbance sequences satisfying

||ek+1|| ≤ δ1, ||wk|| ≤ δ2, and approximation error satisfying |eNN(x̂)| ≤ δ3 for all x̂ in
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the set S := levρ V 0
N(x̂), the closed-loop states of the system (3.25) satisfy the bound

|φd(k; x̂)| ≤ β(|x̂| , k) + αe(||ek+1||) + αw(||wk||) + αn(ēNN) (3.26)

Here, ēNN is the largest approximation error in the set S defined as ēNN = maxx̂∈S |eNN(x̂)|.

For the nominal case when both the state estimation error and process disturbance

sequences e and w are zero, the solutions of the closed-loop system satisfy the bound

|φ(k;x)| ≤ β(|x| , k) + αn(ēNN) (3.27)

Any NN training with more data and large architectures reduces the approximation

error eNN(·) in the state space, which is beneficial to tighten the above bound on the

closed-loop states.

Proof of Theorem 3.7: We establish the robustness property in the theorem in

two steps. First, we show that there exist constants δ1, δ2, δ3 > 0 such that S is a

robustly positive invariant set. Then, we show that V 0
N(x̂) is an ISS Lyapunov function

for the closed-loop system (3.25) on the set S. We denote x̃+ = Ax̂ + BκN(x̂) as the

nominal state evolution under feedback with the optimal MPC controller, and d(k) =

[eNN(x̂(k))′B′, w(k)′, e(k)′, e(k + 1)′]′ denotes the combination of all the disturbances

affecting the system at a given time k.

To establish that the set S is robustly positive invariance, we show that if V 0
N(x̂) ≤ ρ,

then V 0
N(x̂+) ≤ ρ. The optimal cost function (V 0

N(x̂)) is continuous, and using Rn as the

closed set (x̂+ ∈ Rn) and S as the compact set (x̃ ∈ S), we have the following using
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Proposition 3.5 for some σ1(·) ∈ K∞

∣∣V 0
N(x̂+)− V 0

N(x̃+)
∣∣ ≤ σ1(

∣∣x̂+ − x̃+∣∣)
≤ σ1(|BeNN(x̂)|+ |w|+ |A| |e|+

∣∣e+∣∣)
≤ σ1(|d|+ |d|+ |A| |d|+ |d|) := σ2(|d|) (3.28)

Here, σ2(s) := σ1(|A| s + 3s). The last inequality follows because |a| ≤ |[a′, b′]′| for two

vectors a and b, and the function σ2(·) is of type K∞.

Next, we split the set S in outer and inner parts based on the value of the optimal

cost function V 0
N(x̂). And bound the disturbance d in each part such that V 0

N(x̂+) ≤ ρ.

For the subsequent analysis, we recall from Subsection 3.5.2 that the optimal cost

function satisfies the following relations for the nominal state evolution from x̂ to x̃+

under feedback with the MPC controller

c1 |x̂|2 ≤ V 0
N(x̂) ≤ c2 |x̂|2 (3.29)

V 0
N(x̃+)− V 0

N(x̂) ≤ −c1 |x̂|2 (3.30)

Relation (3.29) holds for the state x̃+ as well.

Case 1 (Outer part of the set S): ρ/2 ≤ V 0
N(x̂) ≤ ρ. Using the upper bound on the

optimal cost, we have ρ/(2c2) ≤ |x̂|2 for all states x̂ in this outer part of S. To ana-

lyze the worst-case disturbance, the following can be obtained using equation (3.28):

V 0
N(x̂+) ≤ V 0

N(x̃+) + σ2(|d|). Next, using the cost decrease (3.30) for the nominal state

evolution x̃+ = Ax̂ + BκN(x̂), we have V 0
N(x̂+) ≤ V 0

N(x̂) − c1 |x̂|2 + σ2(|d|). Therefore,

if σ2(|d|) ≤ ρc1/(2c2) at all time steps in the outer part of the set S, the optimal cost

satisfies V 0
N(x̂+) ≤ ρ.

Case 2 (Inner part of the set S): 0 ≤ V 0
N(x̂) ≤ ρ/2. From equation (3.28) and
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the cost decrease (3.30) for the nominal state evolution x̃+ = Ax̂ + BκN(x̂), we have

the following for the inner part of the set S: V 0
N(x̂+) ≤ ρ/2 + σ2(|d|). Therefore, if

σ2(|d|) ≤ ρ/2 at all times steps in the inner part of the set S, the optimal cost satisfies

V 0
N(x̂+) ≤ ρ.

Hence, if we choose |d| ≤ min{σ−12 (ρc1/(2c2)), σ
−1
2 (ρ/2)} := δmax at all time steps,

then the set S is robustly positive invariant for the closed-loop system (3.25). Since

c1 ≤ c2, we have δmax = σ−12 (ρc1/(2c2)). From the definition of the disturbance d, we

obtain δ1 = δ2 = δmax/4, and δ3 = δmax/(4 |B|).

The optimal MPC cost function satisfies the relation

V 0
N(x̂+)− V 0

N(x̂) ≤ −c1 |x̂|2 + σ2(|d|)

in the robustly positive invariant set S and the disturbance set |d| ≤ δmax. The optimal

cost function also satisfies the upper and lower bounds (3.29). So from the Definition

3.3, it satisfies the requirements of an ISS-Lyapunov function. Hence, using the result

in Proposition 3.4, the closed-loop system (3.25) is ISS (Definition 3.2). And there exist

functions β(·) ∈ KL and σ(·) ∈ K, such that the closed-loop states satisfy |φd(k; x̂)| ≤

β(|x̂| , k) + σ(||dk||). Using Proposition 3.6 and the definition of d(k), we have

|φd(k; x̂)| ≤ β(|x̂| , k) + σ(|B| ēNN + ||wk||+ 2 ||ek+1||)

≤ β(|x̂| , k) + σ(3 |B| ēNN) + σ(3 ||wk||) + σ(6 ||ek+1||)

which establishes the bound in Theorem 3.7 with the functions αe(s) := σ(6s), αw(s) :=

σ(3s), αn(s) := σ(3 |B| s), and αe(·), αw(·), αn(·) ∈ K. The allowable approximation

error in the NN controller is δ3 = δmax/(4 |B|) = σ−12 (ρc1/(2c2))/(4 |B|), over the robust

positive invariant set S.
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3.6 Large-scale application examples

In this section, we present simulation studies to demonstrate the scalability of the

proposed NN design approach using two large application examples. We examine the

data requirements, the closed-loop performances obtained by approximate NN con-

trollers, and the online computation benefits of NNs in the simulation studies. After

the training, we examine the performances of obtained NN controllers in two types of

plant behaviors

1. The plant encounters setpoints and disturbances not present in the training data,

but within the same range of values used in the data generation.

2. The plant encounters some extra setpoints and disturbances not used in the train-

ing data.

The first case examines the performance of NNs when the plant behaves in an “ex-

pected" manner, while the second case examines the performance when the plant be-

haves in an “unexpected" fashion.

We perform the validation simulations directly using the available plant model for

the case studies in this section. In industrial applications, the NN training should be

followed by an additional validation step before the final online controller deployment.

This additional validation can be carried out as follows

1. The optimal MPC controller can be used to generate some extra test data. And

a prediction error metric such as the mean squared error (MSE) of the trained

NN can be computed on the test data to gauge the quality of the approximated

feedback law.

2. Comparative closed-loop simulations can be performed using the linear plant

model with the optimal MPC and the trained NN controllers. Closed-loop perfor-
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mance metrics can be examined here to analyze the quality of the approximated

feedback law by the NN.

Other probabilistic validation methods for NNs trained using a robust MPC controller

formulation have been proposed in the papers Karg et al. (2019) and Hertneck et al.

(2018).

Apart from examining the performances of the optimal MPC and trained NNs, we

also analyze the closed-loop performances of the following controllers, which are equiv-

alently fast as NNs

1. Steady-state controller (SS): We directly apply the steady-state control input u =

us computed from the target selector to the plant.

2. Saturated linear quadratic regulator (satK): We obtain the unconstrained LQR

gain K by solving the DARE, and use the feedback law u = us + K(x − xs) to

determine the control input.

3. Short horizon controller (SH): We solve an MPC problem with a shorter horizon

length to determine the control input.

4. Unstructured NN (UNS): Rather than developing a NN using the structured archi-

tecture proposed in Section 3.4, we use a standard feedforward NN architecture

to develop the NN controller.

To analyze the quality of approximated feedback law by NNs, the offline compu-

tational effort required for training, and the memory footprint required for online de-

ployment, we compute the following metrics
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• Controller performance index

Λk =
1

k

k∑
t=1

(
|x(t)− xs(t)|2Q + |u(t)− us(t)|2R + |∆u(t)|2S

)

• Performance degradation compared to the optimal MPC defined as

% Performance loss = 100(ΛF
Nt
− ΛMPC

Nt
)/ΛMPC

Nt

• Average and worst case online speedups compared to the optimal MPC

• Data generation and NN training times

• Memory required to store the weights and biases of the trained NNs

Here, Nt denotes the number of time steps in the closed-loop simulation, ΛF
Nt

and ΛMPC
Nt

denote the controller performance indexes at the end of the simulation period for the

fast and optimal MPC controllers. The data generation and online timing comparisons

are performed on a computing cluster. We use the cluster to parallelize the data gen-

eration on different cores within a CPU and across multiple CPUs as well. All the NN

training are performed on a GPU with a 32 GB memory.

3.6.1 CSTRs in series with a flash separator

We consider a plant containing a series of CSTRs and a flash separator as the first

example. The schematic of the plant is depicted in Figure 3.5. The feed stream to the

reactors contains primarily the species A. Both the CSTRs facilitate the reactions below

to produce a desired product B and an undesired side product C

A
r1−−→ B, B

r2−−→ C (3.31)
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Figure 3.5: A diagram of the CSTRs in series with a flash separator system.

The outlet stream of the second CSTR is supplied to a non-adiabatic flash that separates

the reaction mixture in two streams each containing a majority of the reactant A and

product B. The vapor stream contains primarily the reactant A and is recycled back to

the first CSTR. The dynamic model for the plant simulation is obtained from Venkat

(2006) (Appendix), which are also provided in Appendix 3.7 of this chapter. The

plant has 12 states (Hr, xAr, xBr, Tr, Hm, xAm, xBm, Tm, Hb, xAb, xBb, Tb), 6 control inputs

(F0, F1, D,Qr, Qm, Qb), and 5 disturbances (xA0, xA1, xB0, xB1, T0). The controlled mea-

surements for the MPC controller are the heights and temperatures in the two CSTRs

and the flash separator. We assume that all the states are measured for the simulation

studies, and the sample time for the measurements is 10 seconds. We also provide

the parameters for the plant model and the range of controlled measurement setpoints

and disturbances used for the NN training data generation and validation simulations

in Table 3.3 in Appendix 3.7.

For the MPC controller design, we obtain a linear discrete time model of the plant
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around the steady state given in Table 3.3. We use the sample time of 10 seconds to

obtain this discrete time model. We convert all the control inputs and outputs in this

model for the MPC controller such that the input constraints satisfy u − u = 2. The

MPC regulator tuning parameter are chosen as Q = 103C ′C, R = 0.1I6, and S = 0.1I6.

The forecasting horizon length used in the MPC is N = 450 (75 minutes). We gen-

erate a total of 1.5 × 105 training data samples by simulating the linear model using

the MPC controller based on PRBS signals of setpoints and disturbances sampled in

the range given in Table 3.3. The signals are sampled such that enough transient and

steady-state data is contained in the training data. We collect samples of the variables

x, u−1, xs, us, κN(·) for the NN training. The data generation step was parallelized in

100 separate offline simulations. We assume that the setpoint of the controlled mea-

surement Hm, i.e, the height of the second CSTR, is fixed in the training data. We

change this setpoint in the validation simulation when examining the performance of

NN controllers in the unexpected plant behavior scenario.

We consider three structured NNs based on the generated training data. All the

three NNs contain three hidden layers with 448, 480, 512 nodes in the layers. These

NNs are denoted subsequently as NN-3-448, NN-3-480, and NN-3-512. For closed-loop

validation simulations using the estimated controllers and the plant, we use two sets of

PRBS setpoints and disturbance signals for a total 4320 timesteps (12 hours). The two

sets of signals correspond to the expected and unexpected plant behavior scenarios.

We develop a short horizon MPC controller with N = 10. We also train an unstructured

NN that contains 3 hidden layers, and has 224 nodes in each layer. The details of all

the NN controllers considered in the simulation study are also summarized in Table

3.1. The variables x and xs are additionally scaled for the NN training as follows

x := 2x/(xmax−xmin) and xs := 2xs/(xmax−xmin). Here, xmax and xmin are the maximum

and minimum values of the states observed in the entire training data. The scaling is
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performed during the online NN execution as well when computing the control input

in real time.
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Figure 3.6: Percentage performance losses of the NN controllers with varying amounts
of training data (CSTRs in series with a flash example).

The data requirements to obtain an accurate NN controller is studied first. We train

structured NNs with the three chosen architectures for varying amounts of the training

data starting from 4× 104 to 1..5× 105 samples, in increments of 104 samples. To train

all the controllers, we use a batch size of 1024 samples in the algorithm Adam. Each

training session of the estimated controllers is stopped after 2000 epochs. For each NN

training performed, we use 10% of the training data as the “holdout” data set. The

mean squared error (MSE) metric is examined on this holdout data set and the NN

parameters that have the best loss metric on the holdout set are chosen for the final

validation simulations. We use all the trained NNs and the optimal MPC controller in

validation simulations using the setpoints and disturbance signals that were generated

for the expected plant behavior case. Figure 3.6 shows the variation in the performance
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loss of the trained NNs compared to the optimal MPC for varying amounts of training

data. The trained NNs have large performance losses with fewer amounts of data,

but the performances improve noticeably with an increase in the training data. After

about 9× 104 training samples, all the NNs provide less than 1% performance loss. We

summarize the best loss metric obtained by the three NN architectures in Table 3.1.

Next, we use the NNs that have the best performance losses above in another vali-

dation simulation with setpiont and disturbance signals that represent an unexpected

plant behavior. The performance losses obtained in these validation simulations are

also summarized in Table 3.1. We observe that the performances of the NNs deterio-

rate significantly from less 1% to 5 − 8%. The performance degradation is particularly

because of some unseen samples of the variables x, u−1, xs, us resulting from the set-

point changes in the height of the second CSTR, which was kept constant during the

training data generation. This study illustrates that the NN controllers should not be

expected to generalize beyond the data used for training. All the setpoints and dis-

turbances that are anticipated to change during the online plant operation should be

sampled in the training data.

We also visualize the transient closed-loop trajectories obtained with the estimated

NNs compared to the optimal MPC. Figures 3.7 and 3.8 shows the closed-loop control

input and controlled measurement trajectories obtained using the NN-3-448 and opti-

mal MPC controllers. The trajectories are shown for the expected plant behavior case

for a period of 2 hours, and we observe that the NN provides almost indistinguishable

performance compared to the optimal MPC controller. We also plot the controller per-

formance index Λk for the three trained NNs, optimal MPC, SS, and satK controllers

in Figure 3.9 for the full simulation period of 12 hours. The performance index plots

also highlight that the NNs provides almost the same performance as the optimal MPC

controller. The degradation in the performance of the NN controllers can be quantified
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Figure 3.7: Closed-loop control input trajectories of the CSTRs with a flash separator
plant under feedback with a trained NN and the optimal MPC controller. The perfor-
mances of the NN and optimal MPC controllers are almost the same.

using the loss metric, which is reported in Table 3.1.

Further, we analyze the online computational benefits of the trained NNs over the

online QP based MPC controller. We plot the histograms of the online computational

times of the NNs and optimal MPC obtained in one validation simulation in Figure

3.10. In addition, we also compute the average and worst-case speedups over the

online QP based MPC and report these metrics in Table 3.1. The QP solver requires

around 8-13 seconds in this example. By contrast, the NNs require only around 0.1 to
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Figure 3.8: Closed-loop trajectories of the controlled measurements of the CSTRs
with a flash separator plant under feedback with a trained NN and the optimal MPC
controller. The performances of the NN and optimal MPC controllers are almost the
same.

4 milliseconds to compute the control input in real time, and are easily deployable in

the available sample time of 10 seconds. The NNs execute MPC around 4-5 orders of

magnitude faster than the QP solver used for comparison.

In Table 3.1, we also summarize the performance loss metric obtained in the val-

idation simulation (expected plant behavior case) using the other four heuristic con-

trollers, their corresponding speedups compared to the optimal MPC, the number of

parameters in all the NNs, and the memory required to store the weights and biases in
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Figure 3.9: Controller performance index Λk obtained in the validation simulation
using the three trained NNs, optimal MPC, SS, and satK controllers (CSTRs in series
with a flash example).
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Figure 3.10: Histograms of the online computation times for the optimal MPC and the
three NN controllers (CSTRs in series with a flash example).
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Controller Neural network
architecture

Number of
Parameters

Memory
footprint

(MB)

Training
time

(min)

% Performance
losses

Expected, Unexpected
plant behaviors

Average
speedup

Worst case
speedup

SS 85.18%, 106.39 %
satK 41.03%, 27.61 % 2.47× 105 3.07× 105

SH 1.61%, 2.46 % 3.75× 103 8.4× 101

NN-UNS [36, 224,
224, 224, 6] 1.10× 105 80.49%, 73.29 % 9.31× 104 4.99× 103

NN-3-448 [36, 448,
448, 448, 6] 1.10× 105 0.84 13.02 0.28 %, 5.57 % 5.26× 104 1.45× 103

NN-3-480 [36, 480,
480, 480, 6] 1.26× 105 0.96 12.51 0.34 %, 7.58% 5.09× 104 1.53× 104

NN-3-512 [36, 512,
512, 512, 6] 1.42× 105 1.08 12.77 0.16 %, 5.90 % 4.62× 104 1.58× 104

Table 3.1: Metrics summarizing the simulation study performed for the CSTRs in
series with a flash separator example.

the NNs. The memory required to store the NN parameters are approximately around

1 MB, which show that the NNs can be conveniently deployed on memory constrained

hardware. The memory footprint can be crucial during deployment of NN controllers at

fast low-level regulatory control layers where cheap hardware is used in applications.

We also observe in Table 3.1 that the unstructured NN provides a poor feedback

control performance with a loss metric of 80%. Such a performance is unacceptable

for an industrial application, and demonstrates that learning the feedback law without

the structure proposed in Section 3.4 is a much more challenging problem. In the

proposed architecture, the NN has the correct MPC feedback law at the steady-states

and the feedback law approximation problem simplifies to improving the NN control

at only the transient states.

