The structure of optimal distributed controllers What you get for free, and what you can impose

Bassam Bamieh

Mechanical Engineering, UCSB

The Setting

- The Plant has *spatially distributed* dynamics
- The controller also has *spatially distributed* dynamics

The Setting

- The Plant has *spatially distributed* dynamics
- The controller also has *spatially distributed* dynamics
- For a given plant structure, what's the inherent structure of the *Centralized Controller*?
- If we want to constrain the controller's architecture, what type of constraints lead to tractable problems?

WE WILL TAKE A BROAD VIEW OF *spatially distributed dynamics*

- Systems described by Partial Differential Equations (PDEs) Continuous Space
- Dynamical systems over lattices and graphs

Discrete Space

WE WILL TAKE A BROAD VIEW OF spatially distributed dynamics

- Systems described by Partial Differential Equations (PDEs) **Continuous Space**
- Dynamical systems over lattices and graphs

Discrete Space

Look for "interesting" special structures

Special structure $\longrightarrow \begin{cases} More detailed results \\ Insight \end{cases}$

WE WILL TAKE A BROAD VIEW OF spatially distributed dynamics

- Systems described by Partial Differential Equations (PDEs) Continuous Space
- Dynamical systems over lattices and graphs

Discrete Space

Look for "interesting" special structures

Structure generality

WE WILL TAKE A BROAD VIEW OF spatially distributed dynamics

- Systems described by Partial Differential Equations (PDEs) Continuous Space
- Dynamical systems over lattices and graphs

Discrete Space

Look for "interesting" special structures

Part I

What you get for free:

The inherent structure of the centralized controller for spatially distributed plants

Outline

Examples Vehicular Platoons Heat Equation with Distributed Control

Spatially-Invariant Plants

Optimal Controllers are Inherently Spatially Invariant Optimal Centralized Controllers are Inherently Localized

Spatially-Varying Plants

Localized Plants over Arbitrary Networks Notions of Distance and Spatial Decay Central LQR Controllers are Inherently Localized

Vehicular Platoons

Objective: Design a controller for each vehicle to:

- Maintain constant small slot length *L*.
- Reject the effect of disturbances $\{w_i\}$ (wind gusts, road conditions, etc...)

Vehicular Platoons

Objective: Design a controller for each vehicle to:

- Maintain constant small slot length L.
- Reject the effect of disturbances $\{w_i\}$ (wind gusts, road conditions, etc...)

Warning: Designs based on two vehicle models may lack "string stability", i.e. disturbances get amplified as they propagate through the platoon.

Vehicular Platoons

Objective: Design a controller for each vehicle to:

- Maintain constant small slot length L.
- Reject the effect of disturbances $\{w_i\}$ (wind gusts, road conditions, etc...)

Warning: Designs based on two vehicle models may lack "string stability", i.e. disturbances get amplified as they propagate through the platoon.

Problem Structure:

- Actuators: each vehicle's throttle input.
- Sensors: position and velocity of each vehicle.

Vehicular Platoons Set-up

 x_i : *i*'th vehicle's position.

$$\begin{aligned} \tilde{x}_i &:= x_i - x_{i-1} - L - C \\ \tilde{x}_{1,i} &:= \tilde{x}_i \\ \tilde{x}_{2,i} &:= \dot{\tilde{x}}_i \end{aligned}$$

Vehicular Platoons (Optimal LQR)

Centralized LQR design (Melzer & Kuo '70, Athans & Levine '66)

Vehicular Platoons Set-up

 x_i : *i*'th vehicle's position.

 $:= \tilde{x}_i$

$$\begin{aligned} \tilde{x}_i &:= x_i - x_{i-1} - L - C \\ \tilde{x}_{1,i} &:= \tilde{x}_i \\ \tilde{x}_{2,i} &:= \dot{\tilde{x}}_i \end{aligned}$$

Structure of generalized plant:

$$H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} = \begin{bmatrix} \times & \times & & \\ & \ddots & & 0 \\ & & \ddots & h_o \\ & & & h_1 & \ddots \\ & & 0 & & \ddots \end{bmatrix} \qquad \underbrace{z}_{-}$$

The generalized plant has a Toeplitz structure!

