2017-2018 Academic Calendar

Note: Dates subject to change without notice.

2017 - 2018 Campus Holidays

Labor Day: Monday, September 4, 2017
Veterans' Day: Friday, November 10, 2017
Thanksgiving: Thursday & Friday, November 23 & 24, 2017
Christmas: Monday & Tuesday, December 25 & 26, 2017
New Year: Friday & Monday, December 29, 2017 & January 1, 2018
Martin Luther King, Jr. Day: Monday, January 15, 2018
Presidents' Day: Monday, February 19, 2018
Cesar Chavez Holiday: Friday, March 30, 2018
Memorial Day: Monday, May 28, 2018
Independence Day: Wednesday, July 4, 2018

EQUAL OPPORTUNITY AND NONDISCRIMINATION
The University of California, in accordance with applicable Federal and State law and University policy, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy, disability, age, medical condition (cancer related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. This nondiscrimination policy covers admission, access, and treatment in University programs and activities.
Inquiries regarding the University’s student-related nondiscrimination policies may be directed to the Director of Equal Opportunity at (805) 893-3089.

1 Pregnancy includes pregnancy, childbirth, and medical conditions related to pregnancy or childbirth.

Produced by the College of Engineering, Student Advising Division
Glenn Beltz, Associate Dean for Undergraduate Studies
Peter Allen, Marketing & Communications Director

This publication is available at:
https://engineering.ucsb.edu/undergraduate/academic-advising/gear-publications

The information in this publication supersedes that in the UCSB General Catalog. All announcements herein are subject to revision without notice.
General Engineering Academic Requirements

College of Engineering • University of California • Santa Barbara

Volume 8, Summer 2017

Requirements and policies in the GEAR are subject to change each academic year.
Welcome to the College of Engineering at UC Santa Barbara. There are many reasons we are one of the top engineering schools in the nation. We bring together an amazing faculty, the members of which are highly acclaimed in the scientific communities in which they work. UCSB professors are, in fact, among the most cited by their colleagues worldwide, a testament to the quality and creativity of their research. A high percentage of the faculty has been elected to the prestigious National Academy of Sciences and National Academy of Engineering. We have six Nobel Prize winners on this campus, five of whom are faculty in engineering and the sciences. We’re also home to an amazing group of smart, accomplished, high-energy students. These more than 1,400 undergraduates, pursuing a variety of interests, contribute greatly to the quality of the learning environment as well as to the overall richness of campus life.

We have crafted courses that balance theory and applied science so our students are well prepared for successful careers in academia and in industry. Students especially interested in engineering and industry can take advantage of our Technology Management Program. Through coursework and “real world” experiences, the program gives our students insight into the world of technology from a business perspective. We want our students to understand what transforms a good technical idea into a good business idea. We want to give them a head start at attaining leadership positions in the technology business sector.

With a thriving interdisciplinary environment, our campus culture fosters creativity and discovery. A truly interdisciplinary culture allows all sorts of ideas to cross-fertilize and makes it easy for faculty to work effectively between disciplines to tackle big questions. Visiting scholars tell us they don’t often see the kind of openness among departments and ease of collaboration that they find here.

As part of the prestigious and well-established University of California system, we have the resources as well as the breadth and depth of talent to pursue new fields of scientific inquiry. We also bring an entrepreneurial attitude to our research, focusing on applications as much as discovery. Our leading programs in areas as diverse as biotechnology, communications, computer security, materials, nanotechnology, networking, and photonic devices attest to the success of this approach.

At the core of this activity are our students, our central purpose. We encourage you to pursue every opportunity, both inside and outside the classroom, to enhance your education. We have a talented and wise faculty and staff, equipped with extensive knowledge and diverse experience, to help you make decisions about courses and other activities as you pursue your degree. We look forward to having you in our classes, laboratories, and offices as you discover where your interests lead you.

Glenn Beltz
Associate Dean for Undergraduate Studies
Table of Contents

Message from the Associate Dean ... 2

College Overview
Honors Programs ... 4
Education Abroad Program .. 4
Student Organizations ... 4
Change of Major and Change of College 5
Degree Requirements .. 5
Minimal Progress Requirements and College Policy 6
Five-Year B.S./M.S. Programs .. 6

General University Requirements 10
UC Entry Level Writing Requirement 10
American History and Institutions Requirement 10

College General Education Requirements 10
General Subject Area Requirements 11
Special Subject Area Requirements
 Writing Requirement .. 11
 Depth Requirement ... 11
 Ethnicity Requirement .. 11
 European Traditions Requirement 12
General Education Course Listing 12
Checklist of General Education Requirements 21

Department and Program Information
Chemical Engineering .. 22
Computer Engineering ... 25
Computer Science ... 26
Electrical and Computer Engineering 30
Engineering Sciences .. 37
Materials ... 38
Mechanical Engineering ... 40
Technology Management Program 44

Major Requirements (2017-2018)
Chemical Engineering .. 46
Computer Engineering ... 48
Computer Science ... 50
Electrical Engineering .. 52
Mechanical Engineering ... 54

Additional Resources ... 56

Academic Year Calendar .. Inside Front Cover

College Policy on Academic Conduct Inside Back Cover
The mission of the College of Engineering is to provide its students with a firm grounding in scientific and mathematical fundamentals; experience in analysis, synthesis, and design of engineering systems; and exposure to current engineering practice and cutting edge engineering research and technology. A spirit of entrepreneurship in education, scholarly activity and participation in engineering practice infuses UCSB’s College of Engineering.

College of Engineering Honors Program

The Honors Program in the College of Engineering is designed to enrich the educational opportunities of its best students. Students in the Honors Program will be encouraged to participate in early experiences in scholarship through special seminars and individualized work in regular courses and, in later years, as members of research teams. Students in the Honors Program will be provided opportunities to become peer mentors and tutors within the College.

Participation in the Honors Program offers preferential enrollment in classes for continuing students as well as graduate student library privileges. Housing is available to eligible first-year students in Scholars’ Halls located in several university-owned residence halls.

The College of Engineering invites approximately the top 10% of incoming freshmen into the Honors Program based on a combination of high school GPA and SAT or ACT scores. (Please note: eligibility criteria are subject to change at any time.) Transfer students with a UC transferable GPA of 3.6 or greater are invited to join the College Honors Program.

To graduate as an Honors Program Scholar, students must complete 6.0 total Honors units during their junior and senior years; comprised of coursework from departmental 196, 197, 199 or graduate level courses with grades of B or higher, complete a total of 10 hours of community service for each year they are program members and maintain a 3.5 or higher cumulative GPA at the end of each Spring quarter.

Continued participation in the College Honors Program is dependent on maintaining a cumulative GPA of 3.5 or greater and active participation in both the academic and community service components of the Program.

Dean’s Honors

The College of Engineering gives public recognition to its outstanding undergraduate students by awarding Dean’s Honors at the end of each regular academic term to students who have earned a 3.5 grade-point average for the quarter and have completed a program of 12 or more letter-graded units. (Grades of Incomplete or Not Passed automatically disqualify students for eligibility for Dean’s Honors.) The Dean’s Honors List is posted quarterly, and the award is noted quarterly on the student’s permanent transcript.

Graduating students of the College of Engineering who have achieved distinguished scholarship while at the university may qualify for Honors, High Honors, or Highest Honors at graduation.

Tau Beta Pi

Tau Beta Pi is the nation’s oldest and largest engineering honor society. Its purpose is to honor academic achievement in engineering. Election to membership is by invitation only. To be eligible for consideration, students must be in the top one-eighth of their junior class or the top one-fifth of the senior class. Graduate students and faculty also belong to this honor society. In addition to regular meetings on campus, the organization participates in regional and national activities and sponsors local events, such as tutoring and leadership training, to serve the campus and community.

Education Abroad Program (EAP)

Students are encouraged to broaden their academic experience by studying abroad for a year, or part of a year, under the auspices of the University of California Education Abroad Program. See the EAP web site for more information: www.eap.ucsb.edu

Student Organizations

Student chapters of a number of engineering professional organizations are active on the UCSB campus. Students interested in any of these organizations may contact the Office of Undergraduate Studies of the College of Engineering for more information.

- American Indians in Science and Engineering Society
- American Institute of Chemical Engineers
- American Society of Mechanical Engineers
- Association for Computing Machinery
- Engineering Student Council
- Engineers without Borders
- Entrepreneurs Association
- Institute of Electrical and Electronics Engineers
- Los Ingenieros (Mexican-American Engineering Society/Society of Hispanic Professional Engineers)
• National Society of Black Engineers
• out in Science, Technology, Engineering, and Mathematics
• Society for Advancement of Chicano and Native Americans in Science
• Society of Asian Scientists and Engineers
• Society of Women Engineers
• Women in Software and Hardware

Change of Major and Change of College

Current UCSB students in a non-engineering major, as well as students wishing to change from one engineering major to another, are welcome to apply after the satisfactory completion of a pre-defined set of coursework.

However, due to the current demand for engineering majors, students are cautioned that it is a very competitive process and not all applicants will be able to change their majors due to limited space availability. It is incumbent upon students to continue to make progress in a backup major while pursuing a new major in the College of Engineering, and to periodically consult academic advisors in both the desired major as well as the backup major regarding the viability of pursuing the change of major.

Students who enter UCSB as transfer students will not be able to change to or add an engineering major, if not initially accepted into one. Students who began as freshmen who plan to enter an engineering major or to change from one engineering major to another will be expected to complete at least 30 units at UCSB before petitioning for a change of major and usually must satisfy the prerequisites of the prospective major. Students who have completed more than 105 units will not be considered for a change of major/change of college in engineering or computer science.

Note: The College of Engineering will not accept students from the College of Creative Studies or the College of Letters and Science after they have completed 105 units, regardless of their expected unit total at graduation.

Notwithstanding any of the major-specific requirements described below, we caution that the capacity of any given program to accept new students changes, sometimes substantially, from year to year.

Chemical Engineering. Admission to the Chemical Engineering major is determined by a number of factors, including an overall UCSB grade point average of 3.0 or better, and satisfactory completion of the following courses or their equivalents: Math 3A-B, Math 4A, Chemistry 1A-1AL or 2A-2AC, 1B-1BL or 2B-2BC, 1C-1CL or 2C-2CC; Engineering 3, and Physics 1-2. Decisions involving factors beyond scores and grades are made exclusively by the chemical engineering faculty. Only a limited number of petitions will be approved.

Computer Engineering. Students may petition to enter the Computer Engineering major at any time both of the following requirements are met:
1. An overall UCSB grade point average of at least 3.0.
2. Satisfactory completion at UCSB, with a grade point average of 3.0 or better, of any five classes, including at least two Electrical & Computer Engineering (ECE) classes and two Computer Science (CMPSC) classes, from the following: Math 4B, ECE 10A/10AL, 10B/10BL, 10C/10CL (ECE 10A/10AL, 10B/10BL, 10C/10CL each count as one course), ECE 15A, CMPSC 16, 24, 32, 40.

Computer Science. Students may petition to enter the Computer Science major when the following requirements are met:
1. A cumulative grade point average of at least 3.0;
2. Satisfactory completion of Computer Science 16 and 24 with a cumulative GPA of 3.2 or higher; First takes only
3. Satisfactory completion of Math 3A, 3B, 4A, 4B and Computer Science 40 with a cumulative GPA of 3.0 or higher; First takes only

The selection process is highly competitive and these milestones are minimum requirements for consideration, achieving them does not guarantee admittance to the Computer Science major. Any petitions denied will be automatically considered a second time in the next quarter. Petitions denied a second time will not be reconsidered. More information can be found at http://cs.ucsb.edu/undergraduate/admissions/.

Electrical Engineering. Students may petition to enter the Electrical Engineering major once both of the following requirements are met:
1. An overall UCSB grade point average of at least 3.0.
2. Satisfactory completion at UCSB, with a grade point average of 3.0 or better, of at least five classes, including at least two mathematics classes, from the following: Math 4B, Math 6A, Math 6B, ECE 10A/10AL, 10B/10BL, 10C/10CL (ECE 10A/10AL, 10B/10BL, 10C/10CL each count as one course), ECE 15A. The calculation of the minimum GPA will be based on all classes completed from this list at the time of petitioning.

Mechanical Engineering. Before petitioning for a change of major to mechanical engineering, six (6) of the following core courses or their UC equivalents must be completed: Math 3A-B; Math 4A-B; Math 6A-B; Physics 1-2; ME 14-15 (at least one of the 6 courses must include ME 14 or ME 15). Acceptance into the major will be based on UC grade point averages, applicable courses completed, and space availability. All students considering changing into Mechanical Engineering are required to meet with the ME Academic Advisor during their first year.

Degree Requirements

To be eligible for a bachelor of science degree from the College of Engineering, students must meet three sets of requirements: general university requirements, college general education requirements, and major degree requirements.

General University Requirements

All undergraduate students must satisfy university academic residency, UC Entry Level Writing Requirement, American History and Institutions, unit, and scholarship requirements. These requirements are described fully on page 10.

College General Education Requirements

All students must satisfy the general education requirements for the College of Engineering. These requirements are described on page 10 and includes a listing of courses which meet each requirement.

Major Degree Requirements

Preparation for the major and major requirements for each program must be satisfied, including unit and GPA requirements. These appear in subsequent sections of this publication.

Advanced Placement Credit

Students who complete special advanced placement courses in high school and who earn scores of 3, 4, or 5 on the College Board Advanced Placement taken before high school graduation will receive 2, 4, or 8 units of credit toward graduation at UCSB for each test completed with the required scores, provided scores are reported to the Office of Admissions. The specific unit values assigned to each test, course equivalents, and the applicability of these credits to the General Education requirements are presented in the chart on page 8.

Note: Advanced Placement credit earned prior to entering the university will not be counted toward their minimum cumulative progress requirements (see General Catalog for more details).

International Baccalaureate Credit

Students completing the International Baccalaureate (IB) diploma with a score of 30 or above will receive 30 quarter units toward their UC undergraduate degree. The university grants 8 quarter units for certified IB Higher Level examinations on which a student scores 5, 6, or 7. The university does not grant credit for standard level exams. The application of this credit to the General Education requirements and course equivalents for these exams are listed on page 7.
Note: International Baccalaureate
Examination credit earned prior to entering
the university will not be counted toward
maximum unit limitation either for selection of
a major or for graduation.

Minimal Progress
Requirements
A student in the College of Engineering
may be placed on academic probation if
the total number of units passed at UCSB
is fewer than what is prescribed by the
prevailing academic Senate regulation
regarding Minimum Cumulative Progress.
At least three-fourths of the minimum
number of academic units passed must
include courses prescribed for the major.

The following courses may be counted
toward the unit minimums: courses
repeated to raise C-, D, or F grades;
courses passed by examination; courses
graded IP (In Progress); courses passed
during summer session at UCSB or at
another accredited college or university
and transferred to UCSB.

Students must obtain the approval of the
Associate Dean for Undergraduate Studies
in the College of Engineering for approval.
The individual

215-Unit and Quarter Enrollment
Limitations
The college expects students to graduate
within 12 regular quarters for students who
are admitted as freshmen and 9 regular
quarters for students admitted as junior
transfers and with no more than 215 units.
College credit earned before high school
graduation does not count toward the
215-unit maximum. This includes credit
earned for Advanced Placement and International
Baccalaureate examinations, and also
college or university credit earned while still
in high school.

Students who are admitted as freshmen
and remain continuously enrolled will be
assessed after 12 regular quarters at UCSB,
and transfer students admitted as juniors
will be assessed after 9 regular quarters at
UCSB. Summer session does not count as
a regular quarter in this calculation, but units
earned in summer session do apply toward
the 215-unit maximum.

With the exception of summer sessions,
if students leave UCSB and earn a large
number of units at one or more other
academic institutions while they are away, the
number of quarters allowed at UCSB will be
reduced in proportion to the number of terms
completed elsewhere.

College policy requires students to secure
specific approval to continue enrollment
beyond the quarter and unit limits noted
above. Students who think they may exceed
both the quarter limitations and 215 units may
submit a Proposed Schedule for Graduation
(Study Plan) for consideration by the
Associate Dean for Undergraduate Studies,
but they should understand that approval is
granted in limited circumstances.

Note: The College of Engineering will not
accept students from the College of Creative
Studies or the College of Letters and
Science after they have completed 105 units,
regardless of their expected unit total at
graduation.

Five-Year B.S./M.S.
Degree Programs

Five-Year B.S. / M.S. in Computer
Science. A combined BS/MS Program in
Computer Science provides an opportunity
for outstanding undergraduates to earn
both degrees in five years. Additional
information about this program is available
from the Computer Science graduate advisor.

Interested students should make their interest
known to the department early in their junior
year. Advising and application materials are
also available in the Department of Computer
Science office.

Five-Year B.S. in Computer
Engineering / M.S. in Computer
Science. The Computer Engineering Program
incorporates the design of computer
hardware and software to meet the needs
for various career applications. Students
are trained to work with systems ranging
from small integrated circuits to worldwide
communications networks, from digital
watches to supercomputers, and from single-"line programs to operating systems. For more
information on the program, please consult
the Computer Engineering department.

Five-Year B.S. in Computer
Engineering or Electrical
Engineering / M.S. in Electrical and
Computer Engineering. A combined
BS/MS Program in Computer Science
provides an opportunity for outstanding
undergraduates to earn both degrees in
five years. Additional information about this
program is available from the Electrical and
Computer Engineering graduate advisor.

Interested students should make their interest
known to the department early in their junior
year. Advising and application materials are
also available in the Department of Electrical
and Computer Engineering office.

Five-Year B.S. in Chemical
Engineering, Electrical Engineering,
or Mechanical Engineering / M.S. in Materials
A combined B.S. Engineering/M.S. Materials
program provides an opportunity for
outstanding undergraduates in chemical,
electrical, or mechanical engineering to
earn both of these degrees in five years.
This program enables students to develop
all of the requisite knowledge in their core
engineering disciplines and to complement
this with a solid background in materials.
This combination provides highly desirable
training from an industrial employment
perspective and capitalizes on the strengths
of our internationally renowned materials
department.

There is a five-year option for students who
are pursuing a B.S. in Chemistry in the
College of Letters and Science to complete an
M.S. degree in Materials. Interested students
should contact the Undergraduate Advisor in
the Department of Chemistry & Biochemistry
for additional information.
International Baccalaureate Higher Level Examinations

Students who earn scores of 5, 6, or 7 on International Baccalaureate (IB) Higher Level (HL) Examinations taken before high school graduation will receive 8 units of credit toward graduation at UCSB for each such test completed with the required scores, provided official scores are submitted to the Office of Admissions. Students who complete the IB diploma with a score of 30 or above will receive 30 quarter units total. The university does not grant credit for Standard Level (SL) exams. The application of this credit to the General Education requirements and course equivalents for these exams are listed below.

Students should be advised that college courses taken before or after attending UC may duplicate AP, IB and/or A Level examinations. Additionally, exams may duplicate each other (for example, an AP or IB exam in the same subject area). If the student does duplicate an exam with another exam of the same subject content, and/or an exam with a college course, we will award credit only once.

Note: International Baccalaureate credit earned prior to entering the university will not be counted toward maximum unit limitations either for selection of a major or for graduation.

International Baccalaureate Higher Level Exam

<table>
<thead>
<tr>
<th>Exam</th>
<th>Units</th>
<th>GE Credit</th>
<th>UCSB Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>8</td>
<td>none</td>
<td>EEMB 22, MCDB 20</td>
</tr>
<tr>
<td>Business Management</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Computer Science</td>
<td>8</td>
<td>none</td>
<td>Computer Sciene 8</td>
</tr>
<tr>
<td>Dance</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Economics</td>
<td>8</td>
<td>D: 2 courses</td>
<td>Economics 1, 2</td>
</tr>
<tr>
<td>English A: Literature or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>English A Language and Literature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Score of 5</td>
<td>8</td>
<td>Entry Level Writing</td>
<td>Writing 1, 1E</td>
</tr>
<tr>
<td>Score of 6</td>
<td>8</td>
<td>A1</td>
<td>Writing 1, 1E, 2, 2E, 2LK</td>
</tr>
<tr>
<td>Score of 7</td>
<td>8</td>
<td>A1, A2</td>
<td>Writing 1, 1E, 2, 2E, 2LK, 50, 50E</td>
</tr>
<tr>
<td>English B</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Film</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Geography</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>History</td>
<td>8</td>
<td>E: 1 course^</td>
<td>none</td>
</tr>
<tr>
<td>History of Africa</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>History of the Americas</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>History of Asia and Oceania</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>History of Europe and the Middle East</td>
<td>8</td>
<td>D: 1 course^</td>
<td>none</td>
</tr>
<tr>
<td>Languages Other Than English</td>
<td>8</td>
<td>none</td>
<td>See department for level placement</td>
</tr>
<tr>
<td>Mathematics</td>
<td>8</td>
<td>none</td>
<td>Mathematics 2A, 2B, 3A, 3B, 34A, 34B, or equivalent</td>
</tr>
<tr>
<td>Mathematics, Further</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>Music</td>
<td>8</td>
<td>F: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Philosophy</td>
<td>8</td>
<td>E: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Physics</td>
<td>8</td>
<td>none</td>
<td>Physics 10</td>
</tr>
<tr>
<td>Psychology</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Social & Cultural Anthropology</td>
<td>8</td>
<td>D: 1 course</td>
<td>Anthropology 2</td>
</tr>
<tr>
<td>Theater</td>
<td>8</td>
<td>F: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Visual Arts</td>
<td>8</td>
<td>F: 1 course</td>
<td>none</td>
</tr>
</tbody>
</table>

^ course also satisfies the European Traditions Requirement
College Board Advanced Placement Placement Credit

Students who earn scores of 3, 4, or 5 on College Board Advanced Placement Examinations taken before high school graduation will receive 2, 4, or 8 units of credit toward graduation at UCSB for each such test completed with the required scores, provided official scores are submitted to the Office of Admissions. Students should be advised that college courses taken before or after attending UC may duplicate AP, IB and/or A Level examinations. Additionally, exams may duplicate each other (for example, and AP or IB exam in the same subject area). If the student does duplicate an exam with another exam of the same subject content, and/or an exam with a college course, we will award credit only once.

Note: Advanced Placement credit earned prior to entering the university will not be counted toward maximum unit limitations either for selection of a major or for graduation.

<table>
<thead>
<tr>
<th>Advanced Placement Exam with score of 3, 4, or 5</th>
<th>Units Awarded</th>
<th>General Ed. Course Credit</th>
<th>UCSB Course Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History</td>
<td>8</td>
<td>F: 1 course</td>
<td>Art History 1</td>
</tr>
<tr>
<td>*Art Studio 2D Design</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>*Art Studio 3D Design</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>*Art Studio Drawing</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Chinese Language and Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>H: 1 course</td>
<td>See department for level placement</td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>H: 1 course</td>
<td></td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>H: 1 course</td>
<td></td>
</tr>
<tr>
<td>Comparative Government and Politics</td>
<td>4</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>+Computer Science A</td>
<td>2</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Computer Science Principles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Economics – Macroeconomics</td>
<td>4</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>Economics – Microeconomics</td>
<td>4</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>"English – Composition and Literature or Language and Composition"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>Entry Level Writing</td>
<td>Writing 1, 1E</td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>A1</td>
<td>Writing 1, 1E, 2, 2E, 2LK</td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>A1, A2</td>
<td>Writing 1, 1E, 2, 2E, 2LK, 50, 50E</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>4</td>
<td>none</td>
<td>Environmental Studies 2</td>
</tr>
<tr>
<td>European History</td>
<td>8</td>
<td>E: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>French Language and Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>H: 1 course</td>
<td>French 1-3</td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>H: 1 course</td>
<td>French 1-4</td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>H: 1 course</td>
<td>French 1-5</td>
</tr>
<tr>
<td>German Language and Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>H: 1 course</td>
<td>German 1-3</td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>H: 1 course</td>
<td>German 1-4</td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>H: 1 course</td>
<td>German 1-5</td>
</tr>
<tr>
<td>Human Geography</td>
<td>4</td>
<td>D: 1 course</td>
<td>Geography 5</td>
</tr>
<tr>
<td>Italian Language and Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>H: 1 course</td>
<td>Italian 1-3</td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>H: 1 course</td>
<td>Italian 1-5</td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>H: 1 course</td>
<td>Italian 1-6</td>
</tr>
<tr>
<td>Japanese Language & Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>H: 1 course</td>
<td>See department for level placement</td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>H: 1 course</td>
<td></td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>H: 1 course</td>
<td></td>
</tr>
<tr>
<td>Latin</td>
<td>8</td>
<td>H: 1 course</td>
<td>Latin 1-3</td>
</tr>
<tr>
<td>*Mathematics – Calculus AB (or AB subscore of BC exam)</td>
<td>4</td>
<td>none</td>
<td>Mathematics 2A, 3A, 34A, or equivalent</td>
</tr>
<tr>
<td>*Mathematics – Calculus BC</td>
<td>8</td>
<td>none</td>
<td>Mathematics 2A, 2B, 3A, 3B, 34A, 34B, or equivalent</td>
</tr>
<tr>
<td>Music – Theory</td>
<td>8</td>
<td>F: 1 course</td>
<td>Music 11</td>
</tr>
<tr>
<td>*Physics 1 (effective S’15)</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>*Physics 2 (effective S’15)</td>
<td>8</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>*Physics – B (last offered S’14)</td>
<td>8</td>
<td>none</td>
<td>Physics 10</td>
</tr>
<tr>
<td>*Physics – C (Mechanics)</td>
<td>4</td>
<td>none</td>
<td>Physics 6A and 6AL</td>
</tr>
<tr>
<td>*Physics – C (Electricity and Magnetism)</td>
<td>4</td>
<td>none</td>
<td>Physics 6B and 6BL</td>
</tr>
<tr>
<td>Psychology</td>
<td>4</td>
<td>D: 1 course</td>
<td>Psychology 1</td>
</tr>
<tr>
<td>Spanish Language and Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>H: 1 course</td>
<td>Spanish 1-3</td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>H: 1 course</td>
<td>Spanish 1-4</td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>H: 1 course</td>
<td>Spanish 1-5</td>
</tr>
<tr>
<td>Spanish Literature and Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*With score of 3</td>
<td>8</td>
<td>H: 1 course</td>
<td>Spanish 1-3</td>
</tr>
<tr>
<td>*With score of 4</td>
<td>8</td>
<td>H: 1 course</td>
<td>Spanish 1-4</td>
</tr>
<tr>
<td>*With score of 5</td>
<td>8</td>
<td>H: 1 course</td>
<td>Spanish 1-5</td>
</tr>
<tr>
<td>Statistics</td>
<td>4</td>
<td>none</td>
<td>Communication 87,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PSTAT 5AA-ZZ, Psychology 5</td>
</tr>
</tbody>
</table>
College Board Advanced Placement Credit Cont.

<table>
<thead>
<tr>
<th>Advanced Placement Exam with score of 3, 4, or 5</th>
<th>Units Awarded</th>
<th>General Ed. Course Credit</th>
<th>UCSB Course Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Government and Politics</td>
<td>4</td>
<td>D: 1 course</td>
<td>Political Science 12</td>
</tr>
<tr>
<td>U.S. History</td>
<td>8</td>
<td>D: 1 course</td>
<td>none</td>
</tr>
<tr>
<td>World History</td>
<td>8</td>
<td>E: 1 course</td>
<td>none</td>
</tr>
</tbody>
</table>

* A maximum of 8 units EACH in art studio, English, Mathematics, and Physics is allowed.
+ Maximum credit for Computer Science A-AB exams is 4 units. (The AB exam is no longer offered.)

Note: Information on this chart is subject to change. For updates go to: http://my.sa.ucsb.edu/catalog/current/UndergraduateEducation/APCreditandChart.aspx.

A Level Examination Credit

Students who earn grades of A, B, or C on UC-approved GCE and Hong Kong A Level examinations will receive 12 units of credit toward graduation at UCSB for each exam, provided that official grades are submitted to the Office of Admissions. Any general education credit or UCSB course equivalents listed in the chart below will be awarded only for Cambridge International A Level exams taken in 2013 or later, not for exams administered by any other agency. (Student may petition for GE or course credit for Cambridge International exams taken prior to 2013 or for exams administered by other agencies.)

Students should be advised that college courses taken before or after attending UC may duplicate AP, IB and/or A Level examinations. Additionally, exams may duplicate each other (for example, an AP or IB exam in the same subject area). If the student does duplicate an exam with another exam of the same subject content, and/or an exam with a college course, we will award credit only once.

Note: A Level examination credit earned prior to entering the university will not be counted toward maximum unit limitation either for selection of a major or for graduation.

A Level Exam With A Grade of A, B, or C

<table>
<thead>
<tr>
<th>A Level Exam With A Grade of A, B, or C</th>
<th>Units Awarded</th>
<th>General Ed. Area</th>
<th>UCSB Course Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>12</td>
<td></td>
<td>Economics 3A, 3B</td>
</tr>
<tr>
<td>Afrikaans</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabic</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art and Design</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical Studies</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computing</td>
<td>12</td>
<td>Area D: 2 courses</td>
<td>Computer Science 16</td>
</tr>
<tr>
<td>Economics</td>
<td>12</td>
<td></td>
<td>Economics 1, 2</td>
</tr>
<tr>
<td>English – Language</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English – Literature</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hindi</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marathi</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Science</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>12</td>
<td></td>
<td>Mathematics 3A, 3B, 15, 34A, 34B</td>
</tr>
<tr>
<td>Mathematics – Further</td>
<td>12</td>
<td></td>
<td>Mathematics 4A</td>
</tr>
<tr>
<td>Music</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>12</td>
<td></td>
<td>Physics 6A, 6AL, 6B, 6BL, 6C, 6CL</td>
</tr>
<tr>
<td>Portuguese</td>
<td>12</td>
<td>Area D: 1 course</td>
<td>Psychology 1, 3, 7</td>
</tr>
<tr>
<td>Psychology</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Putonghua</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sociology</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spanish</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamil</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telugu</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urdu</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urdu – Pakistan only</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General University Requirements

UC Entry Level Writing Requirement

All students entering the University of California must demonstrate an ability to write effectively by fulfilling the Entry Level Writing requirement. The requirement may be met in one of the following ways prior to admission:

1. by achieving a score of 680 or higher on the Writing Section of the SAT Reasoning Test (last administered January 2016);
2. by achieving a score of 30 or better on the ACT Combined English/Writing test (last administered June 2015);
3. by achieving a score of 30 or better on the ACT, English Language Arts;
4. by achieving a score of 3 or higher on the College Board Advanced Placement Examination in English Composition and Literature or English Language and Composition;
5. by passing the UC systemwide Analytical Writing Placement Examination while in high school;
6. by achieving a score of 6 or higher on the International Baccalaureate (standard level) English A1 Examination;
7. by achieving a score of 5 or higher on the International Baccalaureate (higher level) English A Examination;
8. by entering the university with transcripts showing the completion of an acceptable 3-semester unit or 4-quarter unit course in English composition equivalent to Writing 2 at UCSB, with a grade of C or better.

Students who have not taken the Analytical Writing Placement examination and who have not met the UC Entry Level Writing Requirement in one of the other ways listed above will be required to take the examination during their first quarter at UCSB (check with Writing Program for examination time and location). An appropriate score on the examination will satisfy the requirement. Only one UC examination may be taken – either the systemwide Entry Level Examination while in high school or the examination given at UCSB; and neither may be repeated.

Students who enter UCSB without having fulfilled the university’s Entry Level Writing requirement and (if they have not previously taken the systemwide examination) who do not achieve an appropriate score on the examination given on campus must enroll in Writing 1, 1E or Linguistics 12 within their first year at UCSB. A grade of C or higher is needed to satisfy the requirement. Students who earn a grade of C- or lower in will be required to repeat the course in successive quarters until the requirement is satisfied.

Once students matriculate at UCSB, they may not fulfill the requirement by enrolling at another institution. Transfer courses equivalent to Writing 2 or 50 will not be accepted for unit or subject credit unless the UC Entry Level Writing requirement has already been met. Students will only be allowed to meet the Area A requirement of the General Education Requirements with courses taken after satisfying the UC Entry Level Writing requirement. The Entry Level Writing requirement must be completed by the end of the third quarter of matriculation. Students who do not meet this deadline will be blocked from further enrollment at UCSB; EMS students should consult with the Writing Program.

American History and Institutions Requirement

The American History and Institutions requirement is based on the principle that American students enrolled at an American university should have some knowledge of the history and government of their country. You may meet this requirement in any one of the following ways:

1. by achieving a score of 3 or higher on the College Board Advanced Placement Examination in American History or American Government and Politics; or
2. by passing a non-credit examination in American history or American institutions, offered in the Department of History during the first week of each quarter. Consult the department for further information; or
3. by achieving a score of 650 or higher on SAT II: Subject Test in American History; or
4. by completing one four-unit course from the following list of courses:

 Anthropology 131
 Art History 121A-B-C, 136H
 Asian American Studies 1, 2
 Black Studies 1, 6, 20, 60A-B, 103, 137E, 169AR-BR-CR
 Chicano Studies 1A-B-C, 168B, 174, 188C
 Economics 113A-B, 119
 English 133AA-ZZ, 134AA-ZZ, 191
 Environmental Studies 173
 Feminist Studies 155A, 159B
 Military Science 27
 Political Science 12, 115, 127, 151, 153, 155, 157, 158, 162, 165, 167, 180, 185
 Religious Studies 7, 14, 61A-B, 151A-B, 152
 Sociology 137E, 140, 144, 155A, Theater 180A-B

Courses used to fulfill the American History and Institutions requirement may also be applied to General Education or major requirements, or both where appropriate. Equivalent courses taken at other accredited colleges or universities, in UC Extension, or in summer session may be acceptable. Students who transfer to UCSB from another campus of the University of California where the American History and Institutions Requirement has been considered satisfied will automatically fulfill the requirement at UCSB.

International students on a nonimmigrant visa may petition for a waiver of this requirement through the Director of International Students and Scholars.

College of Engineering General Education Requirements

The aims of the General Education Program in the College of Engineering are to provide a body of knowledge of general intellectual value that will give the student a broad cultural base and to meet the objectives of the engineering profession. An appreciation and understanding of the humanities and social sciences are important in making engineers aware of their social responsibilities and enabling them to consider related factors in the decision-making process.

Students in the College of Engineering must complete the General Education requirements in order to qualify for graduation. Students are reminded that other degree requirements exist and that they are responsible for familiarizing themselves with all bachelor’s degree requirements. Not all of the courses listed in this publication are offered every quarter. Please see the GOLD system for General Education courses offered during a particular quarter.

It should be noted that for College of Engineering transfers who completed IGETC (Intersegmental General Education Transfer Curriculum), it may be used to substitute for the lower division general education and breadth requirements only. To complete the depth and writing requirements, those students will still be required to complete at least two upper-division general education courses from American History and Institutions, General Subject Areas D, E, F, G, or H, or Special Subject Areas (Writing, Ethnicity, or European Traditions) after transfer (unless the student completed a year-long sequence equivalent to one of the Depth
In the process of fulfilling the General Education General Subject Areas D through H requirements, students must complete the following Special Subject Area requirements:

1. **Writing Requirement**, Objective: To study and practice with writing, reading, and critical analysis within specific disciplines. Students will demonstrate abilities by producing written work totaling at least 1,800 words that is independent of or in addition to written examinations. Assessment of written work must be a significant consideration in total assessment of student performance in the course. At least four designated General Education courses that meet the following criteria: (1) the courses require one to three papers totaling at least 1,800 words, exclusive of elements such as footnotes, equations, tables of contents, or references; (2) the required papers are independent of or in addition to written examinations; and (3) the paper(s) is a significant consideration in the assessment of student performance in the course. Courses marked with an asterisk (*) on the lists in this document apply to this requirement. The writing requirement may be met only with designated UCSB courses. Approved by the academic senate.

 NOTES: ENGR 101 may be used as a writing requirement class, even by those students for whom ENGR 101 is required.

 New transfer students should consult with the College Undergraduate Studies Office regarding this requirement.

 Option three is to complete an approved minor or double major, in a discipline encompassed by areas D, E, F, or G (listed below). This option requires a petition be submitted to the College of Engineering, Office of Undergraduate Studies. Students must also declare their minor with the department or program hosting the minor.

Approved Minors
- American Indian and Indigenous Studies (Religious Studies)
- Anthropology
- Art
- Art History
- Asian American Studies
- Black Studies
- Chinese
- Classics
- Comparative Literature
- English
- Feminist Studies
- French
- German Studies
- Global Peace and Security
- History
- Italian Studies
- Japanese
- Jewish Studies (Religious Studies)
- Labor Studies (History)
- Latin American and Iberian Studies
- Lesbian, Gay, Bisexual, Transgender, and Queer Studies (Feminist Studies)
- Linguistics
- Music
- Philosophy
- Portuguese
- Russian
- Sociocultural Linguistics
- Spanish
- Theatre
- Theatre - Production and Design
- Women, Culture, and Development (Global Studies)

2. **Depth Requirement**, Completion of two classes in each of two departments (four classes total). At least one course in each department must be upper division - the other course may be upper or lower division. Only courses from American History and Institutions, General Subject Areas D, E, F, G, or H, or Special Subject Areas (Writing, Ethnicity, or European Traditions) may be used to meet the depth requirement.