3.6.2 Industrial crude distillation unit

We next demonstrate the scalability of the NN controller design approach on a large-

scale industrial crude distillation unit example. The dynamic model of the plant was
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Figure 3.11: A diagram of the industrial crude distillation unit plant.

obtained from AspenTech, and was also used in Pannocchia et al. (2007) to examine

the scalability of the partial enumeration approach for large MPC applications. The

schematic of the plant is shown in Figure 3.11, which is a typical crude distillation unit

found in petrochemical refineries. The plant model is linear, and we scale the control

inputs and measurements for the MPC controller similar to the previous example. The

model has 252 states, 32 control inputs, and 90 measurements. Only four out of all

the measurements that represent the quality of the crude side products have setpoints.

We use five disturbances on the crude composition, fuel gas quality, and steam header

pressure. The sample time for the measurements is 1 minutes. The MPC regulator

tuning parameters are chosen as Q = 2C ′C, R = 0.1I, and the forecasting horizon

length is N = 140 (around 2.5 hours). We generate a total of 3.6 × 106 training data

samples, which are obtained after performing 149 parallel closed-loop simulations. The

time consumed for the overall training data generation was 27.8 hours.
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Figure 3.12: Closed-loop trajectories of the controlled measurements in the crude dis-
tillation unit plant under feedback with a trained NN and the optimal MPC controller.

We consider three structured NN architectures for this example. Each NN has three

hidden layers, and we use 1664 (NN-3-1664), 1792 (NN-3-1792), and 1920 (NN-3-

1792) nodes in the hidden layers. To perform validation simulations with the estimated
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controllers, we generate one set of setpoint and disturbance signals containing a total

2880 timesteps (2 days). The short horizon MPC controller is developed using N = 3.

The states and targets (x, xs) are scaled for the NN controller training similar to the

previous example.
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Figure 3.13: Controller performance index Λk of the NNs, optimal MPC, and satK
controllers in the validation simulation (Crude distillation unit example).

First, we examine the closed-loop trajectories obtained with a trained NN and op-

timal MPC controllers in a validation simulation. Figure 3.12 shows the transient be-

havior of the four controlled measurements in the plant under feedback with a NN

and the optimal MPC controller. The closed-loop simulation is shown for a period of

1 day. We observe that both the controllers obtain similar closed-loop profiles of the

controlled measurements, and their performances are almost the same. We note that

three controlled measurements in Figure 3.12 remain far away from their setpoints at

most times. This behavior is particularly because we use large sized disturbances in the

simulation. The large disturbances activate more input constraints, which deteriorates
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the performance of the heuristic satK controller and illustrates the value of using NNs to

approximate the complex MPC feedback law. We also plot the controller performance

index (Λk) obtained with all the NNs, the optimal MPC, and the satK controller for the

full simulation period of 2 days. Figure 3.13 shows this plot, and we observe that all

the trained NNs provide a similar performance as the optimal MPC.
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Figure 3.14: Percentage performance losses of the NN controllers with varying
amounts of training data (Crude distillation unit example).

Further, we examine the data requirements to obtain an accurate NN controller and

online computational benefits of using the NNs. Figures 3.14 and 3.15 examine these

two aspects. For all the NN training performed for this example, we use a batch size of

2048 in the algorithm Adam, and the NNs were trained for a total of 1500 epochs. We

use 5% of the overall training data as the holdout data set. In Table 3.2, we summarize

all the metrics for the simulation study for this example such as the best performance

loss obtained by the NNs in the validation simulation, the maximum time required to

train the NNs, the number of parameters in the NNs, the memory footprint to store the
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weights and biases, and the loss metrics of the other heuristic controllers.
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Figure 3.15: Histograms of the online computation times of the NNs and optimal MPC
controllers (Crude distillation unit example).

The performance losses obtained by the NN controllers reported in Table 3.2 are in

the range 0.29−0.62%, which illustrate that the NNs have obtained accurate approxima-

tion of the MPC feedback law in the operationally relevant state space of interest. The

offline data generation and training times highlight that the NN controllers can be de-

signed tractably for this large example. This particular example is challenging, because

the QP solver CVXOPT requires an average 35 seconds, and 47 seconds in the worst

case to solve each MPC optimization problem. In comparison, all the NNs execute MPC

in just 2 to 7 milliseconds. The NNs provide around 4 orders of magnitude speedups

compared to the QP solver. The performance of the NNs is almost indistinguishable

compared to the optimal MPC controller. The main reasons for scalability of the NN

design approach in this large example are (i) sampling the state space using only the

relevant setpoint and disturbance signals, and (ii) using the structured architecture for
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offset-free control.

Controller Neural network
architecture

Number of
Parameters

Memory
footprint

(MB)

Training
time

(min)

% Performance
loss

Average
speedup

Worst case
speedup

SS 120.59 %
satK 13.07 % 4.83× 105 1.51× 105

SH 1.56 % 6.66× 103 2.51× 103

NN-3-1664 [1072, 1664,
1664, 1664, 32] 1.85× 106 14.18 52.66 0.29 % 1.52× 104 6.57× 103

NN-3-1792 [1072, 1792,
1792, 1792, 32] 2.11× 106 16.15 55.27 0.43 % 1.33× 104 5.25× 103

NN-3-1920 [1072, 1920,
1920, 1920, 32] 2.39× 106 18.24 59.24 0.59 % 1.18× 104 4.48× 103

Table 3.2: Metrics summarizing the simulation study for the industrial crude distilla-
tion unit example.

3.7 Conclusions

In this chapter, we have presented a feedback controller design approach using

neural networks to approximate the MPC feedback law for large-scale applications.

The scalability of the proposed approach has been demonstrated using large application

examples that may be challenging with available QP solvers.

We started with examining the MPC feedback law approximation approach on a

small scale double integrator example in which both the optimal and NN feedback

laws can be visualized. We illustrated in this example that NNs have the ability to

obtain a good approximation of the optimal MPC feedback law.

The NN controller design approach was next applied to approximate the feedback

law for the offset-free MPC formulation, in which the feedback law becomes also a

function of the target steady-state pair in addition to the initial state. We introduced

a new structured NN architecture that encodes the steady-state MPC feedback law

regardless of the choice of weights and biases in the NN. To generate the training data,
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we proposed that only the relevant state space based on anticipated setpoints and

disturbances should be sampled for NN training. The application of the proposed NN

design approach has been demonstrated on a large-scale industrial crude distillation

unit example with upto 252 states, 32 control inputs, and an MPC forecasting horizon

length of 140. The trained NN controllers execute MPC around 4 orders of magnitude

faster than an available QP solver, with less than 1% closed-loop performance loss

compared to the optimal MPC.

The key features for scalability to the large examples is sampling only the opera-

tionally relevant state space, and using the structured architecture for offset-free con-

trol. The proposed methods that avoid online optimization to date in the literature,

such as storing all the regions in the MPC feedback law or sampling the entire state

space for NN training have not been demonstrated to scale to the size of applications

presented in this chapter.

The online optimization based approach has been adopted by practitioners over the

years due to its ability to handle multivariable systems, process constraints, and has

strong stability and robustness properties. The requirement of determining the antici-

pated setpoints and disturbances, and more computing hardware for offline training in

large applications are additional complexities that must be considered for the design

of NN controllers. The advantages of NNs are their fast online MPC execution times,

and the suitability of deployment on memory constrained hardware. We discuss future

research directions in Chapter 6.

This chapter concludes the contributions of this thesis on feedback controller design

methods using machine learning. In the next two chapters, we develop approaches to

combine neural networks with first principles process knowledge to develop hybrid

dynamic models from data for use in real time optimization and control.
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Appendix

CSTRs in series with a flash separator model details

The following nonlinear ODEs (Venkat (2006), Appendix) are used to simulate the

plant in the CSTRs in series with a flash separator example presented in Subsection

3.6.1.

CSTR – 1

dHr

dt
=
F0 +D − Fr

ρAr
(3.32)

dxAr
dt

=
F0(xA0 − xAr) +D(xAd − xAr)

ρArHr

− k1rxAr (3.33)

dxBr
dt

=
F0(xB0 − xBr) +D(xBd − xBr)

ρArHr

+ k1rxAr − k2rxBr (3.34)

dTr
dt

=
F0(T0 − Tr) +D(Td − Tr)

ρArHr

− (k1rxAr∆H1 + k2rxBr∆H2)

Cp
+

Qr

ρArCpHr
(3.35)

CSTR – 2

dHm

dt
=
Fr + F1 − Fm

ρAm
(3.36)

dxAm
dt

=
Fr(xAr − xAm) + F1(xA1 − xAm)

ρAmHm

− k1mxAm (3.37)

dxBm
dt

=
Fr(xBr − xBm) + F1(xB1 − xBm)

ρAmHm

+ k1mxAm − k2mxBm (3.38)

dTm
dt

=
Fr(Tr − Tm) + F1(T0 − Tm)

ρAmHm

− (k1mxAm∆H1 + k2mxBm∆H2)

Cp
+

Qm

ρAmCpHm

(3.39)
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Flash Separator

dHb

dt
=
Fm − Fb −D − Fp

ρAb
(3.40)

dxAb
dt

=
Fm(xAm − xAb)− (D + Fp)(xAd − xAb)

ρAbHb

(3.41)

dxBb
dt

=
Fm(xBm − xBb)− (D + Fp)(xBd − xBb)

ρAbHb

(3.42)

dTb
dt

=
Fm(Tm − Tb)

ρAbHb

+
Qb

ρAbCpHb

(3.43)

The mass fractions of the species A and B in the vapor phase in the flash separator

are computing using the relations

xAd =
αAxAb

αAxAb + αBxBb + αC(1− xAb − xBb)
(3.44)

xBd =
αBxBb

αAxAb + αBxBb + αC(1− xAb − xBb)
(3.45)

The flow rates of the outlet streams from each unit and the purge stream are com-

puted using

Fr = kr
√
Hr, Fm = km

√
Hm (3.46)

Fb = kb
√
Hb, Fp = 0.01D (3.47)

The rate constants for the two reactions depend on the temperatures in each reactor

as follows

k1r = k?1e
(−E/(RTr)), k2r = k?2e

(−E/(RTr)) (3.48)

k1m = k?1e
(−E/(RTm)), k2m = k?2e

(−E/(RTm)) (3.49)
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The parameters used for the plant ODEs and the above expressions are provided in

Table 3.3.

Parameters used to simulate the ODEs
Parameter Value Unit Parameter Value Unit

αA 3.5 km 2.5 m2

αB 1.1 kb 1.5 m2

αC 0.5 ∆H1 -40 kJ/kg
ρ 50 kg/m3 ∆H2 -50 kJ/kg
Cp 3 kJ/kg-K E/R 150 K
Ar 0.3 m2 k?1 4× 10−4 sec−1

Am 2 m2 k?2 1.8× 10−6 sec−1

Ab 4 m2 Td 313 K
kr 2.5 m2

Actuator constraints (u, u)
F0 (1.5, 2.5) kg/sec Qr (-500, 500) kW
F1 (0.5, 1.5) kg/sec Qm (-500, 500) kW
D (29.5, 30.5) kg/sec Qb (-500, 500) kW

Setpoint bounds (rsp, rsp)
Hr (158.8, 168.8) m Tr (303, 323) K
Hm (169.2, 179.2) m Tm (310, 316) K
Hb (2.2, 4.2) m Tb (303, 323) K

Disturbance bounds (d, d)
xA0 (0.7, 0.85) xB1 (0, 0.15)
xB0 (0, 0.15) T0 (305, 321) K
xA1 (0.7, 0.85)

Steady state used for linearization (xs, us, ds)
Hr 163.8 m F0 2 kg/sec
xAr 0.40 F1 1 kg/sec
xBr 0.54 D 30 kg/sec
Tr 313.1 K Qr 0 kW
Hm 174.2 m Qm 0 KW
xAm 0.37 Qb 0 kW
xBm 0.58 xA0 0.8
Tm 313.7 K xB0 0.1
Hb 3.24 m xA1 0.8
xAb 0.15 xB1 0.1
xBb 0.73 T0 313 K
Tb 313.7 K

Table 3.3: Parameters used in the ODEs to simulate the plant in the CSTRs in series
with a flash separator example, actuator constraints, setpoint and disturbance bounds,
and the steady state used to obtain the linear model for the MPC controller.
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Chapter 4

Grey-box modeling and disturbance
forecasting in building systems

4.1 Introduction

In this current and next chapters, we present hybrid process modeling strategies

that utilize both the available first principles knowledge and advantages of neural net-

works. Building energy systems affected by large, occupancy induced unmeasured

heat disturbances are considered as the application of interest in this chapter. For such

building systems, we develop a two step model identification framework to estimate

an (i) actuator to measurement, and (ii) a disturbance forecasting model from data.

We use a grey-box modeling approach to develop the actuator to measurement model,

and a neural network (NN) to design the disturbance forecasting model. The intended

purpose is to use the two models for improved real time energy cost optimization with

an economic model predictive control (MPC) formulation.

Building systems comprise a major portion of the United States energy usage. Avail-

able survey in the literature reports almost 40% energy usage by commercial and resi-

dential buildings combined (Energy, 2018). Thus, developing advanced modeling and

control approaches for buildings is an impactful research topic. For modern electricity
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markets with time varying energy prices, several researchers have proposed the use of

MPC for feedback control and real time energy cost optimization in buildings (Henze,

2005; Ma et al., 2012a; Oldewurtel et al., 2012; Mendoza-Serrano and Chmielewski,

2012; Patel et al., 2018; Ma et al., 2012b). A major reason of these proposals is be-

cause traditional rule-based and proportional-integral (PI) controllers cannot be used

to obtain appreciable energy cost savings (Afram and Janabi-Sharifi, 2014).

To deploy an MPC controller in buildings for energy cost minimization, a mathe-

matical model is first developed to describe the heat transfer dynamics between the

actuators, measurements, and disturbances. Then, an optimization problem with an

energy price cost (rather than a tracking cost considered so far in this thesis) as the

objective function is formulated. The problem is solved in real time to determine the

optimal actuator moves to apply to the plant. Future predictions of disturbances affect-

ing the building system, desired comfort temperature constraints, and energy prices

charged by utility providers are used in the optimization problem.

The closed-loop performance of an MPC controller can depend significantly on the

quality of the dynamic model. Several model identification methods have been pro-

posed in the literature to develop dynamic models for building systems (Privara et al.,

2013; Drgoňa et al., 2020; Wang and Chen, 2019; Serale et al., 2018). The methods

can be classified into white-box, grey-box, and black-box modeling approaches. In the

white-box approach, the model is developed using completely first principles knowl-

edge about the building. The parameters in the dynamic model are also determined

using the known physical properties about the materials used during the building con-

struction.

As we discussed in Subsection 1.1.1, the grey-box and black-box approaches first pa-

rameterize a dynamic model containing some unknown parameters. And a data-fitting

problem is solved to estimate those unknown parameters in the model. For grey-box
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modeling of buildings, resistance capacitance (RC) networks are often used to describe

the temperature dynamics (Madsen and Holst, 1995; Kramer et al., 2012). The devel-

oped RC networks can also be viewed as analogies of the heat transfer relationships

of the building temperature dynamics. The approach yields a reduced order model of

the building, which is often suitable for energy cost optimization with an MPC con-

troller using standard solvers (Patel et al., 2016). To develop a black-box model, one

may estimate a NN from data to predict the future measurements based on a recent

history of actuator moves and measurements (Shahnazari et al., 2019; Ferracuti et al.,

2017). The approach is convenient for model development in applications. However,

if a black-box NN is used in the actuator to measurement part of the dynamic model,

then the resulting MPC optimization problem can become challenging to solve using

standard solvers. In this chapter, we focus on developing a modeling approach that ex-

ploits the advantages of both the grey and black-box methods. While also ensuring that

the final developed model is suitable for online optimization using standard solvers.

Disturbances such as ambient temperature, solar irradiation, and internal occu-

pancy induced heat load regularly affect the temperature dynamics in building sys-

tems. The occupancy induced heat load is often generated by the electrical equipment

usage or the human metabolism of occupants inside the building (Balvedi et al., 2018;

Yan et al., 2015). All the above disturbances have a noticeable effect on the building

temperature dynamics, so their feedforward predictions should be included in the MPC

optimization problem when deploying an MPC controller. A grey-box model developed

using the RC network approach is often linear between the actuator, disturbances, and

measurements. For quadratic stage costs and linear constraints, a quadratic program

(QP) is solved by the MPC controller. The MPC does not manipulate the disturbances

and the decision variables in the QP are only the actuator moves. Nonlinear machine

learning models can be used to predict the disturbances in the MPC optimization prob-
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lem, while maintaining a QP for the controller. In this chapter, we use this structural

insight and develop a model identification framework to estimate a grey-box actuator

to measurement model and a NN to predict the disturbances in the MPC problem.

Among all the disturbances affecting a building system, the ambient temperature

and solar irradiation are typically measured. And accurate predictions of these dis-

turbances can also be obtained using meteorological or weather forecasting services

(Florita and Henze, 2009). Contrary to these disturbances, the occupancy induced

heat load is not measured in range of real building systems. For example, one may

not measure the electrical equipment usage in each zone of a large building. Inside a

classroom full of students in a university building, the heat generated by the combined

human metabolism of all the students may not be measured. Thus, the occupancy

induced heat load is an unmeasured disturbance that affects real building systems.

An unmeasured disturbance in process data is typically ignored in the model iden-

tification problem by standard system identification methods. And an application of

such standard methods to a data set collected from building systems can give a poor

dynamic model (Kim et al., 2018). Therefore, the unmeasured heat disturbance should

be systematically treated in the building model identification step. Feedforward pre-

dictions of the disturbances over the future control horizon in the MPC problem should

also be used to enhance the controller performance.

The heat disturbance in building systems is often strongly correlated with the occu-

pancy schedules/patterns in the building. The occupancy schedule in turn is correlated

with some auxiliary variables such as the time-of-day, type-of-day (workday/holiday),

and time-of-year. A first principles based modeling of the heat disturbance can be chal-

lenging and cumbersome for different building systems. But a black-box NN can be

conveniently developed based on the historical data collected at the building site to

approximate the patterns in the heat disturbance. The NN can be trained to use the
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auxiliary variables as inputs when predicting the heat disturbance. Finally, feedforward

disturbance predictions provided by the NN can be used in an economic MPC controller

to achieve higher energy cost savings.

Overview of contributions

With the above motivations, we propose a method to develop (i) a grey-box actua-

tor to measurement model, and (ii) a NN to predict the heat disturbance. Both these

models are estimated in two steps so that input excitation and historical operational

data sets can be used to estimate the grey-box and NN models, respectively. We treat

the unmeasured heat disturbance in the grey-box modeling step by also estimating a

piecewise constant signal for the disturbance in the model identification problem. This

piecewise constant signal is estimated by introducing additional decision variables in

the modeling problem corresponding to some approximate values of the disturbance

over a pre-specified zero order hold duration. After the grey-box modeling step, we

present a method to determine approximate confidence intervals (CIs) on the physical

parameters in the building dynamic model. The CIs can be used to gauge the relia-

bility of the estimated grey-box model for subsequent use in the disturbance model

identification and the MPC controller implementation.