Optimal Controller for Vehicular Platoon

Example: Centralized \mathcal{H}^2 optimal controller gains for a 50 vehicle platoon (From: Shu and Bamieh '96)

Remarks: Figure 1: Position error feedback gains for a 50 vehicle platoon

- For large platoons, optimal controller is approximately Toeplitz
- Optimal centralized controller has some inherent decentralization ("localization") *Controller gains decay away from the diagonal*

Optimal Controller for Vehicular Platoon

Example: Centralized \mathcal{H}^2 optimal controller gains for a 50 vehicle platoon (From: Shu and Bamieh '96)

Remarks: Figure 1: Position error feedback gains for a 50 vehicle platoon

- For large platoons, optimal controller is approximately Toeplitz
- Optimal centralized controller has some inherent decentralization ("localization") Controller gains decay away from the diagonal

Q: Do the above 2 results occur in all "such" problems?

Simple Example; Distributed LQR Control of Heat Equation

$$\frac{\partial}{\partial t}\psi(x,t) = c\frac{\partial^2}{\partial x^2}\psi(x,t) + u(x,t) \longrightarrow \frac{d}{dt}\hat{\psi}(\lambda,t) = -c\lambda^2\hat{\psi}(\lambda,t) + \hat{u}(\lambda,t)$$

Solve the LQR problem with Q = qI, R = I. The corresponding ARE family:

$$-2c\lambda^2 \hat{p}(\lambda) - \hat{p}(\lambda)^2 + q = 0,$$

and the positive solution is:

$$\hat{p}(\lambda) = -c\lambda^2 + \sqrt{c^2\lambda^4 + q}.$$

Remark: In general $\hat{P}(\lambda)$ an irrational function of λ , even if $\hat{A}(\lambda)$, $\hat{B}(\lambda)$ are rational. **i.e.** PDE systems have optimal feedbacks which are *not* PDE operators.

Let $\{k(x)\}\$ be the inverse Fourier transform of the function $\{-\hat{p}(\lambda)\}$.

Then optimal (temporally static) feedback

Remark: The "spread" of $\{k(x)\}$ indicates information required from distant sensors.

Distributed LQR Control of Heat Equation (Cont.)

Important Observation: $\{k(x)\}$ is "localized". It decays exponentially!!

$$\hat{k}(\lambda) = c\lambda^2 - \sqrt{c^2\lambda^4 + q}.$$

Distributed LQR Control of Heat Equation (Cont.)

Important Observation: $\{k(x)\}$ is "localized". It decays exponentially!!

$$\hat{k}(\lambda) = c\lambda^2 - \sqrt{c^2\lambda^4 + q}.$$

This can be analytically extended by:

$$\hat{k}_e(s) = cs^2 - \sqrt{c^2s^4 + q},$$

which is analytic in the strip

$$\left\{s \in \mathbb{C} \; ; \; Im\{s\} < \frac{\sqrt{2}}{2} \left(\frac{q}{c^2}\right)^{\frac{1}{4}}\right\}$$

Therefore: $\exists M$ such that

$$|k(x)| \leq M e^{-\alpha |x|}, \text{ for any } \alpha < \frac{\sqrt{2}}{2} \left(\frac{q}{c^2}\right)^{\frac{1}{4}}.$$

Distributed LQR Control of Heat Equation (Cont.)

