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1 Introduction

This work provides a comprehensive review of techniques for solving the discrete algebraic Ric-

cati equation (DARE) and guidance for selecting an appropriate method for various user-specified

DAREs. The work in this thesis is broadly motivated by process control. From a chemical engi-

neering practitioner’s perspective, the overriding motivation for process control is safety, but also

includes motives for optimizing profit and reducing process variability. Employing automatic con-

trollers at a chemical plant allows for safe operation without the compromise of human error. Ad-

ditionally, tools from the state estimation sub-field of process control allow operation with less

interference from error in our description and observation of the plant. Controllers also offer a way

to closely track user specifications for profit optimizations. Utilizing algorithms from the regula-

tion sub-field of process control offers automatic actions to minimize energy use or closely follow

product specifications. Economic model predictive control is another tool that directly optimizes

control action around an economic objective, such as profit. Finally, automatic controllers offer a

way to reduce variability in process variables such as temperature, pressure, concentration, etc. In

the pharmaceutical industry, it is often desirable to limit process variability to protect the integrity

of temperature-sensitive reagents or products. To further motivate the exact nature of this thesis,

we introduce the linear quadratic regulator and estimation problems as methods of process control.

We have broadly motivated process control, but the objectives in this work are more specific.

To appreciate the discussion in this thesis we introduce the linear quadratic regulator and estimation

problems, abbreviated as the LQR and LQE respectively. Motivation for solving the LQR and LQE

problems are two of the most fundamental problems in control theory with the LQE dating back

to Gauss. In optimal control, the objective is to operate a dynamic system at a minimum cost.

For the LQR and LQE, a process or plant is modeled by a set of linear algebraic equations with a

cost described by a quadratic function known as a linear quadratic problem. For the LQR, the cost

function represents the cost to operate at a set of state variables (e.g. temperature, pressure, etc.)

or perform a control action (e.g. apply heat, open/close a valve, etc.). In the LQE, the cost function

represents the error between the system model and observations and the true process behavior.
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When solved the LQR offers a sequence of control actions that drive the process to the desired

operating conditions. The LQE solution provides a minimum error estimate of the true system

behavior. It turns out the LQR and LQE are both solved by evaluating the stabilizing solution to

a nonlinear matrix equation called the discrete algebraic Riccati equation (DARE). The DARE is

described by:

X = A′XA+Q− (B′XA+ S ′)′(B′XB +R)−1(B′XA+ S ′) (1)

In this work, we review solution methods for the DARE. Since its development in the early

1980s, the generalized Schur vector method (GSV) has been the gold standard for computing the

solution to the DARE. We offer a comparison of three historically popular methods: the iterative

Riccati equation (IRE), the GSV, and Newton’s method. We discuss the algorithms in further detail

in Section 2. We find that the IRE computes the solution to the DARE quickly, but at the trade-

off of accuracy for large systems. Additionally, the IRE is particularly susceptible to numerical

instabilities, namely in the stabilizability of the system. The GSV computes the DARE solution

to high accuracy but scales poorly with system size. Lastly, Newton’s method is ineffective as a

stand-alone method as it requires a good initial guess close to the solution. We offer two operating

methods that utilize Newton’s method as a refinement technique that overcome the drawbacks of the

IRE for large systems and are robust to numerical instability. Numerical performance is discussed

in Section 4.

Furthermore, we lay the foundation for future work towards implementing Newton’s method

for the special case of the DARE with singular R. While not particularly relevant to the LQR, the

DARE with singular R has applications in the LQE for handling systems with linear constraints

and exact measurements. For the stricter case where R = 0, we propose that Newton’s method is

largely unchanged. We follow up in Section 7 with questions to instigate discussion towards the

more general case of Newton’s method for DAREs with singular R. We move to a technical view

of the DARE formulation and its solution methods.
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1.1 Linear Dynamical Systems

We start our discussion by establishing how processes are described as linear dynamical systems. A

linear dynamical system is the time-dependent description of a process’ variables (e.g. temperature,

pressure, concentration) as a linear function. In a process control setting, linear dynamical systems

often take the form:

x(k + 1) =Ax(k) +Bu(k),

y(k) =Cx(k),

where x are the process variables, u are the control actions, y are measurements of the system,

A,B,C are matrices, and k is the k-th discrete increment of time (i.e. for some discrete measure

of time ∆t, x(k) is the process variables at time k∆t). From here on we denote the time index with

a subscript, e.g., x(k) = xk.

1.2 The LQR Problem

The LQR problem for a linear dynamical system is described by:

xk+1 = Axk +Buk,

is formulated by developing a quadratic performance index J given by:

J = x′
H−1QxH−1 +

H−1∑
k=0

(x′
kQxk + u′

kRuk + 2x′
kSuk) ,

where H is the time horizon for which control action should be determined, Q,R, S are user-

defined matrices determining the cost of the state operation, control action, and state-control inter-

actions respectively. The optimal control sequence is found by minimizing the performance index

J and is given by u(k) = K(Xk)xk, where
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K(Xk) = −(B′XkB +R)−1(B′XkA). (2)

As found by Kalman (1960), Xk is found through backward iteration of the dynamic Riccati

equation:

Xk−1 = A′XkA+Q− (B′XkA+ S ′)′(B′XkB +R)−1(B′XkA+ S ′).

For the infinite-horizon, H = ∞, the performance index becomes:

J =
∞∑
k=0

(x′
kQxk + u′

kRuk + 2x′
kSuk) ,

and the stabilizing solution X to uk = K(X)xk, is the X that satisfies the DARE in Eqn. 1

such that |max(λ(A+BK(X)))| < 1.

1.3 The LQE Problem

The LQE (also known as the LQ Gaussian) problem concerns linear systems driven by additive

white Gaussian noise,

xk+1 =Axk + wk,

yk =Cxk + vk,

where wk, vk are the process and measurement noise respectively. The infinite horizon problem

has a performance metric given by:

J = E

[
∞∑
k=0

((xk+1 − AXk)
′Q(xk+1 − AXk) + (yk − Cxk)

′R(yk − Cxk))

]
,

where Q,R are the process and measurement noise covariances (Rawlings et al. (2017), Ch.
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1.4). The estimate update is given by:

x̂k+1 = Ax̂k + Lk+1(yk+1 − CAx̂k),

where x̂ is the state estimate and L = XC ′(CXC ′ +R)−1 is the Kalman gain (Kalman, 1960).

The estimate update is computed from finding the stabilizing solution, X , from the DARE:

X = AXA′ +Q− (CXA′)′(CPC ′ +R)−1(CXA′).

By computing the state estimate update, the LQE uses past and current measurement informa-

tion to produce the minimum error estimate for the state.

1.4 The DARE

The solution to the DARE offers an optimal control sequence for plant regulation in the context of

the LQR and a best estimate of the states given previous measurements in the context of the LQE.