Next, we use the estimated grey-box model and routine historical operational data

to train a NN heat disturbance model. The NN takes the auxiliary measurements such

as the time-of-day, etc as inputs to predict the disturbance. The NN model is estimated

by solving a prediction error minimization problem based on the temperature mea-

surements collected from the building system, and without any measurements of the

heat disturbance. And the NN infers the disturbances required to accurately predict

the temperatures during the optimization process. Both the grey-box and NN distur-

bance models are estimated by solving multistep ahead prediction error minimization
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problems using symbolic differentiation based software (Andersson et al., 2019; Abadi

et al., 2015).

Finally, we examine performance improvements when the NN disturbance model

is used to provide feedforward heat disturbance predictions in an MPC controller. We

highlight that an MPC that uses the heat disturbance predictions provides an improved

performance compared to an MPC that does not use those predictions.

The effectiveness of the proposed model identification approach is demonstrated

via simulation studies with a two time scale building model that has a single heat dis-

turbance source. We note, however, that the proposed approach can also be applied to

estimate higher order building models with multiple NNs to predict the disturbance for

each zone. In this case, the grey-box building model should be parameterized account-

ing for all the inter zone heat transfer connections and the disturbance sources. Then,

multistep ahead prediction error minimization problems similar to the ones proposed

in this chapter may be solved to estimate the grey-box and NN disturbance models.

We next discuss some related work in the literature on building modeling under

unmeasured disturbances and disturbance forecasting. We also highlight the novel

features of our modeling framework compared to the existing work.

4.1.1 Related literature

Building modeling under unmeasured heat disturbances

Although grey-box modeling of buildings has been studied widely in the literature

(Li and Wen, 2014; Harb et al., 2016), only a few works have considered treating

the unmeasured heat disturbance in the building model identification step. Kim et al.

(2016) uses a linear output disturbance model to account for the disturbance. The

state in the disturbance model was used to explain the mismatch between the predic-
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tions of the building model (considering no heat disturbance model) and measured

temperatures. The work proposes to simultaneously estimate the parameters in both

the building dynamic and output disturbance model from data.

Guo et al. (2021) and Coffman and Barooah (2018) introduce another state in the

building dynamic model for the heat disturbance. Since this disturbance is typically

occupancy generated and varies slowly in time in real building applications, a zero

dynamics is assigned on the introduced state. A simultaneous state and parameter

estimation problem is next solved to determine the building model parameters and heat

disturbances. These works, however, require a heuristic tuning of the noise covariance

(often unknown in applications) penalties in the model identification problem.

Ellis (2021) propose to use black-box NNs to model the heat disturbance in the

building dynamic model. And simultaneously estimates the parameters in the building

model and the NN. Zeng et al. (2021) present another approach to simultaneously

estimate a dynamic model and disturbances in the training data. The work estimates

a black-box linear discrete time model and a transformed version of the disturbance in

a single optimization problem. Physical constraints on some combination of the linear

model parameters and regularization penalty on the disturbances are used in the model

identification problem.

In this chapter, we present a method to simultaneously estimate parameters in a

grey-box building model and heat disturbances. We estimate only some approximate

values of the heat disturbances over a pre-specified zero order hold duration in the

model identification problem. Such an approach has not been previously proposed in

the literature. Additionally, we also present a method to compute confidence intervals

(CIs) on the physical building model parameters. We demonstrate that the building

model can be estimated with reliable accuracy and uncertainties using the approach

proposed in this chapter.

121



Grey-box modeling and disturbance forecasting in building systems Chapter 4

Disturbance modeling in building systems

As mentioned previously, a building system is affected by three main sources of

disturbances: ambient temperature, solar irradiation, and occupancy induced heat dis-

turbance. Several researchers have studied the advantages of including the information

about all these disturbances in the MPC optimization problem. For example, Oldewur-

tel et al. (2012) and Oldewurtel et al. (2013) examine the benefits of including weather

and occupancy information in an MPC controller to achieve improved energy cost sav-

ings. Different approaches to predict the weather disturbances have been developed

in the literature. The approaches use (i) detailed physical (Thilker et al., 2021), (ii)

data-driven machine learning (Papantoniou and Kolokotsa, 2016; Pang et al., 2020),

or (iii) stochastic (Ren and Wright, 2002) models.

Most of the weather disturbance forecasting approaches in the literature assume

that measurements of the disturbance are available to develop the prediction model.

Sensors to measure the ambient temperature and solar irradiation in an area are often

available. However, the occupancy induced heat disturbance is not measured in build-

ing systems. The size of the disturbance also varies between each building system.

These issues pose a challenge when modeling and forecasting the occupancy induced

heat disturbance for use in an MPC implementation. Available works that have studied

the advantages of including the occupancy information in an MPC controller assume

that the true occupancy patterns in the building are known (Oldewurtel et al., 2012), or

that special sensors are available to infer the occupancy count in real time (Sangogboye

et al., 2017).

For the disturbance modeling approach proposed in this chapter, we do not use any

occupancy related information in the identification approach. We use only the esti-

mated building model from the first grey-box modeling step, and the measurements of
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building temperature, cooling duty, ambient temperature, and some auxiliary variables

such as the time-of-day, etc. The NN infers the required heat disturbance to accurately

predict the temperature measurements during the optimization process. The overall

two step modeling approach can be conveniently applied to different building systems

without any knowledge or measurements of occupancy patterns.

The rest of this chapter is organized as follows. In Section 4.2, we describe the

building system and simulation framework used to demonstrate the effectiveness of the

proposed modeling framework. Section 4.3 discusses the grey-box modeling approach

to simultaneously estimate the physical parameters in the building model and piecewise

constant signal for the unmeasured heat disturbance. We also present the approach to

compute confidence intervals on the building model parameters in this section. Then

in Section 4.4, we present the method to estimate a NN predictor for the unmeasured

heat disturbance from historical operational data. The economic MPC formulations

used to examine the advantages of including the NN disturbance predictions in an MPC

problem are discussed in Section 4.5. Simulation studies to illustrate the effectiveness

of the modeling approach, and the advantages of using the heat disturbance predictions

in an MPC controller are presented in Section 4.6. Conclusions of this thesis chapter

are provided in Section 4.4.

The results and methods in this chapter are to appear in Kumar et al. (2022). The

mathematical notation used in this chapter are given in Section 1.3.

4.2 Building system and simulation framework

The building system shown in Figure 4.1 is considered for the simulation studies.

The plant is simulated using the ordinary differential equations (ODEs) in equations

(4.1) – (4.2). The system has two states (x): Tz and Tm. The states correspond to the
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Air zone
Tz

HVAC

Convection
Ambient

Q̇a
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to Ambient

Ta

Tm Q̇c

Figure 4.1: Schematic of the building system considered for grey-box and disturbance
modeling in this chapter.

temperatures of the building zone and mass. The zone temperature is a representative

of the air temperature, while the mass temperature represents a hypothetical temper-

ature of the walls, furniture, etc in the building area. The zone temperature is the

only measurement (y = Tz). The cooling duty provided to the zone is the manipulated

control input (u = Q̇c). The physical parameters in the dynamic building model are,

Hm/Cz, Ha/Cz, Hm/Cm, and 1/Cz. The values of these parameters used to simulate

the plant are given in Table 4.1. We choose the parameters such that the building mass

has a higher heat capacity than the zone and Cm > Cz. The choice leads to the zone

temperature evolving on a noticeably faster time scale than the mass temperature. The

sample time for the measurements collected from the building system is 1 minutes.

dTz
dt

=
Hm

Cz
(Tm − Tz) +

Ha

Cz
(Ta − Tz)−

Q̇c

Cz
+
Q̇a

Cz
(4.1)

dTm
dt

=
Hm

Cm
(Tz − Tm) (4.2)

The plant has two disturbances, the ambient temperature (Ta) and the occupancy
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induced heat load (Q̇a). The ambient temperature is measured while the occupancy

induced heat load is an unmeasured disturbance. For simplicity in this chapter, we do

not explicitly consider the solar irradiation. And assume that its effect is accounted

in the plant dynamics via a high heat transfer coefficient Ha that controls the amount

of heat transfer between the ambient and zone temperature. In real building systems,

if the solar irradiation is measured and future predictions are also available, then the

disturbance can be incorporated in both the model identification and control problems

similarly as the ambient temperature.

Parameter Value Parameter Value

Hm/Cz 3.47× 10−4 sec−1 Ha/Cz 3.70× 10−4 sec−1

Hm/Cm 5.55× 10−5 sec−1 1/Cz 1× 10−3 ◦C/kJ

Kp -0.2 kW/◦C τI 600 sec

Q̇c 0 kW Q̇c 8 kW

Table 4.1: Parameters used for the data generation and closed-loop MPC simulations
with the building system.

During the data generation process, we assume that a PI controller is installed to

manipulate the cooling duty to regulate the zone temperature at some desired set-

points. We use pseudo random binary signals (PRBS) of the zone temperature setpoints

when generating the training data. The tuning parameters (Kp, τI) in the PI controller

and cooling duty constraints (Q̇
c
, Q̇c) used during the data generation process are also

given in Table 4.1. For the closed-loop simulations performed to examine the advan-

tages of including the occupancy induced disturbance forecasts in the MPC problem,

we replace the PI controller and use an MPC controller to directly manipulate the cool-

ing duty. The dry bulb temperature data of the Santa Barbara, California area obtained

from NCEI (2019) is used as the ambient temperature in both the data generation and

closed-loop MPC simulations.

125



Grey-box modeling and disturbance forecasting in building systems Chapter 4

15

20Tz (◦C)

0

5

10

Q̇c (kW)

10

15

20

25

Ta (◦C)

0 1 2 3 4 5 6
Time (days)

2.5

5.0

7.5

Q̇a (kW)

Figure 4.2: Sample one week of training data set generated from the building system
to illustrate the weekly pattern in the unmeasured heat disturbance (last row).
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Figure 4.3: Sample eight week of training data set generated from the building system
to illustrate the differences in the heat disturbance (last row) patterns between the
summer (first four weeks) and regular (last four weeks) university session periods.
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To generate the occupancy induced heat load in the case studies, we assume that

the building system is a type of university building. And we generate the heat distur-

bances with some fixed patterns that are a representative of the disturbance in such

buildings. The occupancy count in university buildings may depend on the type of

semester session. More occupants may be present during a regular semester session,

and less during a summer session. The number of occupants may also depend on the

type-of-day, i.e, whether a particular day is a regular workday or holiday. Further, the

number of occupants also depends on the time-of-day and varies between morning,

afternoon, and nights.

With the above background, the heat disturbance in the case studies is generated

as a function of three variables: type-of-session, type-of-day, and time-of-day. We first

create the disturbance as a deterministic function of these variables. Then, a stochastic

component is added to reflect the random nature of the disturbance in real building

systems. We generate the heat disturbance profiles such that the difference between

the highest and lowest values of the disturbance creates approximately an equal effect

as a similar change in the ambient temperature. This approach ensures that in the

building system environment studied to demonstrate the efficacy of the proposed model

identification framework, both the disturbances have a noticeable contribution to the

zone temperature.

Figure 4.2 shows a sample training data set generated from the building system to

illustrate the weekly pattern in the heat disturbance. We show one week of training

data from a regular university session period in that Figure. We notice that the heat

disturbances are larger during the day times, and less during the evenings and nights.

The disturbance is also smaller during the weekends compared to the workdays. Figure

4.3 shows an eight week of sample training data to illustrate the difference of the heat

disturbance values between the regular and summer session periods. The first four
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weeks of data corresponds to a summer session period, and the latter four weeks of

data corresponds to a regular university session period. We notice that the disturbance

values are lower in the summer compared to the regular session period, which are a

representative of the lower and higher occupancy count in the two types of sessions.

4.3 Grey-box building model identification

To estimate a grey-box dynamic model of the building system, we first collect some

training data by applying an exciting cooling duty signal to the system. Then, we use

the obtained sequences of the zone temperature, cooling duty, and ambient temper-

ature to solve a model identification problem. The goal of this modeling step is to

estimate the physical parameters in the building model with a reliable accuracy and

uncertainty.

We next discuss the proposed grey-box model identification problem and our ap-

proach to compute approximate confidence intervals on the building model parame-

ters. We assume in the model identification problem that the structure of the dynamic

model is known, and any unmodeled affect such as heat transfer with an adjacent zone

is negligible.

4.3.1 Model identification problem

As mentioned previously, the heat disturbance is often directly correlated with the

occupancy schedule of the building. And the occupancy schedule is many real buildings

varies slowly in time (Coffman and Barooah, 2018; Zeng et al., 2021), so the true heat

disturbance signal can be approximated to a reasonable accuracy using a piecewise

constant signal. We estimate the physical parameters in the building dynamic model
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and a piecewise constant heat disturbance signal by solving one optimization problem.

Additionally, the data collected from real buildings or the building system considered in

this chapter may be in the form of one or multiple trajectories. All the data trajectories

should be used in the model identification problem to obtain the best possible estimates

of the building model parameters. Each trajectory may be affected by a different heat

disturbance signal. So we estimate multiple piecewise constant disturbance signals for

each trajectory in the model identification problem.

We solve the following optimization problem for the grey-box building model iden-

tification

min
θ={xi(0),θG,Q̇j

ia}
φ(θ) =

Ntr∑
i=1

Nt−1∑
k=0

(yi(k)− ŷi(k))2 (4.3)

s. t. xi(k + 1) = A(θG)xi(k) +B(θG)ui(k) +Bp(θG)

Tia(k)

Q̇ia(k)

 (4.4)

ŷi(k) = Cxi(k) (4.5)

Q̇ia(k) = Q̇dk/NQaHe
ia (4.6)

in which, the subscript i is used to refer to the ith trajectory, Ntr is the total number of

data trajectories, and Nt is the number of time steps in each trajectory. The decision

variables (θ) in the optimization problem are the initial model states of each trajec-

tory (xi(0)), the building model parameters (θG), and the heat disturbances (Q̇jia) that

characterize the piecewise constant disturbance signals. We use the subscript j to refer

the jth disturbance value in the ith data trajectory. The decision variables for the build-

ing model parameters are considered in a logarithm scale, because the corresponding

true parameters in the plant may be of significantly different orders of magnitude. The

decision variables for these parameters in the logarithm scale facilitates the scaling in
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the optimization problem. The other decision variables for the initial states and heat

disturbances are considered in standard physical units.

The building model matrices A(θG), B(θG), and Bp(θG) to make the measurement

predictions in the optimization problem are nonlinear functions of the decision vari-

ables θG. The matrices are constructed by first forming the corresponding continuous

time matrices, then discretizing exactly (using matrix exponentials) at the sample time

of the measurements. The heat disturbance sequence (Q̇ia) in the optimization prob-

lem is constructed by extracting appropriate elements from the decision variables as

shown in (4.6). And repeating for NQaH number of time steps. The total number of

the heat disturbance decision variables in the optimization problem are NtrNt/NQaH .

We also solve for the initial model states (xi(0)) of each data trajectory in the problem

because the mass temperature is not measured.

The number of time steps NQaH for which each disturbance variable is repeated in

the piecewise constant signals is a pre-specified parameter, which also determines the

total number of decision variables in the model identification problem. The parameter

should be tuned until a good fit to the data is achieved, and the building model param-

eters are estimated with reliable uncertainties. In the simulation studies presented in

Section 4.6, we show that the parameter can be tuned based on the model fit and the

computed confidence intervals on the building model parameter estimates.

The problem (4.3) is a multistep ahead prediction error minimization problem. The

software CasADi is used to solve the model identification problem. To solve the opti-

mization problem, the software constructs symbolic graphs so that analytical deriva-

tives of the objective function can be computed. The size of the computation graph

grows with the number of time steps (Nt) in each data trajectory. The training data

collected from the building system should be organized into multiple trajectories so

that the number of time steps per trajectory is fewer, which improves the solution time
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of the optimization problem.

4.3.2 Confidence interval computation

To evaluate the reliability of the building model parameter estimates obtained by

solving the problem (4.3), we now discuss an approach to compute confidence inter-

vals (CIs) on the estimates. For a linear regression problem with a Gaussian random

measurement noise, the α-level confidence region can be derived analytically as an

ellipsoidal region. In higher dimensions, the ellipsoidal region becomes harder to an-

alyze so the bounding box surrounding the ellipse or the marginal intervals on each

parameter estimate can be reported as the CIs.

The problem (4.3), however, is a nonlinear regression problem. In this case, the

analytical tractability to determine the statistically correct CIs on the parameter esti-

mates is lost. However, we can compute approximate CIs on the estimates by forming

a quadratic approximation of the objective function around the optimum of the non-

linear objective function (Rawlings and Ekerdt, 2020, Page 524-525). The quadratic

approximation can be obtained by computing the Hessian of the objective function at

the optimum of the nonlinear problem. The Hessian matrix can be used to construct an

approximate normal distribution of the parameter estimates. The approximate normal

distribution can then be used to derive the α-level ellipsoidal confidence region or the

marginal CIs on the parameter estimates. This approach gives approximate CIs on esti-

mates obtained by solving a nonlinear regression problem, and can be highly valuable

to practitioners in applications. In this chapter, we employ this approach to compute

approximate CIs on the parameter estimates obtained by solving the problem (4.3).

We focus on computing the marginal CIs and for only the building model parameters

estimates because they characterize the main dynamic model for the MPC controller.
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The α-level marginal CIs on the parameter estimates are computed using the relation

θi = θ̂i ± ci, (4.7)

ci =
( 2φ(θ̂)

nd − np
F−1F (α; 1, nd − np)H−1ii

)1/2
(4.8)

in which, θ̂ denotes the optimal solution of the optimization problem, nd = NtrNt is the

number of training data samples used in the problem, and np = 4 + 2Ntr +NtrNt/NQaH

is the total number of decision variables in the problem. The term F−1F (α; 1, nd − np)

is the inverse of the cumulative F-distribution, at the specified degrees of freedom, at

the probability α. The matrix H ∈ Rnp×np is the Hessian of the objective function.

The Hessian can sometimes become approximately singular, so we add a small posi-

tive definite term εI to the Hessian (with ε = 10−8) so that it is always numerically

invertible. The term H−1ii denotes the element at the row and column i in the inverse

of the Hessian. We compute the 95% confidence intervals, and α = 0.95. Relation (4.7)

does not give the CIs in the physical units for the building model parameters, because

they are considered in the logarithm scale in the model identification problem. For the

case studies in Section 4.6, we convert the CIs on the building model parameters back

to the physical units and report the final CIs as percentage deviation from the optimal

estimates.