 Alternatively, this entire depth requirement may be satisfied by option 2, completion of one of the following sequences: Chicano Studies 1A-B-C, Comparative Literature 30A-B-C, French 50A-B-C, History 2A-B-C, History 2AH-BH-CH, History 4A-B-C, History 4AH-BH-CH, History 17A-B-C, History 17AH-BH-CH, Philosophy 20A-B-C, Religious Studies 80A-B-C or any three courses from Art History 6A-B-C-DS-DW-E-F-G-H-J-K. Students selecting this option must complete all three courses in the sequence. Selection of this option does not change the number of courses required.

Notes:
- ENGR 101 may be used as a writing requirement class, even by those students for whom ENGR 101 is required.
- New transfer students should consult with the College Undergraduate Studies Office regarding this requirement.

Approved Minors
- American Indian and Indigenous Studies (Religious Studies)
- Anthropology
- Art
- Art History
- Asian American Studies
- Black Studies
- Chinese
- Classics
- Comparative Literature
- English
- Feminist Studies
- French
- German Studies
- Global Peace and Security
- History
- Italian Studies
- Japanese
- Jewish Studies (Religious Studies)
- Labor Studies (History)
- Latin American and Iberian Studies
- Lesbian, Gay, Bisexual, Transgender, and Queer Studies (Feminist Studies)
- Linguistics
- Music
- Philosophy
- Portuguese
- Russian
- Sociocultural Linguistics
- Spanish
- Theatre
- Theatre - Production and Design
- Women, Culture, and Development (Global Studies)

3. **Ethnicity Requirement**, Objective: To learn to identify and understand the philosophical, intellectual, historical, and/or cultural experiences of historically oppressed and excluded racial minorities in the United States. At least one course that focuses on the history and the cultural, intellectual, and social experience of one of the following groups: Native Americans, African Americans, Chicanos/ Latinos, or Asian Americans. Alternatively, students may take a course that provides a comparative and integrative context for understanding the experience of oppressed and excluded racial minorities in the United States. Courses that...
meet this requirement are marked with an ampersand (&) on the lists in this document.

4. **European Traditions Requirement.**
 Objective: To learn to analyze early and/or modern European cultures and their significance in world affairs. At least one course that focuses on European cultures or cultures within the European Tradition. Courses that meet this requirement are marked with a caret (^) on the lists in this document.

Other Regulations:

- No more than two courses from the same department may apply to the General Education areas D, E, F, G, and H. (Except if a student completes one of the specific course sequences, such as History 4A-B-C, listed above for the depth requirement.)
- A course listed in more than one general subject area can be applied to only one of these areas. (Example: Art History 6A cannot be applied to both areas E and F.) However, a course can be applied towards a single general subject area and any special subject areas which that course fulfills. (Example: Asian American Studies 4 can be applied to the Writing and Ethnicity requirements in addition to the Area F requirement.)
- Some courses taken to satisfy the General Education requirements may also be applied simultaneously to the American History and Institutions requirement. Such courses must be on the list of approved General Education courses and on the list of approved American History and Institutions courses.
- Courses taken to fulfill a General Education requirement may be taken on a P/NP basis, if the course is offered with that grading option (refer to GOLD for the grading option for a particular course).

GENERAL EDUCATION COURSES

NOTE: The course listing in this booklet reflects the courses accepted for use towards the General Education requirements at the time of this document's publication and is subject to change. Please refer to GOLD for a listing of acceptable courses during the given quarter. Information in GOLD supersedes the information given here. Only Academic Senate approved courses can apply to GE.

Area A – English Reading and Composition

Objective: To learn to analyze purposes, audiences, and contexts for writing through study of and practice with writing.

2 courses required
Writing 2 or 2E and Writing 50, 50E, 107T or 109ST are required, and must be taken for letter grades.
AREAS D AND E – SOCIAL SCIENCES, CULTURE & THOUGHT

2 course minimum

Area D: Social Sciences

Objective: To apply perspectives, theories, and methods of social science research to understand what motivates, influences, and/or determines the behaviors of individuals, groups, and societies. Area D courses are based upon systematic studies of human behavior which may include observation, experimentation, deductive reasoning, and quantative analysis.

<table>
<thead>
<tr>
<th>Anthropology 2</th>
<th>Introductory Cultural Anthropology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology 3</td>
<td>Introductory Archaeology</td>
</tr>
<tr>
<td>Anthropology 7</td>
<td>Introduction to Biocultural Anthropology</td>
</tr>
<tr>
<td>Anthropology 25</td>
<td>Violence and the Japanese State</td>
</tr>
<tr>
<td>Anthropology 103A</td>
<td>Anthropology of China</td>
</tr>
<tr>
<td>Anthropology 103B</td>
<td>Anthropology of Japan</td>
</tr>
<tr>
<td>Anthropology 103C</td>
<td>Anthropology of Korea</td>
</tr>
<tr>
<td>Anthropology 109</td>
<td>Human Universals</td>
</tr>
<tr>
<td>Anthropology 110</td>
<td>Technology and Culture</td>
</tr>
<tr>
<td>Anthropology 122</td>
<td>Anthropology of World Systems</td>
</tr>
<tr>
<td>Anthropology 130A-B</td>
<td>Third World Environments</td>
</tr>
<tr>
<td>American Studies 1</td>
<td>Introduction to Asian American History, 1850-Present</td>
</tr>
<tr>
<td>American Studies 2</td>
<td>American Migration since 1965</td>
</tr>
<tr>
<td>American Studies 7</td>
<td>Asian American Globalization</td>
</tr>
<tr>
<td>American Studies 8</td>
<td>Introduction to Asian American Gender and Sexuality</td>
</tr>
<tr>
<td>American Studies 9</td>
<td>Asian American Freedom Struggles and Third World Resistance</td>
</tr>
<tr>
<td>American Studies 100AA</td>
<td>Chinese Americans</td>
</tr>
<tr>
<td>American Studies 100BB</td>
<td>Japanese Americans</td>
</tr>
<tr>
<td>American Studies 100FF</td>
<td>South Asian Americans</td>
</tr>
<tr>
<td>American Studies 107</td>
<td>Third World Social Movements</td>
</tr>
<tr>
<td>American Studies 111</td>
<td>Asian American Communities and Contemporary Issues</td>
</tr>
<tr>
<td>American Studies 119</td>
<td>Asian American and Race Relations</td>
</tr>
<tr>
<td>American Studies 130</td>
<td>Colonialism and Migration in the Passage to America</td>
</tr>
<tr>
<td>American Studies 131</td>
<td>Asian American Women’s History</td>
</tr>
<tr>
<td>American Studies 136</td>
<td>Asian American Families</td>
</tr>
<tr>
<td>American Studies 137</td>
<td>Multiracial American Asians</td>
</tr>
<tr>
<td>American Studies 154</td>
<td>Race and Law in Early American History</td>
</tr>
<tr>
<td>American Studies 155</td>
<td>Racial Segregation from the Civil War to the Civil Rights Movement</td>
</tr>
<tr>
<td>American Studies 156</td>
<td>Race and Law in Modern America</td>
</tr>
<tr>
<td>American Studies 157</td>
<td>Asian Americans and Education</td>
</tr>
<tr>
<td>American Studies 165</td>
<td>Ethnographies of Asian Americans</td>
</tr>
<tr>
<td>Black Studies 1, 1H</td>
<td>Introduction to Afro-American Studies</td>
</tr>
<tr>
<td>Black Studies 4</td>
<td>Critical Introduction to Race and Racism</td>
</tr>
<tr>
<td>Black Studies 6, 6H</td>
<td>The Civil Rights Movement</td>
</tr>
<tr>
<td>Black Studies 100</td>
<td>Africa and United States Policy</td>
</tr>
<tr>
<td>Black Studies 102</td>
<td>Black Radicals and the Radical Tradition</td>
</tr>
<tr>
<td>Black Studies 103</td>
<td>The Politics of Black Liberation-The Sixties</td>
</tr>
<tr>
<td>Black Studies 122</td>
<td>The Education of Black Children</td>
</tr>
<tr>
<td>Black Studies 124</td>
<td>Housing, Inheritance and Race</td>
</tr>
<tr>
<td>Black Studies 125</td>
<td>Queer Black Studies</td>
</tr>
<tr>
<td>Black Studies 129</td>
<td>The Urban Dilemma</td>
</tr>
<tr>
<td>Black Studies 131</td>
<td>Race and Public Policy</td>
</tr>
<tr>
<td>Black Studies 166</td>
<td>Analyses of Racism and Social Policy in the U.S.</td>
</tr>
<tr>
<td>Black Studies 169AR-BR-CR</td>
<td>Afro-American History (Same as HIST 169AR-BR-CR)</td>
</tr>
</tbody>
</table>

* This course applies toward the writing requirement.
& This course applies toward the ethnicity requirement.
@ This course applies toward the American History & Institutions requirement.
^ This course applies toward the European Traditions requirement.

Areas D and E – Social Sciences, Culture & Thought

- **Black Studies 171**
 - Black Studies 174
 - Chicano Studies IA-B-C
 - Chicano Studies 114
 - Chicano Studies 124G
 - Chicano Studies 137
 - Chicano Studies 140
 - Chicano Studies 144
 - Chicano Studies 151
 - Chicano Studies 168A-B
 - Chicano Studies 172
 - Chicano Studies 173
 - Chicano Studies 174
 - Chicano Studies 175
 - Chicano Studies 178A
 - Chicano Studies 179
 - Chicano Studies 187
 - Comparative Literature 119
 - Comparative Literature 186FL
 - East Asian Cultural Studies 40
 - East Asian Cultural Studies 103A
 - East Asian Cultural Studies 103B
 - East Asian Cultural Studies 103C
 - East Asian Cultural Studies 140
 - East Asian Cultural Studies 186
 - Economics 1
 - Economics 2
 - Economics 9
 - Environmental Studies 1
 - Environmental Studies 130A-B
 - Environmental Studies 132
 - Feminist Studies 20 or 20H
 - Feminist Studies W20
 - Feminist Studies 30 or 30H
 - Feminist Studies 50 or 50H
 - Feminist Studies 60 or 60H
 - Feminist Studies 159B
 - Feminist Studies 159C
 - Geography 2
 - Geography 5
 - Geography 20
 - Geography 108
 - Geography 108E
 - Geography 150
 - Global Studies 1
 - Global Studies 2
 - Global Studies 11
 - History 5
 - History 7
 - History 11A
 - History 117A
 - History 117B
 - History 159B-C
 - History 161A-B
 - History 167CA-CB-CP
 - History 168A-B
 - Africa in Film
 - From Plantations to Prisons
 - Introduction to Chicano/a Studies
 - Cultural and Critical Theory
 - The Virgin of Guadalupe: From Tilma to Tattoo
 - (Same as RG ST 124G)
 - Chicano/a Oral Traditions
 - The Mexican Cultural Heritage of the Chicano
 - The Chicano Community
 - De-Colonizing Feminism
 - History of the Chicano (Same as HIST 168A-B)
 - Law and Civil Rights
 - Immigrant Labor Organizing
 - Chicano/a Politics (Same as POL S 174)
 - Comparative Social Movements
 - Theories of Social Change and Chicano Political Life
 - Global Migration, Transnationalism in Chicano/a Contexts
 - Democracy and Diversity
 - Language, Power, and Learning
 - Introduction to Communication
 - Psychoanalytic Theory
 - Vegetarianism: Food, Literature, Philosophy
 - Gender and Sexuality in Modern Asia
 - Anthropology of China
 - Anthropology of Japan
 - Anthropology of Contemporary Korea
 - Indigenous Movements in Asian
 - The Invention of Tradition in Contemporary East Asia
 - Principles of Economics - Micro
 - Principles of Economics - Macro
 - Introduction to Economics
 - Introduction to Environmental Studies
 - Third World Environments
 - Human Behavior and Global Environment
 - Women, Society and Culture
 - Women, Society and Culture (Online course)
 - Women, Development, and Globalization
 - Global Feminisms and Social Justice
 - Women of Color: Race, Class and Ethnicity
 - Women in American History (Same as HIST 159B)
 - Women in Twentieth-Century American History (Same as HIST 159C)
 - World Regions
 - People, Place and Environment
 - Geography of Surfing
 - Urban Geography
 - Geography of the United States
 - Global History, Culture, and Ideology
 - Global Socioeconomic and Political Processes
 - Introduction to Law and Society
 - The History of the Present
 - Great Issues in the History of Public Policy
 - History of America’s Racial and Ethnic Minorities
 - The American People
 - The American People (Honors)
 - Violence and the Japanese State
 - The Atomic Age
 - Towns, Trade, and Urban Culture in the Middle Ages
 - Women, the Family, and Sexuality in the Middle Ages (Same as FEMST 117C & ME ST 100A)
 - Women in American History (Same as FEMST 159B-C)
 - Colonial and Revolutionary America
 - History of American Working Class
 - History of the Chicanos (Same as CH ST 168A-B)

GENERAL EDUCATION • 13
Area E: Culture and Thought

Objective: To learn to situate and investigate questions about world cultures through the study of human history and thought and to learn about the roles that citizens play in the construction and negotiation of human history and cultures.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociology 134</td>
<td>Social Movements</td>
</tr>
<tr>
<td>Sociology 131</td>
<td>Political Sociology</td>
</tr>
<tr>
<td>Sociology 130</td>
<td>Sociology of Africa and the Diaspora</td>
</tr>
<tr>
<td>Sociology 129</td>
<td>Sociology of Women</td>
</tr>
<tr>
<td>Sociology 128</td>
<td>Sociology of the Middle East</td>
</tr>
<tr>
<td>Sociology 127</td>
<td>Sociology of Latin America</td>
</tr>
<tr>
<td>Sociology 126</td>
<td>Sociology of Religion</td>
</tr>
<tr>
<td>Sociology 125</td>
<td>Sociology of Asia and the Pacific</td>
</tr>
<tr>
<td>Sociology 124</td>
<td>Sociology of Work and Organizations</td>
</tr>
<tr>
<td>Sociology 123</td>
<td>Sociology of the Family</td>
</tr>
<tr>
<td>Sociology 122</td>
<td>Sociology of Education</td>
</tr>
<tr>
<td>Sociology 121</td>
<td>Sociology of Health and Illness</td>
</tr>
<tr>
<td>Sociology 120</td>
<td>Sociology of Urban Life</td>
</tr>
<tr>
<td>Sociology 119</td>
<td>Sociology of Race and Ethnicity</td>
</tr>
<tr>
<td>Sociology 118</td>
<td>Sociology of Law and Social Control</td>
</tr>
<tr>
<td>Sociology 117</td>
<td>Sociology of Gender</td>
</tr>
<tr>
<td>Sociology 116</td>
<td>Sociology of Social Movements</td>
</tr>
<tr>
<td>Sociology 115</td>
<td>Sociology of Economic Life</td>
</tr>
<tr>
<td>Sociology 114</td>
<td>Sociology of Social Movements (PLS 114)</td>
</tr>
<tr>
<td>Sociology 113</td>
<td>Sociology of Social Movements (PLS 113)</td>
</tr>
<tr>
<td>Sociology 112</td>
<td>Sociology of Social Movements (PLS 112)</td>
</tr>
<tr>
<td>Sociology 111</td>
<td>Sociology of Social Movements (PLS 111)</td>
</tr>
<tr>
<td>Sociology 110</td>
<td>Sociology of Social Movements (PLS 110)</td>
</tr>
<tr>
<td>Sociology 109</td>
<td>Sociology of Social Movements (PLS 109)</td>
</tr>
<tr>
<td>Sociology 108</td>
<td>Sociology of Social Movements (PLS 108)</td>
</tr>
<tr>
<td>Sociology 107</td>
<td>Sociology of Social Movements (PLS 107)</td>
</tr>
<tr>
<td>Sociology 106</td>
<td>Sociology of Social Movements (PLS 106)</td>
</tr>
<tr>
<td>Sociology 105</td>
<td>Sociology of Social Movements (PLS 105)</td>
</tr>
<tr>
<td>Sociology 104</td>
<td>Sociology of Social Movements (PLS 104)</td>
</tr>
<tr>
<td>Sociology 103</td>
<td>Sociology of Social Movements (PLS 103)</td>
</tr>
<tr>
<td>Sociology 102</td>
<td>Sociology of Social Movements (PLS 102)</td>
</tr>
<tr>
<td>Sociology 101</td>
<td>Sociology of Social Movements (PLS 101)</td>
</tr>
<tr>
<td>Sociology 100</td>
<td>Sociology of Social Movements (PLS 100)</td>
</tr>
<tr>
<td>Sociology 99</td>
<td>Sociology of Social Movements (PLS 99)</td>
</tr>
<tr>
<td>Sociology 98</td>
<td>Sociology of Social Movements (PLS 98)</td>
</tr>
<tr>
<td>Sociology 97</td>
<td>Sociology of Social Movements (PLS 97)</td>
</tr>
<tr>
<td>Sociology 96</td>
<td>Sociology of Social Movements (PLS 96)</td>
</tr>
<tr>
<td>Sociology 95</td>
<td>Sociology of Social Movements (PLS 95)</td>
</tr>
<tr>
<td>Sociology 94</td>
<td>Sociology of Social Movements (PLS 94)</td>
</tr>
<tr>
<td>Sociology 93</td>
<td>Sociology of Social Movements (PLS 93)</td>
</tr>
<tr>
<td>Sociology 92</td>
<td>Sociology of Social Movements (PLS 92)</td>
</tr>
<tr>
<td>Sociology 91</td>
<td>Sociology of Social Movements (PLS 91)</td>
</tr>
<tr>
<td>Sociology 90</td>
<td>Sociology of Social Movements (PLS 90)</td>
</tr>
<tr>
<td>Sociology 89</td>
<td>Sociology of Social Movements (PLS 89)</td>
</tr>
<tr>
<td>Sociology 88</td>
<td>Sociology of Social Movements (PLS 88)</td>
</tr>
<tr>
<td>Sociology 87</td>
<td>Sociology of Social Movements (PLS 87)</td>
</tr>
<tr>
<td>Sociology 86</td>
<td>Sociology of Social Movements (PLS 86)</td>
</tr>
<tr>
<td>Sociology 85</td>
<td>Sociology of Social Movements (PLS 85)</td>
</tr>
<tr>
<td>Sociology 84</td>
<td>Sociology of Social Movements (PLS 84)</td>
</tr>
<tr>
<td>Sociology 83</td>
<td>Sociology of Social Movements (PLS 83)</td>
</tr>
<tr>
<td>Sociology 82</td>
<td>Sociology of Social Movements (PLS 82)</td>
</tr>
<tr>
<td>Sociology 81</td>
<td>Sociology of Social Movements (PLS 81)</td>
</tr>
<tr>
<td>Sociology 80</td>
<td>Sociology of Social Movements (PLS 80)</td>
</tr>
<tr>
<td>Sociology 79</td>
<td>Sociology of Social Movements (PLS 79)</td>
</tr>
<tr>
<td>Sociology 78</td>
<td>Sociology of Social Movements (PLS 78)</td>
</tr>
<tr>
<td>Sociology 77</td>
<td>Sociology of Social Movements (PLS 77)</td>
</tr>
<tr>
<td>Sociology 76</td>
<td>Sociology of Social Movements (PLS 76)</td>
</tr>
<tr>
<td>Sociology 75</td>
<td>Sociology of Social Movements (PLS 75)</td>
</tr>
<tr>
<td>Sociology 74</td>
<td>Sociology of Social Movements (PLS 74)</td>
</tr>
<tr>
<td>Sociology 73</td>
<td>Sociology of Social Movements (PLS 73)</td>
</tr>
<tr>
<td>Sociology 72</td>
<td>Sociology of Social Movements (PLS 72)</td>
</tr>
<tr>
<td>Sociology 71</td>
<td>Sociology of Social Movements (PLS 71)</td>
</tr>
<tr>
<td>Sociology 70</td>
<td>Sociology of Social Movements (PLS 70)</td>
</tr>
<tr>
<td>Sociology 69</td>
<td>Sociology of Social Movements (PLS 69)</td>
</tr>
<tr>
<td>Sociology 68</td>
<td>Sociology of Social Movements (PLS 68)</td>
</tr>
<tr>
<td>Sociology 67</td>
<td>Sociology of Social Movements (PLS 67)</td>
</tr>
<tr>
<td>Sociology 66</td>
<td>Sociology of Social Movements (PLS 66)</td>
</tr>
<tr>
<td>Sociology 65</td>
<td>Sociology of Social Movements (PLS 65)</td>
</tr>
<tr>
<td>Sociology 64</td>
<td>Sociology of Social Movements (PLS 64)</td>
</tr>
<tr>
<td>Sociology 63</td>
<td>Sociology of Social Movements (PLS 63)</td>
</tr>
<tr>
<td>Sociology 62</td>
<td>Sociology of Social Movements (PLS 62)</td>
</tr>
<tr>
<td>Sociology 61</td>
<td>Sociology of Social Movements (PLS 61)</td>
</tr>
<tr>
<td>Sociology 60</td>
<td>Sociology of Social Movements (PLS 60)</td>
</tr>
<tr>
<td>Sociology 59</td>
<td>Sociology of Social Movements (PLS 59)</td>
</tr>
<tr>
<td>Sociology 58</td>
<td>Sociology of Social Movements (PLS 58)</td>
</tr>
<tr>
<td>Sociology 57</td>
<td>Sociology of Social Movements (PLS 57)</td>
</tr>
<tr>
<td>Sociology 56</td>
<td>Sociology of Social Movements (PLS 56)</td>
</tr>
<tr>
<td>Sociology 55</td>
<td>Sociology of Social Movements (PLS 55)</td>
</tr>
<tr>
<td>Sociology 54</td>
<td>Sociology of Social Movements (PLS 54)</td>
</tr>
<tr>
<td>Sociology 53</td>
<td>Sociology of Social Movements (PLS 53)</td>
</tr>
<tr>
<td>Sociology 52</td>
<td>Sociology of Social Movements (PLS 52)</td>
</tr>
<tr>
<td>Sociology 51</td>
<td>Sociology of Social Movements (PLS 51)</td>
</tr>
<tr>
<td>Sociology 50</td>
<td>Sociology of Social Movements (PLS 50)</td>
</tr>
<tr>
<td>Sociology 49</td>
<td>Sociology of Social Movements (PLS 49)</td>
</tr>
<tr>
<td>Sociology 48</td>
<td>Sociology of Social Movements (PLS 48)</td>
</tr>
<tr>
<td>Sociology 47</td>
<td>Sociology of Social Movements (PLS 47)</td>
</tr>
<tr>
<td>Sociology 46</td>
<td>Sociology of Social Movements (PLS 46)</td>
</tr>
<tr>
<td>Sociology 45</td>
<td>Sociology of Social Movements (PLS 45)</td>
</tr>
<tr>
<td>Sociology 44</td>
<td>Sociology of Social Movements (PLS 44)</td>
</tr>
<tr>
<td>Sociology 43</td>
<td>Sociology of Social Movements (PLS 43)</td>
</tr>
<tr>
<td>Sociology 42</td>
<td>Sociology of Social Movements (PLS 42)</td>
</tr>
<tr>
<td>Sociology 41</td>
<td>Sociology of Social Movements (PLS 41)</td>
</tr>
<tr>
<td>Sociology 40</td>
<td>Sociology of Social Movements (PLS 40)</td>
</tr>
<tr>
<td>Sociology 39</td>
<td>Sociology of Social Movements (PLS 39)</td>
</tr>
<tr>
<td>Sociology 38</td>
<td>Sociology of Social Movements (PLS 38)</td>
</tr>
<tr>
<td>Sociology 37</td>
<td>Sociology of Social Movements (PLS 37)</td>
</tr>
<tr>
<td>Sociology 36</td>
<td>Sociology of Social Movements (PLS 36)</td>
</tr>
<tr>
<td>Sociology 35</td>
<td>Sociology of Social Movements (PLS 35)</td>
</tr>
<tr>
<td>Sociology 34</td>
<td>Sociology of Social Movements (PLS 34)</td>
</tr>
<tr>
<td>Sociology 33</td>
<td>Sociology of Social Movements (PLS 33)</td>
</tr>
<tr>
<td>Sociology 32</td>
<td>Sociology of Social Movements (PLS 32)</td>
</tr>
<tr>
<td>Sociology 31</td>
<td>Sociology of Social Movements (PLS 31)</td>
</tr>
<tr>
<td>Sociology 30</td>
<td>Sociology of Social Movements (PLS 30)</td>
</tr>
<tr>
<td>Sociology 29</td>
<td>Sociology of Social Movements (PLS 29)</td>
</tr>
<tr>
<td>Sociology 28</td>
<td>Sociology of Social Movements (PLS 28)</td>
</tr>
<tr>
<td>Sociology 27</td>
<td>Sociology of Social Movements (PLS 27)</td>
</tr>
<tr>
<td>Sociology 26</td>
<td>Sociology of Social Movements (PLS 26)</td>
</tr>
<tr>
<td>Sociology 25</td>
<td>Sociology of Social Movements (PLS 25)</td>
</tr>
<tr>
<td>Sociology 24</td>
<td>Sociology of Social Movements (PLS 24)</td>
</tr>
<tr>
<td>Sociology 23</td>
<td>Sociology of Social Movements (PLS 23)</td>
</tr>
<tr>
<td>Sociology 22</td>
<td>Sociology of Social Movements (PLS 22)</td>
</tr>
<tr>
<td>Sociology 21</td>
<td>Sociology of Social Movements (PLS 21)</td>
</tr>
<tr>
<td>Sociology 20</td>
<td>Sociology of Social Movements (PLS 20)</td>
</tr>
<tr>
<td>Sociology 19</td>
<td>Sociology of Social Movements (PLS 19)</td>
</tr>
<tr>
<td>Sociology 18</td>
<td>Sociology of Social Movements (PLS 18)</td>
</tr>
<tr>
<td>Sociology 17</td>
<td>Sociology of Social Movements (PLS 17)</td>
</tr>
<tr>
<td>Sociology 16</td>
<td>Sociology of Social Movements (PLS 16)</td>
</tr>
<tr>
<td>Sociology 15</td>
<td>Sociology of Social Movements (PLS 15)</td>
</tr>
<tr>
<td>Sociology 14</td>
<td>Sociology of Social Movements (PLS 14)</td>
</tr>
<tr>
<td>Sociology 13</td>
<td>Sociology of Social Movements (PLS 13)</td>
</tr>
<tr>
<td>Sociology 12</td>
<td>Sociology of Social Movements (PLS 12)</td>
</tr>
<tr>
<td>Sociology 11</td>
<td>Sociology of Social Movements (PLS 11)</td>
</tr>
<tr>
<td>Sociology 10</td>
<td>Sociology of Social Movements (PLS 10)</td>
</tr>
<tr>
<td>Sociology 9</td>
<td>Sociology of Social Movements (PLS 9)</td>
</tr>
<tr>
<td>Sociology 8</td>
<td>Sociology of Social Movements (PLS 8)</td>
</tr>
<tr>
<td>Sociology 7</td>
<td>Sociology of Social Movements (PLS 7)</td>
</tr>
<tr>
<td>Sociology 6</td>
<td>Sociology of Social Movements (PLS 6)</td>
</tr>
<tr>
<td>Sociology 5</td>
<td>Sociology of Social Movements (PLS 5)</td>
</tr>
<tr>
<td>Sociology 4</td>
<td>Sociology of Social Movements (PLS 4)</td>
</tr>
<tr>
<td>Sociology 3</td>
<td>Sociology of Social Movements (PLS 3)</td>
</tr>
<tr>
<td>Sociology 2</td>
<td>Sociology of Social Movements (PLS 2)</td>
</tr>
<tr>
<td>Sociology 1</td>
<td>Sociology of Social Movements (PLS 1)</td>
</tr>
<tr>
<td>Sociology 0</td>
<td>Sociology of Social Movements (PLS 0)</td>
</tr>
</tbody>
</table>

* This course applies toward the writing requirement.
& This course applies toward the American History & Institutions requirement.
^ This course applies toward the European Traditions requirement.
* History 4AH-BH-CH Western Civilization (Honors)
* History 8 Introduction to History of Latin America
History 20 Science, Technology, and Medicine in Modern Society
* History 46 Survey of Middle Eastern History
* History 49A-B Survey of African History
* History 80 East Asian Civilization (Same as EACS 80)
* History 87 Japanese History through Art and Literature
History 88 Survey of South Asian History
* History 106A The Origins of Western Science, Antiquity to 1500 (Same as ENV S 108A)
* History 106B The Scientific Revolution, 1500 to 1800
* History 106C History of Modern Science
History 107C The Darwinian Revolution and Modern Biology (Same as ENV S 107C)
* History 114B-C-D History of Christianity
History 133B-C Twentieth Century Germany
* History 133D The Holocaust in German History
* History 182A-B Korean History and Civilization (Same as KOR 182A-B)
* History 185A-B Modern China
* History 187A-B-C Modern Japan
* History 188S Representations of Sexuality in Modern Japan (Same as ANTH 176 and JAPAN 162)
* History 189E History of the Pacific
* Italian 20X Introduction to Italian Culture
Italian 138AA, CX, D, DX, EX, FF, FX, N, RX, X, XX
* Italian 138AX Cultural Representations in Italy
* Italian 144AX Gender and Sexuality in Italian Culture
* Italian 189A Italy Mediterranean
* Japanese 162 Representations of Sexuality in Modern Japan
Japanese 164 Modernity and the Masses of Taisho Japan (Same as HIST 188F)
* Korean 182A-B Korean History and Civilization (Same as HIST 182A-B)
* Latin American & Iberian Studies 101 Interdisciplinary Approaches to History and Societies of Latin America
Linguistics 15 Language in LIFE
* Linguistics 30 The Story of English
* Linguistics 50 Language and Power
* Linguistics 80 Endangered Languages
Middle East Studies 45 Introduction to Islamic & Near East Studies
Molecular, Cellular & Developmental Biology 27 Memory: Bridging the Humanities and Neuroscience (Same as C LIT 27 & FR 40X)
* Philosophy 1 Short Introduction to Philosophy
Philosophy 3 Critical Thinking
* Philosophy 4 Introduction to Ethics
**Philosophy 20A-B-C History of Philosophy
Philosophy 100A Ethics
* Philosophy 100B Theory of Knowledge
* Philosophy 100C Philosophy of Language
* Philosophy 100D Philosophy of Mind
* Philosophy 100E Metaphysics
* Philosophy 112 Philosophy of Religion
* Physics 43 Origins: A Dialogue Between Scientists and Humanists (Same as RG ST 43)
* Portuguese 125A Culture and Civilization of Portugal
* Portuguese 125B Culture and Civilization of Brazil
* Religious Studies 1 Introduction to the Study of Religion
* Religious Studies 3 Introduction to Asian Religious Traditions (Same as EACS 3)
* Religious Studies 4 Introduction to Buddhism
* Religious Studies 5 Introduction to Judaism, Christianity, and Islam
Religious Studies 6 Islam and Modernity
Religious Studies 12 Religious Approaches to Death
Religious Studies 18 Comparing Religions
* Religious Studies 19 The Gods and Goddesses of India
Religious Studies 20 Indic Civilization
* Religious Studies 21 Zen
* Religious Studies 25 Global Catholicism Today
Religious Studies 31 Origins of Tibet
* Religious Studies 34 Saints and Miracles in the Catholic Tradition
* Religious Studies 43 Origins: A Dialogue Between Scientists and Humanists (Same as PHYS 43)
& Religious Studies 62 Dark Goddesses and Black Madonnas
& Religious Studies 71 Introduction to Asian American Religions
& Religious Studies 80A-B-C Religion and Western Civilization
& Religious Studies 123 Asian American Religions (Same as AS AM 161)
* Religious Studies 126 Roman Catholicism Today
* Religious Studies 130 Judaism
* Religious Studies 136 Creation Myths
* Religious Studies 138B Catholic Practices & Global Cultures
* Religious Studies 141 Religious Diversity in Theory and Practice
* Religious Studies 162C Sikhism
* Religious Studies 162E Indian Civilization
Religious Studies 164B Buddhist Traditions in East Asia
Religious Studies 183B Religious Practice and the State in China
Slavic 33 Russian Culture
Slavic 130D Russian Art
Spanish 153 Basque Studies
Spanish 177 Spanish-American Thought

General Education

Area F and G – Arts and Literature

2 courses minimum

Area F: Arts

Objective: To develop an appreciation of fine and performing arts, popular arts, and visual culture and to express relationships between arts and historical or cultural contexts.