For discussion of the algorithms in Section 2, we use the simplified form:

X = A′XA+Q− (B′XA)′(B′XB +R)−1(B′XA). (3)

The goal is to find the solution X that satisfies Eqn. (3). The DARE, however, is a nonlinear

algebraic matrix equation and may have more than one suitable solution X . We further qualify

that the solution must be stabilizing, i.e., that X satisfies A + BK(X) for the LQR (A − L(X)C

for the LQE) has eigenvalues with magnitude less than one. When quantifying the performance of

an algorithm, we consider accuracy and the time to solution. Accuracy is relevant for determining

how close the algorithm’s result is to the stabilizing solution. Second, we prioritize time to solution

for the obvious reason that it is undesirable to wait long periods of time for a solution. Next, we

describe solution methods for the DARE.
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2 DARE Solvers

There are a variety of DARE solvers that have evolved over the years. We focus on the GSV, IRE,

and Newton’s method. In this section, we briefly discuss the formulation for the GSV and IRE with

a more in-depth review of Newton’s method. Beyond this, we introduce two switch methods that

primarily use the IRE followed by Newton’s method as a refinement technique. These we will call

the A+BK stability switch and the IRE proximity switch.

2.1 The Generalized Real-Schur Vector Method

The GSV was developed in the early 1980s (Pappas et al., 1980; Van Dooren, 1981) and is thor-

oughly reviewed in Datta (2004) (see Ch. 13). In a brief overview, the GSV forms the symplectic

matrix pencil:

P =

 A 0

−Q I

 , N =

I BR−1B′

0 A′

 . (4)

The solution of the DARE is found through solving the generalized eigenvalue problem given

by P − λN = 0. To compute the solution, a QZ algorithm is imposed to find orthogonal matrices

Q′, Z such that

Q′(P − λN)Z = P1 =

P11 P12

0 P22


and

Q′(P − λN)Z = N1 =

N11 N12

0 N22

 .

For Q′, Z that satisfy the equations above and have generalized eigenvalues of P11−λN11 with

modulii less than 1, let Z be partitioned as
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Z =

Z11 Z12

Z21 Z22

 .

Then, the columns are the stabilizing solution of Eqn. (3) is given by X = Z21Z
−1
11 (Datta,

2004). It is worth noting that the GSV is computing the solution to a 2n generalized eigenvalue

problem which implies it has a computation complexity of order O(10n3).

2.2 The Iterative Riccati Equation

The IRE dates back to 1960 from Kalman (1960). The algorithm iterates the discrete Riccati equa-

tion as follows:

Xk+1 = A′XkA+Q− (B′XkA)
′(B′XkB +R)−1(B′XkA),

for the LQR. The IRE is iterated in the infinite horizon problem until ∥Xk+1−Xk∥ is sufficiently

small. The IRE converges exponentially fast (Caines and Mayne, 1970; Anderson and Moore,

1979). Since each iterate contains an inverse, the computational complexity of each iteration should

be of order O(n3).

2.3 Newton’s Method

Newton’s method was created as an iterative root-finding method. The derivation is based on ma-

nipulations of a first-order Taylor series expansion. Newton’s method for the DARE is given an

in-depth explanation in the following sections.

2.3.1 A Brief History of Newton’s Method for the DARE

Newton’s method is a well-explored solution to the DARE. Developed in Hewer (1971) as a discrete

analog to Kleinman (1974); Hewer’s algorithm was motivated by Newton’s method’s quadratic

convergence in search of a quick iterative technique for solving the DARE. Hewer’s DARE exclusive
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Newton’s method was proven to have quadratic convergence in Lancaster and Rodman (1995) (pp.

308-310) for nonsingular R (see Mehrmann (1991)). While not popular as a stand-alone technique,

Newton’s method is viable as an iterative refinement tool (Datta (2004), pp. 574-579). Benner

and Faßbender continued the investigation of Newton’s method fairly recently in a thorough review

of numerical improvements in Benner and Faßbender (2011). Before exploring the mechanism of

Hewer’s algorithm, we must first understand the Fréchet derivative.

2.3.2 The Fréchet Derivative

The application of Newton’s method is relatively straightforward for a scalar function, f(x). Previ-

ously, we needed to evaluate the derivative f ′(x). For the DARE, however, we need a more general

definition of the derivative. The Fréchet derivative is a generalization of the gradient to arbitrary

vector spaces (Long, 2009).

Definition 1 (The Fréchet Derivative.). Let f : V 7→U be a function and let h ̸= 0 and x be vectors

in V . The Fréchet derivative Df of f in the direction h at point x0, D[f(x)]x0h is defined implicitly

by

f(x0 + ϵh) = f(x0) + ϵD[f(x)]x0h+ hO(ϵ).

In the limit ϵ→0, the D[f(x)]x0 exists if there is a linear operator A, such that,

Ah = lim
ϵ→0

f(x+ ϵh)− f(x)

ϵ
, ∀h.

Then, the Fréchet derivative of f is given by D[f(x)]x0 = A.

While the Fréchet derivative is defined here for arbitrary vector spaces, it directly extends to

matrix functions of matrices. Def. (1) is equivalent to the vectorized matrix differential defined in

Magnus and Neudecker (2019) Def. 5.3. We move to state some useful properties of the Fréchet

derivative.
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2.3.3 Useful Properties of the Fréchet Derivative

The Fréchet derivative, by definition, is a linear operator. The defining qualities of a linear operator

for the derivative of the matrix function F : V 7→ W for X ∈ V are:

• Additivity:

D[F (X)]X0(A+B) = D[F (X)]X0A+D[F (X)]X0B, (5)

• Homogeneity:

D[F (X)]X0(αA) = αD[F (X)]X0A,

for A,B ∈ V and some scalar α. Additionally, the chain rule holds for the Fréchet derivative

(see Magnus and Neudecker (2019) Thm. 5.12):

D[(G ◦ F )]X0A = D[G(X)]F (X0) ◦D[F (X)]X0A, (6)

for matrix functions F : V 7→ W and G : W 7→ S where X,A ∈ V . It follows from the chain

rule that the product rule also holds:

D[F (X)G(X)]X0A = D[F (X)]X0AG(X0) + F (X0)D[G(X)]X0A, (7)

for matrix functions F,G : V 7→ W where X,A ∈ V . Utilizing additivity, chain rule, and

product rule, we move to derive a few elementary cases that aid in the derivation of Newton’s

method for the DARE.

2.3.4 Elementary Fréchet Derivatives

Recall the form of the DARE in Eqn. (3):
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X = A′XA+Q− (B′XA)′(B′XB +R)−1(B′XA).

From the additivity property and the product rule, we can break the dare into four cases: constant

matrix functions, linear matrix functions, affine matrix functions, and inverse matrix functions.

Starting with constant matrix functions, the derivation is straightforward:

Example: 1 (Constant Matrix Functions.). Consider the constant matrix function F (X) = C

where C ∈ V ,

D[C]X0H = lim
ϵ→0

1

ϵ
(C − C) = 0 (8)

Next, we observe the general class of linear matrix functions. The derivation follows:

Example: 2 (Linear Matrix Functions.). Consider the linear matrix function F (X) = AXB,

D[AXB]X0H = lim
ϵ→0

1

ϵ
(A[X0 + ϵH]B − AX0B),

=AHB.

(9)

Affine matrix functions directly follow from the application of the additivity property in Eqn.

(5) to a combination of linear matrix functions and constant matrix functions.