4.4 Neural network disturbance model identification

In this section, we present the proposed approach to estimate a NN disturbance

model from data, which can be subsequently used in an MPC controller to provide

feedforward predictions of the heat disturbance. The estimation procedure of this NN

is not a typical supervised learning problem, because the heat disturbance is not di-
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rectly measured. We present an approach to use the measured variables (zone temper-

ature, cooling duty, ambient temperature, and auxiliary information), and the building

model estimated from the previous identification step to develop the NN model. We

parameterize the NN heat disturbance model as follows

Q̇a = fN(m; θN) (4.9)

in which, m denotes a vector of auxiliary measurements that can be used by the NN

to predict the heat disturbance, and θN denotes the parameters such as the weights

and biases in the NN. The time-of-day, type-of-day, and type-of session information are

provided in the vector of auxiliary measurements to the NN. The time-of-day informa-

tion is provided for each minute of the day as a continuous number between −1 to

1. The approach creates a discontinuity in the time-of-day variable at midnights. But

we observe in the simulations that this discontinuity does not significantly affect the

predictive capability of the NN model. The one hot encoding (Davis, 2010) approach is

used to provide the type-of-day and type-of-session information to the NN model. In an

industrial application, if any other variables are posited to have an affect on the heat

disturbance, then they can also be included in the vector of auxiliary measurements to

provide as input to the NN.

Based on the NN model parameterization, and the estimated building model from

the previous identification step, we solve the following problem to estimate the un-

known parameters in the NN
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min
θTm0

, θN

Ntr∑
i=1

Nt−1∑
k=0

(yi(k)− ŷi(k))2 (4.10)

s. t. x+i = Axi +Bui +Bp

 Tia

fN(mi; θN)

 (4.11)

ŷi = Cxi (4.12)

xi(0) =

 yi(0)

fTm0(zi; θTm0)

 (4.13)

in which, we use the subscript i to refer to the ith data trajectory, Ntr is the total number

of data trajectories, and Nt is the number of time steps in each trajectory. The linear

model matrices A,B,Bp used in (4.11) are obtained from the previous grey-box model

identification step.

In the model identification problem, we use another NN fTm0(·) to predict the initial

mass temperature for each trajectory. We provide the vector zi as an input to that NN,

which contains a recent set of measurements of the zone temperature, cooling duty,

ambient temperature, and auxiliary variables at the beginning of the ith trajectory. The

decision variables (θN , θTm0) in the optimization problem are the unknown weights

and biases in the disturbance predictor NN, and the other NN introduced to predict the

initial mass temperatures at the beginning of each data trajectory. We note that the NN

fTm0(·) is not finally used in an MPC controller implementation, so this NN is discarded

after the disturbance modeling step.

A common approach in the grey-box parameter estimation literature to treat an

unmeasured state in the model identification problem is to also estimate the initial

states (xi(0)) by introducing decision variables directly for these states. We choose the
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approach described above of introducing another NN fTm0(·) (instead of estimating the

initial states) because the stochastic gradient algorithm used to solve the problem does

not perform effectively if some decision variables appear only in a few data trajectories.

With the proposed approach, only one function (fTm0(·)) that remains the same across

the training data trajectories is estimated in the optimization problem.

The optimization problem (4.10) is also a multistep ahead prediction error mini-

mization problem. The problem is solved using the algorithm Adam (Kingma and Ba,

2014) with the software TensorFlow (Abadi et al., 2015).

The goal of developing the NN disturbance model is to finally use the NN in an MPC

controller. The MPC may be implemented for the operation of the building system for

a period of months to year. Real building applications or the system considered in this

chapter may be affected by different heat disturbance patterns in different times of

year. And the NN should be able to accurately predict the disturbance in the different

times of year as well. We collect the training data from the building system such that

heat disturbance patterns from all the different times of year are contained in the tem-

perature measurements. The building system is simulated in a routine operation mode

to collect the entire training data, since input excitation data is generally not available

in applications for longer periods. We show in the simulation studies in Section 4.6

that input excitation data is also not required to obtain a good NN disturbance model.

We scale all the variables to facilitate the scaling of the NN training optimization

problem. All the measured variables are scaled using the mean and standard deviation

of the variable. For example, we scale the zone temperature as follows

y = (y − µy)/σy (4.14)

in which, µy is the mean and σy is the standard deviation. These two quantities are
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computed over the entire training data. The cooling duty and ambient temperature are

also scaled similarly. The state evolution equation (4.11) assumes that all the variables

are in the physical units. So the mass temperature and the heat disturbance predictions

by the NNs in (4.13) and (4.11) should be in the physical units. The weights and

biases in the NNs typically have small values during the optimization process. We also

scale the outputs of the two NNs using the inverse of the relation (4.14) so that some

appropriately scaled quantities are inferred by the NNs. For this additional scaling, we

use the mean and standard deviation of the zone temperature measurements to scale

the output of the NN fTm0(·). The mean and standard deviation of the cooling duty is

used to scale the outputs of the heat disturbance predictor NN fN(·).

4.5 Economic model predictive control

In this section, we discuss the economic MPC controller formulations used for the

closed-loop simulation studies. The purpose of the closed-loop MPC simulations are

as follows. First, to examine the achievable performance with an MPC controller that

uses the building dynamic and NN disturbance models estimated with the frameworks

presented in this chapter. Second, to gauge the performance improvements by an

MPC controller that uses the NN heat disturbance forecasts compared to an MPC that

does not use those predictions. This second analysis helps to elucidate the achievable

benefits of systematically modeling and forecasting the unmeasured heat disturbance

in an MPC controller formulation.

We implement and examine the performances of the following three MPC con-

trollers

1. Perfect MPC controller (P-MPC): We use the true building system model and per-

fect future disturbance predictions in this controller.
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2. Feedback MPC (FB-MPC): The building dynamic model estimated with the grey-

box modeling step discussed in Section 4.3 is used. We do not use any feedfor-

ward predictions of the heat disturbance and the MPC uses only feedback (using

an integrating disturbance model) to account for that disturbance.

3. Feedforward Feedback MPC (FFFB-MPC): We use both the building dynamic and

NN disturbance models estimated with the approaches discussed in Sections 4.3

and 4.4 for this controller. We also use an integrating disturbance model to ac-

count for the plant-model mismatch and any inaccuracies in the disturbance pre-

dictions.

All three MPC controllers use perfect predictions of the ambient temperature, because

reasonable forecasts of that disturbance for an area are often available via third-party

weather forecasting services. We implement the P-MPC to establish the best achievable

performance with an MPC controller. A comparison between the P-MPC and FFFB-

MPC sheds light on the quality of closed-loop performance that can be attained when

building and NN disturbance models estimated using the approach proposed in this

chapter are used in an MPC controller. The difference in the performances of the FB-

MPC and FFFB-MPC illustrates the economic benefits of using the NN heat disturbance

predictions in an MPC controller.

For all the MPC controllers, we use the linear dynamic model shown in equations

(4.15) – (4.17) below. The model considers feedforward disturbances via an additional

term in the linear dynamics, and accounts for the unmeasured disturbances and plant-

model mismatch using an integrating disturbance model (Pannocchia and Rawlings,
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2003; Morari and Maeder, 2012).

x+ = Ax+Bu+Bpp+Bdd (4.15)

d+ = d (4.16)

y = Cx+ Cdd (4.17)

in which, x ∈ R2 is the state, u ∈ R is the control input (cooling duty), p ∈ RNp

is the measured or predicted disturbance, y ∈ R is the measurement, d ∈ R is the

state in the integrating disturbance model, and wx, wd, v are the noise sources in the

linear dynamic model and measurements. The noise sources are modeled as Gaussian

distributions with zero mean and covariances of Qwx, Qwd, and Rv corresponding to

the noise terms wx, wd, and v, respectively. A Kalman Filter is constructed for state

estimation during the closed-loop controller implementation. The noise covariances are

tuned heuristically to develop the Kalman Filter in the simulation study. We note that

for applications, however, data-driven methods are available in the literature (Odelson

et al., 2006) to systematically estimate the noise covariances from data for the Kalman

Filter tuning. The matrices A, B, Bp characterize the main linear dynamic model, and

Bd, Cd denote the integrating disturbance model. We use an input disturbance model

with Bd = [0, 1]′, and Cd = 0 for the MPC controller. Given the linear model matrices

and noise covariances, we obtain filtered estimates of the state and disturbance (x̂, d̂)

using the Kalman filter for subsequent use in the MPC regulator.

The goal of the economic MPC controller is to operate the building system with

a minimum energy cost and comfort constraint violations. We solve the following

economic optimization problem for the MPC regulator (Rawlings et al., 2012, 2018;
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Patel et al., 2016)

min
u

N−1∑
k=0

[pe(k)u(k) + SR(∆u(k))2 +Hss(k)] (4.18)

s. t. x+ = Ax+Bu+Bpp+Bdd̂, (4.19)

x(0) = x̂, (4.20)

T z − s2 ≤ Tz ≤ T z + s1, (4.21)

s ≥ 0, (4.22)

u ≤ u ≤ u (4.23)

in which, pe is the energy price that may be charged by electricity providers, (u, u)

denote the available cooling duty limits, the matrix SR is used to implement a rate-of-

change penalty on the cooling duty, (T z, T z) denote the time varying comfort tempera-

ture constraints, Hs is a matrix used to penalize the comfort constraint violations, and

N is the forecasting horizon length for the MPC controller. The optimization problem

(4.18) is a type of quadratic program, since all the constraints and stage costs in the

problem are linear or quadratic. We use SR = 1, and Hs = [102, 102] in the problem.

The energy price, comfort temperature constraints, and the disturbance predictions are

all time-varying parameters. The decision variable in the problem is the future control

input sequence u. The problem is solved after every measurement sampling instant,

and the first move (u0(0)) of the optimal input sequence is applied to the building

system.

The feedforward disturbance model matrix Bp and future predictions p in the prob-

lem (4.18) are chosen based on the type of the MPC controller. For the P-MPC, we

use the true disturbance model of the plant and the perfect disturbance predictions. In

the FB-MPC, we use the ambient to the zone temperature component of the estimated
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disturbance model matrix Bp. The exact predictions of the ambient temperature are

used, and no heat disturbance predictions are included in the MPC problem. For the

FFFB-MPC controller, we use the full disturbance model matrix Bp estimated from the

grey-box modeling step. The estimated NN based on the approach proposed in Section

4.4 is used to provide the heat disturbance predictions, and we use the perfect ambient

temperature predictions for this controller.

4.6 Simulation studies

We present case studies in this section to demonstrate the efficacy of the model iden-

tification frameworks to estimate accurate and reliable models, and the economic ben-

efits of using the NN heat disturbance predictions in an MPC controller. We start with

discussing the training data generation approach for the model identification frame-

works. Then, we present the results that demonstrate the performances of the proposed

grey-box and NN disturbance modeling methods. Finally, we present closed-loop sim-

ulations comparing the performances of the three MPC controllers discussed in the

previous section.

4.6.1 Training data generation

We generate two types of data sets for the grey-box dynamic and NN disturbance

model identification steps. We simulate the building system and PI controller setup

discussed in Section 4.2 using pseudo random binary signals (PRBS) of the zone tem-

perature setpoint to generate the data sets. For the grey-box model identification, we

generate a total of 1 week of data. The heat disturbance pattern representing a regular

university session period is used to generate this data set. The zone temperature set-
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point values in the PRBS signal are sampled from a uniform distribution in the range

18 − 28◦C, which are changed every 8 hours. The mass temperature dynamics in the

building system is slow, and that frequency of setpoint changes ensures that the mass

temperature is sufficiently excited in the training data.

For the NN disturbance model identification, we generate a total of 20 weeks of

data. The zone temperature setpoints for this data set is also sampled from a uniform

distribution in the range 18 − 24◦C, and are changed every 2 days. The setpoints

are changed with a slower frequency and in a narrow range to represent a routine

operational type data set. The heat disturbance patterns from both the regular and

summer session period are present for an equal proportion of 10 weeks in the entire

data set. This approach ensures that sufficient amount of heat disturbances patterns

from both the summer and regular session periods are contained in the training data.

4.6.2 Grey-box model estimation

The grey-box building model identification problem discussed in Section 4.3 is

solved for three different choices of the zero order hold durations on the heat dis-

turbance. These hold durations are chosen as 2, 4, and 6 hours. For all the three opti-

mization problems, the entire training data set generated for the grey-box modeling is

split in two trajectories. This step ensures that the number of time steps per trajectory

is fewer and grey-box model identification problem can be solved faster. Each trajec-

tory after the splitting contains a total of 84 hours of data. We use an initial guess of

23◦C for the initial model states, 10−2 for the physical building model parameters, and

5kW for the heat disturbance variables. In the subsequent discussion, we also highlight

the robustness of the presented results for different initial guesses of the decision vari-

ables in the model identification problem. The initial guesses for the physical building
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model parameters are provided to the optimizer in a logarithm scale, since the decision

variables for those parameters are considered in a logarithm scale in the optimization

problem.

We first examine the training data fit and the quality of the grey-box parameter es-

timates obtained by solving the three model identification problems. We compute the

root mean squared error (RMSE) metric over the entire training data, and the relative

errors in the parameter estimates. In Table 4.2, we report the RMSE metric, the param-

eter estimates, and the relative error in the estimates obtained for the three modeling

problems solved. We observe that for a small 2-hour disturbance hold duration, the

training data fit is the best with the lowest RMSE metric. The better fit is obtained

because the optimizer has more decision variables to fit the data closely with this small

hold duration. For the longer 6-hour disturbance hold duration, the training data fit

is poor and the RMSE metric is the largest. For both the 2 and 6-hour cases, all the

grey-box parameters have large estimation errors.

The parameter estimation errors with the 4-hour disturbance hold duration are

the best and range between 4 − 38%. The quality of these parameter estimates are

reasonable, however. The building modeling problem considered in this chapter is

challenging due to the slow dynamics of the mass temperature and the significant

amount of unmeasured heat disturbance in the training data. We show the fit to the

training data obtained at the solution of the model identification problem solved with

the 4-hour hold choice in Figure 4.4. The training fit is shown for one of the 84-

hour training data trajectories. We observe in the plot that the fit to both the zone

temperature and heat disturbances are reasonable, and the estimated quantities are

close to the corresponding true values in the training data.

The heat disturbance estimates obtained after solving the model identification prob-

lem (4.3) are not subsequently useful for a validation of building dynamic model, be-
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Figure 4.4: Training data fit to the zone temperature and heat disturbance obtained af-
ter solving the grey-box building model identification problem with the 4-hour choice
of the disturbance hold duration.
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cause any new data collected from the system would contain different heat distur-

bances. The relative errors on the parameter estimates cannot be computed as well,

because the true building model parameters may not be known in applications. There-

fore, we use the approximate confidence intervals (CIs) on the parameter estimates

and the training fit as represented by the RMSE metric to guide the model selection.

We compute the CIs on the physical building model parameter estimates using the

approach discussed in Subsection 4.3.2. In Table 4.2, we also report the CIs for the

estimates obtained with the three model identification problems. The CIs in the Table

are reported as percentage deviation from the parameter estimates. We notice that the

CIs on the estimates are large for the model identification problems solved using the

2 and 6-hour disturbance hold durations. The large CIs are a result of more degrees

of freedom in the optimization problem with the 2-hour hold, and an incorrect distur-

bance structure assumption with the 6-hour hold. The CIs on the parameter estimates

obtained with the 4-hour hold duration are the tightest for most of the parameter es-

timates. For the subsequent NN disturbance model identification and the closed-loop

MPC simulations, we choose the building model obtained with the 4-hour hold dura-

tion because this choice provides the tightest CIs on the parameter estimates and an

adequate training data fit.

The times required to solve each model identification problem are also reported in

Table 4.2, which are approximately around 2 minutes. The solution times show that all

the model identification problems can be solved conveniently in industrial applications.

The ease of solvability of the modeling problem in which we simultaneously estimate a

grey-box dynamic model and piecewise constant disturbance signals is enabled by the

symbolic differentiation based software CasADi.

Further, we also tested the robustness of the results presented in Table 4.2 for dif-

ferent initial guesses of the decision variables in the model identification problem. For
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Zero order
hold duration
on Q̇a (hours)

Parameter estimate
% Relative error

(% Confidence deviations)

Training
fit

(RMSE)
(◦C)

Model
estimation

time
(minutes)Hm/Cz Ha/Cz Hm/Cm 1/Cz

2

2.24× 10−2

6374.6%
(−59.4%,
+146.2%)

3.53× 10−3

855.2%
(−54.3%,
+118.7%)

1.62× 10−3

2823.0%
(−11.7%,
+13.2%)

7× 10−3

600.1%
(−54.1%,
+117.9%)

0.47 2.14

4

4.78× 10−4

37.9%
(−10.8%,
+12.1%)

3.83× 10−4

3.6%
(−10.8%,
+12.1%)

7.53× 10−5

35.7%
(−17.4%,
+21.1%)

7.83× 10−4

21.6%
(−9.4%,
+10.4%)

0.87 1.35

6

4.19× 10−4

20.7%
(−34.1%,
+51.8%)

7.73× 10−16

100%
(−100%,

+∞)

4.91× 10−4

784.6%
(−14.7%,
+17.2%)

1.74× 10−4

82.5%
(−12.6%,
+14.4%)

0.99 2.11

Table 4.2: Metrics summarizing the results obtained with the grey-box building mod-
eling approach proposed in this chapter.

these tests, we fixed the guesses for the initial model states and heat disturbances. And

the guesses for the grey-box building model parameters were simultaneously varied be-

tween 10−4 to 10−1. For all the optimization problems solved with the different initial

guesses, we observed that the training fit (represented by the RMSE metric) and the CIs

on the parameter estimates can still be used to guide the model selection and choose an

appropriate zero order hold duration on the heat disturbance. The optimization prob-

lem for the 4-hour hold duration converged to the same solution as shown in Table 4.2,

with parameter estimation errors in the range 3% to 38% and the CIs between −9% to

22%. We observed that for initial guesses on the building model parameters outside the

above-mentioned range, the estimation errors and the CIs started to get worse.
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4.6.3 Disturbance model identification

We next use the grey-box building model estimated from the previous step to de-

termine a NN heat disturbance model. First, the entire 20 weeks of data set generated

for the disturbance model identification is split into 16 weeks of training, 2 weeks of

holdout, and 2 weeks of validation data sets. This splitting is performed such that each

data set contains an equal amount of disturbance patterns from both the regular and

summer session periods. Further, each data set is also split into multiple trajectories

of lengths 24 hours. We obtain these multiple data trajectories by starting from the

beginning of each data set and extracting 24 hours of data in increments of 6 hours,

until the last possible trajectory is extracted. As discussed in Chapter 1, the holdout

data set is used to monitor the optimization problem loss on some unseen data at the

end of every training epoch. And we choose the NN weights and biases that provide

the best loss on the holdout set for further validation.

