Tunç Doluca came to the United States from Turkey in 1976 to complete his undergraduate degree at Iowa State. He then attended UC Santa Barbara, graduating with an MS in electrical engineering in 1981, and then spent nearly forty years at Silicon Valley–based chip maker Maxim Integrated, where he retired as chief executive officer in 2021. He has served on the Semiconductor Industry Association board as a director and has been on the UCSB Board of Trustees since 2017. He and his wife, Lale, have provided more than $1 million in philanthropic giving to the College of Engineering, most notably to purchase equipment for the Electrical & Computing Engineering (ECE) Department’s undergraduate teaching labs, to establish the Doluca Family Endowed Chair in the ECE Department — held by Professor Mark Rodwell — and to bolster the campaign to refurbish and modernize the Mechanical Engineering Department’s machine shop. We spoke with him in February.

A winter road trip led Tunç Doluca to attend UC Santa Barbara. More than 45 years later, he and Lale continue to have a big impact through giving.
Convergence: Were there any advances you saw during your long career that, when you first encountered them, you thought, This is big?

TD: I thought the introduction of chips that could run a computer that you could have on your desk and, eventually, on your lap, was a really big deal. I was given an IBM PC in 1983, and when I started playing with a Lotus 123 spreadsheet, I thought, Wow, this is just amazing that I can do this on my desk and don’t have to pay big bucks to log onto a mainframe to do it. The capability of the individual suddenly expanded dramatically.

The next big thing was networking. You had all these individually used PCs with no easy connection to each other or the outside world. As a newcomer at Maxim and the youngest design engineer, I wanted to drive change, so I went to the CEO and complained about our inability to simulate our designs before they were manufactured in silicon. I said that the company had no computing infrastructure at all, so guess what he did? He put me in charge of it. That’s when I learned about all of that new networking technology that made it possible to connect computers so they could talk to each other.

When I hear what people are doing now, I’m amazed. If someone had told me about some of the current technology forty years ago, I’d have said, “That’s science fiction.” But here we are, with things like terahertz communication. Back then, I would never have thought that was possible.

C: You hold eleven patents. What would you tell students about how to “unlock” their own innate creativity?

TD: After forty years, what I’ve found with creativity and innovation is that you can’t really say, “This is how it works.” It’s different for every person. Some need to go sit on the mountain top and think about things. Others do it by discussing alternatives with other people, and that triggers different thoughts and different ways of looking at a problem. Each student has to find what works best for them. In my own case, I’ve come up with solutions in my sleep [laughs]. I’ve woken up in the morning and thought, Ah, that’s the way to do that. The important thing is to force yourself to be open and to listen to what other people are trying to tell you.

C: You and Lale have given more than $1 million to the College of Engineering. What has motivated your philanthropy?

TD: If you had the good fortune to benefit from the university, and you learned things there that propelled you in your career, at some point, you have to ask yourself, “How am I going to pay back those who helped me out?”

When I was CEO at Maxim, I noticed that we were having a harder time recruiting engineering graduates from schools in the U.S. Interest was decreasing, especially for analog, which people saw as the old way. They were more interested in digital and in software engineering. But all of this wonderful digital technology requires analog and mixed-signal technology to make it work. For instance, radio signals don’t come as ones and zeroes; they come as analog signals that have to be translated into digital and then back from digital on the other end. I thought it would be helpful to have professors who could excite students about why analog is so important. And I thought that maybe if there was more funding, like what our endowment provides for Mark Rodwell, we could support more projects and more research in the analog and mixed-signal field and, hopefully, attract more people. The perpetuity of the endowed chair attracted us, because if you put in enough funds, it keeps giving and allows the professor to advance that area.

In terms of the lab gifts we provided for the labs, I have always loved learning by doing, so labs are very important to me. We decided to support ECE undergraduate labs for that reason, and the mechanical engineering machine shop for the same reason, even though that one was a little outside my field.