Example: 3 (Affine Matrix Functions.). Consider the affine matrix function F (X) = AXB + C.

From our additivity property, we have

D[AXB + C]X0H = D[AXB]X0H +D[C]X0H.

But we have the solution to each of these derivatives from Eqn. (8) and Eqn. (9),

D[AXB + C]X0H = AHB.
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Finally, we consider inverse matrix functions. The derivation requires a trick using the product

rule as shown in the following example .

Example: 4 (Inverse Matrix Functions). We want to compute the Fréchet derivative of the inverse

matrix functions F−1(X) = [F (X)]−1. Rather than directly computing the derivative, first, con-

sider the domainX ∈ V where F (X) has an inverse. It follows that I = F−1(X)F (X) forX ∈ V ,

where I is the identity matrix of appropriate size. If we chooseX0 ∈ V , the derivative of the identity

matrix is then given by.

D[I]X0H = D[F−1(X)F (X)]X0H.

Since the identity matrix is a constant matrix function, Eqn. (8) and product rule yields

0 =D[F−1(X)F (X)]X0H,

=D[F−1(X)]X0HF (X0) + F−1(X0)D[F (X)]X0H.

Given that we chose X0 so that F−1(X0) exists, we can rearrange for the desired derivative:

D[F−1(X)]X0H = −F−1(X0)D[F (X)]X0HF−1(X0).

Equipped with our four elementary cases, we can move to derive Newton’s method for the

DARE.

2.3.5 Newton’s Method for the DARE: Derivation

Due to the relevance in Section 5, we derive the mechanics of Hewer’s algorithm. To solve the

DARE, we reform our algebraic equation (3) into the following matrix function:

F (X) = A′XA−X +Q− (B′XA)′(B′XB +R)−1(B′XA) (10)
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With the form in Eqn. (10), we can deploy Newton’s method to find F (X) = 0. This problem

formulation is nearly equivalent to finding a suitable X for the DARE in Eqn. (3). To construct an

appropriate Newton’s method, we need a form for functions on arbitrary vector spaces. The iterative

scheme can be derived from a Taylor series expansion similar to the scalar function variant. Observe

the following iterative scheme (see Yamamoto (2000) Eqn. 2.3):

Xk+1 = Xk − [D[F (X)]Xk
]−1 F (Xk). (11)

Prior to using the algorithm, we need to compute the derivative of the function F (X) in Eqn.

(10). Utilizing the additivity property in Eqn. (5) and the product rule in Eqn. (7), we can separate

Eqn. (10) into six elementary functions:

• F1(X) = A′XA,

• F2(X) = X,

• F3(X) = Q,

• F4(X) = (B′XA)′,

• F5(X) = (B′XA),

• F6(X) = B′XB +R.

Recall the gain from the LQR problem in Eqn. (2). With some simplification, we can apply

examples 1-4 to produce the following derivative,

D[F (X)]X0H = [A+BK(X0)]
′H [A+BK(X0)]−H. (12)

Returning to the iterative scheme in Eqn. (11), we can rearrange our equation to Xk+1 −Xk =

− [D[F (X)]Xk
]−1 F (Xk). To complete an iteration of Newton’s method, we need to invert the

derivative we computed onto the function in Eqn. (10) evaluated at the previous iterate to compute

the error between iterates. Equivalently, we need to solve the following discrete Lyapunov equation

to compute the error Nk = Xk+1 −Xk:

[A+BK(Xk)]
′Nk [A+BK(Xk)]−Nk = −F (Xk).
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Adding the error Nk to the current iterate Xk produces the next iterate Xk+1. This concludes

the algorithm described in Hewer (1971). The derivation provided above extends to the DARE in

Eqn. (1).

F (X) = A′XA−X +Q− (B′XA+ S ′)′(B′XB +R)−1(B′XA+ S ′). (13)

The method we derived here is equivalent to Benner and Faßbender (2011) and Datta (2004)

(pp. 574-575). Newton’s method computes the solution to a discrete Lyapunov equation whose

computational complexity is of order O(n3).

2.4 The A+BK Stability Switch and the IRE Proximity Switch

Here we propose utilizing Newton’s method as a refinement technique for the IRE. Newton’s method

struggles as a stand-alone method since it requires an initial guess that satisfies |max(λ(A +

BK(X0)))|. Newton’s method is unable to converge to the stabilizing solution in Section 4.1.

We develop two switch criteria for the transition from the IRE to Newton’s method. The first we

call the A+BK stability switch (ABKSS). For each iteration of the IRE, a check is added to deter-

mine the maximum modulus eigenvalue of the matrix A+BK(Xk). When the maximum modulus

eigenvalue is less than 1, the current iterate Xk is substituted into Newton’s method as the initial

iterate.

We additionally propose the IRE proximity switch as an extension of the ABKSS to utilize

the exponential convergence for as long as possible. The switch criteria are instead subject to the

proximity of the iterate to the solution. When the difference ∥Xk−Xk−1∥ is less than some tolerance

ϵ, the current iterate Xk is substituted into the initial guess for Newton’s method. We move to detail

the methods for our numerical study in Section 4.
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3 Methods

In this section, we detail the software and algorithms used for the numerical examples in Section 4.

Furthermore, we elaborate on the methods for generating the examples. All numerical results were

produced in GNU Octave, version 6.4.0. with the Control package 3.4.0. All algorithms except the

GSV were developed here and use an initial guess X0 = Q.

3.1 Algorithms

In our numerical studies, we compare five algorithms.

• The GSV

• The IRE

• Newton’s Method

• The ABKSS

• The IREPS

The IRE, Newton’s method, ABKSS, and IREPS are will be considered iterative algorithms in

this context. The iterative schemes are terminated when the final iterate is sufficiently close to the

solution. Termination criteria are further discussed in Section 3.3.1.

3.1.1 The GSV

The first algorithm is the GSV and acts as a control for contrast. For this study we use the Oc-

tave command, dare, the default DARE solver for Octave. The GSV generally uses the following

pseudocode:
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Algorithm 1 GSV for the DARE
1: Form the symplectic pencil

P =

 A 0

−Q I

 , N =

I S

0 A′


2: QZ-factorize the pencil such that P1 is quasi-upper triangular and N1 is upper triangular:

Q1PZ1 = P1 =

P11 P12

0 P22

 , Q1NZ1 = N1 =

N11 N12

0 N22

 .

3: Find orthogonal matrices Q2, Z2 s.t. |λ(N1)| < 1 and form

Z = Z1Z2 =

Z11 Z12

Z21 Z22

 .

4: Compute X = Z21Z
−1
11 .

Note that the code dare utilizes Newton’s method as a refinement technique and has a built-in

switch to the extended symplectic pencil for DAREs with singular R.