In the input vector zi provided to the NN fTm0(·) for predicting the unmeasured

mass temperature, we use a total of five measurements of the zone temperature, cool-

ing duty, etc. The architecture of that NN is chosen as [40, 16, 1]. This notation of

a feedforward NN architecture means that the NN has an input layer containing 40

nodes, a hidden layer with 16 nodes, and an output layer with one node. The architec-

ture of the disturbance predictor NN is [5, 64, 64, 1]. We use the hyperbolic tangent

as the activation function in both the networks. For the training, we use a batch size of

128 trajectories in the optimization algorithm Adam. And the NN model identification

problem (4.18) is solved for a total of 1000 epochs.

After the training process, we evaluate the quality of the heat disturbance predic-

tions by the estimated NN and the final zone temperature predictions of the composite

grey-box and NN models. We compute the RMSE metrics for both these predictions
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Figure 4.5: Predictions obtained using the estimated grey-box and NN disturbance
models on one of the validation data trajectory.
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over all the 24-hour trajectories in the validation data set. We report the RMSE met-

rics obtained for both the heat disturbance and zone temperature predictions in Table

4.3. The metrics show that both the variables are reasonably well predicted by the es-

timated models. We note that in industrial applications, the RMSE metric for the heat

disturbance cannot be computed since the disturbance is not measured. The models

must be validated using the CIs of the building model parameters and the RMSE metric

for only the zone temperature predictions.

Figure 4.5 shows the heat disturbance predictions of the estimated NN and the final

zone temperature predictions of the composite model on one of the 24-hour validation

data trajectories. We notice from the Figure that good predictions of both the zone

temperature and heat disturbances are provided by the estimated models. In Table 4.3,

we also report the time taken for the NN disturbance model identification. The training

time shows that the NN model identification problem can be conveniently solved offline

for a disturbance model development in real building applications.

Metric Value
RMSE – Tz 1.12 (◦C)
RMSE – Q̇a 0.77 (kW)

NN Estimation Time 40.35 (Minutes)

Table 4.3: Metrics summarizing the performance of the NN disturbance model identi-
fication approach proposed in this chapter.

4.6.4 Closed-loop MPC simulations

Finally, we examine the closed-loop performances obtained with the three MPC

controller formulations discussed in Section 4.5. We consider a total of 2 weeks of sim-

ulation period. The first 3 days of the closed-loop trajectories obtained under feedback

with the MPC controllers are shown in Figure 4.6. For all the MPC controllers imple-
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mented, we use the time varying energy prices and comfort temperature constraints

as shown in that Figure. The energy prices are typical of the prices charged by elec-

tricity providers in real building applications. The prices are high during the day times

and low during the nights. The comfort temperature constraints are narrow during the

day times and wider the evenings and nights. The temperature constraints during the

day times values reflect the tighter range of desired temperatures when occupants are

present in the building. In the 2 weeks of simulation period, we use heat disturbance

patterns from both the regular and summer sessions periods in equal amounts of 1

week each. The sample time for the plant measurements and MPC controller execution

in this closed-loop simulation study is 5 minutes. The forecasting horizon length in all

the MPC controllers is 1 day (N = 288).

In Figure 4.6, we observe that the P-MPC performs significant cooling during the

nights when the energy prices are lower. And less cooling during the day times when

the energy prices are high. The controller also successfully maintains the zone tempera-

tures within the desired comfort constraints. The FFFB-MPC also performs qualitatively

similar cooling as the P-MPC controller, with more cooling during the nights and less

during the day times. The difference in the closed-loop trajectories between the P-MPC

and FFFB-MPC is because we use the perfect dynamic model and disturbance fore-

casts for the P-MPC. Whereas, the estimated dynamic model and NN heat disturbance

forecasts are used in the FFFB-MPC controller.

We also observe in Figure 4.6 that the FB-MPC performs noticeably less pre-cooling

during the nights, and as a consequence ends up cooling more during the day times to

maintain the zone temperature within the comfort constraints. The controller performs

less cooling during the nights because it does not use any heat disturbance predictions.

At the nights, the FB-MPC underpredicts the temperature evolution of the next day,

and thus, it undercalculates the cooling requirements to maintain the temperatures in
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Figure 4.6: Closed-loop trajectories of the building system obtained under operation
with the P-MPC, FB-MPC, and FFFB-MPC controllers. Significant amounts of cooling
are performed during the nights by the P-MPC and FFFB-MPC controllers. But the
FB-MPC performs less cooling during the nights and more during the day times when
the energy prices are high.
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the next day within the comfort constraints.

MPC
controller

Temperature constraint
violation cost (ΛT )

Rate-of-change
penalty cost (ΛR)

Total energy
cost (ΛE)

Energy cost
savings

FB-MPC 16603 81 2315
FFFB-MPC 21171 84 2210 4.54 %

P-MPC 12324 67 2160 6.7 %

Table 4.4: Metrics summarizing the closed-loop performances of the three MPC con-
trollers. The percentage energy cost savings shown in the last column for the FFF-
B-MPC and P-MPC are computed relative to the FB-MPC controller.

For the entire 2 weeks of closed-loop simulation performed using the three MPC

controllers, we also compute the following three metrics

• Total zone temperature constraint violation: ΛT =
∑Nt

k=0Hss(k).

• Total rate-of-change penalty: ΛR =
∑Nt

k=0 SR(∆u(k))2

• Total energy cost incurred: ΛE =
∑Nt

k=0 pe(k)u(k)

These three metrics are summarized in Table 4.4. We observe that the FB-MPC, FFFB-

MPC, and P-MPC controllers incur the maximum to minimum energy costs. In Table

4.4, we also report the energy cost savings provided by the FFFB-MPC and P-MPC

controllers compared to the FB-MPC. The percentage energy cost savings achieved by

the FFFB-MPC is 4.54%, while the P-MPC controller provides savings of 6.7%. The

improved performance of the FFFB-MPC over the FB-MPC demonstrates the economic

value of treating the unmeasured heat disturbance in both the model identification and

MPC problems.

4.7 Conclusions

In this chapter, we have presented a novel model identification approach for build-

ing energy systems affected by large unmeasured heat disturbances. The approach uti-
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lizes both first principles knowledge and data-driven neural networks. The large heat

disturbance is often generated in applications due to occupants inside the building.

For such building systems, we proposed to develop a dynamic and disturbance model

in two steps. In the first step, we estimate a grey-box dynamic model of the building

system. We treat the presence of the unmeasured disturbance in the training data in

this modeling step by also estimating an approximate piecewise constant signal for the

disturbance. We further proposed a method to compute approximate confidence inter-

vals on the estimated parameters in the grey-box model, which can be used to gauge

the reliability of the model. In the second step, we use the estimated grey-box building

model and historical operational data to estimate a NN heat disturbance predictor. The

NN uses some auxiliary measurements as inputs to predict the heat disturbance. This

model is estimated based on only the zone temperature measurements and without

any known occupancy schedule or measurements of the disturbance. The composite

grey-box and NN disturbance model retains a linear structure between the actuator

and measurements. Thus, it can be conveniently used for an MPC implementation

with standard online solvers.

We demonstrated the effectiveness of the proposed modeling framework via sim-

ulation studies with a two time scale based building model as the plant. We showed

that the proposed grey-box model identification problem can be used to obtain an ac-

curate and reliable building model from data, despite the presence of the large heat

disturbance in the training data. The estimation errors on the physical parameters in

the building model were in the range 3 − 38%, while the CIs on the estimates were

between −9% to +22%. We next demonstrated that the estimated grey-box building

model from the first step can be used to obtain a NN disturbance model. The NN is

suitable to provide feedforward predictions of the heat disturbance for different types

of day and times of year.
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Further, the estimated dynamic and disturbance models were used in closed-loop

MPC simulations. We studied the performance of an MPC that uses the NN disturbance

forecasts compared to an MPC that does not use those forecasts. We highlighted that

using the feedforward NN disturbance predictions aids the MPC to achieve improved

energy cost savings of around 4.5%. The result highlights the economic advantages

of systematically treating the unmeasured heat disturbance in both the modeling and

control problems.

Future directions for dynamic and disturbance modeling in building applications

are discussed in Chapter 6. In the next chapter, we develop another class of hybrid

dynamic modeling approaches for nonlinear chemical engineering processes. With the

goal of using the estimated models in steady-state economic optimization at the RTO

layer in the process industries.
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Chapter 5

Hybrid process modeling with
application to economic optimization

The use of dynamic models is common in industrial applications for process optimiza-

tion and control. At the RTO layer in the process industries, a nonlinear model is typ-

ically used so that any nonlinearity in the process is accounted for when determining

an economically profitable steady state (Cutler and Perry, 1983; Darby et al., 2011).

The nonlinear model may be developed using either a fully first principles, a grey-box,

or a black-box approach. In the first principles approach, rigorous knowledge about

the process such as vapor-liquid equilibrium relationships, reaction kinetics, etc, are

used to develop the model (Pantelides and Renfro, 2013). In the grey-box approach,

a dynamic model is parameterized using some process knowledge and unknown pa-

rameters in the model are estimated from data (Zavala et al., 2008; Kravaris et al.,

2013). Both the first principles and grey-box modeling approaches yield mathematical

models that are often suitable for optimization based decision-making. However, these

two approaches can require more process knowledge than available in applications and

sometimes incorrect or incomplete knowledge may be used to result in a plant-model

mismatch, and consequently a suboptimal economic performance.

In the black-box approach, no first principles based process knowledge is used, and
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the dynamic model is developed solely using some training data collected from the

plant and nonlinear function approximators such as neural networks (Sjöberg et al.,

1995; MacMurray and Himmelblau, 1995; Wu et al., 2021). The issue with the black-

box approach is that the developed models are not interpretable, and can often require

excessive amounts of training data for the model development. A black-box model also

may not be suitable for use in an optimization problem because of highly nonlinear and

unstructured functions represented by NNs, which contain no physical insights about

the plant.

To avoid the above issues with the first principles and black-box modeling ap-

proaches, several researchers have proposed the hybrid modeling approach to develop

dynamic process models (Psichogios and Ungar, 1992; Von Stosch et al., 2014; Zen-

dehboudi et al., 2018; Venkatasubramanian, 2019; Yang et al., 2020; Sansana et al.,

2021). In this approach, both the basic first principles knowledge often available in

applications, and the advantages of machine learning models are utilized. The moti-

vation for the approach is that less process knowledge may be required than the first

principles and grey-box modeling methods. The machine learning models can be used

to represent some parts of the overall model for which no domain knowledge is avail-

able. The training data requirement for model development may still be less and the

model may be more interpretable compared to a fully black-box model. The hybrid

model can also be more suitable for use in an optimization problem because of process

constraints encoded in the model, leading to only physically realistic objective function

profiles for the optimizer.

In this chapter, we present a novel hybrid modeling approach to develop dynamic

process models utilizing both the available first principles knowledge and the advan-

tages of neural networks (NNs). We focus on developing models for nonlinear chemical

engineering processes. We demonstrate that if the hybrid models are developed with
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enough structural insights about the process, then they can also be successfully used

in steady-state optimization and obtain high economic performance. We begin with a

discussion about the related literature on hybrid and black-box process modeling using

machine learning methods.

5.1 Literature review

The general idea of combining first principles knowledge and machine learning to

develop hybrid process models has been around in the literature since the early 1990s.

Psichogios and Ungar (1992) propose to use NNs to approximate some unknown, non-

linear functions in the hybrid model that may be challenging to model using the avail-

able process knowledge. The work considers a bioreactor example, and a NN was used

to approximate the nonlinear substrate growth rate in the overall model. In the lit-

erature, this type of hybrid modeling approach is also referred as the series approach

because the output of a NN is provided as an input to a dynamic model structured

using the process knowledge. Rico-Martinez et al. (1994) use a NN to approximate an

unknown reaction rate law in a continuous stirred tank reactor example. Thompson

and Kramer (1994) propose compensate for inaccuracies in an available first principles

model by adding a NN to the dynamics of that model. This approach is called the

parallel hybrid model structure in the literature. The approach, however, can result in

a hybrid model with a large black-box component explaining the difference between

the available first principles model and the plant. The large black-box component can

subsequently give a challenging optimization problem to solve at the RTO layer. Hence,

we do not consider the parallel hybrid modeling approach in this chapter, and focus on

developing a modeling framework using the series approach.

Many other researchers have applied the hybrid modeling approach over the years
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to different applications such as polymerization systems (Tsen et al., 1996; Doyle III

et al., 2003), chemical reactors (Su et al., 1993; Gupta et al., 1999; Luo et al., 2012; Qi

et al., 1999), bio-processes (Schubert et al., 1994), designing fuel additives (Sundaram

et al., 2001), etc. These earlier works typically used NNs of small sizes in the hybrid

model. The recent advances in the NN training algorithms, and the availability of pow-

erful symbolic differentiation based software (LeCun et al., 2015; Abadi et al., 2015;

Lee et al., 2018; Andersson et al., 2019) encourage the development of sophisticated

hybrid modeling approaches for process optimization and control.

Among the recent works, Lovelett et al. (2019) develop an approach to estimate

hybrid process models for systems with only partial state measurements. The work

uses a vector containing a recent history of past measurements and actuators to pro-

vide as inputs to the NNs that aim to approximate the unknown functions posited to

depend on the unmeasured states in the plant. Bangi and Kwon (2020) use deep net-

works to develop hybrid dynamic models and applied their proposed approach to a

hydraulic fracturing process. Chen and Ierapetritou (2020) estimate hybrid process

models in two steps. First, a partial correlation coefficient analysis is used to determine

the sources of plant-model mismatch in an available first principles based model. Then,

the functions in that model leading to the mismatch are replaced with support vector

machines (Steinwart and Christmann, 2008) or black-box NNs. Ghosh et al. (2019)

develop an approach to account for the difference between an available first principles

model and plant measurements using subspace identification (Qin, 2006). All these re-

cent papers estimate the weights and biases in the NNs in the hybrid model by solving

an onestep ahead prediction error minimization problem using a stochastic gradient

algorithm (Kingma and Ba, 2014), or the Levenberg-Marquardt algorithm (Levenberg,

1944; Marquardt, 1963).

To design high-performance industrial automation systems, the estimated hybrid
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models must be suitable for use in an optimization problem with standard solvers.

Most recent papers focus particularly on the dynamic model development, and less ef-

fort is directed in the literature towards using the estimated models for optimization

and control. Kahrs and Marquardt (2007) present simulation studies to examine the

performance of hybrid models when they are used in steady-state optimization. The

work considers an ethylene glycol process. The size of the NNs used in the hybrid

model in that work were small, however. Schweidtmann and Mitsos (2019) recently

developed a global optimization algorithm to optimize over hybrid and black-box mod-

els embedded with NNs. The work also demonstrates the efficacy of the algorithm to

optimize over large hybrid and black-box models. In the paper Zhang et al. (2019),

the performances of hybrid models are examined when they are used in a hierarchical

RTO and MPC framework. The NNs in the hybrid models were estimated directly us-

ing the measurements of the unknown functions being approximated. This approach

is impractical for deployment in applications. Zhang et al. (2019) study the perfor-

mances of hybrid and black-box NN models when used in tracking and economic MPC

controller formulations. Other researchers have investigated the use of genetic algo-

rithm (Bhutani et al., 2006), and particle swarm algorithm (Bensingh et al., 2019) to

optimize over hybrid dynamic models for process operations and control.

With the recent advances in NN training algorithms and high quality software, there

is also a considerable interest in the literature to use black-box NNs for decision-making

and control. The type of black-box NNs most relevant for dynamic process modeling

are recurrent NNs (Rumelhart et al., 1986; Hochreiter and Schmidhuber, 1997). Wu

et al. (2021) suggest the use of long short term memory networks (LSTMs) for process

modeling and subsequently for use in an MPC controller formulation. Santander et al.

(2022) propose to use recurrent NNs for process modeling, and then use the estimated

NNs for economic optimization in a production planning layer. The work Jalanko et al.
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(2021) studies the performance of black-box NNs for dynamic modeling of an industrial

ethylene splitter. Despite all these recent works, the suitability of using fully black-box

networks for effective process modeling and control is questionable. In the simulation

studies in this chapter, we also examine the performances of black-box NN models

when used in steady-state optimization.

Another dynamic model identification approach proposed in the recent literature is

the Koopman operator based method. In this approach, the usual state is transformed

into another high dimensional state, and a linear dynamic model is estimated in the

newly defined state. The work Korda and Mezić (2018) presents the identification

approach of such models, and also discusses how the models can be subsequently used

in a linear MPC controller. Lusch et al. (2018) propose to use deep networks to identify

the high dimensional state space in which the process dynamics are approximately

linear. Several researchers are currently investigating the use of the Koopman operator

based dynamic modeling approach in the process control literature (Schulze et al.,

2022; Narasingam and Kwon, 2019).

Depending on the intended use, two types of Koopman operator dynamic model

may be estimated from data. In the first approach (Korda and Mezić, 2018), a nonlinear

function is determined to transform the usual state to the higher dimensional state,

but a linear matrix is identified to transform that state back to the usual state. The

approach gives a linear dynamic model between the control inputs and measurements.

The model may be suitable for use in an MPC controller. But it cannot be used to

determine an economically profitable steady state by systematically accounting for the

nonlinearity in the process. In the second approach (Lusch et al., 2018), nonlinear

functions are estimated from data to perform both the transformations (from the usual

state to the higher dimensional state, and vice versa). The approach gives a model with

similar characteristics as a black-box NN, and is highly nonlinear between the control
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inputs and measurements. Due to the above issues with both the approaches, we do not

consider the Koopman operator based approach for process modeling and optimization

in this chapter.

Overview of contributions

In this chapter, we develop a hybrid process modeling approach that utilizes both

the available first principles knowledge and neural networks estimated from data. The

hybrid model is first structured using the first principles knowledge, and it contains

some unknown functions that are parameterized using black-box NNs. We next esti-

mate the parameters in the NNs by solving a multistep ahead prediction error minimiza-

tion problem, which is one of the novel features of our proposed modeling framework.

In the proposed approach, we treat both the full state and output measurement cases.

And multiple NNs to approximate different unknown functions in the hybrid model can

be conveniently incorporated in the model identification problem.

We present case studies using an illustrative chemical reactor and a styrene poly-

merization process. The effectiveness of the hybrid modeling approach to estimate

accurate dynamic models is illustrated. We further demonstrate the suitability of the

estimated hybrid models to determine an accurate optimum when they are used in a

steady-state economic optimization problem. In the case studies, we also discuss the

type of data that should be collected from the plant when the final goal is to use the

estimated models in steady-state optimization. We also examine different plausible

function parameterization choices of the NNs used to represent the unknown func-

tions in the hybrid models. We emphasize that the NNs should be parameterized with

enough structural insights about the functions being approximated to obtain a good

economic performance.

