# Tribute to Prof. Larry Coldren



Connie Chang-Hasnain EECS Dept. UC Berkeley

> UCSB 3/16/2018

# **VCSELs**



Kenichi Iga, Proceedings of the IEEE (2013).



# Vertical-Cavity Surface-Emitting Laser (VCSEL)

#### Advantages

- Excellent fiber coupling
- Low power consumption
- Wafer-scale testing, Low-cost fabrication
- Single longitudinal mode
- 2D Array fabrication

## **New Applications in 3D Sensing**





## **3D sensing**



## Vertical-Cavity Surface Emitting Lacor (VCSEL)

#### Advantages

Excellent fiber coupling

Rapidly growing to B\$/year market for 3D sensing in smart phones and facial recognition applications.





#### 3D sensing



#### Submilliamp threshold vertical-cavity laser diodes

Randall S. Geels and Larry A. Coldren

Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106

(Received 18 June 1990; accepted for publication 8 August 1990)

We report for the first time room-temperature, continuous-wave operation of individual vertical-cavity laser diodes with submilliampere threshold currents. A single quantum well active region emitting at 979 nm surrounded by GaAs/AlAs Bragg reflector mirrors was used. Threshold currents were as low as 0.7 mA. A record low linewidth-power product of 5 MHz mW and a linewidth as narrow as 85 MHz was measured. High yield and good uniformity were demonstrated.



# **Tunable VCSEL Applications**

## **Optical Communications**

- Wavelength Division Multiplexing (WDM)
- Dense WDM (DWDM)
  - O-band: 1260 nm-1360 nm
  - S-band: 1450 nm-1530 nm
  - C-band: 1530 nm-1565 nm
  - L-band: 1565 nm-1625 nm
- Shortwave WDM (SWDM4)
  - 850 nm 940 nm
- Coarse WDM (CWDM)
  - 20 nm per channel



## Optical Coherence Tomography

Depth Resolution  $\delta z =$ 

 $\pi$   $\Delta\lambda$ 

 $2 \ln 2 \lambda^2$ 

- 50 nm+ for 10 µm resolution
- 100 nm+ for 5 µm resolution
- Field of View ∝ sweep rate
  - In vivo Optical Coherence Tomography



medOCT group, Center of biomedical Engineering and Physics, Medical University Vienna, Austria



March 16, 2018

# **Electrostatic Tuning of MEMS-VCSEL**

#### First MEMS Tunable VCSEL

- 940-nm VCSEL; suspended cantilever GaAs/AlGaAs DBR
- Electrostatic tuning ~32 nm, 300 kHz



#### **Praevium/Thorlabs**

- Electrically pumped 1060 nm VCSEL wiht 63.8 nm sweep
  - *I<sub>th</sub>*~0.5 mA, *P<sub>out</sub>* ~0.4 mW
  - 150 kHz sweep rate
- OCT applications



Chang-Hasnain group, LEOS Conference, postdeadline, 1994; M.S. Wu, *Electron. Lett.* 1995. D. D. John, et. al, J. of Lightwave Technol. (2015).



# New Design – Tale of Two Cavities



Qiao, Cook, Li, Chang-Hasnain, IEEE JSTQE. 23, 1700516 (2017).

# Record Tuning Ratio @ 1060 nm

- Static tuning range spans 1023.2 nm to 1096.3 nm
- Fractional tuning range  $\Delta \lambda / \lambda = 6.9\%$



# Conventional Wisdom: Don't Do it!



Qiao, Cook, Li, Chang-Hasnain, IEEE JSTQE. **23**, 1700516 (2017).

# **Resonant Cavity and Optical Confinement**

Conference on Lasers and Electro-Optics, Anaheim, CA



|                      | =        |
|----------------------|----------|
| Nednesday            | AFTERNOO |
| 27 April 1988        | WI       |
| PACIFIC BALLROOM A/B |          |
|                      |          |

1:00 PM Poster Session: 2 SEMICONDUCTOR DIODE LASERS

WM1 Analysis and design of a novel paralleldriven MQW-DBR surface-emitting diode taser

R. GEELS, R. H. YAN, J. W. SCOTT, S. W. COR-ZINE, R. J. SIMES, LARRY A. COLDREN, UC-Santa Barbara, Electrical & Computer Engineering Dept., Santa Barbara, CA 93106.

Several significant features of our design are indicated in Fig. 1(b). The MQW-undoped active regions are placed at maxima of the cavity standing-wave pattern, and the lossy highly doped regions are centered on standing-wave nulls. This, together with the fact that the entire lateral mode width crosses the MQW active regions, results in a much higher net confinement factor ( $\sim$ 0.2) than in



Chang-Hasnain, UC Berkeley

The BOOK



Wiley Series in Microwave and Optical Engineering • Kal Chang, Series Editor

## Diode Lasers and Photonic Integrated Circuits

SECOND EDITION

Larry A. Coldren Scott W. Corzine Milan L. Mašanović

WILEY



Chang-Hasnain, UC Berkeley

#### Wide, Continuously Swept VCSEL Using a Novel Air-Cavity-Dominant Design

Pengfei Qiao<sup>1</sup>, Kevin T. Cook<sup>1</sup>, Jipeng Qi<sup>1</sup>, Larry A. Coldren<sup>2</sup> and Connie J. Chang-Hasnain<sup>1</sup>

1: EECS Department and Tsinghua-Berkeley Shenzhen Institute, University of California, Berkeley, CA 94720, USA 2: Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93117, USA Email address: cch@berkeley.edu

**Abstract:** We report electrically-pumped MEMS-VCSELs with a record 70 nm continuous wavelength sweep at 1057-nm with 600 kHz rate using a novel air-cavity-dominant design. Such devices are promising for swept-source OCT and 3D sensing applications. **OCIS codes:** (140.7260) Vertical cavity surface emitting lasers; (050.6624) Subwavelength structures; (230.4685) Optical microelectromechanical devices; (260.2110) Electromagnetic optics; (140.3600) Lasers, tunable.

#### **Research Article**



## Air Cavity Dominant VCSELs with a Wide Wavelength Sweep

#### KEVIN T. COOK,<sup>1</sup> PENGFEI QIAO,<sup>1</sup> JIPENG QI,<sup>1</sup> LARRY A. COLDREN,<sup>2</sup> AND CONNIE J. CHANG-HASNAIN<sup>1,\*</sup>

<sup>1</sup>Department of Electrical Engineering and Computer Sciences and Tsinghua-Berkeley Shenzhen Institute, University of California at Berkeley, Berkeley, CA 94720, USA <sup>2</sup>Departments of Electrical and Computer Engineering and Materials, University of California at Santa Barbara, Santa Barbara, CA 93106, USA \*Corresponding author: <u>cch@berkeley.edu</u>

#### Chang-Hasnain, UC Berkeley

OFC 2018

## VCSEL30, December 17-18, 2007, Tokyo, Japan



## VCSEL35, December 11, 2011, Tokyo, Japan







Tomography

Ranging

Google

### **OCT & LIDAR**

# 

### AR & VR

# VCSEL40

## 3D Sensing

#### Communications







Chang-Hasnain, UC Berkeley

# **Congratulations!**