3.1.2 The IRE

Our second algorithm is the IRE for which we use in-house code developed in Octave. The pseu-

docode is given by:

16



Algorithm 2 The IRE for the DARE
1: Initialize some initial guessX0

2: Xk = X0

3: while ∥F (Xk)∥F
∥Xk∥F

> ϵ do

4: Iterate the DARE s.t.:

Xk+1 = A′XkA+Q− (B′XkA)
′(B′XkB +R)−1(B′XkA)

5: end while

3.1.3 Newton’s Method

The third algorithm is Newton’s method which will be abbreviated as NM in future tables. We use

an in-house code developed in Octave. The pseudocode is given by:

Algorithm 3 Newton’s Method for the DARE
Input: A,B,Q,R, S and X0 such that max |σ(A+BK(X0))| < 1 and B′XB +R > 0

Output: Xk+1, Nk, where Nk = Xs −Xk+1 with Xs as the stabilizing solution of F (X) = 0.

1: Initialize some initial guessX0

2: Xk = X0

3: while ∥F (Xk)∥F
∥Xk∥F

> ϵ do

4: Solve [A+BK(Xk)]
′ Nk [A+BK(Xk)]−Nk = R(Xk)

5: Xk+1 = Nk +Xk

6: SetXk = Xk+1

7: end while

3.1.4 The ABKSS

Fourth, we have the in-house ABKSS code developed in Octave. The pseudocode is a combination

of the IRE followed by Newton’s method as a refinement technique once the IRE terminates with a
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stable iterate. That is, we switch to refinement once A+BK(Xk) is stable using the iterate Xk as

the initial guess for Newton’s method. The pseudocode is given by:

Algorithm 4 ABKSS
1: Initialize some initial guessX0

2: Xk = X0

3: while max |σ(A+BK(X0))| > 1 do

4: Iterate the DARE s.t.:

Xk+1 = A′XkA+Q− (B′XkA)
′(B′XkB +R)−1(B′XkA)

5: end while

6: while ∥R(Xk)∥F
∥Xk∥F

< ϵ do

7: Solve [Â(Xk)]
′Nk[Â(Xk)]−Nk + F (Xk) = 0

8: Xk+1 = Nk +Xk

9: SetXk = Xk+1

10: end while

3.1.5 The IREPS

Lastly, the IREPS algorithm is an in-house algorithm developed in Octave. The pseudocode is

a combination of the IRE followed by Newton’s method as a refinement technique. The switch

criterion has two necessary conditions: 1) the iterate must be stable and 2) the iterate must be

sufficiently close to the solution. Close-ness to the solution is defined in this case as IRE reaching

maximum numerical accuracy or the user defined accuracy. The pseudocode is given by:
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Algorithm 5 IREPS
1: Initialize some initial guessX0

2: Xk = X0

3: while max |σ(A+BK(X0))| > 1 &
∣∣∣∥F (Xk+1)∥F

∥Xk+1∥F
− ∥F (Xk)∥F

∥Xk∥F

∣∣∣ > δ do

4: Iterate the DARE s.t.:

Xk+1 = A′XkA+Q− (B′XkA)
′(B′XkB +R)−1(B′XkA)

5: end while

6: while ∥F (Xk)∥F
∥Xk∥F

< ϵ do

7: Solve [Â(Xk)]
′Nk[Â(Xk)]−Nk + F (Xk) = 0

8: Xk+1 = Nk +Xk

9: SetXk = Xk+1

10: end while

3.2 Problem Generation

We consider two types of problems in our numerical studies:

• Randomly generated DAREs, • Barely stabilizable DAREs.

In this section, we discuss our method of generating the examples in Section 4.

3.2.1 Ranomly Generated DAREs

For the randomly generated dares we are mainly concerned with how an algorithm’s performance

scales with system size. Let n,m denote the number of system states and inputs/measurements

respectively. Then, A ∈ Rn×n and B ∈ Rn×m are randomly generated using the octave command

rand, e.g., A=rand(n). To generate matrices Q ∈ Rn×n, R ∈ Rn×m, S ∈ Rm×m, a matrix P ∈

R(n+m)×(n+m) is randomly generated such that,
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PP ′ =

Q S

S ′ R

 .

We use PP ′ to force positive definiteness of the resulting matrices Q,R. Note that since rand

draws from a continuous support, there is a zero probability of generating singular Q or R.

3.2.2 Barely Stabilizable DAREs

To study the performance of our algorithms on barely stabilizable systems, consider the following

example:

A =



0.9 0 0 0 0 0 0 0

0 0.9 1 0 0 0 0 0

0 0 0.9 1 0 0 0 0

0 0 0 0.9 1 0 0 0

0 0 0 0 0.9 0 0 0

0 0 0 0 0 1− 10−d 1 0

0 0 0 0 0 0 1− 10−d 1

0 0 0 0 0 0 0 1− 10−d



, B =



1 0 0 0 0

0 1 0 0 0

0 0 10−d 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 10−d

0 0 0 0 0



,

Q =



1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 3 0 0 0 0 0

0 0 0 4 0 0 0 0

0 0 0 0 5 0 0 0

0 0 0 0 0 6 0 0

0 0 0 0 0 0 7 0

0 0 0 0 0 0 0 8



, R =



0.1 0 0 0 0

0 0.3 0 0 0

0 0 0.4 0 0

0 0 0 0.5 0

0 0 0 0 0.2


,
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where we can tune the parameter d. As d becomes large, the system becomes more difficult to

control. At d = 16 we reach machine precision and the terms scaling with d in A become 1 and the

terms scaling with d in B become 0. As a result, the influence of the inputs on the system dynamics

is inversely correlated with d.

3.3 Result Interpretation

We consider three measures of performance for each algorithm:

• Scaled residual, • Time to solution, • Number of iterations.

3.3.1 Scaled Residual

The scaled residual is a measure of how close our solution satisfies the DARE. The residual of the

solution X from the GSV is given by:

∥F (X)∥F = ∥A′XA−X +Q− (B′XA+ S ′)′(B′XB +R)−1(B′XA+ S ′)∥F ,

where the ∥( · )∥F is the Frobenius norm and is computed as the sum of the square of the ele-

ments of the argument. The residual of the k-th iterate for the IRE, Newton’s method, ABKSS, and

IREPS is given by:

∥F (Xk)∥F = ∥A′XkA−Xk +Q− (B′XkA+ S ′)′(B′XkB +R)−1(B′XkA+ S ′)∥F .

For a large enough system size, the residual can be arbitrarily large even if we are close to the

solution. So we instead measure the scaled residual, which is given by:

∥F (X)∥F
∥X∥F

or
∥F (Xk)∥F
∥Xk∥F

.

21



For the studies conducted in this work, we say a solution is sufficiently accurate if the scaled

residual is smaller than the square root of machine precision, 1.490× 10−8.

3.3.2 Time to Solution

The time to solution is computed as the difference between the wall clock time when the algorithm

starts and computes a sufficient solution. The time for each algorithm to complete a solution is an

insightful measure of how quickly a DARE can be solved in real-time.

3.3.3 Number of iterations

The number of iterations is a measure of the number of steps an algorithm needs to compute to

reach a sufficient solution. This measurement is reserved for the IRE, Newton’s method, ABKSS,

and IREPS. While the GSV does employ an iterative method to compute eigenvalues, we do not

consider it an iterative scheme for computing the solution to the DARE. The number of iterations

provides insight into how much each loop corrects the initial guess.