The rest of this chapter is organized as follows. In the next section, we present the
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proposed hybrid modeling framework. Section 5.3 discusses the approach used to es-

timate black-box NN models for comparisons in the simulation studies. In Section 5.4,

we outline the steady-state optimization formulation used to examine the economic

performances of the estimated models. In Section 5.5, we present detailed simulation

studies to demonstrate the effectiveness of the hybrid modeling framework to estimate

accurate dynamic models, and to highlight the suitability of the models to obtain ac-

curate steady-state optimums. We discuss some conclusions of this thesis chapter in

Section 5.6.

Portions of the methods and results presented in this chapter are to appear in Kumar

and Rawlings (2023a). The mathematical notation used in this chapter are given in

Section 1.3.

5.2 Hybrid process modeling

The goal of the process modeling methods presented in this chapter is that given

a time series of data collected from a plant, estimate a continuous or discrete time

representation of the dynamics of the plant. We assume that the plant dynamics may

be governed by the nonlinear ordinary differential equations (ODEs)

dx

dt
= f(x, u) (5.1)

y = h(x) + v (5.2)

Here, x ∈ Rn is the state, y ∈ Rp is the measurement, u ∈ Rm is the control input, and

v ∈ Rp is a Gaussian random measurement noise. This noise term is of zero mean and

covariance Rv. To generate the training data from the plant, we discretize the plant

using the Runge-Kutta 4 (RK4) method (Butcher, 1996). We assume that any large
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disturbances to the plant remain constant during the data generation step.

To design a dynamic process model of the plant (5.1) – (5.2), we first write down a

set of ODEs from the available first principles knowledge. These ODEs define the main

structure of the dynamic model and could be developed using chemical engineering

fundamentals on mass and energy balances. These ODEs may contain some functions

for which no domain knowledge is available. Those functions are parameterized using

black-box NNs and unknown parameters in these NNs are subsequently estimated from

data. We write the hybrid model in continuous time as follows

dxg
dt

= fg(xg, u, z; θNN) (5.3)

y = hg(xg) (5.4)

in which xg ∈ RNg denote the modeled states, and fg(·) and hg(·) define the modeled

dynamic and measurement functions. This hybrid model contains a few black-box NNs

that are used to represent some complex, unknown functions. The weights and biases

in all those NNs are contained in the parameter θNN . We use the hyperbolic tangent

as the activation function in all the NNs, so that standard gradient based optimiza-

tion solvers can be subsequently applied to the hybrid models for use in steady-state

optimization. The vector z in the hybrid model consists of a recent history of past

measurements and control inputs. The vector is defined for every instant t as follows

z(t) =

[
y(t−Np∆)′, .., y(t−∆)′, .., u(t−Np∆)′, .., u(t−∆)′

]′
(5.5)

in which t ≥ 0, ∆ is the sample time of the measurements from the plant, and Np∆

defines the amount of past information used in the vector. For discrete time, we use

the past measurements and control inputs at the previous sample times to define the
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vector z, similar to (5.5).

The modeled states xg, and/or the vector z defined above are provided as inputs

to the NNs used to represent the unknown functions in the hybrid model. We use

the vector z for those situations when the unknown function being approximated by

a NN can potentially depend on the unmeasured states in the plant. This approach of

using a recent collection of measurements and control inputs has long been used in

the system identification literature to develop dynamic models for systems with only

output measurements (Ho and Kalman, 1966; Qin, 2006). The parameter Np in (5.5)

can be tuned heuristically to be a small integer that provides a good fit of the hybrid

model to the collected training data.

The next step after developing the structure of the hybrid model is to obtain a

discrete time representation of the model, so that it can be used for training. We

use the RK4 method for this discretization step and obtain a state space form of the

hybrid model. We then use the state space model in a multistep ahead prediction error

minimization problem to determine the unknown parameters in the NNs from training

data. The hybrid model is discretized as follows

k1 = fg(xg, u, z; θNN) (5.6)

k2 = fg(xg + (∆/2)k1, u, z(t+ ∆/2); θNN) (5.7)

k3 = fg(xg + (∆/2)k2, u, z(t+ ∆/2); θNN) (5.8)

k4 = fg(xg + ∆k3, u, z(t+ ∆); θNN) (5.9)

xg(t+ ∆) = xg(t) +
∆

6
(k1 + 2k2 + 2k3 + k4) (5.10)

x+g = fgd(xg, u, z; θNN) (5.11)

For this RK4 discretization step, the variable z(t+∆) is straightforward to obtain based
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on the definition of the vector z in (5.5). For the variable z(t + ∆/2), however, we

require the values of the control inputs and measurements in between some sample

times. For the training data generation in the case studies, the plant is simulated using

a zero order hold assumption on the control inputs between any two time steps. So

to construct the variable z(t + ∆/2) in the above discretization step, we also assume

that the control inputs between any two sample times is the same as the value at the

previous time step. To obtain the measurements between any two sample times for the

variable z(t + ∆/2), we use linear interpolation on the measurements at the nearest

two sample times. Depending on the modeling problem considered in the case studies,

the vector z may also not be required as an input to the NNs if all the plant states are

measured. In this case, the linear interpolation on the measurements is not required

since the variable z would not be used in the hybrid model.

To use the hybrid model in a multistep ahead prediction error minimization prob-

lem, it is convenient to have a discrete time state space representation of the model.

The variable z also changes at every time step. So to aid the prediction process, we

also write the following dynamics for the variable z

z+ =

[
z′p+1:Npp

, hg(xg)
′, z′Npp+m:Np(p+m), u

′
]′

z+ = fz(xg, u, z) (5.12)

The combination of equations (5.11) and (5.12) completely define the state space form

of the hybrid model. The full model uses the vector
[
x′g, z

′
]′

as the state.

After developing the state space description of the hybrid model, we use it in a

multistep ahead prediction error minimization problem to estimate the unknown pa-

rameters in the NNs. We assume in the training problem that the data from the plant

may be collected in the form of one or multiple trajectories, so we minimize the pre-
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diction errors of the hybrid model across the data in all the trajectories. We solve the

following optimization problem

min
θ0, θNN

Ntr∑
i=1

Nt∑
k=0

|yi(k)− ŷi(k)|2 (5.13)

s. t. x+gi = fgd(xgi, ui, zi; θNN) (5.14)

z+i = fz(xgi, ui, zi) (5.15)

ŷi = hg(xgi) (5.16)

xgi(0) = f0(yi(0), zi(0); θ0) (5.17)

in which, the subscript i denotes the trajectory number of a data sequence. The state

space form of the hybrid model is used in (5.14) - (5.16) when making the measure-

ment predictions over the future horizon in the optimization problem.

To make the future measurement predictions in each trajectory, we require the ini-

tial states (xgi(0), zi(0)). The states zi(0) can be constructed using the recent history of

measurements and control inputs at the beginning of each data trajectory. The states

xgi(0) are developed using the function f0(·), which is chosen based on the information

about the plant measurements. In the case studies in this chapter, we consider two

cases: full and partial state measurements from the plant. For the full state measure-

ment case, we directly use all the plant measurements (noisy) to construct the states

xgi(0), and f0(yi(0), zi(0); θ0) = yi(0). For the output measurement case, we use another

NN to predict the unmeasured states. The recent history of information contained in

the vector zi(0) are provided as inputs to this NN. The weights and biases in this NN are

contained in the parameter θ0. The unmeasured states predicted by this NN are then

appropriately concatenated with the measurements yi(0) to give the function f0(·) and
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construct the full initial state vector xgi(0). The decision variables in the optimization

problem are unknown weights and biases in all the NNs (θNN) used to approximate the

unknown functions in the hybrid model, and the another introduced NN (θ0) used to

predict the initial unmeasured states.

As we also discussed in the previous chapter in Section 4.4, the typical approach

in the grey-box parameter estimation literature to handle unmeasured states is to in-

troduce decision variables for all the initial states directly in the model identification

problem. We choose the approach describe above of introducing another NN in the

optimization problem instead of solving for the initial states because the stochastic gra-

dient algorithm does not perform effectively if some decision variables appear only in

some data trajectories when solving a problem of the type 5.13. With the proposed

approach, we estimate only one function to handle the unmeasured states, and this

function remains the same across different data trajectories.

The hybrid model training optimization problem is solved using the software Ten-

sorFlow, using the stochastic gradient algorithm Adam. The model identification prob-

lem can be constructed to solve symbolically using customizable recurrent network

classes available in the software. We note that to solve the problem 5.13, the software

constructs symbolic graphs so that analytical derivatives of the objective function can

be computed during the optimization problem. The size of the symbolic graphs can

grow large if the future prediction horizon in the problem is too large. Thus, the train-

ing data collected from the plant should be organized into multiple trajectories so that

the optimization problem is tractable to solve.

All the variables for the model identification problem are scaled as follows. The

measured variables such as the control inputs and measurements are scaled using the

mean and standard deviation of the variable. For example, the measurements are

167



Hybrid process modeling with application to economic optimization Chapter 5

scaled using the relation

y = (y − µy)/σy (5.18)

in which, µy and σy are the mean and standard deviation of the measurement. These

two quantities for scaling are computed over the entire training data collected from the

plant. The NNs used to approximate the unknown functions in the hybrid model ODEs

should give predictions of the functions in the physical units. The weights and biases

in the NNs during the training process typically take some small values. So the outputs

of the NNs should also be scaled so that some scaled quantities are actually inferred

by the NNs during the training process. This additional scaling should be performed

based on how the outputs of the NNs enter the hybrid model. We perform this scaling

based on the modeling problem at hand, and we mention our approach for the example

systems considered in the case studies in Section 5.5.

5.3 Black-Box modeling

In the case studies in this chapter, we also consider a black-box NN for comparison

with the hybrid modeling approach. We next describe the model formulation and the

training approach used to develop black-box NNs in the case studies in this chapter.

We do not use any first principles based process knowledge to estimate a black-box

NN, and the model is developed directly in discrete time using training data.

First, we parameterize a standard feedforward NN to predict the current measure-

ment based on the recent observations of measurements and control inputs contained

in the vector z. Then, we write down a state space description of the black-box NN

model and use it in a multistep ahead prediction error minimization problem to deter-
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mine the unknown parameters in the network.

The black-box NN used to predict the current measurement is parameterized as

follows

y = hN(z; θNN) (5.19)

in which, hN(·) is the measurement function parameterized by a black-box NN, and

θNN contains the weights and biases in that NN. We use the hyperbolic tangent as the

activation function in the NN so that standard gradient based solvers can be applied

subsequently over the model for steady-state optimization.

Further, we write the following dynamics for the state z to make the measurement

predictions over a future horizon using the black-box model

z+ =

[
z′p+1:Npp

, hN(z; θNN)′, z′Npp+m:Np(p+m), u
′
]′

z+ = fz(z, u; θNN) (5.20)

The equation (5.20) defines the state space form of the black-box model. The vector

z is the state in the black-box model. We next use this state space description in the

following optimization problem to determine the unknown parameters in the black-box

network

min
θNN

Ntr∑
i=1

Nt∑
k=0

|yi(k)− ŷi(k)|2 (5.21)

s. t. z+i = fz(zi, ui; θNN) (5.22)

ŷi = hN(zi; θNN) (5.23)

Here, the subscript i is used to enumerate the training data trajectories. The problem is
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also a multistep ahead prediction error minimization problem. The decision variables

in the optimization problem are the weights and biases in the measurement function

NN (θNN). The optimization problem is also solved using the software TensorFlow and

the stochastic gradient algorithm Adam.

We note that the black-box NN model formulation and the training approach dis-

cussed in this section can also be viewed as a recurrent NN with a predefined state (z)

and dynamics. We scale all the variables (measurements and control inputs) for the

training problem using their mean and standard deviations computed over the entire

training data.

5.4 Steady-state economic optimization

The intended purpose of developing the process models is to finally use them for

process optimization. The RTO layer in the process industries uses a nonlinear process

model to determine the economically profitable steady states in real time during the

process operation. The RTO layer is thus a suitable and impactful place to use the

developed hybrid models for process operations.

In the case studies, we solve the following steady-state optimization problem typi-

cally solved at the RTO layer

min
xs,us

`(xs, us; p) (5.24)

s. t. f(xs, us) = 0 (5.25)

g(xs; p) ≤ 0 (5.26)

u ≤ us ≤ u (5.27)

in which, p denotes some parameters characterizing the raw material cost, product
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price, or some specific product goal. The decision variable in this optimization problem

is the steady-state pair (xs, us). The steady-state constraint (5.25) in the optimization

problem is implemented based on the type of the process model. For the plant and hy-

brid models that do not use the variable z, we implement that constraint in continuous

time as shown in the problem. For the black-box and hybrid models that use the vari-

able z, the steady-state constraint is implemented in discrete time using the equation

f(xs, us) = xs.

The optimization problem (5.24) is solved using the software CasADi (Andersson

et al., 2019). For the case studies, we examine the following two aspects to gauge the

suitability of the estimated hybrid models for use in steady-state optimization

• The nature of the cost curve defined by the function `(·) at the steady states of

the model for a fixed parameter p.

• The solutions of the optimization problem for a range of economically relevant

parameters p ∈ [p, p].

For both the types of analysis, we compare the solutions obtained with the estimated

models with that of the plant.

5.5 Application examples

In this section, we present case studies using two nonlinear chemical process ex-

amples to demonstrate the ability of the hybrid process modeling approach to yield

accurate dynamic models, which can also achieve good economic performance when

subsequently used in steady-state optimization. We highlight the type of training data

that should be collected from the plant if the goal is to use the model subsequently

in steady-state optimization. We also consider multiple hybrid models with different
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parameterization choices of the NNs used to represent the unknown functions, and

examine the effect of the choices on the final economic performance.

5.5.1 Illustrative chemical reactor

A, B, C

cAfQf

cA
cB

Figure 5.1: Diagram of the simple continuous stirred tank reactor (CSTR).

A simple continuous stirred tank reactor (CSTR) shown in Figure 5.1 is studied

for the first example. A single feed stream enters the reactor, which operates at a

constant temperature and volume. The feed stream consists of primarily the species A.

The CSTR facilitates the following two reactions to form a desired species B and an

undesired species C

A
r1−−→ B (5.28)

3 B
r2←−→ C (5.29)

The second reaction that produces the undesired species C is reversible. We use the

following equations to simulate the plant
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dcA
dt

=
F (cAf − cA)

V
− r1 (5.30)

dcB
dt

=
−FcB
V

+ r1 − 3r2 (5.31)

dcC
dt

=
−FcC
V

+ r2 (5.32)

r1 = k1cA, r2 = k2fc
3
B − k2bcC (5.33)

The concentration of the three species are the states in the plant with x = [cA, cB, cC ]′.

The measurements are the concentrations of only the speciesA andB with y = [cA, cB]′.

The feed flow rate F to the reactor remains constant. And the concentration of the

species A in the feed stream is the manipulated control input u = cAf . The sample

time of the measurements from the plant is 1 minutes. The other model details such as

the parameters used in the ODEs (5.30) – (5.32), the covariance of the measurement

noise, etc, used to simulate the plant are given in the Appendix 5.6 in Table 5.4.

We develop a hybrid model for the chemical reactor by first writing down the struc-

ture of the dynamic model as set of ODEs using mass balances. We assume that the

two reaction rates in the ODEs are unknown. We parameterize the reaction rates using

black-box NNs, and the unknown weights and biases in these NNs are subsequently

estimated using training data collected from the plant. We consider two choices of the

NN parameterization to approximate the reaction rates and develop two hybrid models.

For the first model, we assume that the knowledge about the existence of the species C

is known during the process modeling step. So we write down the mass balances for all

the three concentrations and the reaction rates are parameterized using two separate
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NNs as follows

r1 = fr1(cA; θr1) (5.34)

r2 = fr2(cB, cC ; θr2) (5.35)

in which, θr1 and θr2 are the parameters in the NNs used to approximate the reaction

rates. This hybrid model has the full structural knowledge about the plant dynamics,

and we subsequently refer to it as the Hybrid-F model.

For the second model, we assume that the knowledge about the existence of the

species C is not known during the process modeling step. We write down the mass

balances for only the concentrations of the species A and B. The first reaction is pa-

rameterized similarly as the Hybrid-F model. The second reaction is parameterized as

a function of the concentration of B and the vector z. We use two NNs for the reaction

rates as follows

r1 = fr1(cA; θr1) (5.36)

r2 = fr2(cB, z; θr2) (5.37)

This hybrid model uses the recent history of information contained in the vector z to

infer the dependence of the species C on the second reaction rate r2. This second

model uses only some partial knowledge about the plant dynamics, so we refer to it

subsequently as the Hybrid-P model.

To develop both the hybrid models, we assume that all the other parameters that

describe the mass balances such as the feed flow rate and the volume of the reactor are

known. The outputs of the NNs that predict the first reaction rate in the hybrid models

are scaled using the standard deviation of the concentration of A. And the output of
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the NNs that predict the second reaction rate are scaled using the standard deviation

of the concentration of B. Both these two standard deviations for this scaling step are

computed over the entire training data.
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Figure 5.2: Plant measurements and model predictions on the validation data that
contains almost no steady-state information about the plant.

First, we illustrate the type of training data that should be collected from the plant
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Figure 5.3: Plant measurements and model predictions on the validation data that
contains a sufficient steady-state information about the plant.

if the final goal is to use the estimated hybrid models in steady-state optimization. In

industrial applications, dynamic data is typically abundant due to time varying dis-

turbances and operating conditions. The abundant availability of dynamic data may

encourage practitioners to develop hybrid models from such data, but then use the
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estimated models in steady-state optimization. We highlight that to obtain good eco-

nomic performance using the hybrid models, the plant data used for training should

contain enough steady-state information about the plant. With this purpose, we gen-

erate two types of data set from the plant containing almost none and a plenty of

steady-state information, respectively. We simulate the plant using pseudo random bi-

nary signals (PRBS) of the control input. The values of the control input are sampled

from a uniform distribution in the constraint set [u, u]. And we change the sampled

values at different hold durations to specify whether any steady-state information is

captured in the training data. These hold durations are chosen as 5 and 90 minutes to

generate data sets with none and enough steady-state information, respectively. The

values of the range ([u, u]) in which the control inputs are sampled are given in Table

5.4. Both the types of data sets are generated for a total of 36 hours. We use 24 hours

for training, 6 hours as the holdout set, and the remaining 6 hours of data for model

validation.

Based on the two generated data sets, we train three models: Hybrid-F, Hybrid-P

and a Black-Box model. To develop the models, we choose Np = 2 to construct the

vector z of recent history of past measurements and control inputs. After the model

training, we examine the predictions of the estimated models on the 6 hours of valida-

tion data kept from the two types of data sets. Figure 5.2 (no steady-state information)

and 5.3 (sufficient steady-state information) show the model predictions on the two

validation data sets. We observe that all the three estimated models accurately predict

the plant measurements for their respective data sets. In Table 5.1, we report the ar-

chitectures of the NNs used in the three models, the training time, and the root mean

squared error (RMSE) metric obtained by the models on the validation data. The lat-

ter two metrics in the table are shown for the case when the models are trained with

the data containing enough steady-state information about the plant. The RMSE met-

177



Hybrid process modeling with application to economic optimization Chapter 5

rics show that all the estimated models predict the plant measurements almost equally

well. The training times highlight that the Black-Box model is the fastest to train, but

the two hybrid models can also be developed in a reasonable amount of time.
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Figure 5.4: Cost curves of the plant and the estimated models when developed using
the data set that contains almost no steady-state information.