* Art 1A Visual Literacy
* Art 1B The Intersections of Art and Life
* Art 1C Introduction to 2D/3D Visualizations in Architecture
* Art 125 Art Since 1950
* Art 127 Introduction to Art
* Art 128 Introduction to Architecture and the Environment
* Art History 5B Introduction to Museum Studies
* Art History 5A Introduction to Art Survey I: Ancient Art-Medieval Art
* Art History 6B Art Survey II: Renaissance Art-Baroque Art
* Art History 6C Art Survey III: Modern-Contemporary Art
* Art History 6D Survey: History of Art in China
* Art History 6E Survey: Art of Japan and Korea
* Art History 6F Survey: Arts in Africa, Oceania, and Native North America
* Art History 6H Survey: History of Photography
* Art History 6I Pre-Columbian Art
* Art History 6J Survey: Contemporary Architecture
* Art History 6K Islamic Art and Architecture
* Art History 6L Roman Architecture
* Art History 6M Roman Art: From the Republic to Empire (509 BC to AD 337)
* Art History 6N Greek Architecture
* Art History 6O Medieval Architecture: From Constantine to Charlemagne
* Art History 6P The Origins of Romanesque Architecture
* Art History 6Q Late Romanesque and Gothic Architecture
* Art History 6R Art and Society in Late Medieval Tuscany
* Art History 6S Painting in Fifteenth-Century Netherlands
* Art History 6T Painting in Sixteenth-Century Netherlands
* Art History 6U Italian Renaissance Art 1400-1500
* Art History 6V Italian Renaissance Art 1500-1600
* Art History 6W Art as Technique, Labor, and Idea in Renaissance Italy
* Art History 6X Art and the Formation of Social Subjects in Early Modern Italy
* Art History 6Y Michelangelo
* Art History 6Z Italian Journeys
* Art History 7A Leonardo Da Vinci: Art, Science and Technology in Early Modern Italy
* Art History 7B Dutch Art in the Age of Rembrandt
* Art History 7C Dutch Art in the Age of Vermeer
* Art History 7D Rethinking Rembrandt
* Art History 7E Seventeenth-Century Art in Southern Europe
* Art History 7F Seventeenth-Century Art in Italy
* Art History 7G Bernini and the Age of the Baroque
* Art History 7H Eighteenth-Century Art 1750-1810
* Art History 7I Eighteenth-Century British Art and Culture
* Art History 7J Eighteenth-Century Art in Italy: The Age of the Grand Tour

& This course applies toward the American History & Institutions requirement.
* This course applies toward the writing requirement.
@ This course applies toward the American History & Institutions requirement.
* This course applies toward the ethnicity requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art History 117B</td>
<td>Nineteenth-Century Art 1848-1900</td>
<td>* Black Studies 171</td>
</tr>
<tr>
<td>Art History 117C</td>
<td>Nineteenth-Century British Art and Culture</td>
<td>Black Studies 172</td>
</tr>
<tr>
<td>Art History 117F</td>
<td>Impressionism and Post-Impressionism</td>
<td>Black Studies 75</td>
</tr>
<tr>
<td>Art History 119B</td>
<td>Contemporary Art</td>
<td>& Chicano Studies 125B</td>
</tr>
<tr>
<td>Art History 119C</td>
<td>Expressionism to New Objectivity, Early</td>
<td>& Chicano Studies 138</td>
</tr>
<tr>
<td></td>
<td>Twentieth-Century German Art</td>
<td>& Chicano Studies 148</td>
</tr>
<tr>
<td></td>
<td>Art in the Post-Modern World</td>
<td>@& Chicano Studies 188C</td>
</tr>
<tr>
<td></td>
<td>Early Twentieth-Century European Art</td>
<td>* Chinese 40</td>
</tr>
<tr>
<td></td>
<td>1900-1945</td>
<td>Chinese 170</td>
</tr>
<tr>
<td></td>
<td>Critical Approaches to Visual Culture</td>
<td>Chinese 176</td>
</tr>
<tr>
<td></td>
<td>American Art from the Revolution to</td>
<td>Classics 102</td>
</tr>
<tr>
<td></td>
<td>World War: 1700-1945</td>
<td>Classics 165</td>
</tr>
<tr>
<td></td>
<td>Reconstruction, Renaissance, and Realism</td>
<td>Classics 179</td>
</tr>
<tr>
<td></td>
<td>in American Art 1860-1900</td>
<td>Comparative Literature 186FF</td>
</tr>
<tr>
<td></td>
<td>Twentieth-Century American Art:</td>
<td>Dance 35</td>
</tr>
<tr>
<td></td>
<td>Modernism and Pluralism 1900-Present</td>
<td>* Dance 36</td>
</tr>
<tr>
<td>& Art History 121D</td>
<td>African-American Art and the African Legacy</td>
<td>* Dance W36</td>
</tr>
<tr>
<td>Art History 127A-B</td>
<td>African Art</td>
<td>* Dance 45</td>
</tr>
<tr>
<td>Art History 130A</td>
<td>Pre-Columbian Art of Mexico</td>
<td>* Dance 145A-B</td>
</tr>
<tr>
<td>Art History 130B</td>
<td>Pre-Columbian Art of the Maya</td>
<td>East Asian Cultural Studies 134A</td>
</tr>
<tr>
<td>Art History 130D</td>
<td>The Arts of Spain and New Spain</td>
<td>Buddhist Art</td>
</tr>
<tr>
<td>Art History 132A</td>
<td>Mediterranean Cities</td>
<td>Environmental Studies 1360</td>
</tr>
<tr>
<td>Art History 132I</td>
<td>Art of Empire</td>
<td>Sustainable Architecture: History</td>
</tr>
<tr>
<td>Art History 134</td>
<td>The Art of Japan</td>
<td>and Aesthetics</td>
</tr>
<tr>
<td>Art History 134A</td>
<td>The Art of the Chinese Landscape</td>
<td>* Film & Media Studies 46</td>
</tr>
<tr>
<td>Art History 134B</td>
<td>Early Chinese Art</td>
<td>Film & Media Studies 120</td>
</tr>
<tr>
<td>Art History 134C</td>
<td>Chinese Painting</td>
<td>Japanese Cinema (Same as JAPAN 159)</td>
</tr>
<tr>
<td>Art History 134D</td>
<td>Art and Modern China</td>
<td>Film & Media Studies 121</td>
</tr>
<tr>
<td>Art History 134E</td>
<td>The City in History</td>
<td>Film & Media Studies 122AA-ZZ</td>
</tr>
<tr>
<td>Art History 134F</td>
<td>Japanese Painting</td>
<td>Topics in National Cinema</td>
</tr>
<tr>
<td>Art History 134G</td>
<td>Architecture of the United States</td>
<td>Film & Media Studies 124</td>
</tr>
<tr>
<td>Art History 134H</td>
<td>Design & the American Architect</td>
<td>Modern Indian Visual Culture</td>
</tr>
<tr>
<td>Art History 134I</td>
<td>Housing American Cities</td>
<td>Film & Media Studies 125A-B</td>
</tr>
<tr>
<td>Art History 135</td>
<td>Architecture in Southern California</td>
<td>Film & Media Studies 126</td>
</tr>
<tr>
<td>Art History 136</td>
<td>Sustainable Architecture: History and</td>
<td>Latin American Cinema</td>
</tr>
<tr>
<td></td>
<td>Aesthetics</td>
<td>Mexican Cinema and Film</td>
</tr>
<tr>
<td></td>
<td>Nineteenth-Century Architecture</td>
<td>Film & Media Studies 134</td>
</tr>
<tr>
<td>Art History 136A</td>
<td>Twentieth-Century Architecture</td>
<td>French and Francophone Cinema</td>
</tr>
<tr>
<td>Art History 136B</td>
<td>Architecture of the United States</td>
<td>Film & Media Studies 136</td>
</tr>
<tr>
<td>Art History 136C</td>
<td>Design & the American Architect</td>
<td>Film & Media Studies 137Z</td>
</tr>
<tr>
<td>Art History 136D</td>
<td>Housing American Cities</td>
<td>Technology and Cinema (Same as 156D)</td>
</tr>
<tr>
<td>Art History 136H</td>
<td>The Avant-Garde in Russia</td>
<td>French Cinema: History and Theory</td>
</tr>
<tr>
<td>Art History 136J</td>
<td>Landscape of Colonialism</td>
<td>French Cinema</td>
</tr>
<tr>
<td>^ Art History 138K</td>
<td>Modern Architecture in Early Twentieth-</td>
<td>French and Francophone Cinema</td>
</tr>
<tr>
<td></td>
<td>Century Europe</td>
<td>Modern Images of the Middle Ages:</td>
</tr>
<tr>
<td>^ Art History 136L</td>
<td>From Modernism to Postmodernism in</td>
<td>The Intersection of Text, History,</td>
</tr>
<tr>
<td></td>
<td>European Architecture</td>
<td>and Film</td>
</tr>
<tr>
<td>Art History 136M</td>
<td>Revival Styles in Southern California</td>
<td>Film and Media Studies 156</td>
</tr>
<tr>
<td></td>
<td>Architecture</td>
<td>Film & Media Studies 138</td>
</tr>
<tr>
<td>Art History 136O</td>
<td>Sustainable Architecture: History and</td>
<td>Film & Media Studies 173</td>
</tr>
<tr>
<td></td>
<td>Aesthetics</td>
<td>Film & Media Studies 175</td>
</tr>
<tr>
<td>Art History 136R</td>
<td>Architecture of the Americas</td>
<td>Experimental Film</td>
</tr>
<tr>
<td>Art History 136V</td>
<td>Modern Indian Visual Culture</td>
<td>Film & Media Studies 178Z</td>
</tr>
<tr>
<td>Art History 136W</td>
<td>Introduction to 2D/3D Visualizations in</td>
<td>French Cinema: History and Theory</td>
</tr>
<tr>
<td></td>
<td>Architecture</td>
<td>French Cinema</td>
</tr>
<tr>
<td>Art History 136Y</td>
<td>Modern Architecture in Southern California</td>
<td>French and Francophone Cinema</td>
</tr>
<tr>
<td>Art History 141D</td>
<td>Birth of the Modern Museum</td>
<td>Modern Images of the Middle Ages:</td>
</tr>
<tr>
<td>^* Art History 141G</td>
<td>The Architecture of Museums and Galleries</td>
<td>The Intersection of Text, History,</td>
</tr>
<tr>
<td></td>
<td>Birth of the Museum</td>
<td>and Film</td>
</tr>
<tr>
<td>^* Art History 141G</td>
<td>Postwar from c. 1900 to the Present</td>
<td>Film and Media Studies 156</td>
</tr>
<tr>
<td>Art History 144A</td>
<td>The Avant-Garde in Russia</td>
<td>Film & Media Studies 173</td>
</tr>
<tr>
<td>Art History 144C</td>
<td>Contemporary Art: History and European</td>
<td>Introduction to Popular Culture</td>
</tr>
<tr>
<td></td>
<td>Architecture</td>
<td>in Korean Film</td>
</tr>
<tr>
<td>Art History 144D</td>
<td>Russian Art</td>
<td>Music 11</td>
</tr>
<tr>
<td>Art History 148A</td>
<td>Contemporary Art: History and Social</td>
<td>Music 15</td>
</tr>
<tr>
<td></td>
<td>Experience</td>
<td>Music 17</td>
</tr>
<tr>
<td>Art History 148B</td>
<td>History After 1980</td>
<td>Music 114</td>
</tr>
<tr>
<td>^* Asian American Studies 4</td>
<td>Introduction to Asian American Popular</td>
<td>Music 115</td>
</tr>
<tr>
<td>^* Asian American Studies 9</td>
<td>Introduction to Playwriting</td>
<td>Symphonic Music</td>
</tr>
<tr>
<td>& Asian American Studies 118</td>
<td>Asian Americans in Popular Culture</td>
<td>Music 116</td>
</tr>
<tr>
<td>& Asian American Studies 120</td>
<td>Asian American Documentary</td>
<td>American Music History: Colonial</td>
</tr>
<tr>
<td>& Asian American Studies 127</td>
<td>Asian American Film, Television, and</td>
<td>to Present</td>
</tr>
<tr>
<td></td>
<td>Digital Media</td>
<td>History and Literature of Great</td>
</tr>
<tr>
<td>& Asian American Studies 140</td>
<td>Theory & Production of Social Experience</td>
<td>Composers in Western Music</td>
</tr>
<tr>
<td>& Asian American Studies 146</td>
<td>Racialized Sexuality on Screen and Scene</td>
<td>Music and Politics</td>
</tr>
<tr>
<td>& Asian American Studies 170KK</td>
<td>Special Topics in Asian American Studies</td>
<td>Music in Political Films</td>
</tr>
<tr>
<td>^* Black Studies 14</td>
<td>History of Jazz</td>
<td>Slavic 130A</td>
</tr>
<tr>
<td>^* Black Studies 45</td>
<td>Black Arts Expressions</td>
<td>Slavic 130B</td>
</tr>
<tr>
<td>^* Black Studies 142</td>
<td>Music in Afro-American Culture: U.S.A.</td>
<td>Russian Cinema</td>
</tr>
<tr>
<td>^* Black Studies 153</td>
<td>Black Popular Music in America</td>
<td>Contemporary Art: Russia</td>
</tr>
<tr>
<td>Black Studies 161</td>
<td>Third-World Cinema</td>
<td>Contemporary Art: Eastern Europe</td>
</tr>
<tr>
<td>^* Black Studies 162</td>
<td>African Cinema</td>
<td>(Same as ARTHI 144C)</td>
</tr>
<tr>
<td>^* Black Studies 170</td>
<td>Afro-Americans in the African Cinema</td>
<td>Russian Art</td>
</tr>
</tbody>
</table>

* This course applies toward the writing requirement.
& This course applies toward the ethnicity requirement.
@ This course applies toward the American History & Institutions requirement.
^ This course applies toward the European Traditions requirement.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theater 9</td>
<td>Introduction to Playwriting</td>
</tr>
<tr>
<td>Theatre 143</td>
<td>The People’s Voice</td>
</tr>
<tr>
<td>Theatre 180A-B</td>
<td>American Drama</td>
</tr>
<tr>
<td>Theatre 180C</td>
<td>Contemporary American Drama and Theater</td>
</tr>
<tr>
<td>Theatre 180E</td>
<td>Culture Clash: Studies in U.S. Latino Theater</td>
</tr>
<tr>
<td>Theatre 180G</td>
<td>Race, Gender, and Performance</td>
</tr>
<tr>
<td>Theatre 182A</td>
<td>Ancient Theater and Drama</td>
</tr>
<tr>
<td>Theatre 182M</td>
<td>Modern Theater and Drama</td>
</tr>
<tr>
<td>Theatre 182MC</td>
<td>Modern Contemporary</td>
</tr>
<tr>
<td>Theatre 182N</td>
<td>Neoclassical Theater and Drama</td>
</tr>
<tr>
<td>Theatre 184AA</td>
<td>African American Performance</td>
</tr>
<tr>
<td>Theatre 184CA</td>
<td>Contemporary African Theater and Performance</td>
</tr>
<tr>
<td>Theatre 188S</td>
<td>Shakespeare on Film and Stage</td>
</tr>
</tbody>
</table>

AREA G: LITERATURE

Objective: To learn to analyze texts using methods appropriate to literary study and to situate analysis within contexts where texts circulate.

& Asian American Studies 5
Asian American Studies 122
Asian American Studies 128
Black Studies 33

& Black Studies 38A-B
Black Studies 126
Black Studies 127
Black Studies 130A
Black Studies 130B

& Chicano Studies 152
& Chicano Studies 180
& Chicano Studies 181
& Chicano Studies 184A

Chinese 115A
Chinese 124A-B
Chinese 132A
Chinese 148

Classics 20A
Classics 36
Classics 39
Classics 40

Classics 55
Classics 102
Classics 109

Classics 130
Classics 175

Comparative Literature 30A-B-C
Comparative Literature 31
Comparative Literature 32
Comparative Literature 33

Comparative Literature 34
Comparative Literature 100
Comparative Literature 103

Comparative Literature 107
Comparative Literature 113
Comparative Literature 122A

Comparative Literature 122B
Comparative Literature 126
Comparative Literature 128A

Comparative Literature 133
Comparative Literature 146

& Comparative Literature 153
Comparative Literature 154
Comparative Literature 161

Comparative Literature 170
Comparative Literature 171
Comparative Literature 179A

Comparative Literature 179B
Comparative Literature 179C
Comparative Literature 186AD
Comparative Literature 186EE

Comparative Literature 188

* This course applies toward the writing requirement.
& This course applies toward the ethnicity requirement.
^ This course applies toward the European Traditions requirement.
@ This course applies toward the American History & Institutions requirement.

GENERAL EDUCATION • 17

Narrative in the First Person
Fantasy and the Fantastic (Same as FR 153D)
Introduction to Shakespeare
Literature and the Environment
Introduction to Literature and the Culture of Information
Introduction to African American Literature
Introduction to U.S. Minority Literature
Topics in Literature
English Literature from the Medieval Period to 1650
English and American Literature from 1650 to 1789
American Literature from 1789 to 1900
British Literature from 1789 to 1900
American Literature from 1900 to Present
British Literature from 1900 to Present
Shakespeare: Poems and Earlier Plays
Shakespeare: Later Plays
Literary Theory and Criticism
Women and Literature
Black Women Authors
Medieval Literature
Biblical Literature: The Old Testament
Medieval Literature in Translation
Modern Drama
The Art of Narrative
Cultural Representations
Cultural Representations of Nature and the Environment (Same as ENV S 122NE)
Readings in the Modern Short Story
Survey of British Fiction
Literary Genres
Studies in American Literature
Studies in American Regional Literature
Literature of Cultural and Ethnic Communities in the United States
Seventeenth and Eighteenth Century American Literature
Poetry in America
Contemporary American Literature
Anglo-Irish Literature
Chaucer: Canterbury Tales
Literature of Chivalry
English Renaissance Drama
Million
Topics in Literature
Studies in Literature and the Mind
Studies in the Enlightenment
British Romantic Writers
The Victorian Era
Studies in the Nineteenth Century
Modern European Literature
Modernism in English
Studies in Modern Literature
Studies in Modern Literature
Translations
Contemporary Literature
World Literature in English
Afro-American Fiction and Criticism, 1920s to Present
Science Fiction
Detective Fiction
Cultural Representations: The Rhetoric of Science Fiction
Climate Change
Cultural Representations: Literature and the Environment
Cultural Representations of Nature and the Environment (Same as ENGL 122NE)
American Environmental Literature
Women, Representation, and Cultural Production
Citoyennes! Women and Politics in Modern France (Same as FR 155D)
Literary and Cultural Analysis
French and Francophone Poetry
French and Francophone Theater
Women in the Middle Ages
The Age of Louis XIV
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>French 149B</td>
<td>The Politics of Paradise</td>
</tr>
<tr>
<td>French 149C</td>
<td>Reading Paris (1830-1890)</td>
</tr>
<tr>
<td>French 149D</td>
<td>Post-War Avant-Gardes</td>
</tr>
<tr>
<td>French 149E</td>
<td>Medieval Literature in Translation</td>
</tr>
<tr>
<td>French 153A</td>
<td>French Theater in Translation</td>
</tr>
<tr>
<td>French 153B</td>
<td>Autobiography</td>
</tr>
<tr>
<td>French 153D</td>
<td>The Power of Negative Thinking: Sartre, Adorno, and Marcuse</td>
</tr>
<tr>
<td>French 153F</td>
<td>Existentialist Literature in Translation</td>
</tr>
<tr>
<td>French 154A</td>
<td>Voyages to the Unknown</td>
</tr>
<tr>
<td>French 154D</td>
<td>Holocaust in France (Same as C. LIT. 122B)</td>
</tr>
<tr>
<td>French 154E</td>
<td>Time Off in Paris</td>
</tr>
<tr>
<td>French 154G</td>
<td>Post-Colonial Cultures (Same as C. LIT. 171)</td>
</tr>
<tr>
<td>French 155A</td>
<td>Women in the Middle Ages</td>
</tr>
<tr>
<td>French 155B</td>
<td>Women on Trial</td>
</tr>
<tr>
<td>French 155C</td>
<td>French and Francophone Women Writers</td>
</tr>
<tr>
<td>French 155D</td>
<td>Citoyennes! Women and Politics in Modern France (Same as FEMST 171CN)</td>
</tr>
<tr>
<td>French 156C</td>
<td>Modern Images of the Middle Ages</td>
</tr>
<tr>
<td>German 115A-B-C</td>
<td>Survey of German Literature</td>
</tr>
<tr>
<td>German 116A</td>
<td>Representations of the Holocaust (Same as C. LIT. 122A)</td>
</tr>
<tr>
<td>German 138</td>
<td>Pay Fe: German Science Fiction</td>
</tr>
<tr>
<td>German 143</td>
<td>The Superhuman</td>
</tr>
<tr>
<td>German 151C</td>
<td>Literature of Central Europe</td>
</tr>
<tr>
<td>German 164E-F-G</td>
<td>German Writers in German Language</td>
</tr>
<tr>
<td>German 177A</td>
<td>Law, Rights, and Justice</td>
</tr>
<tr>
<td>German 179A</td>
<td>Revolutions: Marx, Nietzsche, Freud</td>
</tr>
<tr>
<td>German 179B</td>
<td>Mysticism</td>
</tr>
<tr>
<td>German 179C</td>
<td>Mediaevaltechology (Same as C. LIT. 179C)</td>
</tr>
<tr>
<td>German 182</td>
<td>Vampirism in German Literature and Beyond</td>
</tr>
<tr>
<td>Greek 100</td>
<td>Introduction To Greek Prose</td>
</tr>
<tr>
<td>Greek 101</td>
<td>Introduction To Greek Poetry</td>
</tr>
<tr>
<td>Hebrew 114A-B-C</td>
<td>Readings in Modern Hebrew Prose and Poetry</td>
</tr>
<tr>
<td>Italian 101</td>
<td>Modern Italy</td>
</tr>
<tr>
<td>Italian 102</td>
<td>Medieval and Renaissance Italy</td>
</tr>
<tr>
<td>Italian 111</td>
<td>Italian Short Fiction</td>
</tr>
<tr>
<td>Italian 114</td>
<td>Dante’s “Divine Comedy”</td>
</tr>
<tr>
<td>Italian 126A-ZZ</td>
<td>Literature in Italian</td>
</tr>
<tr>
<td>Italian 138AX</td>
<td>Cultural Representations in Italy</td>
</tr>
<tr>
<td>Italian 142X</td>
<td>Women in Italy</td>
</tr>
<tr>
<td>Italian 144AX</td>
<td>Gender and Sexuality in Italian Culture</td>
</tr>
<tr>
<td>Italian 179X</td>
<td>Fiction and Film in Italy</td>
</tr>
<tr>
<td>Japanese 80</td>
<td>Masterpieces in Japanese Literature</td>
</tr>
<tr>
<td>Japanese 112</td>
<td>Survey of Modern Japanese Literature</td>
</tr>
<tr>
<td>Japanese 115</td>
<td>Twentieth-Century Japanese Literature</td>
</tr>
<tr>
<td>Korean 113</td>
<td>Korean Literature Survey</td>
</tr>
<tr>
<td>Latin 100</td>
<td>Introduction To Latin Prose</td>
</tr>
<tr>
<td>Latin 101</td>
<td>Introduction To Latin Poetry</td>
</tr>
<tr>
<td>Latin American & Iberian Studies 102</td>
<td>Interdisciplinary Approaches to the Cultures, Languages, and Literature</td>
</tr>
<tr>
<td>Music 187</td>
<td>Strauss and Hofmannsmath</td>
</tr>
<tr>
<td>Portuguese 31</td>
<td>Literatures of the Portuguese Speaking World</td>
</tr>
<tr>
<td>Portuguese 105A-B-C</td>
<td>Survey of Portuguese Literature</td>
</tr>
<tr>
<td>Portuguese 106A-B-C</td>
<td>Survey of Brazilian Literature</td>
</tr>
<tr>
<td>Portuguese 115 A-AA-BB-ED</td>
<td>Brazilian Literature in English Translation</td>
</tr>
<tr>
<td>EE-EO</td>
<td></td>
</tr>
<tr>
<td>Religious Studies 114X</td>
<td>Dante’s “Divine Comedy”</td>
</tr>
<tr>
<td>Religious Studies 129</td>
<td>Religions of the Ancient Near East</td>
</tr>
<tr>
<td>Slav 35</td>
<td>Short Fiction by Major Russian Writers</td>
</tr>
<tr>
<td>Slav 117F</td>
<td>Chekhov</td>
</tr>
<tr>
<td>Slav 117G</td>
<td>Dostoevsky</td>
</tr>
<tr>
<td>Slav 117H</td>
<td>Tolstoy</td>
</tr>
<tr>
<td>Slav 123A-B</td>
<td>Nineteenth Century Russian Literature</td>
</tr>
<tr>
<td>Slav 123C-D</td>
<td>Twentieth Century Russian Literature</td>
</tr>
<tr>
<td>Slav 151C</td>
<td>Literature of Central Europe</td>
</tr>
<tr>
<td>Slav 164B</td>
<td>Science Fiction in Eastern Europe</td>
</tr>
<tr>
<td>Slav 164C</td>
<td>Women in Russian Literature</td>
</tr>
<tr>
<td>Spanish 31</td>
<td>Literatures of the Spanish Speaking World</td>
</tr>
<tr>
<td>Spanish 102L</td>
<td>Introduction to Hispanic Literary Studies</td>
</tr>
<tr>
<td>Spanish 120A-B</td>
<td>Contemporary Spanish American Fiction in English Translation</td>
</tr>
<tr>
<td>Spanish 131</td>
<td>Spanish Golden Age Poetry</td>
</tr>
<tr>
<td>& Spanish 135</td>
<td>Survey of Chicano Literature</td>
</tr>
<tr>
<td>Spanish 137A-B</td>
<td>Golden Age Drama</td>
</tr>
<tr>
<td>Spanish 138</td>
<td>Contemporary Mexican Literature</td>
</tr>
<tr>
<td>Spanish 139</td>
<td>U.S. Latino Literature</td>
</tr>
<tr>
<td>Spanish 140A-B</td>
<td>Cervantes: Don Quijote</td>
</tr>
<tr>
<td>Spanish 174</td>
<td>The Hispanic Novel and Cinema</td>
</tr>
<tr>
<td>Spanish 179</td>
<td>Chicano Novel</td>
</tr>
<tr>
<td>Spanish 181</td>
<td>Hispanic Poetry: 1900-1945</td>
</tr>
</tbody>
</table>

Literature Courses Taught in the Original Language

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese 124A-B</td>
<td>Readings in Modern Chinese Literature</td>
</tr>
<tr>
<td>Chinese 132A</td>
<td>Special Topics in Classical Chinese Poetry</td>
</tr>
<tr>
<td>Chinese 142</td>
<td>Tang Poetry</td>
</tr>
<tr>
<td>French 101A-B-C</td>
<td>Introduction to Literary and Cultural Analysis</td>
</tr>
<tr>
<td>French 147A</td>
<td>Renaissance Poetry</td>
</tr>
<tr>
<td>French 147B</td>
<td>French Theater</td>
</tr>
<tr>
<td>French 148C</td>
<td>Women in the Middle Ages</td>
</tr>
<tr>
<td>French 148E</td>
<td>The Age of Louis XIV</td>
</tr>
<tr>
<td>French 149B</td>
<td>The Politics of Paradise</td>
</tr>
<tr>
<td>French 149C</td>
<td>Paris in Nineteenth-Century Literature & Art</td>
</tr>
<tr>
<td>French 149D</td>
<td>Post-War Avant-Gardes</td>
</tr>
<tr>
<td>French 149E</td>
<td>Belgian Literature in French</td>
</tr>
<tr>
<td>German 115A-B-C</td>
<td>Survey of German Literature</td>
</tr>
<tr>
<td>Greek 100</td>
<td>Introduction to Greek Prose</td>
</tr>
<tr>
<td>Greek 101</td>
<td>Introduction to Greek Poetry</td>
</tr>
<tr>
<td>Hebrew 114A-B-C</td>
<td>Modern Hebrew Prose and Poetry</td>
</tr>
<tr>
<td>Italian 101</td>
<td>Modern Italy</td>
</tr>
<tr>
<td>Italian 102</td>
<td>Advanced Reading and Composition:</td>
</tr>
<tr>
<td>Italian 111</td>
<td>Medieval and Renaissance Italy</td>
</tr>
<tr>
<td>Italian 126A-AA-AB-BB</td>
<td>Introduction to Latin Prose</td>
</tr>
<tr>
<td>Latin 100</td>
<td>Introduction to Latin Poetry</td>
</tr>
<tr>
<td>Latin 101</td>
<td>Survey of Portuguese Literature</td>
</tr>
<tr>
<td>Portuguese 105A-B-C</td>
<td>Survey of Brazilian Literature</td>
</tr>
<tr>
<td>Portuguese 106A-B-C</td>
<td>Survey of Portuguese Literature</td>
</tr>
<tr>
<td>Religious Studies 129</td>
<td>Interdisciplinary Approaches to the Cultures, Languages, and Literature</td>
</tr>
<tr>
<td>Slavic 35</td>
<td>Introduction to Hispanic Literature Studies</td>
</tr>
<tr>
<td>Spanish 30</td>
<td>Spanish Golden Age Poetry</td>
</tr>
<tr>
<td>Spanish 102L</td>
<td>Golden Age Drama</td>
</tr>
<tr>
<td>Spanish 131</td>
<td>Contemporary Mexican Literature</td>
</tr>
<tr>
<td>Spanish 137A-B</td>
<td>U.S. Latino Literature</td>
</tr>
<tr>
<td>Spanish 138</td>
<td>Cervantes: Don Quijote</td>
</tr>
<tr>
<td>Spanish 140A-B</td>
<td>Spanish 174</td>
</tr>
<tr>
<td>Spanish 174</td>
<td>Hispanic Novel and Cinema</td>
</tr>
</tbody>
</table>

Area H: Foreign Language

Objective: To help students gain familiarity with a foreign language.

<table>
<thead>
<tr>
<th>Language</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese 2-3</td>
<td>Elementary Modern Chinese</td>
</tr>
<tr>
<td>Chinese 2NH-3NH</td>
<td>First Year Chinese Heritage</td>
</tr>
<tr>
<td>Chinese 4-5-6</td>
<td>Intermediate Modern Chinese</td>
</tr>
<tr>
<td>Chinese 4NH-5NH-6NH</td>
<td>Second Year Chinese Heritage</td>
</tr>
<tr>
<td>French 2-3</td>
<td>Elementary French</td>
</tr>
<tr>
<td>French 4-5-6</td>
<td>Intermediate French</td>
</tr>
<tr>
<td>French 6GS</td>
<td>Intermediate French: Global Studies- Political Sci.</td>
</tr>
<tr>
<td>German 2-3</td>
<td>Elementary German</td>
</tr>
<tr>
<td>German 4-5-6</td>
<td>Intermediate German</td>
</tr>
<tr>
<td>German 95B</td>
<td>Intermediate Yiddish</td>
</tr>
<tr>
<td>German 95C</td>
<td>Advanced Yiddish</td>
</tr>
<tr>
<td>Global Studies 60B-C-D-E-F</td>
<td>Punjab (II-III-IV-V-VI)</td>
</tr>
<tr>
<td>Greek 2</td>
<td>Elementary Greek</td>
</tr>
<tr>
<td>Greek 3</td>
<td>Intermediate Greek</td>
</tr>
<tr>
<td>Greek 12-13</td>
<td>Modern Greek</td>
</tr>
<tr>
<td>Hebrew 2-3</td>
<td>Elementary Hebrew</td>
</tr>
<tr>
<td>Hebrew 4-5-6</td>
<td>Intermediate Modern Hebrew</td>
</tr>
<tr>
<td>Italian 1-3</td>
<td>Elementary Italian</td>
</tr>
<tr>
<td>Italian 4-5-6</td>
<td>Intermediate Italian</td>
</tr>
<tr>
<td>Japanese 2-3</td>
<td>First Year Japanese</td>
</tr>
<tr>
<td>Japanese 4-5-6</td>
<td>Second Year Japanese</td>
</tr>
<tr>
<td>Latin 2</td>
<td>Elementary Latin</td>
</tr>
<tr>
<td>Latin 3</td>
<td>Intermediate Latin</td>
</tr>
<tr>
<td>Portuguese 2-3</td>
<td>Elementary Portuguese</td>
</tr>
<tr>
<td>Portuguese 4-5-6</td>
<td>Intermediate Portuguese</td>
</tr>
<tr>
<td>Religious Studies 10B-C-D-E-F</td>
<td>Arabic (II-III-IV-V-VI)</td>
</tr>
<tr>
<td>Religious Studies 11B-C-D-E-F</td>
<td>Biblical Hebrew (II-III)</td>
</tr>
<tr>
<td>Religious Studies 30B-C-D-E-F</td>
<td>Tibetian (II-III-IV-V-VI)</td>
</tr>
<tr>
<td>Religious Studies 45B-C-D-E-F</td>
<td>Pashto (II-III-IV-V-VI)</td>
</tr>
<tr>
<td>Religious Studies 57B-C-D-E-F</td>
<td>Persian (II-III-IV-V-VI)</td>
</tr>
<tr>
<td>Religious Studies 60B-C-D-E-F</td>
<td>Punjabi (II-III-IV-V-VI)</td>
</tr>
</tbody>
</table>

* This course applies toward the writing requirement.
† This course applies toward the American History & Institutions requirement.
@ This course applies toward the European Traditions requirement.
& This course applies toward the ethnicity requirement.
Special Subject Area Supplementary List of Courses

Note: These courses do not fulfill requirements for D, E, F, G, or H. They satisfy the university and special subject area requirements listed.

* Anthropology 102A - Introduction to Women, Culture, and Development
 (Same as GLOB 180A and SOC 156A)
* Anthropology 116A - Myth, Ritual, and Symbol
* Anthropology 116B - Anthropological Approaches to Religion
* Anthropology 143 - Introduction to Contemporary Social Theory
& Anthropology 148A - Comparative Ethnicity
@ Anthropology 176B - The American West
* Art History 186A-1ZZ - Seminar in Advanced Studies in Art History
 Museums in Transition: From the Early Modern to the Modern Period
* Art History 187Z - Museum Studies Seminar
& Asian American Studies 100CC - Filipino Americans
& Asian American Studies 100DD - Korean Americans
& Asian American Studies 109 - Asian American Women and Work
& Asian American Studies 113 - The Asian American Movement
& Asian American Studies 121 - Asian American Autobiographies and Biographies
& Asian American Studies 124 - Asian American Literature in Comparative Frameworks
& Asian American Studies 134 - Asian American Men and Contemporary Men's Issues
& Asian American Studies 138 - Asian American Sexualities
& Asian American Studies 148 - Introduction to Video Production
& Asian American Studies 149 - Screenwriting
& Asian American Studies 162 - Asian American Mental Health
& Black Studies 108 - Obama as a Political and Cultural Phenomenon
@ Black Studies 137E - Sociology of the Black Experience
& Chicano Studies 168E - History of the Chicano Movement
& Chicano Studies 168F - Racism in American History
& Chicano Studies 171 - The Brown/Black Metropolis: Race, Class, & Resistance in the City
& Chicano Studies 189 - Immigration and the US Border
* Chinese 132B - Special Topics in Modern Chinese Poetry
 The Language of Vernacular Chinese Literature
* Chinese 150 - Taoist Traditions in China
* Chinese 166B - Confucian Tradition: The Classical Period
* Chinese 166C - Science and Medicine in Ancient Greece
* Classics 60 - Political Communication
* Communication 130 - Global Communication, International Relations and the Media
* Communication 137 - Communication and Global Advocacy
* Comparative Literature 36 - Global Humanities: The Politics and Poetics of Witnessing
* Counseling, Clinical & School Psychology 101 - Introduction to Applied Psychology
* Earth Science 6 - Mountains, Boots and Backpacks: Field Study of the High Sierra
* Earth Science 104A - Field Studies in Geological Methods
* Earth Science 104B - Field Methods
* Earth Science 117 - Earth Surface Processes and Landforms
* Earth Science 123 - The Solar System
* Earth Science 130 - Global Warming - Science and Society
* Economics 107A - History of Economics
* Economics 117A - Law and Economics
* Education 20 - Introduction to the University Experience
* EEMB 124 - Biocultural Evolutionary Ecology
* EEMB 134 - Evolutionary Ecology
* EEMB 135 - Biology of Seaweeds and Phytoplankton
* EEMB 138 - Ethology and Behavioral Ecology
* EEMB 142BL - Chemical and Physical Methods of Aquatic Environments
* EEMB 142CL - Methods of Aquatic Biology
* EEMB 149 - Mariculture for the Twenty-first Century
* EEMB 179 - Modeling Environmental and Ecological Change
* English 18 - Public Speaking
* English 36 - Global Humanities
* Engineering 101 - Ethics in Engineering
* Engineering 103 - Advanced Engineering Writing
* Environmental Studies 2 - Introduction to Environmental Science
* Environmental Studies 20 - Shoreline Issues
* Environmental Studies 106 - Critical Thinking About Human-Environment Problems and Solutions
* Environmental Studies 110 - Disease and the Environment
* Environmental Studies 143 - Endangered Species Management
* Environmental Studies 146 - Animals in Human Society: Ethical Issues of Animal Use
* Environmental Studies 161 - Environmental Journalism: A Survey
* Environmental Studies 173 - American Environmental History
& Environmental Studies 189 - Religion and Ecology in the Americas
& Environmental Studies 80 or 80H - Introduction to LGBTQ Studies
& Feminist Studies 150 and 150H - Black Women Filmmakers
& Feminist Studies 154A - Sex, Love, and Romance
& Feminist Studies 155A - Sociology of the Family
& Feminist Studies 162 - Women in American Society
& Feminist Studies 166 - History of the Feminist Movement
& Feminist Studies 176A - Film & Media Studies 101A-B-C - History of Cinema
& Feminist Studies 191 - Film Criticism
& Feminist Studies 193 - Film Narrative
@ Geography 8 - Living with Global Warming
@ Geography W8 - Living with Global Warming (online course)
& Geography 148 - California
@ History 56 - Introduction to Women, Culture, and Development
@ History 123A - (Same as ANTH 102A & SOC 156A)
@ History 123B - Introduction to American History & Institutions
@ History 123C - Introduction to the American West
@ History 140A-B - History of Portugal
@ History 155A-B - History of Mexico
@ History 156A-B - History of Mexico
@ History 156I - History of Mexico
@ History 157A - History of Mexico
& History 160A - History of Mexico
& History 160A-1BB - The American South
& History 164C - Civil War and Reconstruction
& History 164A-1BB - American Immigration
& History 165 - America in the Gilded Age, 1876 to 1900
& History 166A-B-C - United States in the Twentieth Century
& History 166LB - United States Legal History
& History 168E - History of the Hispanic Movement
& History 168M - Middle Eastern Americans
& History 168N - Interracial Intimacy
@ History 169M - History of Afro-American Thought
@ History 173T - American Environmental History
& History 176A-B - The American West
& History 177 - History of California
& History 178A-B - American Urban History
& History 179A - Native American History to 1838
& History 179B - Native American History, 1838 to Present
@ Japanese 167A - Religion in Japanese Culture
@ Japanese 1686RW - Seminar in Japanese Art
& Latin American and Iberian Studies 10 - Introduction to the Latin American and Iberian World
& Latin American and Iberian Studies 100 - Introduction to Latin American and Iberian Studies
@ Linguistics 113 - Introduction to Semantics
@ Linguistics 114 - Advanced Phonology
@ Linguistics 131 - Sociolinguistics
@ Linguistics 137 - Introduction to First Language Acquisition
@ Linguistics 138 - Language Socialization
@ Materials 10 - Materials in Society: The Stuff of Dreams
@ Molecular, Cellular, and Developmental Biology 134H - Animal Virology--Honors
@ Molecular, Cellular, and Developmental Biology 149 - Mariculture for the 21st Century
@ Music 3B - Writing about Music
@ Philosophy 7 - Biomedical Ethics
@ Physics 13AH - Honors Experimental Physics
@ Physics 128AL-BL - Advanced Experimental Physics
@ Political Science 1 - Introduction to Political Philosophy
@ Political Science 7 - Introduction to International Relations
@ Political Science 114 - Democracy and Diversity

This course applies toward the writing requirement.
& This course applies toward the American History & Institutions requirement.
^ This course applies toward the European Traditions requirement.
@ * Political Science 127 American Foreign Policy
* Political Science 129 The United States, Europe, and Asia in the Twenty-First Century
@ Political Science 152 American Political Parties
@ Political Science 153 Political Interest Groups
@ Political Science 157 The American Presidency
@ Political Science 158 Power in Washington
@ Political Science 162 Urban Government and Politics
@ Political Science 165 Criminal Justice
@ Political Science 180 Bureaucracy and Public Policy
@ * Political Science 185 Government and the Economy
* Psychology 90A-B-C First-Level Honors Seminar
* Psychology 110L Laboratory in Perception
* Psychology 111L Laboratory in Biopsychology
* Psychology 112L Laboratory in Social Behavior
* Psychology 116L Laboratory in Animal Learning
* Psychology 117L Laboratory in Human Memory and Cognition
* Psychology 118L Laboratory in Attention
* Psychology 120L Advanced Research Laboratory
* Psychology 135A-B-C Field Experience in Psychological Settings
* Psychology 153L Laboratory in Developmental and Evolutionary Psychology
* Religious Studies 84 Introduction to Islamic Civilization
* Religious Studies 106 Modernity and the Process of Secularization
& Religious Studies 110D Ritual and Verbal Art of the Pacific Northwest
& Religious Studies 114D Religion and Healing in Native America
* Religious Studies 127B Christian Thought and Cultures of the Middle Ages
& Religious Studies 131F The History of Anti-Semitism
* Religious Studies 131J Islamic Traditions
* Religious Studies 140A Islam in America
* Religious Studies 140B Islamic Mysticism and Religious Thought
* Religious Studies 140C Confucian Traditions: The Classical Period
* Religious Studies 167A Religion in Japanese Culture
& Religious Studies 193 Religion and Ecology of the Americas
@ Sociology 128 Interethnic Relations
* Sociology 130 Development and its Alternatives
* Sociology 130LA Development and Social Change in Latin America
* Sociology 130ME Development and Social Change in the Middle East
* Sociology 134R The Sociology of Revolutions
* Sociology 134RC Radical Social Change
@& * Sociology 137E Sociology of the Black Experience
& Sociology 139A Black and White Relations
@ Sociology 140 Aging in American Society
* Sociology 154A Sociology of the Family
& Sociology 154F The Chicano Family
@ Sociology 155A Women in American Society
& Sociology 155M Contemporary U.S. Women's Movements
& Sociology 155W Chicanas and Mexican Women in Contemporary Society
* Sociology 156A Introduction to Women, Culture, and Development
& Sociology 157
* Sociology 170 Sociology of Deviant Behavior
* Sociology 176A Sociology of AIDS
& Spanish 109 Spanish in the United States: The Language and its Speakers
@ Speech & Hearing Sciences 30 Introduction to Communication Disorders
* Theater 1 Play Analysis
* Theater 91 Summer Theater in Orientation
& Theater 180F Asian American Theater
* Theater 185TH Theory
* Writing 18 Public Speaking
* Writing 110L Advanced Legal Writing
* Writing 110MK Professional Communications in Marketing and Public Relations
* Writing 160 Theory and Practice of Writing Center Consulting
CHECKLIST OF GENERAL UNIVERSITY AND GENERAL EDUCATION REQUIREMENTS

GENERAL UNIVERSITY REQUIREMENTS

UC Entry Level Writing Requirement – (Must be fulfilled within three quarters of admission.)