4 Performance

4.1 Randomly Generated Example

We consider three randomly generated examples of variable system size:

1. n = 100,m = 50; 2. n = 500,m = 250; 3. n = 1000,m = 500;

where n,m are the number of states and inputs/measurements respectively. Our results are split

into three tables for the scaled residual, time to solution, and the number of iterations. From Table

1. we observe that nearly all algorithms compute a solution to the desired accuracy. The exceptions

are Newton’s method and the IRE. Newton’s method by design needs an initial guess that satisfies

|max(λ(A + BK(X0)))| < 1. It is unlikely to guess a stabilizing iterate and as a result, none of

the Newton’s method iterations converge to the stabilizing solution. We omit Newton’s method as
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a stand-alone method in future studies. The IRE only fails to meet a sufficient scaled residual on

the system with n = 1000.

Table 1: The scaled residual measures how close Eqn. (10) is to zero and is given by the Frobenius

norm of the function evaluated at the solution divided by the Frobenius norm of the solution.

Method 1 2 3

IRE 7.6× 10−9 1.1× 10−8 7.2× 10−8

NM 1.7× 102 9.8× 102 2.0× 103

ABKSS 6.1× 10−9 4.3× 10−12 6.9× 10−11

IREPS 3.8× 10−13 4.3× 10−12 1.2× 10−11

GSV 3.3× 10−13 8.3× 10−12 4.5× 10−11

From Table 2. we find that for small systems, n < O(103) computation times are relatively

small. For the best accuracy, one should choose the GSV or IREPS for small problems. As the

system size increases, the GSV computation time significantly increases. The clear choice for larger

systems is IREPS computing the most accurate solution an order of magnitude faster than the GSV.

Table 2: The time to solution is given in seconds and describes the wall clock time that the algorithm

takes to reach the solution or the chosen tolerance.

Method 1 2 3

IRE 8.9× 10−3 2.5× 10−1 3.1× 100

NM 1.4× 10−1 7.7× 100 6.8× 101

ABKSS 8.9× 10−2 2.4× 100 2.9× 101

IREPS 2.6× 10−2 7.3× 10−1 5.4× 100

GSV 5.4× 10−2 6.9× 100 6.9× 101

Table 3. adds an interesting detail to the story. From the third system with n = 1000, the IRE

reaches the maximum number of iterations k = 30. Extending the maximum number of iterations to
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k = 1000, the IRE only reaches a scaled residual of 7.86×10−8. Not only is there no improvement,

the residual for k = 1000 is also worse than for k = 30. Thus, the maximum accuracy of the IRE

for the n = 1000 problem has been reached and any further changes are likely due to truncation

errors. While the reason is unknown, it is likely a numerical instability preventing the IRE from

reaching the desired accuracy. We explore further in a study of system size scaling.

Table 3: The number of iterations that each solver needs to reach the chosen accuracy.

Method 1 2 3

IRE 1.0× 101 9.0× 100 3.0× 101

NM 1.6× 101 1.6× 101 1.6× 101

ABKSS 8.0× 100 8.0× 100 8.0× 100

IREPS 1.0× 101 9.0× 100 9.0× 100

GSV N/A N/A N/A

4.2 System Size Scaling

For the system size scaling study, we consider an extension of the previous problem:

1. n = 10,m = 5;

2. n = 50,m = 25;

3. n = 100,m = 50;

4. n = 500,m = 250;

5. n = 1000,m = 500;

6. n = 2000,m = 1000.

Additionally, for each system size, ten DAREs are randomly generated. We present the averaged

scaled residual, time to solution, and the number of iterations in Tables 4-6. respectively. Starting

with Table 4., the IRE is the only algorithm to fail to meet the desired accuracy for a system size of

n = 2000. Moreover, the IRE reaches the desired accuracy for all ten randomly generated DAREs

at n = 1000.
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Table 4: The scaled residual measures how close Eqn. (10) is to zero and is given by the Frobenius

norm of the function evaluated at the solution divided by the Frobenius norm of the solution.

Method 1 2 3 4 5 6

IRE 1.2× 10−8 7.0× 10−9 5.3× 10−9 2.3× 10−9 4.5× 10−9 2.9× 10−8

ABKSS 4.9× 10−10 1.0× 10−12 5.5× 10−13 1.7× 10−11 2.8× 10−11 7.6× 10−11

IREPS 1.8× 10−12 7.3× 10−13 5.4× 10−13 8.6× 10−12 2.8× 10−11 7.6× 10−11

GSV 9.3× 10−15 6.9× 10−14 4.4× 10−13 6.9× 10−12 2.2× 10−11 6.3× 10−11

Moving to the time to solution in Table 5., we observe a similar trend to the previous study. The

computation time for the GSV drastically increases with system size. While the ABKSS is faster

than the GSV for large systems, the IREPS computes the solution over an order of magnitude faster

than the GSV for systems with 500 or more states. This improves to two orders of magnitude faster

at systems of 5000 states.

Table 5: The time to solution is given in seconds and describes the wall clock time that the algorithm

takes to reach the solution or the chosen tolerance.

Method 1 2 3 4 5 6

IRE 2.4× 10−3 5.1× 10−3 1.1× 10−2 2.7× 10−1 1.4× 100 2.0× 101

ABKSS 9.3× 10−3 2.3× 10−2 9.6× 10−2 2.5× 100 2.0× 101 1.7× 102

IREPS 9.7× 10−3 7.8× 10−3 2.1× 10−2 7.4× 10−1 5.9× 100 4.6× 101

GSV 1.9× 10−3 7.5× 10−3 5.2× 10−2 7.0× 100 7.2× 101 6.1× 102

Table 6. has a couple interesting entries. Most importantly we observe the IRE reaching max-

imum iteration counts for systems with more than 1000 states. Furthermore, both ABKSS and

IREPS compute the solution with high accuracy with only a few iterations for large systems size. It

is recommended for large systems sizes (n > 500) to use an alternative to the GSV. For very large

systems it is advised to opt for an IRE-based method with a Newton refinement switch. While it
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seems unlikely that the IRE will struggle to meet the desired accuracy in systems with 1000 states,

it is a safer option to always opt for a Newton refinement to guarantee higher accuracy and less

numerical instability.

Table 6: The number of iterations that each solver needs to reach the chosen accuracy.