We next examine the steady-state optimization solutions of the models estimated

using the two data sets. We consider an economic optimization problem of the form

discussed in the previous Section 5.4. The objective function in the problem accounts

for the raw material cost of the species A and selling price of the product B as follows

`(xs, us; p) = pAcAf − pBcB (5.38)
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Figure 5.5: Cost curves of the plant and the estimated models when developed using
the data set that contains a sufficient steady-state information.

The control inputs constraints ([u, u]) used for the problem are the same as bounds

used to generate the training data, and are given Table 5.4. We do not consider any

state constraint g(·) for this example. The parameter vector p = [pA, pB]′ defines the

economic cost and characterizes the optimization problem.

Figures 5.4 and 5.5 show the cost curves of the estimated models obtained after

training with the two types of data sets. The cost curves are computed by first solving

the steady-state equation of the models at some control input values, which are chosen

by discretizing the constraint set [u, u]. And then evaluating the cost function at the

computed steady states. The parameter vector in the cost function is chosen as p =

[100, 1000]′. Figure 5.4 shows the cost curves of the models after training with the
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data that contains almost no steady-state information. We notice that although the

estimated models obtained a good fit to that type of data (as seen from the model

predictions in Figure 5.2), the models have an inaccurate representation of the steady-

state plant cost curve. And using the optimal solutions of these estimated models would

yield a highly suboptimal economic performance. Figure 5.5 shows the cost curves of

the models obtained after training using the data that contains a sufficient steady-state

information about the plant. We observe that the cost curves of the hybrid models are

similar to the plant curve. The optimal solutions of these two models are also close

the plant optimum. The Black-Box model, however, has two optimal solutions. And

it is still not reliable after training with the data containing a plenty of steady-state

information.

We also examine the quality of the reaction rate approximations by the estimated

NNs in the two hybrid models. For this purpose, we compute the relative error (e =

|r1− r1NN |/|r1|) in the predictions of the first reaction rate in a range of the concentra-

tions of the species A (cA). The error is computed using the NNs that approximate the

first reaction rate in the Hybrid-F and Hybrid-P models, obtained after training with

the data set that contains a sufficient steady-state information about the plant. We plot

the computed errors in Figure 5.6. We observe that the errors in this first reaction rate

are small (below 0.1) in the majority of the state space. Next, we examine the errors

in the predictions of the second reaction rate. The second reaction is reversible, and at

equilibrium, the reaction rate is zero. So rather than computing the relative error, we

use a modified error defined as e = |r2 − r2NN | − ε1|r2| − ε2 to examine the quality of

prediction errors in this second reaction. We choose ε1 = ε2 = 5× 10−2, and a value of

e < 0 means that the reaction rate is well predicted by the NN. The modified error is

computed in the state space of the concentrations of the species B and C. We compute

the errors for the NN estimated in only the Hybrid-F model, because the NN used to
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Figure 5.6: Relative errors (|r1− r1NN |/|r1|) in the first reaction rate by the estimated
NNs in the hybrid models in the state space of the concentration of the species A.

approximate the second reaction rate in the Hybrid-P takes the vector z as the input

rather than the concentration cC . The modified error for the Hybrid-F model is plotted

in Figure 5.7. The modified error value in a majority of the state space is less than

zero, which show that the second reaction rate is accurately predicted by the NN in the

Hybrid-F model.

The cost curves of the estimated models and the plant in Figure 5.5 are shown for

a fixed value of the parameter p in the optimization problem. We next examine the

solutions of the optimization problem for different values of the parameter p in a range

[p, p]. This study is performed to comprehensively gauge the quality of the optimums
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Figure 5.7: Modified errors (|r2 − r2NN | − ε1|r2| − ε2) in the second reaction rate by
the estimated NN in the Hybrid-F model in state space of the concentrations of the
species B and C. The black line shows the equilibrium curve (k2fc3B = k2bcC) of the
second reaction.

of the estimated models for a range of operating conditions. The parameter range [p, p]

(given in Table 5.4) is chosen such that the control input constraint set is thoroughly

explored at the optimum solutions of the plant. We sample 100 parameter values in the

range using a uniform distribution. For each sampled parameter, we solve the steady-

state optimization problem for the plant and the estimated models. Then, we compute

the following three metrics to examine the quality of the optimums of the estimated

models.

• Optimal input error defined as |us − u∗s|/|u∗s|. In this metric, u∗s is the optimal
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Figure 5.8: Histograms of the optimal control input errors obtained after solving the
optimization problems with the Hybrid-F, Hybrid-P, and Black-Box models.

control input of the plant, and us is the optimal control input of the estimated

model.

• Performance loss of the model defined as |Vs−V ∗s |/|V ∗s |. Here, V ∗s is the cost value

obtained by solving the optimization problem with the plant model. And Vs is the

cost obtained when the plant is operated at the steady state corresponding to the

optimum of the estimated model.

• Time required to solve each optimization problem.

We initialize all the optimization problems at the steady state of the model corre-

sponding to the midpoint of the input constraint set. Figures 5.8 and 5.9 show the

histograms of the optimal input errors and the performance losses obtained after solv-
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Figure 5.9: Histograms of the performance losses obtained after solving the optimiza-
tion problems with the Hybrid-F, Hybrid-P, and Black-Box models.

ing all the optimization problems for the plant and the estimated models. The means of

the above three metrics are also reported in Table 5.1. We observe that all the models

provide good economic performance with the loss metric between 0.08 − 0.61%. The

Black-Box model has larger optimal control input errors than the hybrid models with

a mean of 11.6%. We note, however, that the performance of the Black-Box model

can deteriorate significantly for a poor initial guess in the steady-state problem. Be-

cause we also observe from the cost curve in Figure 5.5 that the Black-Box model has

two optimums. The optimization problem solution times reported in Table 5.1 are less

than 1 seconds for all the models, which show that the steady-state problem can be

conveniently solved in applications with all the estimated models.
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Model Neural network
architectures

Prediction error
(RMSE)

Training
time

(min)

Average
Optimal

input error

Average
Performance loss

Average
Optimization

time (sec)

Hybrid-F
fr1 = [1, 8, 1]

fr2 = [2, 32, 32, 1]
f0 = [2, 16, 1]

0.16 14.97 4.24 % 0.13 % 0.50

Hybrid-P fr1 = [1, 8, 1]
fr2 = [7, 32, 32, 1]

0.16 14.51 3.77 % 0.08 % 0.68

Black-Box hN = [6, 64, 64, 2] 0.18 2.89 11.65 % 0.61 % 0.52

Table 5.1: Metrics summarizing the simulation study performed for the chemical re-
actor example.

5.5.2 Styrene polymerization process

Polymerization reactors have a large-scale application in the process industries, and

they also pose significant challenges for dynamic modeling and control due to their

nonlinear dynamics (Congalidis and Richards, 1998; Ray, 1985). We next consider a

styrene polymerization example to demonstrate the effectiveness of the hybrid model-

ing approach to yield an accurate model that can also be used to obtain good steady-

state economic performance.

Polymerization
Reactions

Q̇c

cI, cM
cS, T
λ0, λ1, λ2

QM

QI
QS

Figure 5.10: A schematic of the styrene polymerization system.
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The polymerization reactor system shown in Figure 5.10 is considered. Three feed

streams enter the reactor, containing the initiator, the monomer, and the solvent. The

outlet stream contains the polystyrene product and unreacted monomer. We use the

ODEs shown in equations (5.39) – (5.45) to simulate the plant. The dynamic model

is obtained from Ray (1972); Hidalgo and Brosilow (1990); Prasad et al. (2002). The

plant has four manipulated control inputs u = [QI , QM , QS, Q̇c]
′, which correspond to

the flow rates of the three feed streams and the cooling duty supplied to the reactor

to remove the heat generated by the polymerization reactions. The states (x) in the

plant dynamics are the concentrations of the initiator (cI), the monomer (cM), the

solvent (cS), the reactor temperature (T ), and the first three moments characterizing

the polymer molecular weight distribution (λ0, λ1, λ2).

dcI
dt

=
QIcIf −QocI

V
− rI(cI , T ) (5.39)

dcM
dt

=
QMcMf −QocM

V
− rM(cI , cM , T ) (5.40)

dcS
dt

=
QScSf −QocS

V
(5.41)

dT

dt
=
Qo

V
(Tf − T ) +

rM(cI , cM , T )∆Hr

ρCp
− Q̇c

ρCpV
(5.42)

dλ0
dt

= g0(cI , cM , cS, T )− Qoλ0
V

(5.43)

dλ1
dt

= g1(cI , cM , cS, T )− Qoλ1
V

(5.44)

dλ2
dt

= g2(cI , cM , cS, T )− Qoλ2
V

(5.45)

The reaction rates of the initiator and monomer (rI , rM), and the functions char-

acterizing the polymer moment dynamics (g0, g1, g2) are all nonlinear functions of the

quantities shown in the ODEs. The expressions for these five functions and other model

details used to simulate the plant are given in Appendix 5.6 and Table 5.5. We non-
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dimensionalize the ODEs to simulate the plant. We assume that all the states in the

plant are measured in the training data to develop the hybrid and black-box models.

And the sample time of the measurements is chosen as 1 minutes.

When developing a dynamic model for this styrene polymerization system, param-

eterizing the reaction rates (rI , rM) and the moment functions (g0, g1, g2) using the

available first principles knowledge can be a challenging task in applications. We ap-

ply the hybrid modeling approach for the polymerization system and use black-box

NNs to approximate these functions using training data collected from the plant. First,

we write down the dynamics for all the states using mass and energy balances and

assume that those five functions are unknown. We parameterize the functions using

NNs. We consider two plausible parameterization choices of the NNs to approximate

the unknown functions and develop two hybrid models.

For the first model, we assume that the functional dependencies of the reaction rates

and polymer moment functions are known exactly as in the plant. We parameterize

the functions using five separate NNs, and the known functional dependencies of each

function are provided as inputs to the NNs. The five NNs are parameterized as follows

rI = frI(cI , T ; θrI) (5.46)

rM = frM(cI , cM , T ; θrM) (5.47)

g0 = fg0(cI , cM , cS, T ; θg0) (5.48)

g1 = fg1(cI , cM , cS, T ; θg1) (5.49)

g2 = fg2(cI , cM , cS, T ; θg2) (5.50)

in which, θrI , θrM , θg0, θg1, and θg2 denote the parameters in the five networks. The hy-

brid model developed using this approach utilizes the full structural knowledge about
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the plant dynamics, and the dependencies of the unknown functions. We refer to the

model developed with this approach as the Hybrid-F model.

For the second hybrid model, the five unknown functions are parameterized using

two NNs (vector-valued) as follows

 rI
rM

 = fr(cI , cM , cS, T ; θr) (5.51)


λ0

λ1

λ2

 = fg(cI , cM , cS, T ; θg) (5.52)

in which, θr and θg denote the parameters in the two networks. The first NN fr(·) has

some extra noisy inputs to predict the raection rates. And both the NNs in this parame-

terization have the potential to learn some unrelated correlations across the functions

due to the limited amount of available training data. We examine the performance

of this hybrid model particularly to study the impact on the final economic perfor-

mance when some mismatch in the NN function parameterization are made during

the process modeling step. The hybrid model developed with the above NN parame-

terization has only partial knowledge about the dependencies of the functions being

approximated. So we refer to the model developed with this approach as the Hybrid-P

model. For the training optimization problem, we scale the NN outputs of the functions

rI , rM , g0, g1, g2 using the standard deviations of the variables cI , cM , λ0, λ1, λ2, respec-

tively. The standard deviations of these variables for the scaling step are computed

using their measurements over the entire collected training data.

We generate a total of 5 days of training data set by simulating the styrene poly-

merization plant using a PRBS control input sequence. From the 5 days of data, we
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Figure 5.11: Twelve hours of sample training data set used to develop the hybrid and
black-box models for the styrene polymerization system.

189



Hybrid process modeling with application to economic optimization Chapter 5

0

25

50

c I
(m

ol
/m

3
)

0

200

400

c M
(m

ol
/m

3
)

0

1000

2000

c S
(m

ol
/m

3
)

325

330

T
(K

)

0

5

λ
0

(m
ol

/m
3
)

0

50

100

λ
1

(m
ol

/m
3
)

0

20000

λ
2

(m
ol

/m
3
)

0.0

0.2

0.4

Q
I

(m
3
/s

ec
)

0.025

0.050

0.075

Q
M

(m
3
/s

ec
)

0 5 10

Time (hours)

0.00

0.05

0.10

Q
S

(m
3
/s

ec
)

0 5 10

Time (hours)

100

200

Q̇
c

(W
)

Plant Hybrid-F Hybrid-P Black-Box

Figure 5.12: Predictions of the estimated hybrid and black-box models compared to
the plant measurements on the validation data set. The hybrid models provide accu-
rate predictions of the plant measurements, but the black-box model has a noticeably
poor predictions at many time steps.
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use 4 days for training, 12 hours as the holdout set, and keep 12 hours of data for

validation. The first 12 hours of measurements and control inputs in the training data

is shown in Figure 5.11. Based on the generated data, we train three models: Hybrid-F,

Hybrid-P, and a Black-Box model. The architectures of the NNs used in the three mod-

els are given in Table 5.3. The training data for the multistep ahead prediction error

minimization problem is split into multiple trajectories each of length 1 hour. So that

the size of the computation graph constructed to solve the problem is reasonable, and

the model identification problem can be solved tractably.

After the model training step, we examine the predictions of the estimated models

on the 12 hours of data kept for validation. Figure 5.12 shows the predictions of

the estimated models on the validation data. We observe that both the Hybrid-F and

Hybrid-P models accurately predict the plant measurements. The Black-Box model,

however, has a noticeably poor predictions at many time steps. We also compute the

RMSE metric of the estimated models on the 12 hours of validation data, which are

reported in Table 5.3. The metric is around 0.12 and 0.15 for the two hybrid models,

whereas 0.34 for the Black-Box NN model. The metrics also highlight that the Black-

Box model has poor predictions of the plant measurements compared to the hybrid

models.

We also report the time required to solve the training optimization problem for

the three models in Table 5.3. The Black-Box model is the fastest to train, and requires

around 7.5 minutes. The hybrid models require around 38 and 31 minutes for training.

The training optimization problem would be typically solved offline in applications.

And the times required to solve the training problem for all the models show that they

can be conveniently developed in applications after the training data is collected from

the plant.

We next examine the quality of function approximations obtained by the estimated
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Figure 5.13: Histograms of the approximation errors of the reaction rates and polymer
moment functions by the estimated NNs in the Hybrid-F model.

NNs in the hybrid models. Unlike the previous CSTR example, visualizing the errors

over the state space is not possible for all the functions in this example because some

of them depend on more than two variables. So we compute the errors on the train-

ing data set samples and examine the approximation quality on only the relevant state

space. For each training data sample, we compute the error metric e = |f − fNN | / |f |,

for each approximated function. Here, f denotes the actual function value in the train-

ing data, and fNN is the NN approximation of that function. We compute the error

metric for all the five functions using the NNs estimated in both the hybrid models.

Figures 5.13 and 5.14 show the histograms of the errors in the fives functions for the

Hybrid-F and Hybrid-P models, respectively. We also compute the median of the error

metrics for all the functions in both the hybrid models. The median errors are reported
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Figure 5.14: Histograms of the approximation errors of the reaction rates and polymer
moment functions by the estimated NNs in the Hybrid-P model.

in Table 5.2. We observe that the median errors range between 0.9 − 12.1% across all

the functions in both the hybrid models. The histograms in Figures 5.13 and 5.14 and

the median errors reported in Table 5.2 both illustrate that all the estimated NNs in the

hybrid models have obtained a good approximation of the unknown functions in the

styrene polymerization system.

The performances of the estimated models when they are used in an economic opti-

mization problem are examined next. We consider a steady-state optimization problem

of the form discussed in Section 5.4. We use the following economic cost and state
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Function Hybrid-F Hybrid-P
rI 4.47% 4.86%
rM 6.03% 4.91%
g0 0.96% 1.13%
g1 2.23% 1.49%
g2 10.41% 12.05%

Table 5.2: Median of the function approximation errors obtained by the estimated
NNs in both the hybrid models.

constraint in the problem

`(xs, us; p) = pIρIQIs + pMρMQMs + pSρSQSs

+ pEQcs − pPRMm(QIs +QMs +QSs)λ1s (5.53)

g(xs; p) = pMW −Mm
λ2s
λ1s

(5.54)

The stage cost `(·) considers the raw material costs of the initiator, monomer, solvent,

the energy cost incurred for reactor cooling, and the polystyrene product selling price.

The last term in the stage cost uses the production rate from the reactor Mm(QIs +

QMs+QSs), to compute the total product selling price. The state constraint g(·) imposes

a desired molecular weight constraint to be achieved in the polymer product during the

reactor operation. The vector p = [pI , pM , pS, pE, pPR, pMW ]′ contains all the parameters

that characterize the optimization problem. The control input constraints [u, u] used

for the problem are given in Table 5.5.

We sample a total of 500 values of the parameter vector p using a uniform distri-

bution in a range [p, p]. And the steady-state optimization problem is solved for each

estimated models and the plant with all the sampled parameter values. The values of

the bounds on the parameter p are given in Table 5.5. We choose these bounds such

that the optimal solutions of the plant thoroughly span the input constraint set. For
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each sampled parameter value and the optimization problem solved with the estimated

models, we compute the following four metrics

• Optimal input error: |us − u∗s|/|u∗s|

• Economic performance loss: |Vs − V ∗s |/|V ∗s |

• Time required to solve each optimization problem.

• Value of the molecular weight constraint g(·) at the steady state of the plant

corresponding to optimal control input of the estimated model.

The first three metrics are the same as the ones evaluated for the previous CSTR ex-

ample. In addition, we also compute the molecular weight constraint metric to gauge

whether the desired molecular weight is achieved when the plant is operated at the

optimal solution of the estimated models.

Figures 5.15, 5.16, and 5.17 show the histograms of the optimal control input er-

rors, performance losses, and the molecular weight constraint metric for all the op-

timization problems solved using the sampled parameters and the estimated models.

The average of the four metrics discussed above are also computed, which are summa-

rized in Table 5.3. We compute the average of the molecular weight constraint metric

for only those problems that give an optimal solution such that the desired molecular

weight constraint is not satisfied during the plant operation. This computed mean is

reported as the average constraint violation in the Table. In Figure 5.16, we notice that

the distribution of the economic performance loss metric for the Hybrid-F model is non-

linear. And it has two modes with an uneven number of samples at the modes. Such a

distribution is challenging to characterize using just one metric, so we also report the

median of the performance loss metric in Table 5.3.
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Figure 5.15: Histograms of the optimal control input errors obtained by solving the
steady-state optimization problems for the Hybrid-F, Hybrid-P, and Black-Box models.