Passed Exam ________ or Writing 1, 1E or Ling 12 ___________ or transferred appropriate course ___________

American History and Institutions* – (Refer to page 8 for the list of acceptable courses.)

One course ____________ or Advanced Placement ____________ or International waiver ______________

*This course may also apply to the General Education requirements, if appropriate.

GENERAL EDUCATION REQUIREMENTS

No more than two courses total from the same department may apply to the General Education Areas D, E, F, G, and H. A course listed in more than one General Subject Area can be applied to only one area. Course total in Areas D, E, F, G, and H must be at least 6.

General Subject Areas

1. Area A: English Reading and Composition

 Writing 2 or 2E ___________ and Writing 50, 50E, 107T or 109ST ___________

2. Areas D and E: Social Sciences, Culture and Thought (2 courses minimum)

3. Areas F and G: Arts and Literature (2 courses minimum)

4. Two additional courses from D, E, F, G, or H (Foreign Language):

Special Subject Areas

In the process of fulfilling the G.E. General Subject Area requirements, students must fulfill the following Special Subject Area requirements, as outlined on page 11. Only approved courses can be used to fulfill these requirements.

a. Writing Requirement – At least four courses which require the writing of one or more papers totaling at least 1,800 words.

b. Depth Requirement – Choose one of the following options:

 Option 1: Completion of two classes in each of two departments (four classes total). At least one course in each department must be upper division - the other course may be upper or lower division. Only courses from American History and Institutions, General Subject Areas D, E, F, G, or H, or Special Subject Areas (Writing, Ethnicity, or European Traditions) may be used toward this requirement.

 Course 1 (Lower or Upper Division) Course 2 (Upper Division)

 Department 1 ___________________________ ___________________________

 Department 2 ___________________________ ___________________________

 Option 2: Complete a Three Course Sequence from the approved list on page 11.

 ___________________________ ___________________________ ___________________________

 Option 3: Complete an approved minor or double major, see page 11 for more information about this option.

c. Ethnicity Requirement – (1 course) ________________

d. European Traditions Requirement – (1 course) ____________
Chemical Engineering

Department of Chemical Engineering, Engineering II, Room 3357; Telephone (805) 893-3412
Web site: www.chemengr.ucsb.edu
Chair: Rachel A. Segalman
Vice-Chairs: Todd M. Squires
M. Scott Shell

Faculty

Bradley Chmelka, Ph.D., UC Berkeley, Distinguished Professor (self-assembled materials, heterogeneous catalysis, surfactants and polymers, porous and composite solids, magnetic resonance)

Michael F. Doherty, Ph.D., Cambridge University, Distinguished Professor (process design and synthesis, separations, crystal engineering)

Glenn Fredrickson, Ph.D., Stanford University, Distinguished Professor (polymer theory, block copolymers, phase transitions, statistical mechanics, glass transitions, composite media)

Siddharth S. Dey, Ph.D., UC Berkeley, Assistant Professor (systems biology, single-cell genomics, epigenetics, stem cell biology)

Michael J. Gordon, Ph.D., California Institute of Technology, Associate Professor (surface physics, scanning probe microscopy, nanoscale materials, plasmonics, laser spectroscopy)

Matthew E. Helgeson, Ph.D., University of Delaware, Assistant Professor (colloidal thermodynamics and rheology, polymer and surfactant self-assembly, nanomaterials, microfluidics)

Eric McFarland, Ph.D., Massachusetts Institute of Technology, M.D., Harvard, Professor (energy production, catalysis, reaction engineering, charge and energy transfer)

Michelle A. O’Malley, Ph.D., University of Delaware, Assistant Professor (genetic and cellular engineering, membrane protein characterization for drug discovery, protein biophysics, metagenomics, biofuel production)

Baron G. Peters, Ph.D., UC Berkeley, Associate Professor (molecular simulation, chemical kinetics, catalytic reaction mechanisms, nucleation, electron transfer)

Susannah Scott, Ph.D., Iowa State University, Distinguished Professor (heterogeneous catalysis, surface organometallic chemistry, analysis of electronic structure and stoichiometric reactivity to determine catalytic function)

Rachel A. Segalman, Ph.D., UC Santa Barbara, Professor (polymer design, self-assembly, and properties)

M. Scott Shell, Ph.D. Princeton, Associate Professor (molecular simulation, statistical mechanics, complex materials, protein biophysics)

Todd M. Squires, Ph.D., Harvard, Associate Professor (fluid mechanics, microfluidics, micro rheology, complex fluids)

Emeriti Faculty

Sanjoy Banerjee, Ph.D., University of Waterloo, Professor Emeritus (transport processes, multiphase systems, process safety)

Owen T. Hanna, Ph.D., Purdue University, Professor Emeritus (theoretical methods)

Gene Lucas, Ph.D., Massachusetts Institute of Technology, Professor (structural materials, mechanical properties)

Jacob Israelachvili, Ph.D., University of Cambridge, Distinguished Professor (surface and interfacial phenomena, adsorption, colloidal systems, surface forces, bio-adhesion, friction)

L. Gary Leal, Ph.D., Stanford University, Schlinger Distinguished Professor in Chemical Engineering (fluid mechanics, physics of complex fluids, rheology)

Duncan A. Mellichamp, Ph.D., Purdue University, Professor Emeritus (process dynamics and control, digital computer control)

Robert G. Rinker, Ph.D., California Institute of Technology, Professor Emeritus (chemical kinetics, reaction engineering, catalysis)

Orville C. Sandall, Ph.D., UC Berkeley, Professor Emeritus (transport of mass, energy, and momentum; separation processes)

Dale E. Seborg, Ph.D., Princeton University, Professor Emeritus (process dynamics and control, monitoring and fault detection, system identification)

Theofanis G. Theofanous, Ph.D., University of Minnesota, Professor, Center for Risk Studies and Safety Director (transport phenomena in multiphase systems, risk analysis)

Affiliated Faculty

Christopher Bates, Ph.D. (Materials)

David Gay, Ph.D. (IB) Song-I Han, Ph.D. (Chemistry)

Mahdi Abu Omar, Ph.D. (Chemistry)

Philip Alan Pincus, Ph.D. (Materials)

We live in a technological society which provides many benefits including a very high standard of living. However, our society must address critical problems that have strong technological aspects. These problems include: meeting our energy requirements, safeguarding the environment, ensuring national security, and delivering health care at an affordable cost. Because of their broad technical background, chemical engineers are uniquely qualified to make major contributions to the resolution of these and other important problems. Chemical engineers develop processes and products that transform raw materials into useful products. The Department of Chemical Engineering offers the B.S., M.S., and Ph.D. degrees in chemical engineering. The B.S. degree is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

At the undergraduate level, emphasis is placed on a thorough background in the fundamental principles of science and engineering, strongly reinforced by laboratory courses in which students become familiar with the application of theory. At the graduate level, students take advanced courses and are required to demonstrate competence in conducting basic and applied research.

The B.S. degree provides excellent preparation for both challenging industrial jobs and graduate degree programs. Interdisciplinary B.S./M.S degree programs are also available which result in M.S. degrees in other fields. Students who complete a major in chemical engineering may be eligible to pursue a California teaching credential. Interested students should consult the credential advisor in the Graduate School of Education as soon as possible.

Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. Each undergraduate also is assigned a faculty advisor, to assist in selection of elective courses, plan academic programs, and provide advice on professional career objectives. Undergraduates in other majors who plan to change to a major in the Department of Chemical Engineering should consult the department academic advisor for the requirements.

Mission Statement

The program in Chemical Engineering has a dual mission:

• Education. Our program seeks to produce chemical engineers who will contribute to the process industries worldwide. Our program provides students with a strong fundamental technical education designed to meet the needs of a changing and rapidly developing technological environment.

• Research. Our program seeks to develop innovative science and technology that addresses the needs of industry, the scientific community, and society.

Objectives for the Undergraduate Program

Educational Objectives

• Our graduates will be innovative, competent, contributing chemical engineers.

• Our graduates will demonstrate their flexibility and adaptability in the workplace, so that they remain effective engineers, take on new responsibilities, and assume leadership roles.

• Our graduates will continually develop new skills and knowledge through formal
and informal mechanisms.

Student Learning Outcomes

Upon graduation, students from the ChE program at UCSB are expected to have:

1. **[Fundamentals]** the fundamental knowledge of mathematics, computing, science, and engineering needed to practice chemical engineering, and the ability to apply this knowledge to identify, formulate, and solve chemical engineering problems;

2. **[Laboratory]** the ability to design and conduct experiments and to analyze and interpret data;

3. **[Design]** the ability to design a system, component, or process to meet desired specifications, while recognizing, assessing and mitigating potential hazards; the ability to use modern engineering tools necessary for engineering practice;

4. **[Advanced Training]** knowledge beyond the basic fundamentals in chemical engineering and/or related technical fields as preparation for a continuing process of lifelong learning, a recognition of the need for and the ability to engage in lifelong learning;

5. **[Teamwork/Communication]** the ability to function productively in multidisciplinary teams working towards common goals; the ability to communicate effectively through written and oral presentations;

6. **[Engineering & Society]** the broad education necessary to understand the impact of engineering solutions in a global/societal context; a knowledge of contemporary issues; an understanding of professional and ethical responsibility.

Undergraduate Program

Bachelor of Science—Chemical Engineering

A minimum of 187 units is required for graduation. A complete list of requirements for the major can be found on page 46. Schedules should be planned to meet both General Education and major requirements. Courses required for the major, inside or outside of the Department of Chemical Engineering, cannot be taken for the pass/not pass grading option. They must be taken for letter grades. Fifteen units of technical electives selected from a wide variety of upper-division science and engineering courses are also required. The list of approved technical electives is included on curriculum sheets. Prior approval of technical electives must be obtained from the department faculty advisor and the technical elective worksheet must be submitted to the department by fall quarter of the senior year.

Transfer students who have completed most of the lower-division courses listed above and are entering the junior year of the chemical engineering program may take Chemical Engineering 10 concurrently with Chemical Engineering 120A in the fall quarter.

Chemical Engineering Courses

LOWER DIVISION

5. **Introduction to Chemical Engineering Design**

 (3) DOMERTY

 Introduction to the design and analysis of processes involving chemical change in the context of chemical and biomolecular engineering. Students learn mathematical, empirical, and conceptual strategies to analyze.

10. **Introduction to Chemical Engineering**

 (3) HELGESON, GORDON

 Prerequisites: Chemical Engineering 5 (May be taken concurrently); Chemistry 1A-B-C or 2A-B-C; Mathematics 3A-B or Mathematics 4A or 4A-4AL; and Engineering 3; chemical engineering majors only.

 Elementary principles of chemical engineering. The major topics discussed include material and energy balances, stoichiometry, and thermodynamics.

UPPER DIVISION

102. **Biomaterials and Biosurfaces**

 (3) STAFF

 Recommended Preparation: Basic physical chemistry, chemistry, physics, thermodynamics and biology.

 Not open for credit to students who have completed Chemical Engineering 121.

 Fundamentals of natural and artificial biomaterials and biosurfaces with emphasis on molecular level structure and function and the interactions of biomaterials and surfaces with the body. Design issues of grafts and biopolymers. Basic biological and biochemical systems reviewed for nonbiologists.

107. **Introduction to Biological Processing**

 (3) O’MALLEY, DEY

 Prerequisites: Chemical Engineering 10

 Familiarizes engineering students with biological processing and production at multiple scales. Chemical engineering principles will be infused with key biological concepts, including an introduction to biochemistry, cell biology, and molecular biology.

110A. **Chemical Engineering Thermodynamics**

 (3) SHELL

 Prerequisite: Chemical Engineering 10; Mathematics 4B or 4Bl; Engineering majors only.

 Use of the laws of thermodynamics to analyze processes encountered in engineering practice, including cycles and flows. Equations-of-state for describing properties of fluids and mixtures. Applications, including engines, turbines, refrigeration and power plant cycles, phase equilibria, and chemical-reaction equilibria.

110B. **Chemical Engineering Thermodynamics**

 (3) HAN

 Prerequisite: Chemical Engineering 110A with a minimum grade of C-; Mathematics 4B or 4Bl; Engineering majors only.

 Extension of Chemical Engineering 110A to cover mixtures and multiphase equilibrium. Liquid-vapor separations calculations are emphasized. Introduction to equations of state for mixtures.

119. **Current Events in Chemical Engineering**

 (1) STAFF

 Prerequisites: Chemical Engineering 110A.

 Assigned readings in technical journals on current events of interest to chemical engineers. Student groups present oral reports on reading assignments pertaining to new technologies, discoveries, industry challenges, society/government issues, professional and ethical responsibilities.

120A. **Transport Processes**

 (4) SQUIRES

 Prerequisite: Chemical Engineering 10 with a minimum grade of C- (may be taken concurrently); Mathematics 4B or 4Bl; Mathematics 6A or 6A-6Bl.

 Introductory course in conceptual understanding and mathematical analysis of problems in fluid dynamics of relevance to Chemical Engineering. Emphasis is placed on performing microscopic and macroscopic mathematical analysis to understand fluid motion in response to forces.

120B. **Transport Processes**

 (3) HELGESON, O’MALLEY, SQUIRES

 Prerequisite: Chemical Engineering 10 with minimum grade of C-. Chemical Engineering 110A with minimum grade of C- (may be taken concurrently); Chemical Engineering 120A.

 Introductory course in the mathematical analysis of conductive, convective and radiative heat transfer with practical applications to design of heat exchange equipment and use.

120C. **Transport Processes**

 (3) PETERS, DEY, SQUIRES

 Prerequisite: Chemical Engineering 10 with a minimum grade of C-. Chemical Engineering 110A with minimum grade of C-. Chemical Engineering 110B (may be taken concurrently) and Chemical Engineering 120B.

 Introductory course in the fundamentals of mass transfer with applications to the design of mass transfer equipment.

121. **Colloids and Biosurfaces**

 (3) STAFF

 Recommended Preparation: Basic physical chemistry, chemistry, physics, thermodynamics and biology.

 Not open for credit to students who have completed Chemical Engineering 102.

 Basic forces and interactions between atoms, molecules, small particles and extended surfaces. Special features and interactions associated with (soft) biological molecules, biomaterials and surfaces: lipids, proteins, fibrous molecules (DNA), biological membranes, hydrophobic and hydrophilic interactions, bio-specific and non-equilibrium interactions.

124. **Advanced Topics in Transport Phenomena/Safety**

 (3) MCFARLAND

 Prerequisites: Chemical Engineering 120A-B-C or Mechanical Engineering 151A-B; and Mechanical Engineering 152A.

 Same course as ME 124.

125. **Principles of Bioengineering**

 (3) MITTAGOR

 Prerequisites: Chemical Engineering 120C

 Applications of engineering to biological and medical systems. Introduction to drug delivery, tissue engineering, and modern biomedical devices. Design and applications of these systems are discussed.

126. **Non-Newtonian Fluids, Soft Materials and Chemical Products**

 (3) SQUIRES, HELGESON

 Prerequisite: Chemical Engineering 120C

 Overview of soft materials (suspensions, gels,
polymers, surfactants, emulsions, powders and granules) that arise in diverse industries, including consumer products, foods, advanced materials, biotechnology, and mineral and energy production. Influence of non-Newtonian rheology (shear-thickening and thinning, viscoelasticity, extension-thickening, yield stresses, normal stress differences, and metastability) upon handling, processing, production, and performance of chemical products. Strategies to design chemical products that meet performance targets, and to scale-up production. Real-world case studies and classroom demonstrations.

128. Separation Processes
(3) SCOTT
Prerequisites: Chemical Engineering 10 and 110A-B; open to College of Engineering majors only.
Basic principles and design techniques of equilibrium-stage separation processes. Emphasis is placed on binary distillation, liquid-liquid extraction, and multicomponent distillation.

132A. Analytical Methods in Chemical Engineering
(4) FREDRICKSON, GORDON, PETERS
Prerequisites: Mathematics 4B or 4BI; Mathematics 6A or 6AI.
Develop analytical tools to solve elementary partial differential equations and boundary value problems. Separation of variables, Laplace transforms, Sturm-Liouville theory, generalized Fourier analysis, and computer math tools.

132B. Computational Methods in Chemical Engineering
(4) FREDRICKSON, GORDON
Prerequisite: Mathematics 4B or 4BI; Mathematics 6A or 6AI-6B.

132C. Statistical Methods in Chemical Engineering
(3) PETERS
Prerequisites: Mathematics 4B or 4BI; Mathematics 6A or 6AI-6B.
Probability concepts and distributions, random variables, error analysis, point estimation and confidence intervals, hypothesis testing, development of empirical chemical engineering models using regression techniques, design of experiments, process monitoring based on statistical quality control techniques.

140A. Chemical Reaction Engineering
(5) MCFARLAND, SCOTT, PETERS
Prerequisites: Chemical Engineering 10 with minimum grade of C-; Chemical Engineering 110A with a minimum grade of C-; Chemical Engineering 110B (may be taken concurrently).
Chemical Engineering 120A-B.
Fundamentals of chemical reaction engineering with emphasis on kinetics of homogeneous and heterogeneous reacting systems. Reaction rates and reaction design are linked to chemical conversion and selectivity. Batch and continuous reactor designs with and without catalysts are examined.

140B. Chemical Reaction Engineering
(5) CHMELKA, MCFARLAND
Prerequisites: Chemical Engineering 110A-B, 120A-B and 140A.
Thermodynamics, kinetics, mass and energy transport considerations associated with complex homogeneous and heterogeneous reacting systems. Catalysts and catalytic reaction rates and mechanisms. Adsorption and reaction at solid surfaces, including effects of diffusion in porous materials. Chemical reactors using heterogeneous catalysts.

141. The Science and Engineering of Energy Conversion
(5) MCFARLAND
Prerequisite: Chemical Engineering 110A and 140A.
Equivalent upper-division coursework in thermodynamics and kinetics from outside of department will be considered.
Framework for understanding the energy supply issues facing society with a focus on the science, engineering, and economic principles of the major alternatives. Emphasis will be on the physical and chemical fundamentals of energy conversion technologies.

152A. Process Dynamics and Control
(4) CHMELKA
Prerequisites: Chemical Engineering 120A-B-C and 140A.
Development of theoretical and empirical models for chemical and physical processes, dynamic behavior of processes, transfer function and block diagram representation, process instrumentation, control system design and analysis, stability analysis, computer simulation of controlled processes.

152B. Advanced Process Control
(3) STAFF
Prerequisite: Chemical Engineering 152A.
The theory, design, and experimental application of advanced process control strategies including feedforward control, cascade control, enhanced single-loop strategies, and model predictive control. Analysis of multi-loop control systems. Introduction to on-line optimization.

154. Engineering Approaches to Systems Biology
(3) STAFF
Prerequisite: Chemical Engineering 170.
Applications of engineering tools and methods to solve problems in systems biology. Emphasis is placed on integrative approaches that address multi-scale and multi-rate phenomena in biological regulation. Modeling, optimization, and sensitivity analysis tools are introduced.

160. Introduction to Polymer Science
(3) SEGALMAN
Prerequisite: Chemistry 109A-B.
Same course as Materials 180.
Introductory course covering synthesis, characterization, structure, and mechanical properties of polymers. The course is taught from a materials perspective and includes polymer thermodynamics, chain architecture, measurement and control of molecular weight as well as crystallization and glass transitions.

170. Molecular and Cellular Biology for Engineers
(3) O’MALLEY, DEY
Prerequisite: Chemical Engineering 120A-B-C, 140A and Chemistry 109C.
Familiarizes engineering students with key concepts from biochemistry, molecular biology, cell biology, and genetics. Students will apply chemical engineering principles to describe different biological systems at multiple scales, including an introduction to bioproduction.

171. Introduction to Biochemical Engineering
(3) DEY, O’MALLEY
Prerequisite: Chemical Engineering 170.
Introduction to biochemical engineering covering cell growth kinetics, bioreactor design, enzyme processes, biotechnologies for modification of cellular information, and molecular and cellular engineering.

173. Omics-Enabled Biotechnology
(3) O’MALLEY
Prerequisite: Chemical Engineering 170 or MCDB 1A
This course will integrate genomic, transcriptomic, metabolomic, and proteomic approaches to quantify and understand intricate biological systems.

179. Biotechnology Laboratory
(4) STAFF
Prerequisite: Chemical Engineering 170 or MCDB 1A or Chemistry 142A-B or Consent of Instructor.
Must have an overall grade point average of 3.3 or above.
This course will provide an introduction to theoretical principles and practical methods used in modern biotechnology, genetic engineering, and synthetic biology. Topics will include proteins and cellular engineering using recombinant DNA technologies, mutagenesis, library construction, and biosynthetic display technologies.
Computer Engineering

Computer Engineering Major,
Trailer 380, Room 101;
Telephone (805) 893-5615
E-mail: info@ce.ucsb.edu
Web site: www.ce.ucsb.edu

Director: Li-C. Wang

Faculty

Kevin Almeroth, Ph.D., Georgia Institute of Technology, Professor (computer networks and protocols, large-scale multimedia systems, performance evaluation and distributed systems)

Kausav Banerjee, Ph.D., UC Berkeley, Professor (high performance VLSI and mixed signal system-on-chip designs and their design automation methods; single electron transistors; 3D and optoelectronic integration)

Forrest D. Brewer, Ph.D., University of Illinois at Urbana-Champaign, Professor (VLSI and computer system design automation, theory of design and design representations, symbolic techniques in high level synthesis)

Tevfik Bultan, Ph.D., University of Maryland, College Park, Professor (specification and automated analysis of concurrent systems, computer-aided verification, model checking)

Yogananda Isukapalli, Ph.D., UC San Diego (Low power hardware design, Multi-antenna wireless communications, Transmit beam forming, Vector quantization, Performance analysis of communication systems)

Chandra Krintz, Ph.D., University of California, San Diego, Professor (dynamic and adaptive compilation systems, high-performance internet (mobile) computing, runtime and compiler optimizations for Java/ CIL, efficient mobile program transfer formats)

Behrooz Parhami, Ph.D., UC Los Angeles, Professor (parallel architectures and algorithms, computer arithmetic, computer design, dependable and fault-tolerant computing)

Tim Sherwood, Ph.D., UC San Diego, Professor (computer architecture, dynamic optimization, network and security processors, embedded systems, program analysis and characterization, and hardware support of software systems)

Dmitri B. Strukov, Ph.D., Stony Brook University, Assistant Professor (hybrid circuits, nanoelectronics, resistance switching devices, memristors, digital memories, programmable circuits, bio-inspired computing)

Luke Theogarajan, Ph.D., Massachusetts Institute of Technology, Associate Professor (low-power analog VLSI, biomimetic nanosystems, neural prostheses, biosensors, block co-polymer synthesis, self-assembly, and microfabrication)

Li-C. Wang, Ph.D., University of Texas at Austin, Professor (design verification, testing, computer-aided design of microprocessors)

Richard Wolski, Ph.D., UC Davis/Livemore, Professor (high-performance distributed computing, computational grids, computational economies for resource allocation and scheduling)

Yuan Xie, Ph.D., Princeton University, Professor (EDA, VLSI design, computer architecture, embedded systems, high-performance computing)

Ben Zhao, Ph.D., University of California, Berkeley, Associate Professor (computer/overlay/mobile networking, large-scale distributed systems, operating systems, network simulation and modeling)

Heather Zheng, Ph.D., University of Maryland, College Park, Associate Professor (wireless/mobile ad hoc networking, cognitive radio and dynamic spectrum networks, multimedia communications, security, game theory, algorithms, network simulation and modeling)

Graduate courses for this major can be found in the UCSB General Catalog.

Mission Statement

To prepare our students to reach their full potential in computer engineering research and industrial practice through a curriculum emphasizing the mathematical tools, scientific basics, fundamental knowledge, engineering principles, and practical experience in the field.

Educational Objectives

The Computer Engineering Program seeks to produce graduates who:

1) Make positive contributions to society by applying their broad knowledge of computer engineering theories, techniques, and tools.

2) Create processes and products, involving both hardware and software components, that solve societal and organizational problems effectively, reliably, and economically.

3) Are committed to the advancement of science, technical innovation, lifelong learning, professionalism, and mentoring of future generations of engineers.

4) Understand the ethical, social, business, technical, and human contexts of the world in which their engineering contributions will be utilized.

Program Outcomes

Upon completion of this program, students will have:

1) Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and engineering necessary to facilitate specialized professional training at an advanced level. Developed a recognition of the need for and the ability to engage in lifelong learning.

2) Experienced in-depth training in state-of-the-art specialty areas in computer engineering.

3) Benefited from hands-on, practical laboratory experiences where appropriate throughout the program. The laboratory experiences will be closely integrated with coursework and will make use of up-to-date instrumentation and computing facilities. Students will have completed both hardware-oriented and software-oriented assignments.

4) Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired during their course of study. These challenges may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and test a system, analyze experimental results, and draw logical conclusions from them.

5) Learned to function well in multidisciplinary teams and collaborative environments. To this end, students must develop communication skills, both written and oral, through teamwork and classroom participation. Teamwork and individual originality will be evidenced through written reports, web page preparation, and public presentations.
6) Completed a well-rounded and balanced education through required studies in selected areas of fine arts, humanities, and social sciences. This outcome provides the ability to understand the impact of engineering solutions in a global and societal context. A required course in engineering ethics will have prepared students for making professional contributions while maintaining institutional and individual integrity.

Undergraduate Program

Bachelor of Science—Computer Engineering

A minimum of 191 units is required for graduation. A complete list of requirements for the major can be found on page 48. Schedules should be planned to meet both General Education and major requirements.

The curriculum contains a core required of all computer engineers, a choice of at least 48 units of senior year elective courses including completion of two out of ten elective sequences and a senior year capstone design project.

Because the Computer Engineering degree program is conducted jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering, several of the upper-division courses have equivalent versions offered by ECE or CMPSC. These courses are considered interchangeable, but only one such course of a given equivalent ECE/CMPS pair may be taken for credit.

Courses required for the major, whether inside or outside of the Departments of Electrical and Computer Engineering or Computer Science, must be taken for letter grades. They cannot be taken for the passed/not passed grading option. The upper-division requirements consist of a set of required courses and a minimum of 48 units (12 classes) of additional departmental elective courses comprised of at least two sequences chosen from a set of eight specialty sequences. Each sequence must consist of two or more courses taken from the same course/sequence group. The department electives must also include a capstone design project (CMPSC 189A-B/ECE 189A-B).

Upper-division courses required for the major are: Computer Science 130A; ECE 152A, 154A; either ECE 139 or PSTAT 120A; Engineering 101.

The required departmental electives are taken primarily in the senior year; they permit students to develop depth in specialty areas of their choice. A student’s elective course program and senior project must be approved by a departmental faculty advisor. A variety of elective programs will be considered acceptable. Sample programs include those with emphasis in: computer-aided design (CAD); computer systems design; computer networks; distributed systems; programming languages; real-time computing and control; multimedia; and very large-scale integrated (VLSI) circuit design.

The defined sequences from which upper-division departmental electives may be chosen are:

- Computer Systems Design: ECE/CMPSC 153A, ECE 153B
- Computer Networks: ECE 155A/CMPSC 176A, ECE 155B/CMPSC 176B
- Distributed Systems: ECE 151/CMPSC 171 and one or both of the Computer Networks courses
- Programming Languages: CMPSC 160, 162
- Real-Time Computing & Control: ECE 147A-B, 157
- Multimedia: ECE 178, ECE/CMPSC 181B, ECE 160/CMPSC 182
- VLSI: ECE 124A, 124D
- Signal Processing: ECE 130A-B
- Robotics: ECE 179D & ECE 179P
- Design & Test Automation: ECE 156A, ECE 156B
- Machine Learning: CMPSC 165A, CMPSC 165B
- System Software Architecture: CMPSC 170, CMPSC 171/ECE 171

Satisfactory Progress and Prerequisites

A majority of Computer Science and Electrical and Computer Engineering courses have prerequisites which must be completed successfully. Successful completion of prerequisite classes requires a grade of C or better in Mathematics 3A-B and 4A, and a grade of C- or better in ECE classes. Students will not be permitted to take any ECE or CMPSC course if they received a grade of F in one or more of its prerequisites. Students who fail to maintain a grade-point average of at least 2.0 in the major may be denied the privilege of continuing in the major.

Computer Engineering Courses

See listings for Computer Science starting on page 28 and Electrical and Computer Engineering starting on page 33.

Faculty

Divyakant Agrawal, Ph.D., State University of New York at Stony Brook, Distinguished Professor (distributed systems and databases)

Kevin Almeroth, Ph.D., Georgia Institute of Technology, Professor (computer networks and protocols, large-scale multimedia systems, performance evaluation and distributed systems)

Elizabeth Belding, Ph.D., University of California, Santa Barbara, Professor (mobile wireless networking, network performance evaluation, advanced service support, solutions for developing and under-developed regions)

Tevfik Bultan, Ph.D., University of Maryland, College Park, Professor (software verification, program analysis, software engineering, and computer security)

Philip Conrad, Ph.D., University of Delaware, Lecturer SOE (computer science education, web technologies, computer networks and communication, transport protocols, multimedia computing)

Wim van Dam, Ph.D., University of Oxford and University of Amsterdam, Associate Professor (quantum computation, quantum algorithms, quantum communication, quantum information theory)

Omer Egecioglu, Ph.D., University of California, San Diego, Professor (bijective and enumerative combinatorics, parallel algorithms, approximation algorithms, combinatorial algorithms)

Amr El Abbadi, Ph.D., Cornell University, Distinguished Professor (Information and data management; distributed systems, cloud computing)

Frederic Gibou, Ph.D., University of California, Los Angeles, Professor (High resolution multiscale simulation, scientific computing, tools and software for computational science and engineering, engineering applications)

John R. Gilbert, Ph.D., Stanford University, Professor (combinatorial scientific computing, high-performance graph algorithms, tools and software for computational science and engineering, numerical linear algebra) computational geometry; analysis of algorithms)

Ben Hardekopf, Ph.D., University of Texas at Austin, Associate Professor (programming languages: design, analysis and implementation)
Tobias Höllerer, Ph.D., Columbia University, Professor (human computer interaction; augmented reality; virtual reality; visualization; computer graphics; 3D displays and interaction; wearable and ubiquitous computing)

Chandra Krintz, Ph.D., University of California, San Diego, Professor (programming language implementations, dynamic and adaptive program analysis and optimization, mobile and distributed programming systems, cloud computing platforms (AppScale))

Christopher Kruegel, Ph.D., Vienna University of Technology, Professor (computer security, program analysis, operating systems, network security, malicious code analysis and detection)

Huijia Lin, PhD, Cornell University, Assistant Professor (cryptography, theory of computing, security)

Diba Mirza, PhD., University of California, San Diego, Lecturer PSOE

Linda R. Petzold, Ph.D., University of Illinois at Urbana–Champaign, Distinguished Professor (network science, directed learning)*3

Oscar H. Ibarra, Ph.D., University of California, Berkeley, Professor (design and analysis of algorithms, theory of computation, computational complexity, parallel computing)

Richard A. Kemmerer, Ph.D., University of California, Los Angeles, Professor (specification and verification of systems, programming and specification language design, software engineering)

Alain G. Konheim, Ph.D., New York University, Professor Emeritus (computer system security and reliability, programming and specification language design, software engineering)

Giovanni Vigna, Ph.D., Politecnico di Milano, Professor (computer and network security, intrusion detection, vulnerability, analysis and security testing, web security, malware detection)

Yuan-Fang Wang, Ph.D., University of Texas at Austin, Professor (computer vision, human computer interaction, perceptual computing, artificial intelligence)

William Wang, Ph.D., Carnegie Mellon University, Assistant Professor (natural language processing, machine learning, deep learning, artificial intelligence, knowledge representation and reasoning, information extraction, computational social science, multimodality, language and vision)

Richard Wolski, Ph.D., University of California, Davis/Livermore, Professor (cloud computing, high-performance distributed computing, computational grids, and computational economies for resource allocation and scheduling)

Xifeng Yan, Ph.D., University of Illinois at Urbana Champaign, Professor (Data Mining/ Databases, Natural Language Processing/ Machine Learning/Al)

Tao Yang, Ph.D., Rutgers University, Professor (parallel and distributed systems, Internet search, and high performance computing)

Ben Zhao, Ph.D., University of California, Berkeley, Professor (online social networks, data-intensive computing, cloud computing, dynamic spectrum networks, anonymity and privacy, distributed systems)

Heather Zheng, Ph.D., University of Maryland, College Park, Professor (wireless/mobile/ad hoc networking, cognitive radio and dynamic spectrum networks, multimedia communications, security, game theory, algorithms, network simulation and modeling)

Emeriti Faculty

Peter R. Cappello, Ph.D., Princeton University, Professor (JAVA/internet-based parallel computing, multiprocessor scheduling, market-based resource allocation, self-directed learning)

Teofilo Gonzalez, Ph.D., University of Minnesota, Professor (approximation algorithms; parallel computing multicasting; scheduling theory; placement and routing;)

Richard P. Klemmer, Ph.D., University of California, Berkeley, Professor (design and analysis of algorithms, theory of computation, computational complexity, parallel computing)

Richard A. Kemmerer, Ph.D., University of California, Los Angeles, Professor (specification and verification of systems, computer system security and reliability, programming and specification language design, software engineering)

Alan G. Konheim, Ph.D., Cornell University, Professor Emeritus (computer communications, computer systems, modeling and analysis, cryptography)

Terence R. Smith, Ph.D., Johns Hopkins University, Professor Emeritus (spatial databases, techniques in artificial machine intelligence)*4

Affiliated Faculty

B.S. Manjunath, Ph.D., (Electrical and Computer Engineering)

P. Michael Melliar-Smith, Ph.D. (Electrical and Computer Engineering)

Kenneth Rose, Ph.D. (Electrical and Computer Engineering)

Martin Raubal, Ph.D. (Geography)

Many of the greatest challenges facing our world today are increasingly reliant on computing for their solutions — from conquering disease to eliminating hunger, from improving education to protecting the climate and environment. Information is key to all of these efforts, and computer scientists make it possible to visualize, secure, explore, transmit, and transform this information in ways never before thought possible. Solving problems through computation means teamwork, collaboration, and gaining the interdisciplinary skills that modern careers demand. Our goal with the Computer Science curriculum at UCSB is to impart to students the knowledge and experience required for them to participate in this exciting and high-impact discipline.