Method 1 2 3 4 5 6

IRE 2.3× 101 2.0× 101 1.4× 101 1.0× 101 9.0× 100 3.0× 101

ABKSS 5.0× 100 8.0× 100 9.0× 100 7.0× 100 7.0× 100 7.0× 100

IREPS 1.8× 101 1.7× 101 1.3× 101 9.0× 100 9.0× 100 8.0× 100

GSV N/A N/A N/A N/A N/A N/A

4.3 Barely Stabilizable Systems

The barely stabilizable system described in Section 3.2.2 allows us to observe algorithm perfor-

mance as the system becomes close to uncontrollable. As d approaches machine precision (d = 16),

our computers are unable to identify that the eigenvalues of A are less than one and that the influ-

ence of the inputs in B is greater than zero. Table 7. demonstrates that the accuracy of the IRE is

highly susceptible to the stabilizability of the system. Even with d = 3 the IRE fails to reach the

desired accuracy. The GSV can compute accurate solutions up to d = 5. Beyond that, the GSV is

unable to compute a solution and produces an error. Meanwhile, both the ABKSS and IREPS are

able to compute an accurate solution up to the limit of machine precision d = 16.
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Table 7: The scaled residual measures how close the function (1) is to zero and is given by the

Frobenius norm of the function evaluated at the solution divided by the Frobenius norm of the

solution.

d IRE ABKSS IREPS GSV

1.0 1.32× 10−8 3.58× 10−9 4.36× 10−17 1.55× 10−16

2.0 1.46× 10−8 7.19× 10−13 1.11× 10−16 2.13× 10−16

3.0 1.36× 10−7 1.40× 10−9 3.51× 10−9 6.61× 10−15

5.0 5.71× 10−4 3.99× 10−11 9.05× 10−9 2.21× 10−15

6.0 5.98× 10−4 3.97× 10−12 1.70× 10−12 N/A

16.0 6.00× 10−4 9.02× 10−16 9.02× 10−16 N/A

17.0 6.00× 10−4 N/A N/A N/A

Since the system size for our example is small (n = 8,m = 5), the computation times for all of

our algorithms remain small (less than a second). Table 8. only illustrates that the IRE computation

time will increase as it will indefinitely iterate since it cannot reach the desired accuracy.

Table 8: The time to solution is given in seconds and describes the wall clock time that the algorithm

takes to reach the solution or the chosen tolerance.

d IRE ABKSS IREPS GSV

1.0 9.94× 10−3 9.04× 10−3 1.35× 10−2 1.62× 10−3

2.0 6.21× 10−2 4.13× 10−3 4.92× 10−2 5.50× 10−4

3.0 4.12× 10−1 4.09× 10−3 9.55× 10−2 5.51× 10−4

5.0 4.13× 10−1 4.15× 10−3 1.02× 10−1 5.98× 10−4

6.0 4.12× 10−1 4.10× 10−3 9.74× 10−2 N/A

16.0 4.12× 10−1 2.75× 10−1 9.59× 10−2 N/A

17.0 4.14× 10−1 N/A N/A N/A

Table 9. further illustrates the ineffectiveness of the IRE iterations. For well-posed problems,
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we’ve seen the IRE reach the desired accuracy in less than 10 iterations. Even with d = 1, we find

the IRE iteration count exceeds 100. Furthermore, we find that the ABKSS and IREPS struggle to

maintain a consistently low iteration count for larger values of d.

Table 9: The number of iterations that each solver needs to reach the chosen accuracy.

d IRE ABKSS IREPS GSV

1.0 1.09× 102 5.00× 100 8.70× 101 N/A

2.0 7.14× 102 7.00× 100 5.03× 102 N/A

3.0 5.00× 103 7.00× 100 1.00× 103 N/A

5.0 5.00× 103 7.00× 100 1.00× 103 N/A

6.0 5.00× 103 7.00× 100 1.01× 103 N/A

16.0 5.00× 103 1.00× 103 1.00× 103 N/A

17.0 5.00× 103 N/A N/A N/A

5 Special Case: DARE with Semi-Definite R

In this section, we discuss the DARE with R ≥ 0. The GSV was modified in the 1980s to handle

the special case of singular R, however, there is little to no literature on implementing Newton’s

method for this case. Here we briefly detail the modifications to the GSV and go into depth on

framing the problem for Newton’s method.

5.1 The Generalized Real-Schur Vector Method

The symplectic pencil in Eqn. (4) contains R−1 and thus cannot be evaluated for R ≥ 0. To solve

the generalized eigenvalue problem without evaluating the inverse of R, Arnold and Laub (1984)

demonstrate the use of an extended symplectic pencil given by:
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P =


A 0 −B

−Q −I 0

0 0 R

 , and N =


I 0 0

0 A′ 0

0 B′ 0

 .

The solution is computed analogously through QZ factorization. Noting that the extended sym-

plectic pencil is a (2n+m)×(2n+m)matrix, the GSV for singularR scales with order∈(∈\+ ⇕)∋.

5.2 Newton’s Method

The special case of the DARE with semi-definite R is an interesting problem explored in Hewer

(1973) using techniques from Wonham (1968). However, the proof is inductive in nature pertaining

to the iterate of the discrete iterative Riccati equation. In this section, we prove the existence of

Newton’s method iterates for R = 0. We proceed by proving the existence of the derivative of Eqn.

(10) for R = 0. First, we observe the change in structure for the DARE with R = 0,

F (X) = A′XA−X +Q(B′XA)′(B′XB)−1(B′XA).

Concern with (B′XB)−1 term immediately arises as X ≥ 0 implying that B′XB ≥ 0. Thus,

the inverse does not necessarily exist. The least-squares estimation problem for singular measure-

ment covariance is reviewed in Albert (1972) (see pp. 170). Albert shows the resulting DARE is

given by substituting the inverse with the Moore-Penrose pseudoinverse,

F (X) = A′XA−X +Q− (B′XA)′(B′XB)+(B′XA). (14)

This formulation leads us to the tricky problem of deriving Newton’s iteration for the DARE

with singular R. The trouble with this derivation is the derivative of the pseudoinverse. Devel-

opments have been made towards the derivative of the pseudoinverse. Notably, Golub and Pereyra

(1973) provides a general derivative of the pseudoinverse. However, the derivative offered by Golub

and Pereyra (1973) Thm. 4.3. must be a “Fréchet differentiable matrix function with local constant
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rank.” The constant local rank requirement cannot necessarily be guaranteed by the Newton itera-

tions of the DARE with singular R since the iterates are not chosen. We take a different approach

to the derivative starting with the limit definition of the pseudoinverse (see Albert (1972), pp. 19).

Theorem 1 (Albert (1972), Thm. 3.4.). For any n×m matrix A,

A+ = lim
δ→0

(A′A+ δ2I)−1A′

= lim
δ→0

A′(AA′ + δ2I)−1

(15)

always exists. For any n-vector z,

x̂ = A+z,

is the vector of minimum norm among those which minimize

∥z − Ax∥2.

Before we can take the derivative of the DARE for singularR, we need to compute the derivative

of the pseudoinverse. We propose the following derivative for the pseudoinverse given the limit

definition from Albert (1972).

Theorem 2 (Derivative of the Generalized Moore-Penrose Pseudoinverse). For any real matrix

A ∈ Rn×m the generalized Moore-Penrose pseudoinverse is defined as

A+ = lim
δ→0

(A′A+ δ2I)−1A′.

If for all directions H , the limit

D[A+]A0H = lim
ϵ→0

1

ϵ

[
(A0 + ϵH)+ − A+

0

]
,

exists, then A+ is differentiable and is given by

30



D[A+]A0H = −A+
0 HA+

0 − lim
δ→0+

(A′
0A0 + δ2I)−1H ′(I − A0A

+
0 ). (16)

Proof 1 (Proof of Thm. 2.). Consider any real matrix A ∈ Rn×m and its pseudoinverse defined by

A+ = lim
δ→0

(A′A+ δ2I)−1A′.

Taking the derivative gives,

D[A+]A0H = D[lim
δ→0

(A′A+ δ2I)−1]A0HA′ + (A′A+ δ2I)−1D[A′]A0H.

