Our goal is for hospitals to be able to record movement information about the doctors and nurses in the operating room. We do this by adding Bluetooth Low Energy chips into the employee's ID cards that help track location with the help of beacons placed in the rooms. This data then gets sent to a server via WiFi, where the employee’s movement will be logged and displayed.

We designed the board by using a combination Bluetooth Low Energy Wi-Fi module as the base of our design, and an IMU to send interrupts on movement. The badge scans for Bluetooth beacons and records their received signal strength indicator (RSSI). This can be used to calculate distance from a beacon, and multiple distances can be used to triangulate position.

Key Components

ESP32 BLE & Wi-Fi Module
- 32 bit microprocessor @160MHz
- Ultra low power co-processor for sleep @8MHz
- Dual core

IMU: LSM9DS1
- Contains a gyroscope, accelerometer, and magnetometer
- 9 degrees of freedom
- 15mA max current draw

Bluetooth beacon: Nordic nRF52
- BLE compatible 2.4GHz radio
- USB serial converter for fast programming/debugging

Functional Flow Diagram

- **Badge Detects Movement**
 - IMU sends interrupt to Processor
 - Badge scans for nearby beacons
 - Badge sends RSSI data to server
- **Server calculates Badge location**
 - Location displayed on Web-App

Printed Circuit Board

ESP32 system on chip with IMU located on the top of the PCB

Final Product

A look at internals of a BLIPS badge

Specifications
- Length: 93.5mm
- Width: 58mm
- Thickness: 14.4mm
- Weight: 76.6g

Acknowledgements:

Thanks to John and Sunny from Arthrex, as well as Yoga, Brandon and Carrie from UCSB.