Mission Statement

The Computer Science Department seeks to prepare undergraduate and graduate students for productive careers in industry, academia, and government, by providing an outstanding environment for teaching and research in the core and emerging areas of the discipline. The department places high priority on establishing and maintaining innovative research programs that enhance educational opportunity.

The Department of Computer Science offers programs leading to the degree of Bachelor of Science in computer science, and the M.S. and Ph.D. in computer science. The B.S. degree program in computer science is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org.

One of the most important aspects of the Computer Science program at UCSB is the wealth of “hands-on” opportunities for students. UCSB has excellent computer facilities. Campus Instructional Computing makes accounts available to all students. Computer Science majors and premajors use the workstations in the Computer Science Instructional Lab and Engineering Computing Infrastructure computing facilities. Students doing special projects can gain remote access to machines at the NSF Supercomputing Centers.

Additional computing facilities are available for graduate students in the Graduate Student Laboratory. Students working with faculty have access to further specialized research facilities within the Department of Computer Science.

The undergraduate major in computer science has a dual purpose: to prepare students for advanced studies and research and to provide training for a variety of careers in business, industry, and government.

Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. A faculty advisor is also available to each undergraduate class for further academic program planning.

Program Goals for Undergraduate Programs
The goal of the computer science undergraduate program is to prepare future generations of computer professionals for long-term careers in research, technical development, and applications. Graduates of the B.S. program who wish to seek immediate employment are prepared for a wide range of computer science positions in industry and government. Outstanding graduates interested in highly technical careers, research, and/or academia, might consider furthering their education in graduate school.

The primary computer science departmental emphasis is on problem solving using computer program design, analysis and implementation, with both a theoretical foundation and a practical component.

Program Outcomes for Undergraduate Programs
The program enables students to achieve, by the time of graduation:

1. An ability to apply knowledge of computing and mathematics appropriate to computer science.
2. An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution.
3. An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
4. An ability to function effectively on teams to accomplish a common goal.
5. An understanding of professional, ethical, and social responsibilities.
6. An ability to communicate effectively.
7. An ability to analyze the impact of computing on individuals, organizations, and society, including ethical, legal, security, and global policy issues.
8. Recognition of the need for and an ability to engage in continuing professional development.
9. An ability to use current techniques, skills, and tools necessary for computing practice.
10. An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the trade-offs involved in design choices.
11. An ability to apply design and development principles in the construction of software systems of varying complexity.

Admission to the Major
Students interested in computer science who apply to UCSB should declare the computer science major when they apply. Computer science majors have priority when registering for all Computer Science Courses. UCSB students can petition for a change-of-major into the Department of Computer Science once the minimum requirements are completed. Students applying for major status in the BS program who have completed more than 105 units will not be considered for a change of major.

Students may petition for a change-of-major once these requirements are met:

1. A cumulative grade point average of at least 3.0
2. Satisfactory completion of Computer Science 16 and 24 with a cumulative GPA of 3.2 or higher; First takes only
3. Satisfactory completion of Math 3A, 3B, 4A, 4B and Computer Science 40 with a cumulative GPA of 3.0 or higher; First takes only

Students admitted to the computer science major are responsible for satisfying major requirements in effect when they declare their major. Upper and lower division courses required for the major that are offered by the Department of Computer Science or any other department must be taken for letter grades.

The selection process is highly competitive and these milestones are minimum requirements for consideration, achieving them does not guarantee admission to the Computer Science major. Any petitions denied will be automatically considered a second time in the next quarter. Petitions denied a second time will not be reconsidered.

More information can be found at http://cs.ucsb.edu/undergraduate/admissions/.

Undergraduate Program

Bachelor of Science—Computer Science
A minimum of 184 units is required for graduation. A complete list of requirements for the major can be found on page 50. Schedules should be planned to meet both General Education and major requirements.

Students with no previous programming background should take CMPSC 8 before taking CMPSC 16. CMPSC 8 is not included in the list of preparation for the major courses but may be counted as a free elective.

Bachelor of Science—Computer Engineering
This major is offered jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering. For information about this major, see page 25.

Computer Science Courses

LOWER DIVISION

4. Computer Science Boot Camp
 (4) KOC
 NOT open to CMPSC or CMPEN Majors
 An introduction to computational thinking, computing, data management, and problem solving using computers, for non-majors. Topics include coding basics, representing code and data using a computer, and applications of computing that are important to society.

8. Introduction to Computer Science
 (4) CONRAD, FRANKLIN
 Not open for credit to students who have completed Computer Science 16 or Engineering 3.

16. Problem Solving with Computers I
 (4) CONRAD, KRINTZ
 Prerequisite: Math 3A with a grade of C or better (may be taken concurrently), Computer Science 8 or Engineering 3 with a grade of C or better, another university-level intro to programming course, or significant prior programming experience.

18. Problem Solving with Computers II
 (4) COSTANZO
 Prerequisite: Computer Science 16 with a grade of C or better, and Math 3B (may be taken concurrently).

32. Object Oriented Design and Implementation
 (4) HOLLERER
 Prerequisite: Computer Science 24 with a grade of C or better.

40. Foundations of Computer Science
 (5) VAN DAM, SU
 Prerequisites: Computer Science 16 with a grade of C or better, and Mathematics 4A with a grade of C or better.
 Introduction to the theoretical underpinnings of computer science. Topics include propositional predicate logic, set theory, functions and relations, counting, mathematical induction and recursion (generating functions).

48. Computer Science Project
 (4) CAPPELLO
 Prerequisite: Computer Science 32 with a grade of C or better.
 Team-based project development. Topics include software engineering and professional development.
May be repeated. Students are limited to 5 units per
summer term only. Students must complete Computer Science 20
advantage of computer programming using a high-level, virtual-machine-based language. Topics
include generic programming, exception handling, programming language implementation; automatic
memory management, and application development, management, and maintenance tools; event
driving, concurrency and threading, and advanced
library use.

64. Computer Organization and Logic Design
(4) ZHENG, FRANKLIN
Prerequisites: Computer Science 16 with a grade of C or better; and Mathematics 3C or 4A with a grade of C or better.
Not open for credit to students who have completed ECE 155B or Computer Science 30.
Course counts as a legal repeat of CMPS 30.
Assembly language programming and advanced computer organization and logic design topics including
gates, combinational circuits, flip-flops, and the design and analysis of sequential circuits.

95AA-ZZ. Undergraduate Seminar in Computer Science
(1-4) STAFF
Prerequisites: Open to pre-computer science and pre-computer engineering majors only; consent of instructor.
Seminars on introductory topics in computer science. These seminars provide an overview of the
history, technology, applications, and impact in various areas of computer science, including: A.
Foundations, B. Software Systems, C. Programming languages and software engineering, D. Information
management, E. Architecture, F. Networking, G. Security, H. Scientific computing, I. Intelligent and
Interactive systems, J. History, N. General.

99. Independent Studies in Computer Science
(1-4) STAFF
Must have a minimum 3.0 grade point average.
May be repeated. Students are limited to 5 units per quarter and 30 units total in all 99/198/199 courses combined.
Independent study in computer science for advanced students.

UPPER DIVISION
111. Introduction to Computational Science
(4) PETZOLD
Prerequisites: Mathematics 5A or 4B with a grade of C or better; Mathematics 5B or 6A with a grade of C or better; Computer Science 24 with a grade of C or better.
Not open for credit to students who have completed Computer Science 110A.
Introduction to computational science, emphasizing basic numerical algorithms and the
informed use of mathematical software. Matrix
computation, systems of linear and nonlinear equations, interpolation and zero finding, differential
equations, numerical integration. Students learn and use the Matlab language.

130A. Data Structures and Algorithms I
(4) GONZALEZ
Prerequisites: Computer Science 40 with a grade of C or better; Computer Science 32 with a grade of C or better; PSTAT 120A or ECE 139; open to computer science, computer engineering, and electrical engineering majors only.
The study of data structures and their applications. Correctness proofs and techniques for the design
of correct programs. Internal and external searching. Hashing and height balanced trees. Analysis of
sorting algorithms. Memory management. Graph
traversal techniques and their applications.

130B. Data Structures and Algorithms II
(4) GONZALEZ, SURI
Prerequisite: Computer Science 130A.
Design and analysis of computer algorithms. Correctness proofs and solution of recurrence
relations. Design techniques; divide and conquer, greedy strategies, dynamic programming, branch
and bound, backtracking, and local search. Applications of techniques to problems from several
disciplines. NP - completeness.

138. Automata and Formal Languages
(4) EGECELLIO
Prerequisite: Computer Science 40 with a grade of C or better; open to computer science and computer engineering majors only.
Formal languages: finite automata and regular expressions; properties of regular languages;
pushdown automata and context-free grammars; properties of context-free languages; introduction to
computability and unsolvability. Introduction to Turing machines and computational complexity.

140. Parallel Scientific Computing
(4) GILBERT
Prerequisites: Mathematics 4B or 5A with a grade of C or better; Mathematics 6A or 5B with a grade of C or better; Computer Science 130A.
Not open for credit to students who have completed Computer Science 110B.
Computer organization and architecture, computer algorithms and programming; parallel and
algorithm design for numerical computation. Topics include parallel architecture and clusters, parallel programming using message-passing libraries and threads, program parallelization methodology, parallel performance evaluation and optimization, parallel numerical algorithms and applications with different performance trade-offs.

153A. Hardware/Software Interface
(4) KRITZ, BIERW
Prerequisite: Upper-division standing in computer science, computer engineering, or electrical engineering.
Same course as ECE 153A.
Issues in interfacing computing systems and software to practical I/O interfaces. Rapid response,
real-time events and management of tasks, threads, and scheduling required for efficient design of
embedded software and systems is discussed. Techniques for highly constrained systems.

154. Computer Architecture
(4) STAFF
Prerequisite: Computer Science 32 with a grade of C or better; Computer Science 48 with a grade of C or better, and Computer Science 64 with a grade of C or better.
Not open for credit to students who have received credit for ECE 154, ECE 154A, or ECE 154B.
Introduction to the architecture of computer systems. Topics include: central processing units,
memory systems, channels and controllers, peripheral devices, interrupt systems, software versus hardware trade-offs.

160. Translation of Programming Languages
(4) SHERWOOD
Prerequisite: Computer Science 64 or Electrical Engineering 154 or Electrical Engineering 154A; Computer Science 130A; and Computer Science 13B; open to computer science and computer engineering majors only.
Study of the structure of compilers. Topics include: lexical analysis; syntax analysis including LL and LR parsers; type checking; run-time environments; intermediate code generation; and compiler-construction tools.

162. Programming Languages
(4) HARDEKOPF, KRINTZ
Prerequisite: Computer Science 130A and Computer Science 138; open to computer science and computer engineering majors only.
Concepts of programming languages: scopes, parameter passing, storage management, control flow, exception handling, encapsulation and modularization mechanism; reusability through generivity and inheritance; type systems; programming paradigms (impersive, object-oriented, functional, procedural); Emerging programming languages and their development environments.

165A. Artificial Intelligence
(4) TURK
Prerequisite: Computer Science 130A.
Introduction to the field of artificial intelligence, which seeks to understand and build intelligent
computational systems. Topics include intelligent agents, problem solving and search, knowledge representation and reasoning, uncertainty, probabilistic reasoning, and applications of AI.

165B. Machine Learning
(4) SUNGI
Prerequisite: Computer Science 130A.
Covers the most important techniques of machine learning (ML) and includes discussions of: well-
posed learning problems; artificial neural networks; concept learning and general to specific ordering;
decision tree learning; genetic algorithms; Bayesian learning; analytical learning; and others.

170. Operating Systems
(4) KRUEGEL, ZHAO
Prerequisite: Computer Science 130A and, Computer Science 154 or ECE 154 (may be taken concurrently); open to computer science, computer engineering or electrical engineering majors only.
Basic concepts of operating systems. The notion of a process; interprocess communication and
synchronization; input-output, file systems, memory management.

171. Distributed Systems
(4) EL ABBADI
Prerequisite: Computer Science 130A.
Not open for credit to students who have completed ECE 151.
Distributed systems architecture, distributed programming, network of computers, message
passing, remote procedure calls, group communication, naming and membership problems, asynchrony, logical time, consistency, fault-
tolerance, and recovery.

174A. Fundamentals of Database Systems
(4) SU
Prerequisite: Computer Science 130A.
Recommended Preparation: Students are strongly encouraged to complete Computer Science 56 prior to enrolling in Computer Science 174A.
Database systems: relational data model, relational calculus, SQL, QBE, query processing, integrity constraints (key constraints, referential integrity), database design, ER and object-oriented data model, functional dependencies, lossless join and dependency preserving decompositions, Boyce-Codd and Third Normal Forms.

176A. Introduction to Computer Communication Networks
(4) ALMOROTH, BELDING
Prerequisite: CMPS 32 with a grade of C or better; PSTAT 120A or ECE 139; open to computer science, electrical engineering, and computer engineering majors only.
Not open for credit to students who have completed Computer Science 176 or ECE 155 or ECE 155A.
Recommended preparation: PSTAT 120B. Basic concepts in networking, the OSI model, error detection codes, flow control, routing, medium access control, and high-speed networks.

176B. Network Computing
(4) ZHAO, VIGNA
Prerequisite: Computer Science 176A.
Not open for credit to students who have completed ECE 158 or 191A.
Focus on networking and web technologies used in the Internet. The class covers socket programming and web-based techniques that are used to build distributed applications.
176C. Advanced Topics in Internet Computing
(4) BIELOING, ZHENG
Prerequisite: Computer Science 176B.
General overview of wireless and mobile networking, multimedia, security multicast, quality of service, IPv6, and web caching. During the second half of the course, one or more of the above topics are studied in greater detail.

177. Computer Security
(4) KEMMERER
Prerequisite: Computer Science 170 (may be taken concurrently).
Introduction to the basics of computer security and privacy. Analysis of technical difficulties of producing secure computer information systems that provide guaranteed controlled sharing. Examination and critique of current systems, methods, certification.

178. Introduction to Cryptography
(4) EGEEOGLU
Prerequisites: Computer Science 24 and Computer Science 40 with a grade of C or better; and PSTAT 120A or 121A or ECE 139 or permission of instructor.
An introduction to the basic concepts and techniques of cryptography and cryptanalysis. Topics include: The Shannon Theory, classical systems, the Enigma machine, the data encryption standard, public key systems, digital signatures, file security.

180. Computer Graphics
(4) WANG
Prerequisite: Computer Science 130A or consent of instructor.
Overview of OpenGL graphics standard, OpenGL state machine, other 3D graphics libraries, 3D graphics pipeline, 3D transformations and clipping, color model, shading model, shadow algorithms, texturing, curves and curved surfaces, graphics hardware, interaction devices and techniques.

181. Introduction to Computer Vision
(4) WANG, TURK
Prerequisite: Upper-division standing.
Same course as ECE 181B.
Overview of computer vision problems and techniques for analyzing the content images and video. Topics include image formation, edge detection, image segmentation, pattern recognition, texture analysis, optical flow, stereo vision, shape representation and recovery techniques, issues in object recognition, and case studies of practical vision systems.

184. Mobile Application Development
(4) HOLLERER
Prerequisite: Computer Science 56 and Computer Science 130A.
An introduction to programming mobile computing devices. Students will learn about and study the shift in software development from desktop to mobile device applications. Topics will include software engineering and design practices, advances in programming practice, and support tools for mobile application development and testing. Students will develop and deploy mobile applications as part of their course work.

185. Human-Computer Interaction
(4) HOLLERER
Prerequisite: Upper-division standing in computer science, computer engineering, or electrical engineering majors.
Recommended preparation: Students are strongly encouraged to complete Computer Science 56 prior to enrolling in Computer Science 185. Proficiency in the Java/C++ programming language, some experience with user interface programming. The study of human-computer interaction enables system architects to design useful, efficient, and enjoyable computer interfaces. This course teaches the theory, design guidelines, programming practices, and resolution procedures behind effective human interaction with computers.

189A. Senior Computer Systems Project
(4) BULTAN
Prerequisite: Computer Science 56; Senior standing in computer engineering, computer science, or electrical engineering; consent of instructor.
Not open for credit to students who have completed Computer Science 172 or ECE 189A.
Student groups design a significant computer-based project. Multiple groups may cooperate toward one large project. Each group works independently; interaction among groups is via interface specifications and informal meetings. Project for follow-up course may be different.

189B. Senior Computer Systems Project
(4) BULTAN
Prerequisite: CMPSC 189A; Senior standing in computer engineering, computer science, or electrical engineering; consent of instructor.
Not open for credit to students who have completed ECE 189A or ECE 189B.
Student groups design a significant computer-based project. Multiple groups may cooperate toward one large project. Each group works independently; interaction among groups is via interface specifications and informal meetings. Project for course may be different from that in first course.

190AA-2Z. Special Topics in Computer Science
(4) STAFF
Prerequisite: consent of instructor.
May be repeated with consent of the department chair.
Courses provide for the study of topics of current interest in computer science: A. Foundations; B. Software Systems; C. Programming languages and software engineering; D. Information management; E. Architecture; F. Networking; G. Security; H. Scientific computing; I. Intelligent and interactive systems; N. General

192. Projects in Computer Science
(1-4) STAFF
Prerequisite: consent of instructor.
Students must have a minimum 3.0 GPA.
May be repeated to a maximum of 8 units with consent of the department chair but only 4 units may be applied to the major.
Projects in computer science for advanced undergraduate students.

193. Internship in Industry
(1-4) STAFF
Prerequisites: consent of instructor and department chair.
Not more than 4 units per quarter; may not be used as a field elective and may not be applied to science electives. May be repeated with faculty/chair approval to a maximum of 4 units.
Special projects for selected students. Offered in conjunction with selected industrial and research firms under direct faculty supervision. Prior departmental approval required. Written proposal and final report required.

196. Undergraduate Research
(2-4) STAFF
Prerequisite: Students must: (1) have attained upper-division standing; (2) have a minimum 3.0 grade-point average for preceding three quarters; (3) have consent of instructor.
May be repeated for up to 12 units. No more than 4 units may be applied to departmental electives.
Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research.

199. Independent Studies in Computer Science
(1-4) STAFF
Prerequisites: upper-division standing; must have completed at least two upper-division courses in computer science.
Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated with consent of chair. Students are limited to 5 units per quarter and 30 units total in all 198/199 courses combined. May not be used for credit towards the major.
Independent study in computer science for advanced students.

GRADUATE COURSES
Graduate courses for this major can be found in the UCSB General Catalog.

Electrical & Computer Engineering
Department of Electrical and Computer Engineering, Building 380, Room 101;
Telephone (805) 893-2269 or (805) 893-8321
Web site: www.ece.ucsb.edu

Chair: Joao Hespanha
Vice Chair: B.S. Manjunath

Faculty
Rod C. Alferness, Ph.D., University of Michigan, Distinguished Professor and Dean (integrated optoelectronics, optical switching technology and switched optical networks)
Kaustaw Banerjee, Ph.D., UC Berkeley, Professor (high performance VLSI and mixed signal system-on-chip designs and their design automation methods; single electron transistors; 3D and optoelectronic integration)
Daniel J. Blumenthal, Ph.D., University of Colorado at Boulder, Professor (fiber-optic networks, wavelength and subcarrier division multiplexing, photonic packet switching, signal processing in semiconductor optical devices, wavelength conversion, microwave photonics)
John E. Bowers, Ph.D., Stanford University, Distinguished Professor (high-speed photonic and electronic devices and integrated circuits, fiber optic communication, semiconductors, laser physics and mode-locking phenomena, compound semiconductor materials and processing)

A study group in the library gets a Starbucks delivery by Associate Dean Glena Belfz for CoffeeMeCOE - a social media campaign to give our engineering students a study boost!
Forrest D. Brewer, Ph.D., University of Illinois at Urbana-Champaign, Professor (VLSI and computer system design automation, theory of design and design representations, symbolic techniques in high level synthesis)

James Buckwalter, Ph.D., California Institute of Technology, Professor (RF and mixed-signal CMOS integrated circuits, high-speed communications systems)

Katie A. Byl, Ph.D., Massachusetts Institute of Technology, Associate Professor (robotics, autonomous systems, dynamics, control, manipulation, locomotion, machine learning)

Shivkumar Chandrasekaran, Ph.D., Yale University, Professor (numerical analysis, numerical linear algebra, scientific computation)

Nadir Dagli, Ph.D., Massachusetts Institute of Technology, Professor (design, fabrication, and modeling of photonic integrated circuits, ultrafast electrooptic modulators, solid state microwave and millimeter wave devices; experimental study of ballistic transport in quantum confined structures)

Steven P. DenBaars, Ph.D., University of Southern California, Professor (metallorganic vapor phase epitaxy, optoelectronic materials, compound semiconductors, indium phosphide and gallium nitride, photonic devices) *1

Jerry Gibson, Ph.D., Southern Methodist University, Professor (digital signal processing, data, speech, image and video compression, and communications via multi-use networks, data embedding, adaptive filtering)

Joao Hespanha, Ph.D., Yale University, Professor (hybrid and switched systems, supervisory control, control of computer networks, probabilistic games, the use of vision in feedback control)

Yogananda Isukapalli, Ph.D., UC San Diego (Low power hardware design, Multi-antenna wireless communications, Transmit beam forming, Vector quantization, Performance analysis of communication systems)

Jonathan Klamkin, Ph.D., UC Santa Barbara, Associate Professor

Hua Lee, Ph.D., UC Santa Barbara, Distinguished Professor (image system optimization, high-performance image formation algorithms, synthetic-aperture radar and sonar systems, acoustic microscopy, microwave nondestructive evaluation, dynamic vision systems)

Upamanyu Madhow, Ph.D., University of Illinois, Distinguished Professor (spread-spectrum and multiple-access communications, space-time coding, and internet protocols)

B.S. Manjunath, Ph.D., University of Southern California, Distinguished Professor (image processing, computer vision, pattern recognition, neural networks, learning algorithms, content based search in multimedia databases)

Jason R. Marden, Ph.D., UC Los Angeles Assistant Professor

Umesh Mishra, Ph.D., Cornell University, Distinguished Professor (high-speed transistors, semiconductor device physics, quantum electronics, wide band gap materials and devices, design and fabrication of millimeter-wave devices, in situ processing and integration techniques)

Yasamin Mostofi, Ph.D., Stanford University, Associate Professor (mobile sensor networks, wireless systems, networked control systems)

Behrooz Parhami, Ph.D., UC Los Angeles, Professor (parallel architectures and algorithms, computer arithmetic, computer design, dependable and fault-tolerant computing)

Mark J.W. Rodwell, Ph.D., Stanford University, Distinguished Professor of Control of Compound Semiconductor Research Laboratories, Director of National Nanofabrication Users Network (heterojunction bipolar transistors, high frequency integrated circuit design, electronics beyond 100 GHz)

Kenneth Rose, Ph.D., California Institute of Technology, Professor, Co-Director of Center for Information Processing Research (information theory, source and channel coding, image coding, communications, pattern recognition)

Clint Schow, PhD, University of Texas, Austin, Professor (optoelectronic/electronic co-design and integration, equalization techniques for high-speed optical links, photonic switching, optoelectronic devices, integrated transceiver packaging)

Jon A. Schuller, Ph.D., Stanford University, Assistant Professor (nanophotonics, organic optoelectronics, plasmonics, metamaterials)

Pradeep Sen, Ph.D., Stanford University, Associate Professor (computer graphics and imaging)

Dmitri B. Strukov, Ph.D., Stony Brook University, Associate Professor (hybrid circuits, nanoelectronics, resistance switching devices, memristors, digital memories, programmable circuits, bio-inspired computing)

Andrew Teel, Ph.D., UC Berkeley, Distinguished Professor (control design and analysis for nonlinear dynamical systems, input-output methods, actuator nonlinearities, applications to aerospace problems)

Luke Theogarajan, Ph.D., Massachusetts Institute of Technology, Associate Professor (low-power analog VLSI, biomimetic nanosystems, neural prostheses, biosensors, block co-polymer synthesis, self-assembly, and microfabrication)

Li C. Wang, Ph.D., University of Texas, Austin, Professor (design verification, testing, computer-aided design of microprocessors)

Yuan Xie, Ph.D., Princeton University, Professor (EDA, VLSI design, computer architecture, embedded systems, high-performance computing)

Robert York, Ph.D., Cornell University, Professor (high-power/high-frequency devices and circuits, quasi-optics, antennas, electromagnetic theory, nonlinear circuits and dynamics, microwave photonics)

Emeriti Faculty

Steven E. Butner, Ph.D., Stanford University, Assistant Professor (computer architecture, VLSI design of CMOS and gallium-arsenide ICs with emphasis on distributed organizations and fault-tolerant structures)

Kwang-Ting (Tim) Cheng, Ph.D., UC Berkeley, Distinguished Professor (design automation, VLSI testing, design synthesis, design verification, algorithms)

Larry A. Coldren, Ph.D., Stanford University, Distinguished Professor (Optoelectronics and Sensors, Director of Optoelectronics Technology Center (semiconductor integrated optoelectronics, vertical-cavity lasers, widely-tunable lasers, optical fiber communication, growth and planar processing techniques) *1

Jorge R. Fontana, Ph.D., Stanford University, Professor Emeritus (quantum electronics, particularly lasers, interaction with charged particles)

Allen Gersho, Ph.D., Cornell University, Professor Emeritus, Director of Center for Information Processing Research (speech, audio, image, and video compression, quantization and signal compression techniques, and speech processing)

Arthur C. Gossard, Ph.D., UC Berkeley, Professor Emeritus, (epitaxial crystal growth, artificially structured materials, semiconductor structures for optical and electronic devices, quantum confinement structures) *1

Glenn R. Heidbreder, D. Eng., Yale University, Professor Emeritus (communication theory, signal processing in radar and digital communication systems; digital image processing)

Evelyn Hu, Ph.D., Columbia University, Professor Emeritus, (high-resolution fabrication techniques for semiconductor device structures, process-related materials damage, contact/interface studies, superconductivity) *1

Ronald Itlis, Ph.D., UC San Diego, Professor (digital spread spectrum communications, spectral estimation and adaptive filtering)

Petar V. Kokotovic, Ph.D., USSR Academy of Sciences, Professor Emeritus, Director of Center for Control Engineering and Computation, Director of Center for Robust Nonlinear Control of Aerodynamics (sensitivity analysis, singular perturbations, large-scale systems, non-linear systems, adaptive control, automotive and jet engine control)

Herbert Kroemer, Dr. rer. nat., University of Göttingen, Donald W. Whittier Professor in Electrical Engineering, 2000 Physics Nobel Laureate (general solid-state and device physics, heterostructures, molecular beam epitaxy, compound semiconductor materials and devices, superconductivity) *1

Stephen I. Long, Ph.D., Cornell University, Professor Emeritus, (semiconductor devices and integrated circuits for high speed digital and RF analog applications)

Malgorzata Marek-Sadowska, Ph.D., Technical University of Warsaw, Poland, Distinguished Professor (design automation, computer-aided design, integrated circuit layout, logic synthesis)

George L. Matthaei, Ph.D., Stanford University, Professor Emeritus (circuit design techniques for passive and active microwave, millimeter-wave and optical integrated circuits, circuit problems of high-speed digital integrated circuits)

P. Michael Melliar-Smith, Ph.D., University of Cambridge, Professor (fault tolerance, formal
specification and verification, distributed systems, communication networks and protocols, asynchronous systems)

James L. Merz, Ph.D., Harvard University, Professor Emeritus (optical properties of semiconductors, including guided-wave and integrated optical devices, semiconductor lasers, optoelectronic devices, native defects in semiconductors, low-dimensional quantum structures) *1

Sanjit K. Mitra, Ph.D., UC Berkeley, Professor Emeritus, (digital signal and image processing, computer-aided design and optimization)

Louise E. Moser, Ph.D., University of Wisconsin, Professor (distributed systems, computer networks, software engineering, fault-tolerance, formal specification and verification, performance evaluation)

Venkatesh Narayanamurti, Ph.D., Cornell University, Professor Emeritus (transport, semiconductor heterostructures, nanostructures, scanning tunneling microscopy and ballistic electron emission microscopy, phononics)

Pierre M. Petroff, Ph.D., UC Berkeley, Professor (self-assembling nanostructures in semiconductors and ferromagnetic materials, spectroscopy of nanostructures, nanostructure devices, semiconductor device reliability) *1

Lawrence Rabiner, Ph.D., Massachusetts Institute of Technology, Distinguished Professor (digital signal processing, intelligent human-machine interaction, digital signal processing, speech processing and recognition; telecommunications)

Ian B. Rhodes, Ph.D., Stanford University, Professor Emeritus (mathematical system theory and its applications with emphasis on stochastic control, communication, and optimization problems, especially those involving decentralized information structures or parallel computational structures)

John J. Shynk, Ph.D., Stanford University, Professor (adaptive filtering, array processing, wireless communications, blind equalization, neural networks)

John G. Skalnik, D. Eng., Yale University, Professor Emeritus (solar cells, general device technology, effects of non-ideal structures)

Pochi Yeh, Ph.D., California Institute of Technology, Professor (phase conjugation, nonlinear optics, dynamic holography, optical computing, optical interconnection, neural networks, and image processing)

*1 Joint appointment with Materials
*2 Joint appointment with Computer Science

Affiliated Faculty

David Awschalom, Ph.D. (Physics)

Bassam Bamieh, Ph.D. (Mechanical Engineering)

Elizabeth Belding, Ph.D. (Computer Science)

Francesco Bullo, Ph.D. (Mechanical Engineering)

Frederick Chong, Ph.D. (Computer Science)

Chandra Krintz, Ph.D. (Computer Science)

Eric McFarland, Ph.D. (Chemical Engineering)

Shuji Nakamura, Ph.D. (Materials)

Bradley E. Paden, Ph.D. (Mechanical Engineering)

Tim Sherwood, Ph.D. (Computer Science)

Matthew Turk, Ph.D. (Computer Science)

William Wang, Ph.D. (Computer Science)

Haitao (Heather) Zheng, Ph.D. (Computer Science)

Electrical and Computer Engineering is a broad field encompassing many diverse areas such as computers and digital systems, control, communications, computer engineering, electronics, signal processing, electromagnetics, electro-optics, physics and fabrication of electronic and photonic devices. As in most areas of engineering, knowledge of mathematics and the natural sciences is combined with engineering fundamentals and applied to the theory, design, analysis, and implementation of devices and systems for the benefit of society.

The Department of Electrical and Computer Engineering offers programs leading to the degrees of bachelor of science in electrical engineering or bachelor of science in computer engineering. (Please see the “Computer Engineering” section for further information.) The undergraduate curriculum in electrical engineering is designed to provide students with a solid background in mathematics, physical sciences, and traditional electrical engineering topics as presented above. A wide range of program options, including computer engineering; microwaves; communications, control, and signal processing; and semiconductor devices and applications, is offered. The department's Electrical Engineering undergraduate program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. It is one of the degrees recognized in all fifty states as leading to eligibility for registration as a professional engineer.

The undergraduate major in Electrical Engineering prepares students for a wide range of positions in business, government, and private industrial research, development, and manufacturing organizations.

Students who complete a major in electrical engineering may be eligible to pursue a California teaching credential. Interested students should consult the credential advisor in the Graduate School of Education.

Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. Students who plan to change to a major in the department should consult the ECE student office. Departmental faculty advisors are assigned to students to assist them in choosing senior elective courses.

Counseling is provided to graduate students through the ECE graduate advisor. Individual faculty members are also available for help in academic planning.

Mission Statement

The Department of Electrical and Computer Engineering seeks to provide a comprehensive, rigorous and accredited educational program for the graduates of California’s high schools and for postgraduate students, both domestic and international. The department has a dual mission:

• Education: We will develop and produce excellent electrical and computer engineers who will support the high-tech economy of California and the nation. This mission requires that we offer a balanced and timely education that includes not only strength in the fundamental principles but also experience with the practical skills that are needed to contribute to the complex technological infrastructure of our society. This approach will enable each of our graduates to continue learning throughout an extended career.

• Research: We will develop relevant and innovative science and technology through our research that addresses the needs of industry, government and the scientific community. This technology can be transferred through our graduates, through industrial affiliations, and through publications and presentations.

We provide a faculty that is committed to education and research, is accessible to students, and is highly qualified in their areas of expertise.

Educational Objectives

The educational objectives of the Electrical Engineering Program identify what we hope that our graduates will accomplish within a few years after graduation.

1. We expect our graduates to make positive contributions to society in fields including, but not limited to, engineering.

2. We expect our graduates to have acquired the ability to be flexible and adaptable, showing that their educational background has given them the foundation needed to remain effective, take on new responsibilities and assume leadership roles.

3. We expect some of our graduates to pursue their formal education further, including graduate study for master’s and doctoral degrees.

Program Outcomes

The EE program expects our students upon graduation to have:

1. Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and electrical engineering that are required to support specialized professional training at the advanced level and to provide necessary breadth to the student's overall program of studies. This
provides the basis for lifelong learning.
2. Experienced in-depth training in state-of-the-art specialty areas in electrical engineering. This is implemented through our senior electives. Students are required to take two sequences of at least two courses each at the senior level.
3. Benefited from imaginative and highly supportive laboratory experiences where appropriate throughout the program. The laboratory experience will be closely integrated with coursework and will make use of up-to-date instrumentation and computing facilities. Students should experience both hardware-oriented and simulation-oriented exercises.
4. Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired in several courses. These may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and conduct experiments as well as analyze the results.
5. Learned to function well in teams. Also, students must develop communication skills, written and oral, both through team and classroom experiences. Skills including written reports, webpage preparation, and public presentations are required.
6. Completed a well-rounded and balanced education through required studies in selected areas of fine arts, humanities, and social sciences. This provides for the ability to understand the impact of engineering solutions in a global and societal context. A course in engineering ethics is also required of all undergraduates.

Undergraduate Program

Bachelor of Science—Electrical Engineering

A minimum of 189 units is required for graduation. A complete list of requirements for the major can be found on page 52. Schedules should be planned to meet both General Education and major requirements.

The department academic advisor can suggest a recommended study plan for electrical engineering freshmen and sophomores. Each student is assigned a departmental faculty advisor who must be consulted in planning the junior and senior year programs.

The required 32 units (8 courses) of departmental electives are taken primarily in the senior year, and they permit students to develop depth in specialty areas of their choice. The 32 units of departmental electives must include at least 2 sequences, one of which must be an approved EE Senior Capstone Design/Project course sequence. A student’s elective course program must be approved by a departmental faculty advisor. The advisor will check the program to ensure satisfaction of the departmental requirements. A wide variety of elective programs will be considered acceptable.

Three matters should be noted: (1) students who fail to attain a grade-point average of at least 2.0 in the major may be denied the privilege of continuing in the major, (2) a large majority of electrical and computer engineering courses have prerequisites which must be completed successfully. Successful completion of prerequisite courses means receiving a grade of C- or better in prerequisite courses except for Mathematics 3A-B, Mathematics 4A-B and Mathematics 6A and 6B which require a grade of C or better to apply these courses as prerequisites, (3) courses required for the pre-major or major, inside or outside of the Department of Electrical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

Bachelor of Science—Computer Engineering

This major is offered jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering. For information about this major, see page 25.

Electrical & Computer Engineering Courses

Many of the ECE courses are restricted to ECE majors only. Instructor and quarter offered are subject to change.

LOWER DIVISION

1A. Computer Engineering Seminar

(1) STAFF

Prerequisite: Open to computer engineering majors only. Seminar: 1 hour

Introductory seminar to expose students to a broad range of topics in Computer Engineering.

1B. Ten Puzzling Problems in Computer Engineering

(1) PARMARI

Prerequisite: Open to pre-computer engineering and computer engineering majors only.

Not open for credit for those who have taken ECE 1

Gaining familiarity with, and motivation to study, the field of computer engineering, through puzzle-like problems that represent a range of challenges facing computer engineers in their daily problem-solving efforts and at the frontiers of research.

2A. Circuits, Devices, and Systems

(5) YORK

Prerequisites: Mathematics 3A-B, and Mathematics 3C or 4A with a minimum grade of C; and, Mathematics 6A and 6B with a minimum grade of C (may be taken concurrently); Physics 3 or 23 (may be taken concurrently); open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture, 3 hours; laboratory, 2 hours

Introduction to basic circuit analysis. KCL, KVL, op-amps; modulation, bandwidth, signals; Fourier analysis.

2B. Circuits, Devices, and Systems

(6) YORK

Prerequisites: ECE 2A with a grade of C- or better; open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture, 3 hours; laboratory, 4 hours

Second order circuits. Laplace transform and solution of steady state and transient circuit problems in the s-domain; Bode plots; Fourier series and transforms; filters. Transistor as a switch; load lines; simple logic gates; latches and flip-flops.

2C. Circuits, Devices, and Systems

(5) YORK

Prerequisites: ECE 2B with a grade of C- or better (may be taken concurrently); open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture, 3 hours; laboratory, 4 hours

Two-port network parameters; small-signal models of nonlinear devices; transistor amplifier circuits; frequency response of amplifiers; non-ideal op-amps; modulation, bandwidth, signals; Fourier analysis.