Note that by the Moore-Osgood theorem, we can swap the limits in the first derivative,

D[A+]A0H = lim
δ→0

D[(A′A+ δ2I)−1]A0HA′ + lim
δ→0

(A′A+ δ2I)−1D[A′]A0H.

For δ ̸= 0 the inverse (A′A + δ2I)−1 exists for any matrix A. Recall the derivative of an

invertible matrix (function) from example 4, D[A−1]A0H = −A−1
0 HA−1

0 . Applying our example

yields,

D[A+]A0H =− lim
δ→0

(A′
0A0 + δ2I)−1D[A′A+ δ2I]A0H(A′

0A0 + δ2I)−1A′

+ lim
δ→0

(A′A+ δ2I)−1D[A′]A0H

(17)

Without much effort, we can compute the der

− lim
δ→0

(B′X0A)
′ [((B′X0B)2 + δ2I)−1B′HB(I − (B′X0B)(B′X0B)+)

]
(B′X0A).

ivative D[A′]A0H = H ′. We can compute the derivative as follows:
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D[A′A+ δ2I]A0H = lim
ϵ→0

1

ϵ

[(
(A0 + ϵH)′(A0 + ϵH) + δ2I

)
−
(
A′

0A0 + δ2I
)]

,

=A′
0H +H ′A0.

Substituting back into Eqn. (17), we have

D[A+]A0H =− lim
δ→0

(A′
0A0 + δ2I)−1 [A′

0H +H ′A0] (A
′
0A0 + δ2I)−1

+ lim
δ→0

(A′
0A0 + δ2I)−1H ′.

Finally, with some algebra, our expression reduces to the result we were looking for

D[A+]A0H = −A+
0 HA+

0 − lim
δ→0+

(A′
0A0 + δ2I)−1H ′(I − A0A

+
0 ).

Now that we have a derivative for the pseudoinverse, we move to take the derivative of part of

the DARE with R = 0 in Eqn. (14). Taking note that B′X0B is symmetric,

D[(B′XB)+]X0H =− (B′X0B)+B′HB(B′X0B)+

− lim
δ→0

((B′X0B)2 + δ2I)−1H ′(I − (B′X0B)(B′X0B)+).
(18)

It is unfortunate that the above derivative is not differentiable for all X0 and is not a helpful fact

alone. This can be observed if we consider the limit term in the derivative and let B′X0B = A =

A′ ≥ 0.

lim
δ→0

(A′A+ δ2I)−1H ′(I − AA+).

Let the direction H ′ be an arbitrary symmetric matrix M of appropriate size. We can say that
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the evaluation of the limit is finite in two cases:

• Case I.

lim
δ→0

(A′A+ δ2I)M < ∞, (19)

• Case II.

M(I − AA+) = 0. (20)

Case I. The singular value decomposition of A is A = V SV ′, where S are the singular values

and V are the singular vectors. Taking advantage of the fact that V is a unitary matrix, we can show

the following

lim
δ→0

(A′A+ δ2I)−1M = lim
δ→0

V

Σr 0

0 0

V ′ + δ2V IV ′


−1

M,

= lim
δ→0

V

Σr + δ2 0

0 δ2


−1

V ′M,

= lim
δ→0

[
V1(Σr + δ2Ir)

−1V ′
1 +

1

δ2
V2V

′
2

]
M,

where Σr are the nonzero singular values of A, V1 are the singular vectors spanning the range

of A′, R(A′), and V2 are the singular vectors spanning the null space of A, N (A). Since Σr is a

full rank diagonal matrix, (Σr + δ2Ir)
−1 exists for any δ ∈ R. Then, for Case I. to be satisfied we

only need

lim
δ→0

1

δ
V2V

′
2M = 0. (21)

But this is only true when the columns of M are in the null space of V2V
′
2 . Denote the columns

of M ∈ Rn×n as mi for i = 1, . . . , n. It is equivalent to say the limit, Eqn. (21), is satisfied if

mi ∈ N (V ′
2), for all i = 1, . . . , n.
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Proof 2 (Equivalence of mi ∈ N (V2V
′
2) =⇒ mi ∈ N (V ′

2).). Let x ∈ Rn and V2 be

an orthonormal basis for the null space of some matrix A. Let x ∈ N (V2V
′
2) or equivalently,

V2V
′
2x = 0. Since V2 is an orthonormal basis for N (A), it is known that V2V

′
2 ̸= 0. Left multiplying

by x′ yields x′V2V
′
2x = 0. But this is just the inner product ∥V ′

2x∥2 = 0, which directly implies that

V ′
2x = 0 and we are done.

Recall that the columns of V2 are an orthonormal basis for N (A), which implies that N (V ′
2)

is equivalent with R(A′). Then for the limit Eqn. (19) to exist, we need mi ∈ R(A′) for all

i = 1, . . . , n.

Case II. If the limit Eqn. (19) does not exist, then Eqn. (20) must be satisfied for the derivative

Eqn. (16) to exist. The object I −AA+ is the orthogonal projector onto N (A′), i.e., for x = x̂+ x̃

with x̂ ∈ R(A) and x̃ ∈ N (A), (I − AA+)x = x̃. Thus, for (I − AA+)x = 0 we require

x ∈ R(A). Naturally, this is a challenging requirement for arbitrary matrices A, however, we have

the condition that A,M are symmetric real matrices. Thus, R(A) ≡ R(A′) and M(I−AA+) = 0

if {mi}ni=1 ∈ R(A′).

Proof 3 (Proof of {mi}ni=1 ∈ R(A′) =⇒ M(I −AA+) = 0.). Consider real symmetric matrices

A,M ∈ Rn×n. Let the columns of M be in R(A). By definition of the orthogonal projection

I − AA+, we have that (I − AA+)M = 0. But we chose M to be symmetric, which implies

M(I − AA+)′ = 0. The Moore-Penrose pseudoinverse is defined so that (AA+)′ = AA+ for real

matrices A. Thus, (I − AA+)′ = (I − AA+) which implies M(I − AA+) = 0 and we are done.

.

Then, we can only satisfy both Case I. and Case II. if the columns of M are in R(A) ≡ R(A′)

or neither case for real symmetric matrices A,M . Recall Eqn. (18),
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D[(B′XB)+]X0H =− (B′X0B)+B′HB(B′X0B)+

− lim
δ→0

((B′X0B)2 + δ2I)−1B′HB(I − (B′X0B)(B′X0B)+).

For real symmetric X0, H , we require the columns of B′HB to be in R(B′X0B). Since we do

not choose H , we cannot guarantee the limit will exist. Despite this, we can show the derivative of

the DARE with R = 0 still exists. Recall the derivative of the DARE contains the term

D[(B′XA)′(B′XB)+(B′XA)]X0H.

The limit in Eqn. (18) only appears in the form,

− lim
δ→0

(B′X0A)
′ [((B′X0B)2 + δ2I)−1B′HB(I − (B′X0B)(B′X0B)+)

]
(B′X0A).

In our discussion of Case II., we stated that I−AA+ is the orthogonal projector onto N (A′) ≡

N (A) for real symmetric matrix A. We propose the following conjecture.