We observe from the metrics in the Table that the Hybrid-F model provides the best

performance. The model achieves the least optimal control input error, performance

loss, and constraint violation. The medians of the economic performance loss metric

are 6.4%, 17.6%, and 93.7% for the Hybrid-F, Hybrid-P, and Black-Box models, respec-

tively. The Hybrid-P model provides a poor performance compared to the Hybrid-F,

whereas, the Black-Box model gives an unacceptable performance for an industrial

application.

The average time required to solve the steady-state optimization problem for the

Black-Box model is around 22 seconds. And the two hybrid models require around

7 and 12 seconds. The RTO layer optimization problem in the process industries is

typically solved online on a slow time scale (hours). The optimization problem solution
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Figure 5.16: Histograms of the economic performance loss metric obtained by solv-
ing the steady-state optimization problems for the Hybrid-F, Hybrid-P, and Black-Box
models.

times of the estimated models show that they can be conveniently implemented at the

RTO layer for steady-state economic optimization.

The improved economic performance of the Hybrid-F model for this styrene poly-

merization example highlights that hybrid models should be developed be enough

structural insights to attain high performance. The performance of the Hybrid-P shows

that the economic performance of the estimated hybrid models has some robustness to

any mismatch in the NN parameterization during the process modeling step. However,

the steady-state economic performance is expected to deteriorate further if any more

mismatch in the NN parameterization are made in the process modeling step.
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Figure 5.17: Histograms of the molecular weight constraint metric computed by eval-
uating the state constraint g(·) at the steady state of the plant corresponding to the
optimum solutions of the Hybrid-F, Hybrid-P, and Black-Box models.

Model Neural network
architectures

Prediction
error

(RMSE)

Training
time

(min)

Average
Optimal

input error

% Performance
loss

(Mean, Median)

Average
constraint
violation

Average
Optimization

time (sec)

Hybrid-F

frI = [2, 32, 1]
frM = [3, 32, 1]

fg0 = [4, 192, 192, 1]
fg1 = [4, 192, 192, 1]
fg2 = [4, 192, 192, 1]

0.12 38.11 6.29% 12.20%, 6.41% 2.2 12.14

Hybrid-P fr = [4, 64, 2]
fg = [4, 256, 256, 3] 0.15 31.68 61.65% 17.44%, 17.60% 3.56 7.09

Black-box hN = [11, 384, 384, 7] 0.34 7.28 122.02% 81.7%, 93.74% 12.99 22.84

Table 5.3: Metrics summarizing the simulation study performed for the nonlinear
styrene polymerization example.
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5.6 Conclusions

In this chapter, we have presented a hybrid process modeling approach for non-

linear dynamical processes. The modeling approach utilizes the basic available first

principles knowledge often available in applications. And combines that knowledge

with neural networks (NNs) that approximate some unknown functions in the dynamic

model. The parameters in the networks are estimated by solving a multistep ahead pre-

diction error minimization problem, which is one of the novel features of the proposed

modeling approach. We treated both the full state and output measurement cases,

and multiple NNs to approximate different unknown functions in the hybrid model

may be conveniently included in the dynamic model. The output measurement case

was treated by using a vector of recent history of measurements and control inputs

to predict the unknown functions in the model that may potentially depend on the

unmeasured states.

We demonstrated the effectiveness of the hybrid modeling approach via simulation

studies with two nonlinear chemical process examples. In the first chemical reactor

example, we highlighted that to obtain good steady-state economic performance with

the hybrid models, the training data used for model development should contain suf-

ficient steady-state information about the plant. We also examined the quality of the

approximated reaction rates in the state space of the concentrations of the different

species in the reactor.

We next considered a challenging styrene polymerization example, in which black-

box NNs were used to approximate highly nonlinear reaction rates and some polymer

moment functions. We considered two different parameterization choices of the NNs

and developed two hybrid models. After the training step, the NNs in the hybrid model

obtain good approximations of the unknown nonlinear functions. And the overall mod-
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els are suitable to accurately predict the plant measurements. We then examined the

performances of the estimated hybrid models when they are used in steady-state op-

timization. We showed that to achieve good performance, the hybrid model should

be developed with enough structural insights about the dynamic model and functional

dependencies of the unknown functions. For the styrene polymerization example, a

hybrid model that utilizes the most possible structural information about the plant

achieved 6.7% median performance loss when compared to the plant.

This chapter concludes the contributions of thesis on developing dynamic process

models using both the available first principles knowledge and machine learning. In the

next final chapter, we summarize the contributions and conclusions from each chapter

in this thesis. And outline some future work directions for both hybrid process modeling

and feedback controller design using machine learning.
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Appendix

Model details for the chemical reactor example

We use the parameters provided in the Table below to simulate the plant and solve

steady-state optimization problems in the chemical reactor example considered in Sub-

section 5.5.1.

Parameters
k1 = 2× 10−1 mol/(m3·min)
k2f = 5× 10−1 m6/(mol2·min)
k2b = 1× 10−1 mol/(m3·min)
F = 0.6 m3/min
V = 15 m3

Rv = diag([5× 10−4, 1× 10−4])
u, u = 1, 3 mol/m3

p, p = [100, 500] , [100, 1500]

Table 5.4: Parameters used for the chemical reactor example.

Model details for the styrene polymerization example

We use the following expressions to compute the reaction rates and polymer mo-

ment functions (Ray, 1972; Prasad et al., 2002) in the plant model (5.39) – (5.45) for

the styrene polymerization example considered in Subsection 5.5.2.

rI = kdcI (5.55)

rM = 2fkdcI + (kp + kf )cMcP (5.56)

g0 = (kfskfcScM + ktdcP )αcP + (ktcc
2
P/2) (5.57)
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g1 =
cP

1− α
[
(kfscS + kfcM + ktdcP )(2α− α2) + ktccP

]
(5.58)

g2 =
cP

(1− α)2

[
(kfscS + kfcM + ktdcP )(4α− 3α2 + α3) + ktccP (2 + α)

]
(5.59)

Here, cP characterizes the overall concentration of the polymer radical and it is com-

puted using the expression

cP =

√
2fkdcI
ktd + ktc

(5.60)

The parameter α is the probability of propagation, and it is computed using the expres-

sion

α =
kpcM

(kpcM + kfscS + kfcM + (ktd + ktc)cP )
(5.61)

The reaction mechanism for the styrene polymerization process is outlined in Hidalgo

and Brosilow (1990). The rate constants in all the expressions above depend on the

reactor temperature, and they are computed as follows

kd = kd0e
−Ed/RT , kp = kp0e

−Ep/RT , kfs = kfs0e
−Efs/RT

kf = kf0e
−Ef/RT , ktc = ktc0e

−Etc/RT , ktd = ktd0e
−Etd/RT

To generate the training data and solve the steady-state optimization problem for

the plant, we non-dimensionalize the ODES (5.39) – (5.45) by redefining some of the
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Parameters Parameters

f = 0.6 kd0 = 2.38× 1016 1/sec

∆Hr = 2× 103 J/mol kp0 = 4.24× 106 m3/(mol·sec)

ρCP = 6× 104 J/m3K kfs0 = 3.65× 104 m3/(mol·sec)

V = 50 m3 kf0 = 2.12× 104 m3/(mol·sec)

cIf = 58.8 mol/m3 ktc0 = 2.5× 108 m3/(mol·sec)

cMf = 869 mol/m3 ktd0 = 2.5× 108 m3/(mol·sec)

cSf = 4000 mol/m3 Ed = 1.23× 105 J/mol

Tf = 330K Ep = 2.95× 104 J/mol

Mm = 0.10415 kg/mol Efs = 9.14× 104 J/mol

ρI = 1100 kg/m3 Ef = 5.30× 104 J/mol

ρM = 909 kg/m3 Etc = 7.01× 103 J/mol

ρS = 862 kg/m3 Etd = 7.01× 103 J/mol

R = 8.314 J/(K·mol) Qos = 0.15 m3/sec

Qcs = 100 J/sec

u = [0.005 m3/sec, 0.005 m3/sec, 0.001 m3/sec, 0 W]′

u = [0.5 m3/sec, 0.1 m3/sec, 0.1 m3/sec, 2× 102 W]′

p = [0, 0, 0.1, 0.1, 50, 1]′

p = [50, 50, 0.1, 0.1, 105, 25]′

Table 5.5: Parameters used for the plant simulation and steady-state optimization in
the styrene polymerization example.

variables as follows

cI =
cI
cMf

, cM =
cM
cMf

, cS =
cS
cMf

, T =
T − Tf
Tf

λ0 =
λ0
cMf

, λ1 =
λ1
cMf

, λ2 =
λ2
cMf

, QI =
QI

Qos

QM =
QM

Qos

, QS =
QS

Qos

, Q̇c =
Q̇c

Qcs

, t =
Qost

V
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Concluding remarks

In this thesis, we have developed new methods and approaches to use machine learn-

ing algorithms to design feedback controllers and dynamic process models for large

multivariable processes. Machine learning algorithms offer convenient and powerful

methods to harness the large-scale data collected in industries due to the growing dig-

itization, and utilize the tremendous computing power available in this modern age.

These algorithms can be leveraged to upgrade the existing automation and control

methods implemented in industrial applications.

The keys aspects for the suitability of a controller design algorithm for an industrial

deployment are that (i) it must be sufficiently robust to noise in the data, and (ii) it

should be able to handle unmeasured disturbances and plant-model mismatch. In a

typical model predictive control (MPC) implementation, the noise in the data is conve-

niently handled during the model identification step. And an integrating disturbance

model is used to leverage feedback during the process operation and account for un-

measured disturbances and plant-model mismatch. The MPC uses the main dynamic

and integrating disturbance models subsequently in an online optimization to manip-

ulate the process actuators. The approach has been deployed in a range of industries

in the past few decades. Recently, however, there has been a significant interest in

the control systems research literature to use model-free reinforcement learning (RL)
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to directly learn a controller from data. And avoid both the model identification and

online optimization steps for the controller design. Although appealing, the RL algo-

rithms had not been demonstrated to even handle noise in the training data collected

for controller design.

In Chapter 2, we developed a new model-free approach to estimate unconstrained

feedback controllers from noisy process data. We extended an available Q-learning al-

gorithm that was developed for linear systems with Gaussian process noise of known

covariance. We first treated the case of an unknown noise covariance, then proposed to

use the extended algorithm for the case of only output measurements and both process

and measurement noise. Simulation studies were presented with a heating, ventila-

tion, and air-conditioning example to demonstrate the effectiveness of the proposed

algorithm to give a reliable controller from a viable amount of training data. The de-

veloped approach is a step towards an industrially implementable model-free controller

design algorithm.

The linear MPC feedback law is a complex, piecewise affine function defined over

the state space of parameters in the quadratic program (QP). The number of regions

in the feedback law grow exponentially with the model dimensions and the forecast-

ing horizon length in the MPC problem. Due to this reason, online optimization has

been the preferred method of choice for an MPC implementation in industrial applica-

tions. Since storing and traversing all the regions in the MPC feedback law becomes

intractable for even moderate MPC problem sizes. It has been pointed out recently

in the literature that neural networks with the rectified linear unit as the activation

function also represent piecewise affine functions. And the complexity of representable

functions can grow exponentially with the addition of more hidden nodes and layers

in the network. With the availability of the powerful computational resources for data

generation and network training, it can be possible to approximate the MPC feedback
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law for large-scale problems.

In Chapter 3, we developed a NN controller design algorithm to approximate the

MPC feedback law offline, so that NNs can be used online to execute MPC faster than

QP solvers. We presented a structured NN architecture to achieve offset-free setpoint

tracking during the online implementation. We also proposed to generate the training

data for NN training by sampling the state space for only the relevant plant operational

scenarios. The suitability of the NN controller design approach was demonstrated on

large-scale application examples. The NN design approach presented in this chapter

can be suitable to address large MPC applications that may be out of reach with QP

solvers.

Both the real time optimization (RTO) and MPC layers in the process operations

hierarchy rely heavily on dynamic process models. The development of new model

identification approaches is beneficial to improve performances of these two layers in

applications. The second half of this thesis focused on developing methods to esti-

mate dynamic process models from data using machine learning. Despite the successes

of machine learning algorithms in several domains, the use of fully black-box models

for process modeling and optimization should be strongly cautioned. Hybrid process

models can utilize the basic first principles knowledge usually available in applications,

and combine that knowledge with machine learning models. The approach leverages

the advantages of both the domain knowledge and machine learning based function ap-

proximators. Black-box NNs can be used in the approach to approximate some portions

of the overall model that can be challenging to parameterize/model with the available

process knowledge. The final model can be interpretable, data efficient, and suitable

for process optimization.

In Chapter 4, we considered building systems affected by large unmeasured heat

disturbances. We developed a novel two step model identification approach to esti-

206



Concluding remarks Chapter 6

mate hybrid dynamic models for such building systems. First principles based domain

knowledge was used to develop a grey-box dynamic model in the first identification

step. And NNs were used to model the heat disturbance patterns in the building sys-

tem in the second identification step. The NN disturbance predictions can be used

subsequently in an MPC problem for improved energy cost optimization. We presented

simulation studies using a two time scale building system to demonstrate the economic

advantages of using the NN disturbance forecasts in an MPC controller. The distur-

bance modeling and forecasting approach presented in this chapter may be suitable

to improve performances of MPC implementations in both commercial or residential

building applications.

In Chapter 5, we focused on developing hybrid models for nonlinear chemical en-

gineering processes. We used NNs to approximate some complex, unknown functions

such as reaction kinetics in the hybrid model. The parameters in the NNs were es-

timated using training data by solving a multistep ahead prediction error minimiza-

tion problem. Multiple NNs to approximate different unknown functions in the hybrid

model can be conveniently incorporated in the identification framework. We demon-

strated the effectiveness of the estimated hybrid models to obtain an accurate optimum

when they are used in a steady-state optimization problem. We emphasized that struc-

tural insights about the dynamic model such as the functional dependencies of the

unknown functions being approximated are crucial to obtain good economic perfor-

mance. The hybrid modeling approach presented in this chapter is a step towards

an industrially implementable approach for dynamic model development and process

optimization.

Overall, we have presented new approaches to develop feedback controllers and

dynamic process models by leveraging the opportunities presented by machine learning

algorithms. And the methods are developed with an eye towards their suitability for
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potential deployment in industrial applications.

6.1 Directions for future research

The methods and results presented in this thesis on using machine learning for

process modeling and control are promising. The results warrant a future investigation

to make the methods more suitable for deployment in applications. We next outline

the possible future work directions for the methods and research topics considered in

each chapter of this thesis.

Model-free controller design

The model-free Q-learning approach proposed in Chapter 2 is suitable to estimate

linear, unconstrained feedback controllers from noisy data. The model-based MPC

approach, however, still has a few crucial advantages that make it a preferred choice

for an industrial deployment. We discuss these advantages and future work directions

for the model-free approaches below

• Industrial processes are often affected by large unmeasured disturbances, and

a typical control objective is to maintain some primary measurements at their

setpoints in the presence of those disturbances. In an MPC implementation, we

can use integrating disturbance models to account for plant-model mismatch and

unmeasured disturbances, and achieve zero tracking error in the primary mea-

surements. Future work in the model-free controller design area should address

the issue of achieving offset-free control performance.

• For noise filtering during the online implementation, a Kalman filter can be de-

veloped using the estimated dynamic model and noise covariances with a model-
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based controller. The model-free approach loses this ability of using a Kalman

filter for noise filtering during the closed-loop implementation. So future work

may also be directed towards developing appropriate noise filtering methods for

implementation with a model-free controller.

• Most industrial processes have constraints on the actuators, which can be con-

veniently accounted for in the online MPC optimization problem. Developing a

model-free controller design approach for input (and state) constrained systems

should also be a focus of future research.

Approximate model predictive control using neural networks

The offline NN controller design approach proposed in Chapter 3 is tractable for

large applications, and it is suitable to improve the online MPC execution times by

orders of magnitude compared to QP solvers. To make the approach more competitive

to the online optimization based MPC approach, future work can be directed on the

following topics

• The approximate MPC based NN controller does not have any closed-loop stability

properties, whereas, the online optimization based MPC approach enjoys strong

nominal stability and robustness properties. Future work may be directed to

develop approaches that guarantee the stability of NN controllers by design.

• We only discussed the replacement of the MPC regulator QP by NNs in Chapter 3,

and the target selector QP was still solved online in the case studies. Although the

target selector QP is typically small, replacing this QP also can lead to a technol-

ogy with no optimization involved during the online implementation. So, future

work may be directed to developing approaches to replace the target selector QP

using NNs.
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• We considered applications that require solutions to a linear setpoint tracking

MPC problem. Future work can investigate the use of NNs to approximate the

feedback law for nonlinear, economic, and mixed-integer MPC formulations.

Dynamic modeling of building systems

In the area of developing dynamic models for building systems, future work can be

focused on the following

• For the case studies in Chapter 4, we did not consider any occupancy measure-

ments in the NN heat disturbance model identification step. Approaches can be

developed to also include occupancy measurements (if available) to potentially

improve the quality of the NN heat disturbance predictions.

• We considered a simple two time scale based building model to examine the

efficacy of the proposed grey-box and NN disturbance model identification ap-

proaches. While the dynamics of some buildings can be described with the two

time scale model, many large building systems can be more complex and require

complex, higher order models to represent the dynamics. The two step grey-box

dynamic and NN disturbance modeling approach may be extended to such higher

order building models.

• The performance of the proposed two step model identification approach can

be tested on real data collected from buildings affected by occupancy induced

disturbances.

Hybrid nonlinear process modeling

The hybrid modeling framework proposed in Chapter 5 can be useful in applications

where less first principles knowledge is available for dynamic modeling and process
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optimization. The following issues should be addressed in future work

• We assumed that the plant is not affected by any large disturbances in the training

data collected for model identification. Industrial processes, however, are almost

always affected by unmeasured nonzero mean disturbances. Methods should be

developed to treat such large disturbances in the training data in the hybrid model

identification framework.

• The application of the estimated hybrid models was investigated for only steady-

state optimization in Chapter 5. The performances of the hybrid models can also

be examined when they are used in a dynamic MPC formulation.

• Hybrid models can also be used for the task for process monitoring in industrial

applications. In the case studies, we observed that after training, the estimated

hybrid models can accurately predict the measurements obtained from the non-

linear plant. An avenue for using the hybrid models can be to predict some critical

variables of interest during process operation for which no fast online sensor is

available. For example, the polymer molecular weight (function of the modeled

states) in the styrene polymerization example.
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