4. Design Project for Freshmen

(4) STAFF

Prerequisite: Open only to Electrical Engineering and Computer Engineering majors. Lecture: 2 hours; Laboratory: 3 hours

Aims at exposing freshmen students to the different sub-fields within Electric and Computer Engineering. Composed of lectures by different faculty members and a weekly laboratory based on projects that are executed using the Arduino environment.

10A. Foundations of Analog and Digital Circuits & Systems

(3) STAFF

Prerequisite: Mathematics 3A-B or Mathematics 3AH-3BH, and Mathematics 3C or 4A or 4AI with a minimum grade of C; and, Math 4B or 4B1 or 5A with a minimum grade of C (may be taken concurrently); Physics 3 or 23 (may be taken concurrently); open only to electrical engineering and computer engineering majors. Lecture, 3 hours

Not open for credit for those who have received C- or higher in ECE 2A.

The objective of the course is to establish the foundations of analog and digital circuits. The course will introduce the student to the power of abstraction, resistive networks, network analysis, nonlinear analysis and the digital abstraction. (F)

10AL. Foundations of Analog and Digital Circuits and Systems Lab

(2) STAFF

Prerequisite: ECE 10A (may be taken concurrently) with a C- or better grade. Laboratory: 4 hours

Not open for credit for those who have received a C- or higher in ECE 2A.

The goal of 10AL is to provide the student with a hands-on application of the concepts discussed in ECE 10A. The lab will introduce the use of microcontrollers as a data acquisition system, network analysis, resistors, nonlinear analysis and digital abstraction.

10B. Foundations of Analog and Digital Circuits and Systems

(3) STAFF

Prerequisite: ECE 10A with a C- or better grade. Lecture: 3 hours

Not open for credit for those who have received a C- or higher in ECE 2B.

The objective of the course is to introduce the
MOSFET both as a simple digital switch and as controlled current source for analog design. The course will cover basic digital design, small-signal analysis, charge storage elements and operational amplifiers. (W)

10BL. Foundations of Analog and Digital Circuits and Systems Lab
(2) STAFF
Prerequisite: ECE 108 (may be taken concurrently) with a C- or better grade. Laboratory: 4 hours
Not open for credit for those who have received a C- or higher in ECE 2B.
The goal of 10BL is to provide the student with a hands-on application of the concepts discussed in ECE 10B. The lab will utilize the microcontroller to introduce students to the understanding of datasheets for both digital and analog circuits, single-stage amplifier design and basic instrumentation.

10C. Foundations of Analog and Digital Circuits and Systems
(3) STAFF
Prerequisite: ECE 10B with a C- or better grade. Lecture: 3 hours
Not open for credit for those who have received a C- or higher in ECE 2C.
The objective of the course is to introduce the student to the basics of transient analysis. The course will analyze energy and power dissipation in digital circuits, first-order and second-order linear time invariant circuits, sinusoidal steady state, impedance representation, feedback and resonance. (S)

10CL. Foundations of Analog and Digital Circuits and Systems Lab
(2) STAFF
Prerequisite: ECE 10C (may be taken concurrently) with a C- or grade better. Laboratory: 4 hours
Not open for credit for those who have received a C- or higher in ECE 2C.
The goal of 10CL is to provide the student with a hands-on application of the concepts discussed in ECE 10C. The lab will utilize the microcontroller to introduce students to the understanding of propagation delay in digital circuits and the resulting power dissipation, first order linear networks, second order linear networks, sinusoidal steady-state, impedance analysis and op-amp circuits.

15A. Fundamentals of Logic Design
(4) MAREK-SADOWSKA
Prerequisites: Open to electrical engineering, computer engineering, and pre-computer engineering majors only.
Not open for credit to students who have completed ECE 15. Lecture: 3 hours; discussion, 1 hour.
Boolean algebra, logic of propositions, minterm and maxterm expansions, Karnaugh maps, Quine-McCluskey methods, m- and n-level circuits, combinational circuit design and simulation, multiplexers, decoders, programmable logic devices.

92. Projects in Electrical and Computer Engineering
(4) STAFF
Prerequisite: Consent of instructor; for Electrical Engineering and Computer Engineering majors only.
Projects in electrical and computer engineering for advanced undergraduate students.

94AA-2Z. Group Studies in Electrical and Computer Engineering
(1-4) STAFF
Prerequisite: consent of instructor.
Group studies intended for small number of advanced students who share an interest in a topic not included in the regular departmental curriculum.

96. Undergraduate Research
(2-4) STAFF
Prerequisite: Consent of Instructor. Must have a 3.00 GPA. May be repeated for up to 12 units.
Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research.

UPPER DIVISION

120A. Integrated Circuit Design and Fabrication
(4) BOWERS
Prerequisite: ECE 132 with a minimum grade of C-.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit for those who have taken ECE 124B.
Theory, fabrication, and characterization of solid state devices including P-N junctions, capacitors, bipolar and MOS devices. Devices are fabricated using modern VLSI processing techniques including lithography, oxidation, diffusion, and evaporation. Physics and performance of processing steps are discussed and analyzed.

120B. Integrated Circuit Design and Fabrication
(4) BOWERS
Prerequisite: ECE 2ABC and either ECE 124B or ECE 120A with a minimum grade of C- or better in each of the courses.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit to those who have taken ECE 124B.
Design, simulation, fabrication, and characterization of NMOS integrated circuits. Circuit design and layout is performed using commercial layout software. Circuits are fabricated using modern VLSI processing techniques. Circuit and discrete device electrical performance are analyzed.

121A. The Practice of Science
(3) HU, AWSCHALOM
Prerequisite: Consent of instructor.
Same course as Physics 121A.
Provides experience in pursuing careers within science and engineering through discussions with researchers, lectures on ethics, funding, intellectual property, and commercial innovation. Students prepare a focused research proposal that is pursued in the second quarter of the course.

121B. The Practice of Science
(4) HU, AWSCHALOM
Prerequisite: ECE 121A or Physics 121A; consent of instructor.
Same course as Physics 121B. Provides experience in pursuing careers within science and engineering through discussions with researchers, lectures on ethics, funding, intellectual property, and commercial innovation. Students prepare a focused research proposal that is pursued in the second quarter of the course.

122A. VLSI Principles
(4) BANERJEE
Prerequisite: ECE 152A with a minimum grade of C-.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit for those who have taken ECE 124A or ECE 123.
Introduction to CMOS digital VLSI design: CMOS devices and manufacturing technology; transistor level design of static and dynamic logic gates and components and interconnections; circuit characterization; delay, noise margins, and power dissipation; combinational and sequential circuits; arithmetic operations and memories.

122B. VLSI Architecture and Design
(4) BREWER
Prerequisite: ECE 124A or ECE 123 or ECE 122A with a minimum grade of C-.
Lecture: 3 hours; Laboratory: 2 hours
Not open for credit for those who have taken ECE 124D.
Practical issues in VLSI circuit design, pad/pin limitations, clocking and interfacing standards, electrical packaging for high-speed and high-performance design. On-chip noise and crosstalk, clock and power distribution, architectural and circuit design constraints, interconnection limits and transmission line effects.

123. High-Performance Digital Circuit Design
(4) THEOGARAJAN
Prerequisite: ECE 10A-B-C and ECE 10AL-BL-CL or ECE 2A-B-C with a minimum grade of C- in each of those courses; open to both electrical engineering and computer engineering majors only.
Not open for credit for those who have taken ECE 124A or ECE 122A.
Introduction to high-performance digital circuit design techniques. Basics of device physics including deep submicron effects; device sizing and logical effort; Circuit design styles; clocking and timing issues; memory & datapath design; Low-power design; VLSI design flows and associated EDA tools.

125. High Speed Digital Integrated Circuit Design
(4) BANKUE
Prerequisite: ECE 124A or 137A with a minimum grade of C- in either; Lecture: 4 hours.
Advanced digital VLSI design: CMSOS scaling, nanoscale issues including variability, thermal management, interconnects, reliability; non-clocked, clocked and self-timed logic gates; clocked storage elements; high-speed components, PLLs and DLLs; clock and power distribution; memory systems; signaling and I/O design; low-power design.

130A. Signal Analysis and Processing
(4) STAFF
Prerequisite: Mathematics 4B or 5A with a minimum grade of C and ECE 2B or ECE 108B with a minimum grade of C- in each course; open to EE and computer engineering majors only.
Lecture: 3 hours; Discussion: 2 hours

130B. Signal Analysis and Processing
(4) CHANDRAKESWARAN
Prerequisite: ECE 130A-B with a minimum grade of C- in both. Lecture: 3 hours; discussion, 2 hours.
Basic techniques for the analysis of linear models in electrical engineering: Gaussian elimination, vector spaces and linear equations, orthogonality, determinants, eigenvalues and eigenvectors, systems of linear differential equations, positive definite matrices, singular value decomposition.

132. Introduction to Solid-State Electronic Devices
(4) MISHRA
Prerequisite: Physics 4 or 24 with a minimum grade of C-; Mathematics 4B or 5A with a minimum grade of C; and, ECE 10A-B and ECE 10AL-BL or ECE 2A-B (may be taken concurrently) with a minimum grade of C- in each; open to EE and computer engineering majors only.
Lecture: 3 hours; Discussion: 2 hours
Electrons and holes in semiconductors; doping (P and N); state occupation statistics, transport properties of electrons and holes; P-N junction diodes; I-V, C-V, and switching properties of P-N junctions; introduction of bipolar transistors, MOSFET’s and JFET’s.

134. Introduction to Fields and Waves
(4) DAVI YORKE
Prerequisite: Physics 3 or 23 with a minimum grade of C-; Mathematics 4B or 4BI or 5A and Mathematics 5B or 6A or 6AI with a minimum grade of C in each; and Mathematics 5C or 6B with a minimum grade of C-; open to EE and computer engineering majors only.
Lecture: 3 hours; Discussion: 2 hours
Introduction to applied electromagnetics and wave phenomena in high frequency electron circuits and systems. Waveform transmission-lines, elements of electrostatics and magnetostatics and applications, plane waves, examples and applications to RF, microwave, and optical systems.
135. Optical Fiber Communication (4) DAGLI
Prerequisites: ECE 132 and ECE 134 with a minimum grade of C- in both. Lecture: 3 hours; discussion: 1 hour.

Optical fiber as a transmission medium, dispersion and nonlinear effects in fiber transmission, fiber and semiconductor optical amplifiers and lasers, optical modulators, photo detectors, optical receivers, wavelength division multiplexing components, optical filters, basic transmission system analysis and design.

137A. Circuits and Electronics I (4) RODWELL
Prerequisites: ECE 10A-B-C and ECE 10AL-BL-CL or ECE 2A-2C-E, 150A, and 152 all with a minimum grade of C- in all; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours.

Analysis and design of single stage and multistage transistor circuits including biasing, gain, impedances and maximum signal levels.

137B. Circuits and Electronics II (4) RODWELL
Prerequisites: ECE 10C and 10CL or ECE 2C and 152 all with a minimum grade of C- in both; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours.

Analysis and design of single stage and multistage transistor circuits at low and high frequencies. Transient response. Analysis and design of feedback circuits. Stability criteria.

139. Probability and Statistics (4) ILTS
Prerequisite: Open to Electrical Engineering, Computer Engineering and pre-Computer Engineering majors only. Lecture, 3 hours; discussion, 2 hours.

Fundamentals of probability, conditional probability, Bayes rule, random variables, functions of random variables, expectation and high-order moments. Markov chains, hypothesis testing.

141A. Introduction To Nanoelectromechanical and Composites/Advanced Materials Systems (NEMS/MEMS) (3) PENNATUR, TURNER
Prerequisites: ME 16 & 17, ME 152A, ME 151A (may be concurrent); or ECE 130A and 137A with a minimum grade of C- in both.

Introduction to nan- and microtechnology. Scaling laws and nanoscale physics are stressed. Individual subjects at the nanoscale including materials, mechanics, photonics, electronics, and fluids will be described, with an emphasis on differences of behavior at the nanoscale and real-world examples.

141B. MEMS: Processing and Device Characterization (4) PENNATUR, TURNER
Prerequisites: ME 141A, ME 163 (may be concurrent); or ECE 141A.

Lectures and laboratory on semiconductor-based processing for MEMS. Description of key equipment and characterization tools used for MEMS and design, fabrication, characterization and testing of MEMS Emphasis on current MEMS based processing for MEMS. Description of key materials, mechanics, photonics, electronics, and fluids will be described, with an emphasis on differences of behavior at the nanoscale and real-world examples.

142. Introduction to Power Electronics (4) YORK
Prerequisite: ECE 132, ECE 134, and ECE 137A with a minimum grade of C- in all; open to EE majors only. Lecture, 3 hours; laboratory, 2 hours.

An introduction to modern switched-mode power electronics and associated devices. Covers modern converter/inverter topologies for the control and conversion of electrical power with high efficiency with applications to power supplies, renewable energy systems, lighting, electric/hybrid vehicles, and motor drivers.

144. Electromagnetic Fields and Waves (4) YORK
Prerequisite: ECE 134 with a minimum grade of C-; Lecture, 3 hours; laboratory, 3 hours.

Waves on transmission lines, Maxwell's equations, skin effect, propagation and reflection of electromagnetic waves, microwave integrated circuit principles, metal and dielectric waveguides, resonant cavities, antennas. Microwave and optical device examples and experience with modern microwave and CAD software.

145A. Communication Electronics (5) RODWELL
Prerequisites: ECE 137A-B with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 6 hours.

145B. Communication Electronics II (5) STAFF
Prerequisite: ECE 145A with a minimum grade of C-. EE majors only. Lecture, 3 hours; laboratory, 6 hours.

RF models for CMOS and BJT. Discrete vs. IC implementation. On-chip passive components. LNAs, PAs. TR switches. Mixers, VCOs. Polyphase filters Radio link budget. Analog and digital modulation schemes. Introduction to receiver architectures. &Q modulation. Image-reject architectures.

145C. Communication Electronics III (5) YUE
Prerequisites: ECE 145B with a minimum grade of C-. Lecture, 4 hours.

146A. Communication Systems (5) MADHOW
Prerequisites: ECE 130A-B with a minimum grade of C-. Lecture: 3 hours; Laboratory: 6 hours

Communication signals and systems; channel modeling and transceiver signal processing in complex baseband; analog communication techniques, including amplitude and angle modulation, superheterodyne reception, and phase locked loops; digital modulation, including bandwidth-efficient linear modulation and orthogonal modulation.

146B. Digital Communication System Design (5) MADHOW
Prerequisites: ECE 130A-B and 146A with minimum grades of C-; open to EE majors only. Lecture: 3 hours; Laboratory: 6 hours

Statistical modeling of signals and noise, including review of probability and random variables, and introduction to random processes; Optimal demodulation, including signal space geometry and performance estimates; communication over dispersive channels using singlecarrier and multicarrier modulation.

147A. Feedback Control Systems - Theory and Design (5) STAFF
Prerequisites: ECE 130A-B with a minimum grade of C- in each; open to EE and computer engineering majors only. Lecture, 3 hours; laboratory, 6 hours.

Feedback systems design, specifications in time and frequency domains. Analysis and synthesis of closed loop systems. Computer aided analysis and design.

147B. Digital Control Systems - Theory and Design (5) SMITH, TEEU
Prerequisite: ECE 147A with a minimum grade of C-; open to EE and computer engineering majors only. Lecture, 3 hours; laboratory, 6 hours.

Analysis of sampled data feedback systems; state space description of linear systems; observability, controllability, pole assignment, state feedback, observers. Design of digital control systems. (W)

147C. Control System Design Project (5) HESPANHA
Prerequisite: ECE 147A or ME 158B or ME 173 with a minimum grade of C-. Lecture, 3 hours; laboratory, 6 hours.

Students are required to design, implement, and document a significant control systems project. The project is implemented in hardware or in high-fidelity numerical simulators. Lectures and laboratories cover special topics related to the practical implementation of control systems.

148. Applications of Signal Analysis and Processing (4) LEE
Prerequisite: ECE 130A and 130B with a minimum grade of C- in both. Lecture: 3 hours; Discussion: 2 hours

Recommended Preparation: concurrent enrollment in ECE 130C.

A sequence of engineering applications of signal analysis and processing techniques; in communications, image processing, analog and digital filter design, signal detection and parameter estimation, holography and tomography, Fourier optics, and microwave and acoustic sensing.

150. Mobile Embedded Systems (4) CHENG
Prerequisite: Proficiency in JAVA programming. Architectures of modern smartphones and their key hardware components including mobile application processors, communications chips, display, touchscreen, graphics, camera, battery, GPS, and various sensors; the OS and software development platform of smartphones; smartphone applications; low power design techniques.

151. Distributed Systems (4) MELLIAR-SMITH
Prerequisite: Computer Science 170 with a minimum grade of C-.

Not open for credit to students who have completed Computer Science 171. Lecture, 3 hours; discussion, 1 hour.

Distributed systems architecture, distributed programming techniques, message passing, remote procedure calls, group communication and membership, naming, asynchronous, causality, consistency, fault-tolerance and recovery, resource management, scheduling, monitoring, testing and debugging.

152A. Digital Design Principles (5) STAFF
Prerequisite: ECE 15A and 2A or ECE 10A & ECE 10AL with a minimum grade of C- in each course; or Computer Science 30 or 64 with a minimum grade of C- in each course; open to electrical engineering, computer engineering, and computer science majors only. Lecture: 3 hours; Laboratory: 6 hours

Design of synchronous digital systems: timing diagrams, propagation delay, latches and flip-flops, shift registers and counters, Mealy/Moore finite state machines, Verilog, 2-phase clocking, timing analysis, CMOS implementation, 5, RAM, RAM-based designs, ASM charts, state minimization.

153A. Hardware/Software Interface (4) BREWER, KRINTZ
Prerequisite: Upper division standing in Computer Engineering, Computer Science or Electrical Engineering.

Same course as Computer Science 153A. Issues in interfacing computing systems and software to practical I/O interfaces. Rapid response, real-time events and management of tasks, threads, and scheduling required for efficient design of embedded software and systems is discussed. Techniques for highly constrained systems.

153B. Sensor and Peripheral Interface Design (4) STAFF
Prerequisite: ECE 152A with a minimum grade of C-. Lecture: 3 hours; Laboratory: 3 hours

Hardware description languages, field-programmable logic and ASIC design techniques. Mixed-signal techniques: A/D and D/A converter.
154A. Introduction to Computer Architecture (4) PARHAM
Prerequisite: ECE 152A with a minimum grade of C-; open to EE and CMPEN majors only. Lecture: 3 hours; Discussion: 1 hour.
Not open for credit to students who have completed Computer Science 154. ECE 154A is the formerly numbered ECE 154. Students who have taken ECE 154A, or have a grade of C- or lower may take ECE 154A for a better grade.
Instruction-set architecture (ISA) and computer performance; Machine instructions, assembly, addressing modes; Memory map, arrays, pointers; Procedure calls; Number formats; Simple ALUs; Data path, control, microprogram; Buses, I/O programming, interrupts; Pipelined data paths and control schemes.

154B. Advanced Computer Architecture (4) STRUKOV
Prerequisite: ECE 154A with a C- grade or better. Open to EE and CMPEN majors only. Lecture: 3 hours; Laboratory: 4 hours.
Not open for credit to those who have taken Computer Science 154.
ISA variations; Pipeline data and control hazards; Fast ALU design; Instruction-level parallelism; Multithreading, VLIW; Vector and array processing, multi/many-core chips; Cache and virtual memory; Disk arrays; Shared- and distributed-memory systems, supercomputers; Reconfigurable and application-specific circuits.

155A. Introduction to Computer Networks (4) MOSER
Prerequisite: Upper-division standing in Electrical Engineering, Computer Engineering, and Computer Science; and CMPSC 24 with a minimum grade of C-.
Lecture: 3 hours; Discussion: 1 hour.
Not open for credit to students who have completed Computer Science 176, 176A, or ECE 155.
Topics in this course include network architectures, protocols, wired and wireless networks, transmission media, multiplexing, switching, framing, error detection and correction, flow control, routing, congestion control, TCP/IP, DNS, email, World Wide Web, network security, socket programming in C/C++.

155B. Network Computing (4) MOSER
Prerequisite: ECE 155A or CMPSC 176A with a minimum grade of C-; and CMPSC 32 with a minimum grade of C-; and experience in Java programming or consent of instructor.
Lecture: 3 hours; Discussion 1 hour.
Not open for credit to students who have completed Computer Science 175B or ECE 194W.
Topics in this course include client/server computing, threads, Java applets, Java sockets, Java RMI, Java servlets, Java Server Pages, Java Database Connectivity, Enterprise Java Beans, Hypertext Markup Language, eXtensible Markup Language, Web Services, programming networked applications in Java.

156A. Digital Design with VHDL and Synthesis (4) WANG
Prerequisite: ECE 152A with a minimum grade of C-
Lecture: 3 hours; laboratory: 3 hours.
Introduction to VHDL basic elements. VHDL simulation concepts. VHDL concurrent statements with examples and applications. VHDL subprograms, packages, libraries and design units. Writing VHDL for synthesis. Writing VHDL for finite state machines. Design case study.

156B. Computer-Aided Design of VLSI Circuits (4) WANG
Prerequisite: ECE 156A with a minimum grade of C-
Lecture: 3 hours; laboratory: 3 hours.
Introduction to computer-aided simulation and synthesis tools for VLSI. VLSI system design flow, role of CAD tools, layout synthesis, circuit simulation, logic simulation, logic synthesis, behavior synthesis and test synthesis.

158. Digital Signal Processing (4) GIBSON
Prerequisite: ECE 130A-B with a minimum grade of C- in both; open to EE majors only.
Lecture: 3 hours; laboratory: 3 hours.
Discrete signals and systems, convolution, z-transforms, discrete Fourier transforms, digital filters.

160. Multimedia Systems (4) MELLAR-SMITH
Prerequisite: Upper-division standing; open to electrical engineering, computer engineering, computer science, and creative studies majors only.
Lecture: 3 hours; Laboratory: 3 hours.
Not open for credit to students who have completed CMPSC 182.
Introduction to multimedia and applications, including WWW, image/video databases and video streaming. Covers media content analysis, media data organization and indexing (image/video databases), and media data distribution and interaction (video-on-demand and interactive TV).

162A. The Quantum Description of Electronic Materials (4) STAFF
Prerequisite: ECE 130A-B and 134 with a minimum grade of C- in all; open to EE and materials majors only.
Same course as Materials 162A.
Lecture: 4 hours.

162B. Fundamentals of the Solid State (4) COLDREN
Prerequisite: ECE 162A with a minimum grade of C-; open to EE and materials majors only.
Same course as Materials 162B.
Lecture: 3 hours; discussion: 1 hour.

162C. Optoelectronic Materials and Devices (4) COLDREN
Prerequisite: ECE 162A-B with a minimum grade of C-; open to electrical engineering and materials majors only.
Same course as Materials 162C.
Lecture: 3 hours; discussion: 1 hour.

178. Introduction to Digital Image and Video Processing (4) MANJUNATH
Prerequisites: open to EE, computer engineering, and computer science majors with upper-division standing.
Lecture: 3 hours; discussion: 1 hour.
Basic concepts in image and video processing. Topics include image formation and sampling, transform analysis and enhancement, and image and video compression including JPEG and MPEG coding standards.

179D. Introduction to Robotics: Dynamics and Control (4) BYL
Prerequisites: ECE 130A or ME 155A (may be taken concurrently).
Same course as ME 179D.
Dynamic modeling and control methods for robotic systems. LaGrangian method for deriving equations of motion, introduction to the Jacobian, and modeling and control of forces and contact dynamics at a robotic end effector. Laboratories encourage a problem-solving approach to control.

179P. Introduction to Robotics: Planning and Kinematics (4) BULLO
Prerequisites: ENGR 3, and either ME 17 or ECE 130C (may be taken concurrently).
Not open for credit to student who have completed Mechanical Engineering 170A or ECE 181A.
Same course as ME 179P.
Motion planning and kinematics topics with an emphasis on geometric reasoning, programming, and matrix computations. Motion planning: configuration spaces, sensor-based planning, decomposition and sampling methods, and advanced planning algorithms. Kinematics: reference frames, rotations and displacements, kinematic motion models.

181. Introduction to Computer Vision (4) MANJUNATH
Prerequisite: Upper-division standing in Electrical Engineering, Computer Engineering, Computer Science, Chemical Engineering or Mechanical Engineering.
Lecture: 3 hours; Discussion: 1 hour.
Same course as Computer Science 181B.
Repeat Comments: Not open for credit to students who have completed ECE/CMPSC 181B with a grade of C or better. ECE/CMPSC 181 is a legal repeat of ECE/CMPSC 181B.
Overview of computer vision problems and techniques for analyzing the content of images and video. Topics include image formation, edge detection, image segmentation, pattern recognition, texture analysis, optical flow, stereo vision, shape representation and recovery techniques, issues in object recognition, and case studies of practical vision systems.

183. Nonlinear Phenomena (4) STAFF
Prerequisites: Physics 105A or ME 163 or upper-division standing in EE.
Same course as Physics 106 and ME 169.
Not open for credit to students who have completed ECE 183C.
Lecture: 3 hours; discussion: 1 hour.
An introduction to nonlinear phenomena. Flows and bifurcations in one and two dimensions, chaos, fractals, strange attractors. Applications to physics, engineering, chemistry, and biology.

188A. Senior Electrical Engineering Project (3) STAFF
Prerequisite: Consent of instructor.
Lecture: 3 hours; Laboratory: 3 hours.
Student groups design a significant project based on the knowledge and skills acquired in earlier coursework and integrate their technical knowledge through a practical design experience. The project is evaluated through written reports, oral presentations, and demonstrations of performance.

188B. Senior Electrical Engineering Project (3) STAFF
Prerequisite: ECE 188A with a minimum grade of C-
Lecture: 3 hours; Laboratory: 3 hours.
Student groups design a significant project based
on the knowledge and skills acquired in earlier coursework and integrate their technical knowledge through a practical design experience. The project is evaluated through written reports, oral presentations, and demonstrations of performance.

188C. Senior Electrical Engineering Project (3) STAFF
Prerequisite: ECE 188B with a minimum grade of C-.
Lecture: 3 hours; Laboratory: 3 hours
Student groups design a significant project based on the knowledge and skills acquired in earlier coursework and integrate their technical knowledge through a practical design experience. The project is evaluated through written reports, oral presentations, and demonstrations of performance.

189A. Senior Computer Systems Project (4) STAFF
Prerequisite: ECE 153B; senior standing in Computer Engineering; Computer Science or EE.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit to students who have completed Computer Science 189A-B.
Student groups design a significant computer-based project. Groups work independently with interaction among groups via interface specifications and informal meetings.

189B. Senior Computer Systems Project (4) STAFF
Prerequisite: ECE 189A; senior standing in Computer Engineering, Computer Science or EE.
Lecture: 3 hours; Laboratory: 3 hours
Not open for credit to students who have completed Computer Science 189A-B.
Student groups design a significant computer-based project. Groups work independently with interaction among groups via interface specifications and informal meetings.

192. Projects in Electrical and Computer Engineering (4) STAFF
Prerequisite: consent of instructor. Discussion, 2 hours; laboratory, 6 hours.
Projects in electrical and computer engineering for advanced undergraduate students.

193. Internship in Industry (1-8) STAFF
Prerequisite: consent of department.
Must have a 3.0 grade-point-average. May not be used as departmental electives. May be repeated to a maximum of 12 units. Field, 1-8 hours.
Special projects for selected students. Offered in conjunction with engineering practice in selected industrial and research firms, under direct faculty supervision.

194AA-ZZ. Special Topics in Electrical and Computer Engineering (1-5) STAFF
Prerequisite: consent of instructor. Variable hours.

196. Undergraduate Research (2-4) STAFF
Prerequisites: upper-division standing; consent of instructor.
Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated for up to 12 units. Not more than 4 units may be applied to departmental electives.
Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research.

199. Independent Studies in Electrical and Computer Engineering (1-5) STAFF
Prerequisites: upper-division standing; completion of two upper-division courses in electrical and computer engineering; consent of instructor.
Must have a minimum 3.0 grade-point average for the preceding three quarters. Students are limited to five units per quarter and 30 units total in all 98/99/198/199/199AA-ZZ courses combined. Directed individual study, normally experimental.

GRADUATE COURSES
Graduate courses for this major can be found in the UCSB General Catalog.

Engineering Science Courses

LOWER DIVISION
3. Introduction to Programming for Engineers (3) MOEHLIS, PETZOLD
Prerequisites: Open to chemical engineering, electrical engineering, and mechanical engineering majors only.
General philosophy of programming and problem solving. Students will be introduced to the programming language MATLAB. Specific areas of study will include algorithms, basic decision structures, arrays, matrices, and graphing. (F, S, M).

99. Introduction to Research (1-3) STAFF
Prerequisite: Consent of instructor.
May be repeated for credit to a maximum of 6 units. Students are limited to 5 units per quarter and 30 units total in all 98/99/198/199/199AA-ZZ courses combined. Directed study to be arranged with individual faculty members. Course offers exceptional students an opportunity to participate in a research group.

UPPER DIVISION
101. Ethics in Engineering (3) STAFF
Prerequisite: senior standing in engineering.

103. Advanced Engineering Writing (4) STAFF
Prerequisites: Writing 50 or 50E; upper-division standing.
Practice in the forms of communication—contractual reports, proposals, conference papers, oral presentations, business plans—that engineers and entrepreneurial engineers will encounter in professional careers. Focus is on research methods, developing a clear and persuasive writing style, and electronic document preparation.

160. Science for the Public (1-4) STAFF
Prerequisite: consent of instructor.
Same course as Physics 160K. Open to graduate students in science and engineering disciplines and to undergraduate science and engineering majors.
Provides experience in communicating science and technology to nonspecialists. The major

Engineering Sciences

Engineering Sciences, Office of Associate Dean for Undergraduate Studies, Harold Frank Hall, Room 1006; Telephone (805) 993-2809
Web site: www.engineering.ucsb.edu/undergraduate/majors-programs/engineering-sciences
Chair & Associate Dean: Glenn E. Beltz

Faculty
Glenn E. Beltz, Ph.D., Harvard, Professor
Jeffrey M. Moehlis, Ph.D., University of California, Berkeley, Professor
Linda R. Petzold, Ph.D., University of Illinois at Urbana-Champaign, Professor

The Engineering Sciences program at UCSB serves as a focal point for the cross-disciplinary educational environment that prevails in each of our five degree-granting undergraduate programs (chemical engineering, computer engineering, computer science, electrical engineering, and mechanical engineering).

The courses offered in this “department” are designed to cultivate well-educated, innovative engineers and scientists with excellent management and entrepreneurial skills and attitudes oriented to new technologies.

One of the missions of the Engineering Sciences program is to provide coursework commonly needed across other educational programs in the College of Engineering. For example, courses in computer programming, computation, ethics, engineering writing, engineering economics, science communication to the public, and even an aeronautics-inspired art course are offered.
components of the course are field work in mentoring, a biweekly seminar, presentations to precollege students and to adult nonscientists, and end-of-term research papers.

177. Art and Science of Aerospace Culture (4) STAFF
Prerequisites: upper-division standing; consent of instructor.

Same course as Art Studio 177. Interdisciplinary course/seminar/practice for artists, academics, engineers, and designers interested in exploring the technological aesthetic, cultural, and political aspects of the space side of the aerospace complex. Design history, space complex aesthetics, cinema intersections, imaging of the aerospace complex. Design history, space cultural, and political aspects of the space side interested in exploring the technological aesthetic, artists, academics, engineers, and designers.

199. Independent Studies in Engineering (1-5) STAFF
Prerequisite: Upper-division standing; consent of instructor.

Students must have a minimum 3.0 GPA for the preceding three quarters. May be repeated for credit to a maximum of 10 units. Directed individual study.

GRADUATE COURSES
A graduate course listing can be found in the UCSB General Catalog.

Materials

Department of Materials Science and Engineering II, Room 1355; Telephone (805) 893-4601
Web site: www.materials.ucsb.edu
Chair: Tresa M. Pollock
Vice Chair: Michael L. Chabinyc

Faculty

Christopher M. Bates, Ph.D., University of Austin Texas, Assistant Professor (polymer mesosstructures and dynamics, energy storage, and crystalization)
Guillermo C. Bazan, Ph.D., Massachusetts Institute of Technology, Distinguished Professor (polymer synthesis, photophysics)
Matthew R. Begley, Ph.D., University of California, Santa Barbara, Professor (mechanics of materials with applications to multilayered devices such as microfluidics, MEMS and protective coatings)
Irene J. Beyerlein, Ph.D., Cornell University, Professor (computational materials science, microstructure-property relationships, deformation mechanisms, composites)
John Bowers, Ph.D., Stanford, Distinguished Professor (energy efficiency, optical devices and networks, silicon photonics)
Michael Chabinyc, Ph.D., Stanford University, Associate Professor (organic semiconductors, thin film electronics, energy conversion using photovoltaics, characterization of thin films of polymers, x-ray scattering from polymers)
Steven P. DenBaars, Ph.D., University of Southern California, Distinguished Professor (metalorganic chemical vapor deposition (MOCVD) of semiconductors, IR to blue lasers and LEDs, high power electronic materials and devices)
Daniel S. Gianola, Ph.D., Johns Hopkins University, Associate Professor (nanomechanical behavior and deformation mechanisms in ultra-strong materials, mechanics of disordered materials, elastic strain engineering of transport phenomena, tunable and efficient solid state energy conversion, interface engineering of nanocrystalline materials for mechanical stability and damage tolerance, quantitative in situ electron, x-ray, and light microscopy)
Craig Hawker, Ph.D., University of Cambridge, Distinguished Professor, Director of Materials Research Laboratory (synthetic polymer chemistry, nanotechnology, materials science)
Carlos G. Levi, Ph.D., University of Illinois at Urbana-Champaign, Professor (materials processing, and microstructure evolution, coatings, composites, functional inorganics)
Robert M. McMeeking, Ph.D., Brown University, Distinguished Professor (mechanics of materials, fracture mechanics, plasticity, computational mechanics, process modeling)
Kunal Mukherjee, PhD, Massachusetts Institute of Technology, Assistant Professor (growth and electronic properties of compound semiconductors for optoelectronic, imaging, and energy conversion devices)
Shuji Nakamura, Ph.D., University of Tokushima, Cree Professor of Solid State Lighting and Displays (gallium nitride, blue lasers, white LEDs, solid state illumination, bulk GaN substrates)
Robert Odette, Ph.D., Massachusetts Institute of Technology, Professor (fundamental deformation and fracture, materials in extreme environments, structural reliability, and high-performance composites)
Chris Palmstrom, Ph.D., University of Leeds, Distinguished Professor (atomic level control of interfacial phenomena, in-situ STM, surface and thin film analysis, metallization of semiconductors, dissimilar materials epitaxial growth, molecular beam and chemical beam epitaxial growth of metallic compounds)
Philip A. Pincus, Ph.D., UC Berkeley, Distinguished Professor (theoretical aspects of self-assembled biomolecular structures, membranes, polymers, and colloids)
Tresa M. Pollock, Ph.D., Massachusetts Institute of Technology, Distinguished Professor (mechanical and environmental performance of materials in extreme environments, unique high temperature materials processing paths, ultrafast laser-material interactions, alloy design and 3-D materials characterization)
Cyrus R. Safinya, Ph.D., Massachusetts Institute of Technology, Distinguished Professor (biophysics, supramolecular assemblies of biological molecules, non-viral gene delivery systems)
Omar A. Saleh, Ph.D., Princeton University, Assistant Professor (single-molecule biophysics, motor proteins, DNA-protein interactions)
Rachel A. Segalman, Ph.D., University of California, Santa Barbara, Professor (synthesis of macromolecules, self-assembly, electronic properties of molecular and macromolecular materials, transport processes in polymers)
Ram Seshadri, Ph.D., Indian Institute of Science, Professor (inorganic materials, preparation and magnetism of bulk solids and nanoparticles, patterned materials)
Hyongsook (Tom) Soh, Ph.D., Stanford, Associate Professor (directed evolution of biological molecules, supramolecular assemblies, integrated biosensors)
James S. Speck, Sc.D., Massachusetts Institute of Technology, Distinguished Professor (nitride semiconductors, II-VI semiconductors, ferroelectric and high-K films, microstructural evolution, extended defects, transmission electron microscopy, x-ray diffraction)
Susanne Stammer, Ph.D., University of Stuttgart, Professor (functional oxide thin films, structure-property relationships, scanning transmission electron microscopy and spectroscopy)
Galen Stucky, Ph.D., Iowa State University, Distinguished Professor (biomaterials, composites, materials synthesis, electro-optical materials catalysis)
Chris Van de Walle, Ph.D., Stanford University, Distinguished Professor (novel electronic materi-lals, wide-band-gap semiconductors, oxides)
Anton Van der Ven, Ph.D., Massachusetts Institute of Technology, Associate Professor (First principles prediction of thermodynamic, kinetic and and mechanical properties of alloys, ceramics and compound semiconductors, statistical mechanical methods development, electrochemical energy storage materials, high temperature structural materials corrosion)
Stephan Wilson, Ph.D., University of Tennessee, Assistant Professor (Magnetism in complex oxides, phase behaviors in correlated electron systems and quantum materials, spin-orbit coupled materials, quantum criticality, neuron and x-ray scattering, bulk single crystal growth)
Cyrus Weisbuch, Ph.D., Universite Paris VII, Ecole Polytechnique-Palaisau, Distinguished Professor (semiconductor physics: fundamental and applied optical studies of quantized electronic structures and photonic-controlled structures; electron spin resonance in semiconductors, optical semiconductor microcavities, photonic bandgap materials)
Francis W. Zok, Ph.D., McMaster University, Professor (mechanical and thermal properties of materials and structures)
Mahn Won Kim, Ph.D. (Physics)
Gary Leal, Ph.D. (Chemical Engineering)
Gene Lucas, Ph.D. (Chemical Engineering)

The Department of Materials was conceptualized and built under two basic guidelines: to educate graduate students in advanced materials and to introduce them to novel ways of doing research in a collaborative, multidisciplinary environment. Advancing materials technology today—either by creating new materials or improving the properties of existing ones—requires a synthesis of expertise from the classic materials fields of metallurgy, ceramics, and polymer science, and such fundamental disciplines as applied mechanics, chemistry, biology, and solid-state physics. Since no individual has the necessary breadth and depth of knowledge in all these areas, solving advanced materials problems demands the integrated efforts of scientists and engineers with different backgrounds and skills in a research team. The department has effectively transferred the research team concept, which is the operating mode of the high technology industry, into an academic environment.