Conjecture 1. For real symmetric matrix X0 ≥ 0, the product

[
I − (B′X0B)(B′X0B)+

]
(B′X0A) = 0.

Thus the limit,

− lim
δ→0

(B′X0A)
′ [((B′X0B)2 + δ2I)−1B′HB(I − (B′X0B)(B′X0B)+)

]
(B′X0A).

vanishes regardless of direction H . It is then implied that the derivative of the DARE described

in Eqn. (14),
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F (X) = A′XA−X +Q− (B′XA)′(B′XB)+(B′XA)

exists and has the form

D[F (X)]X0H = [A+BK(X0)]
′H [A+BK(X0)]−H. (22)

where K(X0) = −(B′X0B)+(B′X0A).

Proof 4 (Proof of Conjecture 1). First, we prove the following equality

[
I − (B′X0B)(B′X0B)+

]
B′X0 = 0,

for real symmetric matrix X0 ≥ 0 in Rn×n and arbitrary matrix B ∈ Rn×m. For shorthand

notation define the orthogonal projection onto the null space of B′X0B to be

T = (I −B′X0B(B′X0B
+)).

Then by the definition of the Moore-Penrose pseudoinverse, we know that

TB′X0B = 0.

It is helpful to show that X0 = S ′S. Since X0 = X ′
0 ≥ 0, we can define a matrix S such that

X0 =V ΛV ′,

=V Λ1/2Λ1/2V ′,

=S ′S,

where V,Λ are the eigenvectors and eigenvalues of X0 respectively. Then, we can rewrite
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TB′X0B = TB′S ′SB = 0.

Furthermore, we can right multiply by T ′ to get

TB′S ′SBT ′ = 0.

But this is only true if TB′S ′ = 0 and thus TB′S ′S = TB′X0 = 0. This directly implies that

the limit

− lim
δ→0

(B′X0A)
′ [((B′X0B)2 + δ2I)−1B′HB(I − (B′X0B)(B′X0B)+)

]
(B′X0A),

vanishes regardless of the direction H . The derivative of the DARE then becomes

D[F (X)]X0H =A′HA−H − (B′HA)′(B′X0B)+(B′X0A)

−(B′X0A)
′(B′X0B)+(B′HA)

+(B′X0A)
′(B′X0B)+B′HB(B′X0B)+(B′X0A).

With some algebra, the above expression reduces to

D[F (X)]X0H = [A+BK(X0)]
′ H [A+BK(X0)]−H,

where K(X0) = −(B′X0B)+(B′X0A) and we are done.
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6 Conclusions

The DARE is a nonlinear matrix equation whose stabilizing solution is highly sought after in the

context of the LQR and LQE problems. With the importance of safety, profit, and reduced process

variability; accurate control is highly desirable for chemical plant operation. This work revisits so-

lution methods to the DARE with a focus on quick and accurate computation for real-time plant es-

timation and regulation. We consider the drawbacks of the IRE, Newton’s method, and the GSV for

large-scale and barely stabilizable systems. Our findings suggest implementing Newton’s method

as a refinement technique for the IRE.

In this review of DARE solution methods, we find a variety of interesting results. The most

commonly employed DARE solver, the GSV known as the command dare in Octave and MAT-

LAB, computes solutions to high accuracy. When tested for large systems, we found that the GSV

computation time is drastically increased for systems with more than 1000 states. The slow com-

putation times can be attributed to the computational complexity of the GSV algorithm scaling

approximately as O(10n3), n is the system size. The IRE offers a much faster computation time,

however, it trades accuracy as the system size exceeds 1000 states. Additionally, the IRE can suffer

from numerical instability which negatively affects the solution accuracy. Newton’s method offers

value as a refinement technique to limit susceptibility to numerical instability but is ineffective as

a stand-alone method. Even for well-posed problems with small system sizes, Newton’s method

cannot reach the stabilizing solution without a proper initial guess. Utilizing a stability switch

or a proximity switch allows the combination of the IRE and Newton’s method to overcome their

respective drawbacks. The ABKSS and IREPS algorithms prescribed in this work offer strong per-

formance for large or barely stabilizable systems. As a result, it is advised that the GSV be used

for small well-posed problems for its desirable accuracy. As the system becomes larger, an IRE-

based method with either a stability or proximity switch should be used to reduce computation time

without negatively impacting accuracy.

Furthermore, we investigate the use of Newton’s method for DAREs with R = 0. In the LQR

problem, R = 0 is not as interesting as that would be equivalent to setting the influence of the
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control action on the controller to zero. In the LQE problem, however, it is more interesting for

the purpose of imposing constraints or exact observations in the model. We find through lengthy

derivations that Newton’s method is largely unchanged and only replaces the inverse operation with

the pseudoinverse operation in the discrete Lyapunov step of each iteration. Furthermore, the proof

for Newton’s method in this special case implies that the discrete Lyapunov equation can be solved

regardless of its solution. This work towards providing a Newton’s method analog to the GSV with

the extended symplectic pencil, however, is not complete. The proofs provided in this work provide

intrigue to future work for the general case of the DARE with R ≥ 0.

This thesis offers a guideline for selecting a DARE solution method based on system size and

stabilizability. Since its development in the early 1980s, the GSV has been the gold standard for

solving the LQR and LQE problems. With the advancement of computational resources modifica-

tions of the GSV have been implemented, including Newton method refinements and capabilities

for R ≥ 0. However, this study revisits the iterative Riccati equation from Kalman’s work in the

1960s. We provide a new perspective on the solution to large-scale DAREs with consideration of

numerical instability. Two new Newton refinement techniques of the IRE are offered, the ABKSS

and IREPS. Both are capable of solving DAREs with more than 1000 states quickly with high accu-

racy. Furthermore, the groundwork for establishing Newton’s method for singular R is developed.

7 Future Work

The future of this work pertains to the IREPS switch and Newton’s method for the DARE with

singular R. The IREPS switch is a transition of employment of the IRE to Newton’s method based

on the proximity of the iterate to the solution. In its current form, the IREPS switch criteria is an

arbitrary tolerance imposed on the scaled residual of the current iterate. Once the current iterate

of the IRE becomes less than said tolerance, the iterate is used as the initial guess to Newton’s

method. Based on the speed of the IRE from our numerical results it should be employed for as

long as possible. Thus, it would likely improve computation times if the switch is triggered when
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the numerical error overrides the iterative improvements. That is to say, the switch is activated once

there is negligible improvement between multiple iterates or when monotonicity is broken. Then

the IRE is used until the desired accuracy is reached or when further improvement cannot be made.

The future of Newton’s method for the DARE with singular R is to show the Newton method

iteration for the DARE:

X = A′XA+Q− (B′XA+ S ′)′(B′XB +R)+(B′XA+ S ′),

whenR ≥ 0. As we saw in Eqn. (18), the limit does not exist in all directions alone. Instead, the

limit is canceled by the followingB′XA term. Here we would require the columns of (B′X0A+S ′)

to be in the range space of (B′X0B+R), which we were not able to guarantee in the time provided

for this work. In the future of this work, the proof of Newton’s method forR = 0 should be extended

to R ≥ 0.
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