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The Issues

Observed Phenomena · · · · · · · · · Mathematical Models

• Phenomena: Data, system trajectories, time traces
Models: Differential equations

• Concern: Complexity

– Complexity of phenomena (scale, patterns, etc.)
somewhat subjective

– Complexity of models (?????)
Linear vs. Nonlinear
Low vs. High order
· · · · · · · · · · · · · · ·
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Outline

• A story of boundary layer turbulence

– Effective analysis using tools from linear systems theory
– “but I thought turbulence was a nonlinear phenomenon!!??”

• Are linear and nonlinear models equivalent?

– Linearization techniques
– Model order
– Special structure

• The use of “nonlinearity” in current scientific culture

– a runaway concept
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The phenomenon of turbulence

Technologically important flows: Flows past streamlined bodies

pipes

channels

wings

Wall-bounded shear flows Friction with the walls drives the flows
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The phenomenon of turbulence (Cont.)

Boundary layers form in flow past any surface

Idealization: flow on a flat plate
Flow direction

Viewed sideways
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Boundary layer turbulence and skin-friction drag

A laminar BL causes less drag than a turbulent BL (for same free-stream velocity)

This skin-friction drag
is 40-50% of total drag on
typical airliner
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The “Dynamical Systems” view

The flow field at time time =:  (t)

 (t) is the vector field of flow velocities

 (t) is the STATE of the system at time t

Fluid dynamics (e.g. Navier-Stokes equations) can be written as:

@t (t) = F
⇣
 (t), R

⌘

" "
change
in time

function of
current state
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Does the system stay near an equilibrium?
If starting “near” equilibrium, does system come back to it??

ψe ψe

stable equilibrium unstable equilibrium

An unstable equilibrium is not really an “equilibrium”

How to check stability?

Common method: Linearization

@t (t) = F
⇣
 (t)

⌘
= A

⇣
 (t)

⌘
+ N

⇣
 (t)

⌘

" "
Linear part The rest

Stability (instability) of A , Local stability (instability) of F .

Can be studied using eigenvalue/eigenfunction analysis of A
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Uncertainty in a Dynamical System

Lyapunov Stability deals with uncertainty in initial conditions

ψ(0)

If  (0) is known to be precisely  e, then  (t) =  e, t � 0

We introduce the concept of Lyapunov stability because we can never be infinitely
certain about the initial condition

Shortcomings of Lyapunov stability

8
<

:

• Perturbs only initial conditions

• Cares only about asymptotic behavior

8



Uncertainty in a Dynamical System (cont.)

Lyapunov stability
 ̇ = f( )

uncertain initial
conditions

investigate lim
t!1

 (t)

investigate transients
e.g. supt�0 k (t)k

dynamical uncertainty
 ̇ = F ( ) +�( )

exogenous disturbances
 ̇(t) = F ( (t), d(t))

combinations
 ̇(t) = F ( (t), d(t))+

�( (t), d(t))

=) =) =) =) =) =) =) =) =) More uncertainty =)
Linearized version:

eigenvalue stability
 ̇ = A 

transient growth

umodelled dynamics
 ̇ = (A +�) 
Psuedo-spectrum

exogenous disturbances
 ̇(t) = A (t) + Bd(t)
input-output analysis

combinations
 ̇(t) = (A + B�C) (t)+

(F + G�H)d(t)

9



Uncertainty in a Dynamical System (cont.)

Lyapunov stability
 ̇ = f( )

uncertain initial
conditions

investigate lim
t!1

 (t)

investigate transients
e.g. supt�0 k (t)k

dynamical uncertainty
 ̇ = F ( ) +�( )

exogenous disturbances
 ̇(t) = F ( (t), d(t))

combinations
 ̇(t) = F ( (t), d(t))+

�( (t), d(t))

=) =) =) =) =) =) =) =) =) More uncertainty =)
Linearized version:

eigenvalue stability
 ̇ = A 

transient growth

umodelled dynamics
 ̇ = (A +�) 
Psuedo-spectrum

exogenous disturbances
 ̇(t) = A (t) + Bd(t)
input-output analysis

combinations
 ̇(t) = (A + B�C) (t)+

(F + G�H)d(t)
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The nature of turbulence

Fluid dynamics are described by deterministic equations

Why does fluid flow “look random” at high Reynolds numbers??
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The nature of turbulence

Common view of turbulence
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The nature of turbulence (cont.)

Common view of turbulence

Intuitive reasoning
Complex, statistical looking behavior  ! System with chaotic dynamics
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The nature of turbulence (cont.)

Alternative view

Dynamics of the 
Navier-Stokes

 Equations

Noise

Surface roughness

Thermal forces

Free stream disturbances

Fluctuating 

flow field 

(looks statistical)

Qualitatively similar to

Dynamics of the
Linearized 

Navier-Stokes
 Equations

Noise

Surface roughness

Thermal forces

Free stream disturbances

Fluctuating 

flow field 

(looks statistical)
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So what now?

• A story of boundary layer turbulence

– Effective analysis using tools from linear systems theory
– “but I thought turbulence was a nonlinear phenomenon!!??”

• Are linear and nonlinear models equivalent?

– Linearization techniques
– Model order
– Special structure

• The use of “nonlinearity” in current scientific culture

– a runaway concept
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Linearization techniques

The Carleman Linearization

Example: d
dtx = x2

Define: x1 := x, x2 := x2, , · · · , xn := xn, · · ·

d

dt

2

66664

x1

x2

x3

x4...

3

77775
=

2

66664

0 1 0 0 0
0 0 2 0 0 · · ·
0 0 0 3 0
0 0 0 0 4

... . . .

3

77775

2

66664

x1

x2

x3

x4...

3

77775
, i.e. Ẋ = AX

The original system is imbedded in this linear system

General procedure: Given ẋ = F (x, u)
Define X with components xiuj

Ẋ = AX + (u̇) BX

Thus: Bilinear Systems are Universal Models
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Linearization techniques (cont.)

• The Lie-Koopman Linearization

• State transformations and feedback linearization

• The Fokker-Planck equation

• · · · · · · · · ·

Linearization techniques often do not make a problem more tractable

e.g. computing etA can be arbitrarily complex!!
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Linear Phenomena

Q:What phenomena can a linear dynamical system explain?

d

dt
 (t) = A  (t)

A: Any phenomena explainable using a nonlinear dynamical system

The term “nonlinear phenomenon” has no mathematical meaning!
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“Chaos” in Linear Systems

21 N

u=force

y=velocity

Mass=1
Spring K=1

Homogeneous N masses, N+1 springs

0 200 400 600 800 1000

0

0.5
N=100

1
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“Chaos” in Linear Systems (cont.)

0 0.5 1 1.5 2
-0.5

0

0.5

x 10
4

1 1.02 1.04 1.06 1.08 1.1
-0.5

0

has continuous spectrum (PSD) over long, but finite times
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“Chaos” in Linear Systems (cont.)

• With similar schemes,
can generate stochastic processes with any prescribed PSD

• Clearly not the most efficient method to generate such processes!

Moral: Sometimes a low dimensional nonlinear model is easier to handle than a high
dimensional linear one

Another example: Optimal filtering equations
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Phrases to avoid

A well defined mathematical object: nonlinear mapping

mapping between two vector spaces that does not preserve their linear structure

Avoid:

• Nonlinear phenomenon (Science, Behavior, etc...)

• A linear system can not do this

• This is a nonlinear effect

• Even the term “nonlinear system” is a little ambiguous

To make sure you are on firm ground:

use the term nonlinear only in its original mathematical meaning
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The End
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