The department has major research groups working on a wide range of advanced inorganic and organic materials, including advanced structural alloys, ceramics and polymers; high performance composites; thermal barrier coatings and engineered surfaces; organic, inorganic and hybrid semiconductor and photonic material systems; catalysts and porous materials, magnetic, ferroelectric and multiferroic materials; biomaterials and biosurfaces, including biomedically relevant systems; colloids, gels and other complex fluids; lasers, LEDs and optoelectronic devices; packaging systems; microscale engineered systems, including MEMS. The groups are typically multidisciplinary involving faculty, postdoctoral researchers and graduate students working on the synthesis and processing, structural characterization, property evaluation, microstructure-property relationships and mathematical models relating micromechanisms to macroscopic behavior.

Materials Courses

UPPER DIVISION

100A. Structure and Properties I
(3) STAFF
Prerequisites: Chemistry 1A-B; Physics 4, and, Mathematics 4B, 6A-B. Lecture, 3 hours.

100B. Structure and Properties II
(3) STAFF
Prerequisites: Materials 100A.

Students who take Mat 101 & 100B will only receive major credit for one of these courses. Lecture, 3 hours.

100C. Fundamentals of Structural Evolution
(3) STAFF
Prerequisites: Materials 100A and Materials 100B.

An introduction to the thermodynamic and kinetic principles governing structural evolution in materials. Phase equilibria, diffusion and structural transformations. Metastable structures in materials. Self-assembling systems. Structural control through processing and/or imposition of environmental effects on structure and properties.

101. Introduction to the Structure and Properties of Materials
(3) STAFF
Prerequisite: upper-division standing.

Students who take MATRL 101 & 100B will only receive major credit for one of these courses. Students interested in following the BS Engineering/MS Materials program should not take this course. Introduction to the structure of engineering materials and its relationship with their mechanical properties. Structure of solids and defects. Concepts of microstructure and engineering; elastic, plastic flow and fracture properties. Mechanisms of deformation and failure. Stiffening, strengthening, and toughening mechanisms.

135. Biophysics and Biomolecular Materials
(3) SAFINYA
Prerequisites: Physics 5 or 6C or 25.

Same course as Physics 135. Structure and function of cellular molecules (lipids, nucleic acids, proteins, and carbohydrates). Genetic engineering techniques of molecular biology. Biomolecular materials and biomedical applications (e.g., bio-sensors, drug delivery systems, gene carriers).

160. Introduction to Polymer Science
(3) STAFF
Prerequisite: Chemistry 109A-B.

Same course as Chemical Engineering 160. Introductory course covering synthesis, characterization, structure, and mechanical properties of polymers. The course is taught from a materials perspective and includes polymer thermodynamics, chain architecture, measurement and control of molecular weight as well as crystallization and glass transitions.

162A. The Quantum Description of Electronic Materials
(4) STAFF
Prerequisites: ECE 130A-B and 134 with a minimum grade of C- in all; open to EE and Materials majors only.

Same course as ECE 162A. Electrons as particles and waves, Schrodinger’s equation and illustrative solutions. Tunneling. Atomic structure, the Exclusion Principle and the periodic table. Bonds: Free electrons in metals. Periodic potentials and energy bands. (F)

162B. Fundamentals of the Solid State
(4) STAFF
Prerequisites: ECE 162A with a minimum grade of C; open to EE and Materials majors only.

Same course as ECE 162B. Crystal lattices and the structure of solids, with emphasis on semiconductors. Lattice vibrations, electronic states and energy bands. Electrical and thermal conduction. Dielectric and optical properties. Semiconductor devices: Diffusion, P-N junctions and diode behavior.

185. Materials in Engineering
(3) STAFF
Prerequisite: Materials 100B or 101.

Same course as ME 185. Lecture, 3 hours. Introduces the student to the main families of materials and the principles behind their development, selection, and behavior. Discusses the generic properties of metals, ceramics, polymers,
and composites more relevant to structural applications. The relationship of properties to structure and processing is emphasized in every case.

186. Manufacturing and Materials
(3) LEVI
Prerequisites: ME 15 and 151C; and, Materials 100B or 101.
Same course as ME 186. Lecture, 3 hours.
Introduction to the fundamentals of common manufacturing processes and their interplay with the structure and properties of materials as they are transformed into products. Emphasis on process understanding and the key physical concepts and basic mathematical relationships involved in each of the processes discussed.

188. Topics in Materials
(2) VANDEWALLE
Topics in Materials for renewable energy-efficient applications: Thermoelectrics, Solid State Lighting, Solar Cells, High Temperature coatings for turbines and engines. (W)

GRADUATE COURSES
Graduate courses for this major can be found in the UCSB General Catalog.

Mechanical Engineering

Department of Mechanical Engineering, Engineering II, Room 2355;
Telephone (805) 893-2430
Web site: www.me.ucsb.edu
Chair: Francesco Bullo
Vice Chair: Frederic Gibou

Faculty

Bassam Bamieh, Ph.D., Rice University, Professor (control systems design with applications to fluid flow problems)
Matthew R. Begley, Ph.D., University of California, Santa Barbara, Professor (mechanics of materials with applications to multilayered devices such as microfluidics, MEMS and protective coatings)
Glenn E. Beltz, Ph.D., Harvard, Professor (solid mechanics, materials, aeronautics, engineering education)
Ted D. Bennett, Ph.D., UC Berkeley, Associate Professor (thermodynamic science, laser processing)
Irene J. Beyerlein, PhD, Cornell University, Professor (structural mechanics of multi-phase micro- and nanostructured materials, design of metallic alloys) Joint Appointment: MATRIL
David Bothman, B.S., UC San Diego, Lecturer
Francesco Bullo, Ph.D., California Institute of Technology, Professor (motion planning and coordination, control systems, distributed and adaptive algorithms)
Otger Camps, Ph.D., Curie Institute (Paris) and University of Barcelona, Assistant Professor (physical biology, systems biology, quantitative biology, morphogenesis and self-organization of living matter)
Samantha H. Daly, PhD, California Institute of Technology, Associate Professor (mechanics of materials, development of small-scale experimental methods, effects of microstructure on the meso and macroscopic properties of materials, active materials, composites, fatigue, plasticity, fracture)
Kimberly L. Foster, Ph.D., Cornell University, Professor (micromechanical systems, dynamics, solid mechanics, measurement and characterization of microsystems motion and device parameters)
Frederic Gibou, Ph.D., University of California, Los Angeles, Professor (computational science and engineering) *2
Elliot W. Hawkes, Assistant Professor
Stephen Laguette, M.S., University of California, Los Angeles, Lecturer (biomedical engineering design)
Carlos Levi, Ph.D., University of Illinois at Urbana-Champaign, Professor (conceptual design, synthesis and evolution in service of structural and inorganic materials, especially for high temperature applications) *3
Paolo Luzzato-Fegiz, PhD, Cornell University, Assistant Professor (fluid mechanics, wind energy and instrument development)
Eric F. Matthes, Ph.D., California Institute of Technology, Professor (heat transfer, fluid mechanics, rheology)
Robert M. McMeeking, Ph.D., Brown University, Distinguished Professor (mechanics of materials, fracture mechanics, plasticity, computational mechanics) *3
Eckart Meiburg, Ph.D., University of Karlsruhe, Distinguished Professor (computational fluid dynamics, fluid mechanics)
Carl D. Meinhardt, Ph.D., University of Illinois at Urbana-Champaign, Professor (wall turbulence, microfluidics, flows in complex geometries)
Igor Mozic, Ph.D., California Institute of Technology, Professor (applied mechanics, non-linear dynamics, fluid mechanics, applied mathematics)
Jeffrey M. Moehlis, Ph.D., University of California, Berkeley, Professor (nonlinear dynamics, fluid mechanics, biological dynamics, applied mathematics)
Bradley E. Paden, Ph.D., UC Berkeley, Professor (control theory, kinematics, robotics)
Sumita Penm, Dr. S., Stanford University, Associate Professor (application of microfabrication techniques and micro/nanoscale flow phenomena)
Linda R. Petzold, Ph.D., University of Illinois at Urbana-Champaign, Distinguished Professor, Director of Computational Science and Engineering Graduate Emphasis (computational science and engineering; systems biology) *2
Tyler G. Susko, Lecturer Potential SOE
Megan Valentine, Ph.D., Harvard University, Assistant Professor (single-molecule biophysics, cell mechanics, motor proteins, biomaterials)
Henry T. Yang, Ph.D., Cornell University, Distinguished Professor (aerospace structures, structural dynamics and stability, transonic flutter and aeroelasticity, intelligent manufacturing systems)

Emeriti Faculty

John C. Bruch, Jr., Ph.D., Stanford University, Professor Emeritus (applied mathematics, numerical solutions and analysis)
David R. Clarke, Ph.D., University of Cambridge, Professor (electrical ceramics, thermal barrier coatings, piezoelectricity, mechanics of microelectronics) *3
Roy S. Hickman, Ph.D., UC Berkeley, Professor Emeritus (fluid mechanics, physical gas dynamics, computer-aided design)
George Homsy, Ph.D., University of Illinois, Professor Emeritus (hydrodynamic stability, thermal convection, thin film hydrodynamics, flow in microgeometries and in porous media, polymer fluid mechanics)
Keith T. Kedward, Ph.D., University of Wales, Professor (design of composite systems)
Wilbert J. Lick, Ph.D., Rensselaer Polytechnic Institute, Professor Emeritus (oceanography and limnology, applied mathematics)
Gene Lucas, Ph.D., Massachusetts Institute of Technology, Professor (mechanical properties of structural materials, environmental effects, structural reliability)
Noel C. MacDonald, Ph.D., UC Berkeley, Professor Emeritus (membrane science and engineering) *3
Ekkehard Marschall, Dr. Ing., Technische Hochschule Hannover, Professor Emeritus (thermodynamics, heat and mass transfer, desalination, energy conversion, experimental techniques)
Stephen R. McLean, Ph.D., University of Washington, Professor Emeritus (fluid mechanics, physical oceanography, sediment transport)
Frederick Milstein, Ph.D., UC Los Angeles, Professor Emeritus (mechanical properties of materials) *3
Thomas P. Mitchell, Ph.D., California Institute of Technology, Professor Emeritus (theoretical and applied mechanics)
George R. Odette, PhD, Massachusetts Institute of Technology Joint Appointment: MATRIL
Theofanis G. Theoanous, Ph.D., University of Minnesota, Professor, Director of Center for Risk Studies and Safety (nuclear and chemical plant safety, multiphase flow, thermal hydraulics) *1
Marshall Tulin, M.S., Massachusetts Institute of Technology, Professor Emeritus, Ocean Engineering Laboratory Director (hydrodynamics, aerodynamics, turbulence, cavitation phenomena, drag reduction in turbulent flows)
Walter W. Yuen, Ph.D., UC Berkeley, Professor (thermodynamic science, radiation heat transfer, heat transfer with phase change, combustion)

1 Joint appointment with Chemical Engineering
2 Joint appointment with Computer Science
3 Joint appointment with Materials
The undergraduate program in mechanical engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. We offer a balanced curriculum of theory and application, involving: preparation in basic science, math, computing and writing; a comprehensive set of engineering science and laboratory courses; and a series of engineering design courses starting in the freshman year and concluding with a three course sequence in the senior year. Our students gain hands-on expertise with state-of-the art tools of computational design, analysis, and manufacturing that are increasingly used in industry, government, and academic institutions. In addition, the Department has a 15-unit elective program that allows students to gain depth in specific areas of interest, while maintaining appropriate breadth in the basic stem areas of the discipline. All students participate in a widely recognized design project program which includes projects sponsored by industry, UCSB researchers, as well as intercollegiate design competitions. The project program has been expanded to emphasize entrepreneurial product-oriented projects.

Mission Statement

We offer an education that prepares our students to become leaders of the engineering profession and one which empowers them to engage in a lifetime of learning and achievement.

Educational Objectives for the Undergraduate Program

It is the objective of the Mechanical Engineering Program to produce graduates who:

1. Successfully practice in either the traditional or the emerging technologies comprising mechanical engineering;
2. Are successful in a range of engineering graduate programs;
3. Have a solid background in the fundamentals of engineering allowing them to pass the Fundamentals of Engineering examination;
4. Engage in life-long learning opportunities such as professional workshops and activity in professional societies.

In order to achieve these objectives, the Department of Mechanical Engineering is engaged in a very ambitious effort to lead the discipline in new directions that will be critical to the success of 21st century technologies. While maintaining strong ties to STEM areas of the discipline, we are developing completely new cross-cutting fields of science and engineering related to topics such as: microscale engineering and microelectrical-micromechanical systems; dynamics and controls and related areas of sensors, actuators and instrumentation; advanced composite materials and smart structures; computation, simulation and information science; advanced energy and transportation systems; and environmental monitoring, modeling and remediation.

Student Outcomes

Upon graduation, students in the mechanical engineering B.S. degree program:
1. Should possess a solid foundation in, and be able to apply the principles of, mathematics, science, and engineering to solve problems and have the ability to learn new skills relevant to his/her chosen career.
2. Should have the ability to conduct and analyze data from experiments in dynamics, fluid dynamics, thermal science and materials, and should have been exposed to experimental design in at least one of these areas.
3. Should have experienced the use of current software in problem solving and design.
4. Should demonstrate the ability to design useful products, systems, and processes.
5. Should be able to work effectively on teams.
6. Should have an understanding of professional and ethical responsibilities.
7. Should be able to write lab reports and design reports and give effective oral presentations.
8. Should have the broad background in the humanities and the social sciences, which provides an awareness of contemporary issues and facilitates an understanding of the global and societal impact of engineering problems and solutions.
9. Be a members of or participate in a professional society.

Undergraduate Program

Bachelor of Science—Mechanical Engineering

A MINIMUM OF 150 UNITS IS REQUIRED FOR GRADUATION. A COMPLETE LIST OF REQUIREMENTS FOR THE MAJOR CAN BE FOUND ON PAGE 54. SCHEDULES SHOULD BE PLANNED TO MEET BOTH GENERAL EDUCATION AND MAJOR REQUIREMENTS.

Students who are not Mechanical Engineering majors may be permitted to take lower division mechanical engineering courses, subject to meeting prerequisites and grade-point average requirements, availability of space, and consent of the instructor.

The mechanical engineering elective courses allow students to acquire more in-depth knowledge in one of several areas of specialization, such as those related to: the environment; design and manufacturing; thermal and fluid sciences; structures, mechanics, and materials; and dynamics and controls. A student’s specific elective course selection is subject to the approval of the department advisor.

Courses required for the pre-major or major, inside or outside of the Department of Mechanical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

Research Opportunities

Upper-division undergraduates have opportunities to work in a research environment with faculty members who are conducting current research in the various fields of mechanical engineering. Students interested in pursuing undergraduate research projects should contact individual faculty members in the department.

Mechanical Engineering Courses

LOWER DIVISION

6. Basic Electrical and Electronic Circuits

Prerequisites: Physics 3-3L, Mathematics 3C or 4A; open to ME majors only.

Not open for credit to students who have completed ECE 2A or 2B, or ECE 6A or 6B.

Introduction to basic electrical circuits and electronics. Includes Kirchhoff’s laws, phasor analysis, circuit elements, operational amplifiers, and transistor circuits.

Prerequisites: ME majors only.

Introduction to engineering graphics, CAD, and freehand sketching. Develop CAD proficiency using advanced 3-D software. Graphical presentation of design: views, sections, dimensioning, and tolerancing.

11. Introductory Concepts in Mechanical Engineering

Prerequisites: ME majors only.

The theme question of this course is “What do mechanical engineers do?” Survey of mechanical and environmental engineering applications. Lectures by mechanical engineering faculty and practicing engineers.

12. Manufacturing Processes

Prerequisites: ME majors only.

Processes used to convert raw material into finished objects. Overview of manufacturing processes including: casting, forging, machining, presswork, plastic and composite processing. Videos, demonstrations, and tours illustrate modern industrial practice. Selection of appropriate processes.
125. Introduction to Machine Shop
(1) STAFF
Prerequisite: ME majors only.
Not open for credit to students who have completed Mechanical Engineering 156S.
Basic machine shop skills course. Students learn to work safely in a machine shop. Students are introduced to the use of hand tools, the lathe, the milling machine, drill press, saws, and precision measuring tools. Students apply these skills by completing a project.

10. Statics
(4) STAFF
Prerequisite: Math 3B, or AP Calculus AB with a score of 5, or AP Calculus BC with a score of 3 or better; and Physics I
Introduction to applied mechanics. Forces, moments, couples, and resultants; vector algebra; construction of free body diagrams; equilibrium in 2- and 3-dimensions; analysis of frames, machines, trusses and beams; distributed forces; friction.

15. Strength of Materials
(4) BELTZ
Prerequisites: ME 14 with a minimum grade of C-; open to mechanical engineering majors only.
Properties of structural materials, including Hooke's law and behavior beyond the elastic limit. Concepts of stress, strain, displacement, force, force systems, and multiaxial stress states. Design applications to engineering structures, including problems of bars in tension, compression, and torsion, beams subject to flexure, pressure vessels, and buckling.

(4) CAMPAS, FOSTER
Prerequisites: Physics 2; ME 14 with a minimum grade of C-; and, Mathematics 5C or 6B, (may be taken concurrently); open to ME majors only.

17. Mathematics of Engineering
(3) MOEHLIS, GIBOU
Prerequisite: Engineering 3; Mathematics 5B or 6A (may be taken concurrently); open to ME majors only.
Introduction to basic numerical and analytical methods, with implementation using MATLAB. Topics include root finding, linear algebraic equations, introduction to matrix algebra, determinants, inverses and eigenvalues, curve fitting and interpolation, and numerical differentiation and integration. (S, M)

95. Introduction to Mechanical Engineering
(1-4) STAFF
Prerequisite: consent of instructor.
May be repeated for credit to a maximum of 6 units. Participation in projects in the laboratory or machine shop. Projects may be student- or faculty-originated depending upon student interest and consent of faculty member.

97. Mechanical Engineering Design Projects
(1-4) STAFF
Prerequisite: consent of instructor.
May be repeated for maximum of 12 units, variable hours. Course offers students opportunity to work on established departmental design projects. P/NP grading, does not satisfy technical elective requirement.

99. Introduction to Research
(1-3) STAFF
Prerequisite: consent of instructor.
May be repeated for maximum of 6 units. Students are limited to 5 units per quarter and 30 units total in all 98098/198/199/199AA-ZZ courses combined.
Directed study to be arranged with individual faculty members. Course offers exceptional students an opportunity to participate in a research group.

UPPER DIVISION

100. Professional Seminar
(1) STAFF
Prerequisite: undergraduate standing.
May be repeated for up to 3 units. May not be used as a departmental elective.
A series of weekly lectures given by university staff and outside experts in all fields of mechanical and environmental engineering.

104. Mechatronics
(3) BAMIEH
Prerequisites: ME 6; open to ME majors only.
Interfacing of mechanical and electrical systems and mechatronics. Basic introduction to sensors, actuators, and computer interfacing and control. Transducers and measurement devices, actuators, A/D and D/A conversion, signal conditioning and filtering. Practical skills developed in weekly lab exercises.

105. Mechanical Engineering Laboratory
(4) BENNETT, MATTHYS, VALENTE
Prerequisites: ME 151B, 152B, 163; and, Materials 101 or 100B.
Introduction to fundamental engineering laboratory measurement techniques and report writing skills. Experiments from thermosciences, fluid mechanics, mechanics, materials science and environmental engineering. Introduction to modern data acquisition and analysis techniques. (S)

106A. Advanced Mechanical Engineering Laboratory
(3) BAMIIEH
Prerequisite: ME 155A.
An advanced lab course with experiments in dynamical systems and control design. Students design, troubleshoot, and perform detailed, multi-session experiments.

110. Aerodynamics and Aeronautical Engineering
(3) BELTZ, MEINHART
Prerequisites: ME 14 and 152A.
Concepts from aerodynamics, including lift and drag analysis for airfoils as well as aircraft sizing/scaling issues. Structural mechanics concepts are applied to practical aircraft design. Intended for students considering a career in aeronautical engineering.

112. Energy
(3) MATTHYS
Prerequisite: Senior Undergraduate or Graduate Student status in the College of Engineering; or consent of Instructor.
Introduction to the field of Energetics. Topics may include energy sources and production, energy usage, renewable technologies, hardware, operating principles, environmental impact, energy reserves, national and global energy budgets, historical perspectives, economics, societal considerations, and others.

124. Advanced Topics in Transport Phenomena/Safety
(3) STAFF
Prerequisites: Chemical Engineering 120A-B-C, or ME 151A-B and ME 152A.
Same course as Chemical Engineering 124.

125AA-ZZ. Special Topics in Mechanical Engineering
(3) STAFF
Prerequisite: Consent of instructor.
May be repeated for credit to a maximum of 12 units provided letter designations are different. Students are advised to consult their faculty advisor before making their course selection.

134. Advanced Thermal Science
(4) MATTHYS
Prerequisite: ME 151C.
This class will address advanced topics in fluid mechanics, heat transfer, and thermodynamics. Topics of interest may include combustion, phase change, experimental techniques, materials processing, manufacturing, engines, HVAC, non-Newtonian fluids, etc.

140A. Numerical Analysis in Engineering
(3) MOEHLIS, GIBOU, MEIBURG
Prerequisites: ME 17 with a minimum grade of C- or Chemical Engineering 132A; open to ME and Chemical Engineering majors only.
Numerical solutions of problems described by linear and nonlinear differential equations with an emphasis on MATLAB. First and second order differential equations; systems of differential equations; linear algebraic equations, matrices and eigenvalues; boundary value problems; finite differences. (F)

140B. Theoretical Analysis in Mechanical Engineering
(3) MOEHLIS, GIBOU, MEIBURG
Prerequisites: ME 140A
Analysis of engineering problems formulated in terms of partial differential equations. Solutions of these mathematical models by means of analytical and numerical methods. Physical interpretation of the results.

141A. Introduction to Nanoelectromechanical and Microelectromechanical systems (NEMS/ MEMS)
(3) FOSTER, PENNATHUR
Prerequisites: ME 16 & 17; ME 152A & ME 151A (may be concurrent); or ECE 130A & 137A with a minimum grade of C- in both.
Introduction to nano- and microtechnology. Scaling laws and nanoscale physics are stressed. Individual subjects at the nanoscale including materials, mechanics, photonics, electronics, and fluids will be described, with an emphasis on differences of behavior at the nanoscale and real-world examples.

141B. MEMS: Processing and Device Characterization
(4) FOSTER, PENNATHUR
Prerequisites: ME 141A, ME 163 (may be concurrent); or ECE 141A.
Same course as ECE 141B.
Lectures and laboratory on semiconductor-based processing for MEMS. Description of key equipment and characterization tools used for MEMS and design, fabrication, characterization and testing of MEMS. Emphasis on current MEMS devices including accelerometers, comb drives, micro-reactors and capacitor-actuators. (W)

146. Molecular and Cellular Biomechanics
(3) VALENTE
Course introduces fundamental concepts in molecular and cellular biomechanics. Will consider the role of physical, thermal and chemical forces, examine their influence on cell strength and elasticity, and explore the properties of enzymatically-active materials. (F)

147. Mechatronics Using Labview
(3) HARE
Prerequisite: Engineering 3; and Mechanical Engineering 6
Not open for additional credit to students who have completed ME 125CH.
Introduction to mechatronics, electromagnetic...
systems, data acquisition, software programming and Labview. Students learn programming fundamentals, hardware interfacing and controls with simulated hardware and actual motor controllers. Students compete to control a motor system through a variety of control problems. Final projects automate working hardware to research labs.

151A. Thermosciences 1
(4) BENNETT, MEINHART
Prerequisite: Physics 2; ME 14 with a minimum grade of C-; and, Mathematics 5C. The mathematical models: dimensional compressible flow. Interactions, boundary-layer, and free convection, phase change, heat exchangers. Introduction to radiative heat transfer.

151B. Thermosciences 2
(4) BENNETT
Prerequisite: ME 151A and 152A. Convective heat transfer, external and internal flow, forced and free convection, phase change, heat exchangers. Introduction to radiative heat transfer.

152A. Fluid Mechanics
(4) CAMPAS, MEINHART
Prerequisite: Mathematics 5C; and ME 16 with a minimum grade of C-.

152B. Fluid Mechanics
(3) LUZZATO
Prerequisite: ME 152A; open to ME majors only.

153. Introduction to Mechanical Engineering Design
(3) BELTZ, TURNER
Prerequisites: ME 10 and 16; open to ME majors only.

154. Design and Analysis of Structures
(3) STAFF
Prerequisites: ME 15 and 16 with minimum grades of C-; open to ME majors only.

155A. Control System Design
(3) BAHMIEH, BULLO
Prerequisite: ME 17 with a minimum grade of C-; ME 140A; and ME 163. The discipline of control and its application. Dynamics and feedback. The mathematical models: transfer functions and state space descriptions. Simple control design (PID). Assessment of a control problem, specification, fundamental limitations, codesign of system and control.

155B. Control System Design
(3) BAHMIEH
Prerequisite: ME 155A. Dynamic system modeling using state-space methods, controllability and observability, state-space methods for control design including pole placement, and linear quadratic regulator methods. Observers and observer-based feedback controllers. Sampled-data and digital control. Laboratory exercises using MATLAB for simulation and control design.

156A. Mechanical Engineering Design - I
(3) SUSKO
Prerequisite: ME 14, with a minimum grade of C-; and ME 15, with a minimum grade of C-; and MATRLL 101 (or MATRLL 100B); or consent of instructor. Open to ME majors only.

156B. Mechanical Engineering Design II
(3) SUSKO
Prerequisites: ME 156A; open to ME majors only.

157. Introduction to Multiphysics Simulation
(3) MEINHART
Prerequisite: Mechanical Engineering 151A-B; and Mechanical Engineering 152A-B; and Mechanical Engineering 140A

158. Computer Aided Design and Manufacturing
(3) BOTTHMAN
Prerequisites: ME 10 and 156A; open to ME majors only.

162. Introduction to Elasticity
(3) MCMEIKING, BELTZ
Prerequisites: ME 15 and 140A.

(3) MEIZIC, MCMEIKING
Prerequisites: ME 16 with a minimum grade of C-; open to ME majors only.

166. Advanced Strength of Materials
(3) FOSTER, DAILY
Prerequisite: ME 15.

167. Structural Analysis
(3) YANG
Prerequisites: ME 15 and ME 140A.

169. Nonlinear Phenomena
(4) STAFF
Prerequisites: Physics 105A or ME 163; or upper-division standing in ECE. Same course as ECE 183 and Physics 106. Not open for credit to students who have completed ME 163C.

170. Introduction to Robotics: Dynamics and Control
(4) BYL
Prerequisites: Physics 105A or ME 163; or upper-division standing in ECE. Same course as ECE 183 and Physics 106. Not open for credit to students who have completed ME 163C.

179L. Introduction to Robotics: Design Laboratory
(4) STAFF
Prerequisites: ENGR 3; and ME 6 or ECE 2A. Not open for credit to student who have completed Mechanical Engineering 170C or ECE 181C.

186. Manufacturing and Materials
(3) LEVI
Prerequisite: Materials 100B or 101.

187. Manufacturing and Materials
(3) LEVI
Prerequisites: ME 15 and 151C; and, Materials 100B or 101.

189P. Introduction to Robotics: Planning and Kinematics
(3) BULLO
Prerequisites: Engr 3; and either ME 17 or ECE 130C (may be taken concurrently).

195. Materials in Engineering
(3) LEVI
Prerequisite: Materials 100B or 101.

196. Manufacturing and Materials
(3) LEVI
Prerequisites: ME 15 and 151C; and, Materials 100B or 101.

197. Manufacturing and Materials
(3) LEVI
Prerequisite: Materials 100B or 101.

198. Manufacturing and Materials
(3) LEVI
Prerequisites: ME 15 and 151C; and, Materials 100B or 101.

199. Manufacturing and Materials
(3) LEVI
Prerequisite: Materials 100B or 101.

200. Manufacturing and Materials
(3) LEVI
Prerequisites: ME 15 and 151C; and, Materials 100B or 101.

201. Manufacturing and Materials
(3) LEVI
Prerequisite: Materials 100B or 101.
Understanding and the key physical concepts and basic mathematical relationships involved in each of the processes discussed.

189A. Capstone Mechanical Engineering Design Project

(2) SUSKO

Prerequisite: ME 105, ME 151C, ME 152B, ME 153, and ME 163; or consent of instructor. Open to ME majors only.

Designed for majors. Concurrently offered with ME 156A. Quarters usually offered: Fall. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project.

Course can only be repeated as a full sequence (189A-B-C).

Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Emphasis on engineering communication, such as reports and oral presentations, are covered. Course emphasizes practical, hands-on experience, and the integration of analytical and design skills acquired in the companion ME 156 courses.

189B. Capstone Mechanical Engineering Design Project

(2) SUSKO

Prerequisite: ME 189A

Designed for majors. Concurrently offered with ME 156B. Quarters usually offered: Winter. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project.

Course can only be repeated as a full sequence (189A-B-C).

Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Emphasis on engineering communication, such as reports and oral presentations, are covered. Course emphasizes practical, hands-on experience, and the integration of analytical and design skills acquired in the companion ME 156 courses.

189C. Capstone Mechanical Engineering Design Project

(2) SUSKO

Prerequisite: ME 189A-B

Designed for majors. Quarters usually offered: Spring. A 3-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project. Course can only be repeated as a full sequence (189A-B-C).

Students work in teams under the direction of a faculty advisor (and possibly an industrial sponsor) to tackle an engineering design project. Emphasis on engineering communication, such as reports and oral presentations, are covered. Course emphasizes practical, hands-on experience, and the integration of analytical and design skills acquired in the companion ME 156 courses.

193. Internship in Industry

(1) STAFF

Prerequisite: consent of instructor and prior departmental approval needed. Cannot be used as a departmental elective. May be repeated to a maximum of 2 units. Students obtain credit for a mechanical engineering related internship and/or industrial experience under faculty supervision. A 6-10 page written report is required for credit.

197. Independent Projects in Mechanical Engineering Design

(1-4) STAFF

Prerequisites: ME 16; consent of instructor. May be repeated for a maximum of 12 units, variable hours. No more than 4 units may be used as departmental electives. Special projects in design engineering. Course offers motivated students opportunity to synthesize academic skills by designing and building new machines.

199. Independent Studies in Mechanical Engineering

(1-5) STAFF

Prerequisites: consent of instructor; upper-division standing; completion of two upper-division courses in Mechanical Engineering.

Students must have a minimum of 3.0 grade-point average for the preceding three quarters and are limited to 5 units per quarter and 30 units total in all 98/99/198/199/199DC/199RA courses combined. No more than 4 units may be used as departmental electives. May be repeated to 12 units. Directed individual study.

GRADUATE COURSES

Graduate courses for this major can be found in the UCSB General Catalog.

Technology Management

Technology Management Program

Phelps Hall, Room 1332

Telephone (805) 893-5133

Web site: www.tmp.ucsb.edu

Chair: Robert A. York

Vice Chair: David Seibold

Faculty

Stephen Barley, Ph.D., Massachusetts Institute of Technology, Distinguished Professor

John E. Bowers, Ph.D., Stanford University, Distinguished Professor

Gary S. Hansen, Ph.D., University of Michigan, Associate Professor

Paul Leonardi, Ph.D., Stanford University, Professor

Kyle Lewis, Ph.D., University of Maryland, Professor

Renee Rottner, Ph.D., UC Irvine, Assistant Professor

David Seibold, Ph.D., Michigan State University, Distinguished Professor

Robert A. York, Ph.D., Cornell University, Professor

MISSION STATEMENT

 TMP is a unique educational program that exposes innovative, energetic, and entrepreneurial students to key aspects of technology, business practices, new venture creation, and professional development. Dedicated to the study of management, organizational and entrepreneurial business processes involved in transforming new discoveries in science and engineering into economically productive enterprises, TMP is redefining entrepreneurial education with a comprehensive curriculum for the creation and management of tomorrow’s technology ventures.

The Technology Management Certificate

The Technology Management Certificate program provides students a solid foundation in business fundamentals and entrepreneurialism as it applies to new technologies and technology-oriented companies. This certificate serves as an official recognition that the student has a solid grounding in fundamental business strategies and models, opportunity recognition and new-venture creation and marketing.

The program also provides access to many professionals familiar with the demands of starting new businesses as well as running existing companies through its extra-curricular offerings.

Technology Management Program Courses

21. Past, Present and Future of Entrepreneurship

(3) GREATHOUSE

Quarters usually offered: Spring.

The historical and present state of entrepreneurship will be explored, along with the potential future direction of startups. Students will be encouraged to start small ventures as a means of determining their proclivity for an entrepreneurial lifestyle.

111. Opportunities and Perspectives in Technology, Business, and Society

(1) STAFF

Prerequisite: upper division standing.

Enrollment Comments: Quarters usually offered: Fall, Winter, Spring.

Lecture series where entrepreneurial, technological, business, and governmental leaders share their lessons of experience and discuss current business issues. For anyone interested in entrepreneurship, management, technology development, and commercialization and the impact that innovation has on society.

120. Business Strategy & Leadership Skills

(4) HANSEN

Prerequisite: upper division standing.

Introduction to critical business principles and practices required by leaders for business success and societal benefit. Students will be exposed to
key management theories, models and tools in strategy, finance, accounting, commercialization, marketing, and sales.

122. Entrepreneurship
(4) STAFF
Prerequisite: TMP 120 with grade of B- or better, and upper division standing
Learn how to start any kind of venture; for profit, non-profit, service, sole-proprietorship, with a focus on high-tech ventures. Analysis of new business opportunities, development of customer-centric value propositions, financing, marketing, selling and protection of intellectual property.

124. Entrepreneurial Marketing
(2) STAFF
(Offered through UC Extension)
Prerequisite: Writing 2 with a minimum grade of B- and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, or 109*) and upper division standing.
Introduction to basic marketing concepts and how these concepts can be applied to any organization, particularly technology firms. Additionally, students will be introduced to how management of the marketing function within an organization is critical to the organization’s success. (F, W, S)

126. New Venture Finance
(2) STAFF
(Offered through UC Extension)
Recommended Preparation: Economics 3A or equivalent.
Prerequisite: Upper division standing.
Presents the tools necessary for the strategic analysis and understanding of financial information particular to new ventures. Provides insight into how financial information can be used to design optimal financing strategies, prepare valuation models for new ventures, and assist in strategic planning for the venture. (F, W, S)

127. Organization Teams and Talent Management
(3) STAFF
(Offered through UC Extension)
Prerequisite: Writing 2 with a minimum grade of B and Writing 50 or equivalent, upper division standing.
Focuses on the important link between the business and talent strategy including talent value chain, recruitment/selection strategies for rewards/incentives, employee relations, leadership and team formation, conflict resolution, problem solving, and decision-making, importance of organization culture; culture diversity and global village. (W, S)

130. Operations Management
(3) STAFF
Prerequisite: Upper Division standing and Writing 2 and Writing 50, with grades of B- or better.
Studies the flow of materials and information necessary to effectively and efficiently supply products and/or services to customers. Provides an understanding of the principles of design and management of manufacture, service, and supply chain organizations, business processes and systems.

131. Introductions to Patents and Intellectual Property
(3) STAFF
Prerequisite: Writing 2 with a minimum grade of B- and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) and upper division standing.
Provides emerging inventors, entrepreneurs, and scientists with a working knowledge of intellectual property (patents, copyrights, trademarks, and trade secrets), with the main focus being on patents. Will cover the basic functions of patents, structure of patents, and patent prosecution.

132. Business Planning for New Ventures
(4) STAFF
Prerequisite: Engineering 120 or Engineering 122, and Writing 50 or equivalent (ENGL 10, WRIT 50*, WRIT 105*, WRIT 107*, or 109*) with a minimum grade of B-.
Analysis and creation of a business plan for a new business venture including demand forecasting, financial modeling, selling of the new business idea, and other issues for current business conditions.

133. Selling High Tech Products
(4) STAFF
Prerequisite: upper division standing.
Learn the art of persuasion and selling. Theory and applications of the basic tenets of persuasion and how such scientifically supported techniques can be deployed to positively impact the sales process.

135. New Product Development
(4) BOWERS
Prerequisite: Upper division standing.
New product development requires technical and non-technical business persons to work across disciplines. Instruction is provided in a wide range of topics concerning customer driven product innovation. Students learn new product development processes, tools, techniques, and organizational skills.

136. Project Management
(3) STAFF
Prerequisite: Upper division standing.
Introduces the theory, concepts, techniques, vocabulary, and practical knowledge of project management practice. Students will learn about the process groups and knowledge areas comprising PMI’s Project Management Body of Knowledge. Provides a framework for conducting projects using project management principles.

144. Market Research for Business
(4) STAFF
Prerequisite: TMP 120 with grade of B- or better, and upper division standing.
Provides a high level introduction to modern marketing research. Course will cover the fundamental principles and techniques for market validation that are critical to launch, grow, and sustain a viable business. (F, S)

148A. New Venture Seminar
(3) STAFF
Recommended Preparation: TMP 122, TMP 149, or equivalent.
Quarters usually offered: Winter.
Continuation of twice-weekly seminar series covering the development of a validated and sustainable new business, with a focus on creating a writing business plan and oral presentation. Intended for students participating in the TMP New Venture Competition finals. (S)

149. Creating a Market-Tested Business Model
(4) DUNEIER
Prerequisite: TMP 122.
Quarters usually offered: Winter.
Course provides an experiential learning opportunity, showing how a successful business model can be created through the use of customer and market validation process. (W)

152. Decision Analysis
(4) DUNEIER
Prerequisite: TMP 120 with a grade of B- or better, and upper-division standing.
Recommended Preparation: PSTAT 5 series or PSTAT 109
Through a combination of lectures, role playing and case studies, students will develop an understanding of how decisions are made, the factors and biases that affect them, the tools that have been developed as a result, and the limitations that remain. The goal is to provide students with a solid foundation in the fundamentals of decision theory. By introducing real world applications that have a direct connection to the students, they will be inspired to apply what they have learned to their own decisions and further explore the topic well into the future.

191AA-ZZ. Special Topics in Business and Management
(2-4) STAFF
Prerequisite: Upper-division standing.
Enrollment Comments: Students must have a cumulative 3.0 for the preceding 3 quarters. May be repeated for credit provided there is no duplication of course content.
Courses provide for the study of topics of current interest in the areas of business, technology, management, entrepreneurship, and other issues related to management and creation of sustainable businesses.

GRADUATE COURSES
Graduate courses for this program can be found in the UCSB General Catalog.
CHEMICAL ENGINEERING 2017-18

PREPARATION FOR THE MAJOR

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 5</td>
</tr>
<tr>
<td>CH E 10</td>
</tr>
<tr>
<td>CHEM 1A, 1B, 1C or 2A, 2B, 2C</td>
</tr>
<tr>
<td>CHEM 1AL, 1BL, 1CL or 2AC, 2BC, 2CC</td>
</tr>
<tr>
<td>CHEM 6AL-BL</td>
</tr>
<tr>
<td>CHEM 109A or AH, 109B or BH</td>
</tr>
<tr>
<td>ENGR 3</td>
</tr>
<tr>
<td>MATH 3-A, 4-A, 6-A or 4AI-4BI, 6AI</td>
</tr>
<tr>
<td>PHYS 1, 2, 3L</td>
</tr>
</tbody>
</table>

UNIVERSITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American History and Institutions – (one 4-unit course, may be counted as G.E. if selected from approved list)</td>
</tr>
<tr>
<td>UC Entry Level Requirement: English Composition</td>
</tr>
<tr>
<td>Must be fulfilled within three quarters of matriculation</td>
</tr>
<tr>
<td>Satisfied by:</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION

General Subject Areas

Area A: English Reading & Comprehension – (2 courses required)

<table>
<thead>
<tr>
<th>A-1:</th>
<th>A-2:</th>
</tr>
</thead>
</table>

Areas D & E: Social Sciences, Culture and Thought
(2 courses minimum)

<table>
<thead>
<tr>
<th>Area:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areas F & G: The Arts, Literature</td>
</tr>
</tbody>
</table>
(2 courses minimum)

<table>
<thead>
<tr>
<th>Area:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 additional courses from Areas D, E, F, G, or H</td>
</tr>
</tbody>
</table>

Approved Technical Elective Requirement classes:

CH E 102	CHEM 123	MATRL 185
CH E 121	CHEM 126	MCDB 101A,B
CH E 124	CHEM 142A,B,C	MCDB 111
CH E 125	CHEM 145	MCDB 126A,B,C
CH E 126	CHEM 147	MCDB 133
CH E 141	CHEM 150	MCDB 138
CH E 152B	ECE 130A,B,C	ME 110
CH E 154	ECE 183	ME 112
CH E 160	ENGR 101	ME 128
CH E 171	ENGR 103	ME 134
CH E 173	ENV S 105	ME 169
CH E 196	MATH 122A,B	ME 185
CH E 198	MATRL 100A,C	PHYS 123A,B
CHEM 109C	MATRL 135	PHYS 127AL
CHEM 115A,B,C	MATRL 160	PHYS 127BL

1Three units maximum from CH E 196 and CH E 198 combined; only for students with GPA of 3.0 or higher.

Technical electives taken:

NON-MAJOR ELECTIVES

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Education and Free Electives taken:</td>
</tr>
</tbody>
</table>

TOTAL UNITS REQUIRED FOR GRADUATION

187

Courses required for the major, inside or outside of the Department of Chemical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.
Chemical Engineering 2017-18

Freshman Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CH E 5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 1A or 2A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 3A</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>WRIT 1E or 2E</td>
<td>4</td>
</tr>
<tr>
<td>Winter</td>
<td>CHEM 1B or 2B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 1BL or 2BC</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MATH 3B</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 1</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>CHEM 1C or 2C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 1CL or 2CC</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ENGR 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 4A or 4 AI</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 2</td>
<td>4</td>
</tr>
</tbody>
</table>

Total 16

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CH E 10</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHM 109A or 109AH</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 4B or 4BI</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHYS 3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHYS 3L</td>
<td>1</td>
</tr>
<tr>
<td>Winter</td>
<td>CH E 107</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH E 110A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 6AL</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 109B or 109BH</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATH 6A or 6AI</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>CH E 110B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH E 132A</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 6BL</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATH 6B</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
</tbody>
</table>

Total 15

Junior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CH E 120A</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CH E 128</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH E 132B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MATRL 101 or MATRL 100B*^</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MATRL 100A or MATRL 100B</td>
<td>3</td>
</tr>
<tr>
<td>Winter</td>
<td>CH E 120B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH E 132C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHEM 113B</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td>CH E 119</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CH E 120C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH E 140A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHEM 113C</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 14

Senior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>CH E 140B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH E 152A</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Winter</td>
<td>CH E 180B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH E 184A</td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td>CH E 184B</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>G.E. Elective</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 14

*If applying to the BS/MS Materials program student must take:
Sophomore year- Phys 4 in Winter or Spring
Junior year- MATRL 100A in Fall, MATRL 100B in winter, MATRL 100C in Spring

^Students may only count one course toward the major. (MATRL 101 OR MATRL 100B)
COMPUTER ENGINEERING 2017-18

PREPARATION FOR THE MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL or 2A, 2AC</td>
<td>5</td>
</tr>
<tr>
<td>CMPSC 16</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 24</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 32</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 40</td>
<td>5</td>
</tr>
<tr>
<td>ECE 1A-1B</td>
<td>2</td>
</tr>
<tr>
<td>ECE 10A, 10AL, 10B, 10BL, 10C, 10CL</td>
<td>15</td>
</tr>
<tr>
<td>ECE 15A</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A-B, 4A-B</td>
<td>16</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
</tr>
</tbody>
</table>

UNIVERSITY REQUIREMENTS

- American History and Institutions – (one 4-unit course)
 (may be counted as G.E. if selected from approved list)

- UC Entry Level Requirement: English Composition
 Must be fulfilled within three quarters of matriculation

 Satisfied by:_____

UPPER DIVISION MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 130A</td>
<td>4</td>
</tr>
<tr>
<td>ECE 139 or PSTAT 120A</td>
<td>4</td>
</tr>
<tr>
<td>ECE 152A</td>
<td>5</td>
</tr>
<tr>
<td>ECE 154A</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>68</td>
</tr>
</tbody>
</table>

Computer Engineering electives selected
from the following list: 48

Prior approval of the student’s departmental electives must be obtained from the student’s faculty adviser.

Must include at least 2 sequences and 8 units of senior computer systems project CMPSC 189 A-B/ECE 189A-B.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 130B</td>
<td></td>
</tr>
<tr>
<td>CMPSC 138</td>
<td></td>
</tr>
<tr>
<td>CMPSC 153A/ECE 153A</td>
<td></td>
</tr>
<tr>
<td>CMPSC 160</td>
<td></td>
</tr>
<tr>
<td>CMPSC 162</td>
<td></td>
</tr>
<tr>
<td>CMPSC 165A-B</td>
<td></td>
</tr>
<tr>
<td>CMPSC 170</td>
<td></td>
</tr>
<tr>
<td>CMPSC 171/ECE 151</td>
<td></td>
</tr>
<tr>
<td>CMPSC 174A</td>
<td></td>
</tr>
<tr>
<td>CMPSC 176A-B/ECE 155A-B</td>
<td></td>
</tr>
<tr>
<td>CMPSC 176C</td>
<td></td>
</tr>
<tr>
<td>CMPSC 177</td>
<td></td>
</tr>
<tr>
<td>CMPSC 178</td>
<td></td>
</tr>
<tr>
<td>CMPSC 181/ECE 181</td>
<td></td>
</tr>
<tr>
<td>ECE 122A-B</td>
<td></td>
</tr>
<tr>
<td>ECE 123</td>
<td></td>
</tr>
<tr>
<td>ECE 130A-B</td>
<td></td>
</tr>
<tr>
<td>ECE 147A-B</td>
<td></td>
</tr>
<tr>
<td>ECE 150</td>
<td></td>
</tr>
<tr>
<td>ECE 153B</td>
<td></td>
</tr>
<tr>
<td>ECE 154B</td>
<td></td>
</tr>
<tr>
<td>ECE 156A-B</td>
<td></td>
</tr>
<tr>
<td>ECE 160/CMPSC 182</td>
<td></td>
</tr>
<tr>
<td>ECE 178</td>
<td></td>
</tr>
<tr>
<td>ECE 179D, 179P</td>
<td></td>
</tr>
<tr>
<td>ECE 189A-B/ CMPSC 189A-B</td>
<td></td>
</tr>
</tbody>
</table>

Computer Engineering electives taken:

-

MATH, SCIENCE, ENGR. ELECTIVE

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(See ECE Dept. student office for the approved list)</td>
<td></td>
</tr>
<tr>
<td>Elective taken:</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL UNITS REQUIRED FOR GRADUATION

191
FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>ECE 1A</td>
<td>CMPSC 16</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>Math, Science,</td>
<td>ECE 1B</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>Engr. Elective</td>
<td>MATH 4A</td>
</tr>
<tr>
<td>G.E. Elective or CMPSC 8</td>
<td>4</td>
<td>MATH 3B</td>
<td>PHYS 2</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td>PHYS 1</td>
<td>WRIT 50E or G.E. Elective</td>
</tr>
</tbody>
</table>

Total: 17 17 17

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 24</td>
<td>4</td>
<td>CMPSC 40</td>
<td>CMPSC 32</td>
</tr>
<tr>
<td>ECE 10A</td>
<td>3</td>
<td>ECE 10B</td>
<td>ECE 10C</td>
</tr>
<tr>
<td>ECE 10AL</td>
<td>2</td>
<td>ECE 10BL</td>
<td>ECE 10CL</td>
</tr>
<tr>
<td>MATH 4B</td>
<td>4</td>
<td>ECE 15A</td>
<td>ECE 152A</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>PHYS 4</td>
<td>ECE 139 or PSTAT 120A</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>PHYS 4L</td>
<td></td>
</tr>
</tbody>
</table>

Total: 17 18 18

JUNIOR YEAR

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 154A</td>
<td>4</td>
<td>CMPSC 130A</td>
<td>CMPEN Elective</td>
</tr>
<tr>
<td>CMPEN Elective</td>
<td>8</td>
<td>CMPEN Elective</td>
<td>G.E. or Free Elective</td>
</tr>
<tr>
<td>G.E. or Free Electives</td>
<td>4</td>
<td>G.E. or Free Electives</td>
<td></td>
</tr>
</tbody>
</table>

Total: 16 16 12

SENIOR YEAR

<table>
<thead>
<tr>
<th>Units</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPEN Electives</td>
<td>12</td>
<td>CMPEN Electives</td>
<td>CMPEN Electives</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
<td>ENGR 101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free Elective</td>
<td></td>
</tr>
</tbody>
</table>

Total: 16 15 12

1. CMPSC 8 is recommended only for students who do not have prior programming experience, as programming experience is a prerequisite for CMPSC 16. CS 8 may be used to satisfy the Math, Science, Engineering Elective requirement.

2. PSTAT 120A is offered each quarter. ECE 139 is offered only in spring quarter, and is better suited for future upper division electives for the Computer Engineering major.

3. ENGR 101 may be taken any quarter of senior year.
COMPUTER SCIENCE 2017-18

PREPARATION FOR THE MAJOR 53

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 16</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 24</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 32</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 40</td>
<td>5</td>
</tr>
<tr>
<td>CMPSC 48</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 56</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 64</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A-B, 4A-B, 6A</td>
<td>20</td>
</tr>
<tr>
<td>PSTAT 120A</td>
<td>4</td>
</tr>
</tbody>
</table>

UPPER DIVISION MAJOR 63

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 111 or 140</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 130A-B</td>
<td>8</td>
</tr>
<tr>
<td>CMPSC 138</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 154</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 160 or 162</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 170</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>3</td>
</tr>
<tr>
<td>PSTAT 120B</td>
<td>4</td>
</tr>
</tbody>
</table>

Major Field Electives 28

(some from the following list (at least 8 units must be CMPSC courses)

Prior approval of the student's major field electives must be obtained from the faculty advisor.

<table>
<thead>
<tr>
<th>CMPSC 111<sup>1</sup></th>
<th>CMPSC 140<sup>1</sup></th>
<th>CMPSC/ECE 153A</th>
<th>CMPSC 160<sup>2</sup></th>
<th>CMPSC 162<sup>2</sup></th>
<th>CMPSC 165A-B</th>
<th>CMPSC 171/ECE 151</th>
<th>CMPSC 174A</th>
<th>CMPSC 176A-B-C</th>
<th>CMPSC 177</th>
<th>CMPSC 178</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ECE 180</td>
<td>ECE 181B</td>
<td>CMPSC 184</td>
<td>CMPSC 185</td>
<td>CMPSC 192<sup>3</sup></td>
<td>CMPSC 196<sup>3</sup></td>
<td>ECE 130A-B-C</td>
<td>ECE 152A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ECE 153B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 CMPSC 111 or CMPSC 140 can be used as an elective if not taken as a major course.

2 CMPSC 160 or CMPSC 162 can be used as an elective if not taken as a major course.

3Four units maximum from CMPSC 192 and CMPSC 196 combined; only for students with GPA of 3.0 or higher.

SCIENCE COURSES 20

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1, 2, 3, 3L</td>
<td>12</td>
</tr>
<tr>
<td>Science Electives (see Dept. for list)</td>
<td>8</td>
</tr>
</tbody>
</table>

UNIVERSITY REQUIREMENTS 50

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American History and Institutions - (one 4-unit course, may be counted as G.E. if selected from approved list)</td>
<td>4</td>
</tr>
</tbody>
</table>

UC Entry Level Requirement: English Composition

Must be fulfilled within three quarters of matriculation

Satisfied by: ____________________________

GENERAL EDUCATION 48

General Subject Areas

Area A: English Reading & Comprehension – (2 courses required)

<table>
<thead>
<tr>
<th>A-1:</th>
<th>A-2:</th>
</tr>
</thead>
</table>

Areas D & E: Social Sciences, Culture and Thought

(2 courses minimum)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Areas F & G: The Arts, Literature

(2 courses minimum)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

2 additional courses from Areas D, E, F, G, or H

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Special Subject Areas

Depth:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Ethnicity (1 course):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

European Traditions (1 course):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Writing (4 courses required):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

NON-MAJOR ELECTIVES 48

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Education and Free Electives taken:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

TOTAL UNITS REQUIRED FOR GRADUATION 184

Courses required for the major, inside or outside of the Department of Computer Science, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.
COMPUTER SCIENCE 2017-18

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.E. Elective or CMPSC 8*</td>
<td>4</td>
<td>CMPSC 16</td>
<td>4</td>
<td>CMPSC 24</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>MATH 3B</td>
<td>4</td>
<td>MATH 4A</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1, 2, or G.E. Elective</td>
<td>4</td>
<td>PHYS 1</td>
<td>4</td>
<td>PHYS 2</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>WRIT 1, 2, or G.E. Elective</td>
<td>4</td>
<td>Science or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

* CMPSC 8 is recommended only for students who do not have prior programming experience; programming experience is a prerequisite for CMPSC 16.

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 32</td>
<td>4</td>
<td>CMPSC 56</td>
<td>4</td>
<td>CMPSC 48</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 40</td>
<td>5</td>
<td>CMPSC 64</td>
<td>4</td>
<td>Math 6A</td>
<td>4</td>
</tr>
<tr>
<td>MATH 4B</td>
<td>4</td>
<td>PSTAT 120A</td>
<td>4</td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>WRIT 50</td>
<td>4</td>
<td>Science or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 130A</td>
<td>4</td>
<td>CMPSC 130B</td>
<td>4</td>
<td>CMPSC 154</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 138</td>
<td>4</td>
<td>Field Elective</td>
<td>4</td>
<td>PSTAT 120B</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>Free Elective</td>
<td>4</td>
<td>Field or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Science or Free Elective</td>
<td>4</td>
<td>G.E. Elective</td>
<td>4</td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 111 **</td>
<td>4</td>
<td>CMPSC 170</td>
<td>4</td>
<td>Field or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 160 ****</td>
<td>4</td>
<td>Field or Free Elective</td>
<td>4</td>
<td>Field or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Field or Free Elective</td>
<td>4</td>
<td>ENGR 101****</td>
<td>3</td>
<td>G.E. or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field or Free Elective</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td></td>
<td>15</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

** Or you may take CMPSC 140 in Winter Quarter to satisfy this requirement.

*** ENGR 101 may be taken any quarter of senior year.

**** Or you may take CMPSC 162 to satisfy this requirement.
ELECTRICAL ENGINEERING 2017-18

PREPARATION FOR THE MAJOR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL or 2A, 2AC</td>
<td>5</td>
</tr>
<tr>
<td>CMPSC 16</td>
<td>4</td>
</tr>
<tr>
<td>ECE 5</td>
<td>4</td>
</tr>
<tr>
<td>ECE 10A, 10AL, 10B, 10BL, 10C, 10CL</td>
<td>15</td>
</tr>
<tr>
<td>ECE 15A</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3A-B, 4A-B, 6A-B</td>
<td>24</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L, 5, 5L</td>
<td>20</td>
</tr>
</tbody>
</table>

UNIVERSITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American History and Institutions – (one 4-unit course, may be counted as G.E. if selected from approved list)</td>
<td></td>
</tr>
<tr>
<td>UC Entry Level Requirement: English Composition</td>
<td></td>
</tr>
<tr>
<td>Must be fulfilled within three quarters of matriculation</td>
<td></td>
</tr>
</tbody>
</table>

Satisfied by:

GENERAL EDUCATION

General Subject Areas

Area A: English Reading & Comprehension – (2 courses required)

- A-1:
- A-2:

Areas D & E: Social Sciences, Culture and Thought (2 courses minimum)

Areas F & G: The Arts, Literature (2 courses minimum)

2 additional courses from Areas D, E, F, G, or H

Special Subject Areas

Depth:

Ethnicity (1 course):

European Traditions (1 course):

Writing (4 courses required):

Approved Departmental Electives:

- ECE 120A-B
- ECE 122A-B
- ECE 123
- ECE 125
- ECE 130C
- ECE 135
- ECE 141A-B
- ECE 142
- ECE 144
- ECE 145A-B-C
- ECE 146A-B

Departmental Electives taken:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prior approval of the student's departmental electives must be obtained from the student's faculty adviser. Must include at least 2 sequences, one of which must be an approved EE Senior Capstone Design/Project course sequence.

NON-MAJOR ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses required for the major, inside or outside of the Department of Electrical and Computer Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL UNITS REQUIRED FOR GRADUATION

189
Major Requirements

Freshman Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Units</th>
<th>Winter</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>ECE 5</td>
<td>4</td>
<td>CMPSC 16</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>MATH 3B</td>
<td>4</td>
<td>MATH 4A</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 3</td>
<td>3</td>
<td>PHYS 1</td>
<td>4</td>
<td>PHYS 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>WRIT 2E or 50E</td>
<td>4</td>
<td>WRIT 50E or G.E.</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Units</th>
<th>Winter</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 10A</td>
<td>3</td>
<td>ECE 10B</td>
<td>3</td>
<td>ECE 10C</td>
<td>3</td>
</tr>
<tr>
<td>ECE 10AL</td>
<td>2</td>
<td>ECE 10BL</td>
<td>2</td>
<td>ECE 10CL</td>
<td>2</td>
</tr>
<tr>
<td>MATH 4B</td>
<td>4</td>
<td>ECE 15A</td>
<td>4</td>
<td>MATH 6B</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>MATH 6A</td>
<td>4</td>
<td>PHYS 5</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>PHYS 4</td>
<td>3</td>
<td>PHYS 5L</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>17</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Units</th>
<th>Winter</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 130A</td>
<td>4</td>
<td>ECE 130B</td>
<td>4</td>
<td>ECE 137B</td>
<td>4</td>
</tr>
<tr>
<td>ECE 132</td>
<td>4</td>
<td>ECE 137A</td>
<td>4</td>
<td>ECE 139(^1)</td>
<td>4</td>
</tr>
<tr>
<td>ECE 134</td>
<td>4</td>
<td>ECE Elective</td>
<td>4</td>
<td>ECE 152A(^2)</td>
<td>5</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4</td>
<td>G.E. or Free Elective</td>
<td>4</td>
<td>G.E. or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Units</th>
<th>Winter</th>
<th>Units</th>
<th>Spring</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE Electives(^4)</td>
<td>12</td>
<td>ECE Electives</td>
<td>8</td>
<td>ECE Electives</td>
<td>8</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4</td>
<td>G.E. or Free Electives</td>
<td>8</td>
<td>ENGR 101(^3)</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. ECE 139 may also be taken in the spring quarter of the sophomore year.
2. ECE 152A may also be taken in the spring quarter of the sophomore year.
3. ENGR 101 may be taken any quarter of senior year.
4. ECE Electives must include at least two sequences, one of which must be an approved EE senior capstone design project sequence.
MECHANICAL ENGINEERING 2017-18

PREPARATION FOR THE MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL, 1B, 1BL or 2A, 2AC, 2B, 2BC</td>
<td>10</td>
</tr>
<tr>
<td>ENGR 3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3A-B, 4A-B, 6A-B</td>
<td>24</td>
</tr>
<tr>
<td>ME 6</td>
<td>4</td>
</tr>
<tr>
<td>ME 10</td>
<td>4</td>
</tr>
<tr>
<td>ME 12S</td>
<td>1</td>
</tr>
<tr>
<td>ME 14</td>
<td>4</td>
</tr>
<tr>
<td>ME 15</td>
<td>4</td>
</tr>
<tr>
<td>ME 16</td>
<td>4</td>
</tr>
<tr>
<td>ME 17</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L</td>
<td>16</td>
</tr>
</tbody>
</table>

UPPER DIVISION MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRL 101 or MATRL 100B*</td>
<td>3</td>
</tr>
<tr>
<td>ME 104</td>
<td>3</td>
</tr>
<tr>
<td>ME 105</td>
<td>4</td>
</tr>
<tr>
<td>ME 151A-B-C</td>
<td>11</td>
</tr>
<tr>
<td>ME 152A-B</td>
<td>7</td>
</tr>
<tr>
<td>ME 153</td>
<td>3</td>
</tr>
<tr>
<td>ME 155A</td>
<td>3</td>
</tr>
<tr>
<td>ME 163</td>
<td>3</td>
</tr>
</tbody>
</table>

* see note on next page

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRL 101 or MATRL 100B*</td>
<td>3</td>
</tr>
<tr>
<td>ME 104</td>
<td>3</td>
</tr>
<tr>
<td>ME 105</td>
<td>4</td>
</tr>
<tr>
<td>ME 151A-B-C</td>
<td>11</td>
</tr>
<tr>
<td>ME 152A-B</td>
<td>7</td>
</tr>
<tr>
<td>ME 153</td>
<td>3</td>
</tr>
<tr>
<td>ME 155A</td>
<td>3</td>
</tr>
<tr>
<td>ME 163</td>
<td>3</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 154 or 157 or 167</td>
<td>3</td>
</tr>
<tr>
<td>ME 156A-B</td>
<td>6</td>
</tr>
<tr>
<td>ME 189A-B-C</td>
<td>9</td>
</tr>
</tbody>
</table>

Engineering Electives

Prior approval of the student's departmental electives must be obtained from the student's faculty adviser. Note, the list of approved electives may change from year to year and that not all courses are offered each year.

Approved Engineering Electives:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 109A</td>
<td>ME 114</td>
</tr>
<tr>
<td>CHEM 123</td>
<td>ME 124</td>
</tr>
<tr>
<td>ECE 147A,C</td>
<td>ME 125 AA-ZZ</td>
</tr>
<tr>
<td>ECE 181B</td>
<td>ME 128</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>ME 134</td>
</tr>
<tr>
<td>ENGR 195A,B,C</td>
<td>ME 138</td>
</tr>
<tr>
<td>ENV S 105</td>
<td>ME 140B</td>
</tr>
<tr>
<td>MATRL 100A</td>
<td>ME 141A,B</td>
</tr>
<tr>
<td>MATRL 100C</td>
<td>ME 146</td>
</tr>
<tr>
<td>MATRL 186</td>
<td>ME 147</td>
</tr>
<tr>
<td>MATRL 188</td>
<td>ME 155B</td>
</tr>
<tr>
<td>ME 106A</td>
<td>ME 157</td>
</tr>
<tr>
<td>ME 110</td>
<td>ME 158</td>
</tr>
<tr>
<td>ME 112</td>
<td>ME 162</td>
</tr>
</tbody>
</table>

1. ME W167 online version of ME 167.
2. Four units maximum from ME 197 and ME 199 combined

NON-MAJOR ELECTIVES

General Education and Free Electives taken:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
</table>

UNIVERSITY REQUIREMENTS

- **American History and Institutions** – (one 4-unit course, may be counted as G.E. if selected from approved list)
- **UC Entry Level Requirement: English Composition**
 - Must be fulfilled within three quarters of matriculation
 - Satisfied by:

GENERAL EDUCATION

General Subject Areas

- **Area A: English Reading & Comprehension** – (2 courses required)
 - A-1: __________________________ A-2: __________________________

- **Areas D & E: Social Sciences, Culture and Thought**
 - (2 courses minimum)
 - Areas F & G: The Arts, Literature
 - (2 courses minimum)

- 2 additional courses from Areas D, E, F, G, or H

Special Subject Areas

- **Depth:**

 - Ethnicity (1 course):

 - European Traditions (1 course):

- **Writing (4 courses required):**

NON-MAJOR ELECTIVES

General Education and Free Electives taken:

| Course | Units |

TOTAL UNITS REQUIRED FOR GRADUATION

191 units
MECHANICAL ENGINEERING 2017-18

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>CHEM 1B or 2B</td>
<td>3</td>
<td>MATH 6A</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>CHEM 1BL or 2BC</td>
<td>2</td>
<td>ME 10</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 3 or G.E. Elective</td>
<td>3/4</td>
<td>MATH 3B</td>
<td>4</td>
<td>ME 12S<sup>1</sup></td>
<td>1</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>PHYS 1</td>
<td>4</td>
<td>PHYS 2</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td>WRIT 2E or 50E</td>
<td>4</td>
<td>WRIT 50E, ENGR 3, or</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G.E. Elective</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16/17</td>
<td></td>
<td>17</td>
<td></td>
<td>16/17</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4B</td>
<td>4</td>
<td>MATH 6A</td>
<td>4</td>
<td>MATH 6B</td>
<td>4</td>
</tr>
<tr>
<td>ME 14</td>
<td>4</td>
<td>ME 6</td>
<td>4</td>
<td>ME 16</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>ME 15</td>
<td>4</td>
<td>ME 17</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>PHYS 4</td>
<td>3</td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

JUNIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 104</td>
<td>3</td>
<td>MATRL 101 or</td>
<td>3</td>
<td>ME 105</td>
<td>4</td>
</tr>
<tr>
<td>ME 151A</td>
<td>4</td>
<td>MATRL 100B<sup>3^</sup></td>
<td>3</td>
<td>ME 153</td>
<td>3</td>
</tr>
<tr>
<td>ME 152A</td>
<td>4</td>
<td>ME 151B</td>
<td>4</td>
<td>ME 151C</td>
<td>3</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4</td>
<td>ME 152B</td>
<td>3</td>
<td>ME 155A</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ME 163</td>
<td>3</td>
<td>G.E. or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G.E. or Free Elective</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

SENIOR YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 154, ME 157, or</td>
<td>3</td>
<td>ME 156B</td>
<td>3</td>
<td>ME 189C</td>
<td>3</td>
</tr>
<tr>
<td>ME 167<sup>1</sup></td>
<td>3</td>
<td>ME 189B</td>
<td>3</td>
<td>Departmental Electives</td>
<td>6</td>
</tr>
<tr>
<td>ME 156A</td>
<td>3</td>
<td>Departmental Electives</td>
<td>6</td>
<td>G.E. or Free Electives</td>
<td>4</td>
</tr>
<tr>
<td>ME 189A</td>
<td>3</td>
<td>G.E. or Free Electives</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departmental Electives</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.E. or Free Electives</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

¹ME 12S is offered every Fall, Winter, and Spring quarter. The ME 12S requirement must be finished before the start of the Third Year.

²If applying to the BS/MS Materials program, juniors must take MATRL 100A in Fall, MATRL 100B in Winter, and MATRL 100C in Spring.

³Course availability may vary. If using ME 154, ME 157, or ME 167 to satisfy requirement, students may not count the course as an Engineering Elective.

[^]Students may only count one course toward the major. (MATRL 101 OR MATRL 100B)
Additional Resources and Information

Gaucho On-Line Data (GOLD) – student record, class registration, degree audits—https://my.sa.ucsb.edu/gold

UMAIL – campus email for official notifications—http://www.umail.ucsb.edu

Schedule of Classes information – quarterly calendar and information—http://www.registrar.ucsb.edu

General Catalog for UCSB – academic requirements for all campus majors—http://my.sa.ucsb.edu/Catalog/

Summer Sessions – Summer programs and course offerings—http://www.summer.ucsb.edu

Tutoring – course-specific tutoring and academic skills development—http://www.clas.ucsb.edu

Education Abroad Program – EAP options for engineering students—email: eap@engineering.ucsb.edu

College Honors Program – program information and opportunities—email: honors@engineering.ucsb.edu

Advising Staff

College Advisors: general education requirements, academic standing, final degree clearance

Departmental Advisors: course selection, class enrollment, change of major, academic requirements

<table>
<thead>
<tr>
<th>College Advising staff</th>
<th>Phone</th>
<th>Email</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>(805) 893-2809</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departmental Advisors:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>893-8671</td>
<td>cheugrads@engr.ucsb.edu</td>
<td>Engr.II, Rm. 3357</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>893-8292</td>
<td>ugradinfo@ece.ucsb.edu</td>
<td>Trailer 380, Rm. 101</td>
</tr>
<tr>
<td>Computer Science</td>
<td>893-4321</td>
<td>ugrad@cs.ucsb.edu</td>
<td>Harold Frank Hall, Rm. 2104</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>893-8292</td>
<td>ugradinfo@ece.ucsb.edu</td>
<td>Trailer 380, Rm. 101</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>893-8198</td>
<td>meugrad@engr.ucsb.edu</td>
<td>Engr.II, Rm. 2355</td>
</tr>
<tr>
<td>Technology Management</td>
<td>893-2729</td>
<td>tmp@tmp.ucsb.edu</td>
<td>Phelps 1333</td>
</tr>
</tbody>
</table>

Winners of TMP’s 2016 New Venture Competition, Team OSMO. Their device helps scientists study water by making it less dangerous to collect water samples.
Policy on Academic Conduct

It is expected that all students in the College of Engineering, as well as those who take courses within the College, understand and subscribe to the ideal of academic integrity. To provide guidance on this, the College of Engineering has adopted a policy on expected academic conduct, a full copy of which appears below. As an example, it is not acceptable by default to work collaboratively on a homework assignment. In computer programming courses, a mere preliminary discussion of an assignment can lead to similarities in the final program that are detectable by sophisticated plagiarism detection software (see http://theory.stanford.edu/~aiken/moss/).

Instructors who have established that academic misconduct has occurred in their class have a variety of options at their disposal, which range from allowing the student to redo the work and/or assigning a failing grade to referring the case to the UCSB Judicial Affairs Office for either a letter of warning or a formal hearing before the Student-Faculty Committee on Student Conduct. Instructors are encouraged to discuss these remedies in further detail with the Associate Dean for Undergraduate Studies in the College of Engineering. Moreover, students who have been suspended because of academic misconduct charges are encouraged to work with the College of Engineering Undergraduate Office to develop an amended schedule that will permit the timeliest possible completion of a degree program.

College of Engineering Policy
The College of Engineering’s Academic Conduct Policy is compatible with that of the University of California, in that it is expected that students understand and subscribe to the ideal of academic integrity, and are willing to bear individual responsibility for their work. Any work (written or otherwise) submitted to fulfill an academic requirement must represent a student’s original work. Any act of academic dishonesty, such as cheating or plagiarism, will subject a person to University disciplinary action.

Cheating is defined by UCSB as the use, or attempted use, of materials, information, study aids, or services not authorized by the instructor of the course. The College of Engineering interprets this to include the unauthorized use of notes, study aids, electronic or other equipment during an examination or quiz; copying or looking at another individual’s examination or quiz; taking or passing information to another individual during an examination or quiz; taking an examination or quiz for another individual; allowing another individual to take one’s examination; stealing examinations or quizzes. Students working on take-home exams or quizzes should not consult students or sources other than those permitted by the instructor.

Plagiarism is defined by UCSB as the representation of words, ideas, or concepts of another person without appropriate attribution. The College of Engineering expands this definition to include the use of or presentation of computer code, formulae, ideas, or research results without appropriate attribution.

Collaboration on homework assignments (i.e., problem sets), especially in light of the recognized pedagogical benefit of group study, is dictated by standards that can and do vary widely from course to course and instructor to instructor. The use of old solution sets and published solution guides presents a similar situation. Because homework assignments serve two functions—helping students learn the material and helping instructors evaluate academic performance—it is usually not obvious how much collaboration or assistance from commonly-available solutions, if any, the instructor expects. It is therefore imperative that students and instructors play an active role in communicating expectations about the nature and extent of collaboration or assistance from materials that is permissible or encouraged.

Expectations of Members of the College Academic Community
In their classes, faculty are expected to (i) announce and discuss specific problems of academic dishonesty that pertain particularly to their classes (e.g., acceptable and unacceptable cooperation on projects or homework); (ii) act reasonably to prevent academic dishonesty in preparing and administering academic exercises, including examinations, laboratory activities, homework and other assignments, etc.; (iii) act to prevent cheating from continuing when it has been observed or reported to them by students, chairs, or deans; and, (iv) clearly define for students the maximum level of collaboration permitted for their work to still be considered individual work.

In their academic work, students are expected to (i) maintain personal academic integrity; (ii) treat all exams and quizzes as work to be conducted privately, unless otherwise instructed; (iii) take responsibility for knowing the limits of permissible or expected cooperation on any assignment.
Notes
Notes
Follow, Like and Find
UC Santa Barbara College of Engineering on Social Media