Important Observation: $\{k(x)\}$ is "localized". It decays exponentially!!

$$\hat{k}(\lambda) = c\lambda^2 - \sqrt{c^2\lambda^4 + q}.$$

This can be analytically extended by:

$$\hat{k}_e(s) = cs^2 - \sqrt{c^2s^4 + q},$$

which is analytic in the strip

$$\left\{s \in \mathbb{C} \; ; \; Im\{s\} < \frac{\sqrt{2}}{2} \left(\frac{q}{c^2}\right)^{\frac{1}{4}}\right\}$$

Therefore: $\exists M$ such that

$$|k(x)| \leq Me^{-lpha|x|}, \quad ext{for any } lpha < rac{\sqrt{2}}{2} \left(rac{q}{c^2}
ight)^{rac{1}{4}}.$$

This results is true in general: under mild conditions Solutions of AREs always inverse transform to exponentially decaying convolution kernels

Outline

Examples Vehicular Platoons Heat Equation with Distributed Control

Spatially-Invariant Plants

Optimal Controllers are Inherently Spatially Invariant Optimal Centralized Controllers are Inherently Localized

Spatially-Varying Plants

Localized Plants over Arbitrary Networks Notions of Distance and Spatial Decay Central LQR Controllers are Inherently Localized

- General Infinite-dimensional Systems Theory
 - Well posedness issues (semi-group theory)
 - Constructive (convergent) approximation techniques

- General Infinite-dimensional Systems Theory
 - Well posedness issues (semi-group theory)
 - Constructive (convergent) approximation techniques

THEME: Make infinite-dimensional problems look like finite-dimensional ones

- General Infinite-dimensional Systems Theory
 - Well posedness issues (semi-group theory)
 - Constructive (convergent) approximation techniques

THEME: Make infinite-dimensional problems look like finite-dimensional ones

- Special Structure
 - Distributed control and measurement (now more feasible)
 - Regular (lattice) arrangement of devices

Together \implies Spatial Invariance

- General Infinite-dimensional Systems Theory
 - Well posedness issues (semi-group theory)
 - Constructive (convergent) approximation techniques

THEME: Make infinite-dimensional problems look like finite-dimensional ones

- Special Structure
 - Distributed control and measurement (now more feasible)
 - Regular (lattice) arrangement of devices

Together \implies Spatial Invariance

- Control of "Vehicular Strings", (Melzer & Kuo, 71)
- Discretized PDEs, (Brockett, Willems, Krishnaprasd, El-Sayed, '74, '81)
- "Systems over rings", (Kamen, Khargonekar, Sontag, Tannenbaum, ...)
- Systems with "Dynamical Symmetry", (Fagniani & Willems)

More recently:

- Controller architecture and localization, (Bamieh, Paganini, Dahleh)
- LMI techniques, localization, (D'Andrea, Dullerud, Lall)

System Representations

All signals are spatio-temporal, e.g. u(x,t), $\psi(x,t)$, y(x,t), etc. Spatially distributed inputs, states, and outputs

 \rightarrow

• State space description

$$\frac{d}{dt}\psi(x,t) = \mathcal{A}\psi(x,t) + \mathcal{B}u(x,t)$$

$$y(x,t) = \mathcal{C}\psi(x,t) + \mathcal{D}u(x,t)$$

 $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ translation invariant operators

spatially invariant system

• Spatio-temporal impulse response h(x,t)

$$y(x,t) = \iint h(x-\xi,t-\tau) \ u(\xi,\tau) \ d\tau \ d\xi,$$

• Transfer function description

 $Y(\kappa,\omega) \;=\; H(\kappa,\omega)\; U(\kappa,\omega)$

Spatio-temporal Impulse Response

Spatio-temporal impulse response h(x, t)

$$y(x,t) = \iint h(x-\xi,t-\tau) \ u(\xi,\tau) \ d\tau \ d\xi,$$

Interpretation

 $h(\boldsymbol{x},t)$: effect of input on output a distance \boldsymbol{x} away and time t later

Example: Constant maximum speed of effects

Example: Distributed Control of the Heat Equation

 u_i : input to heating elements. y_i : signal from temperature sensor. Dynamics are given by:

$$\begin{bmatrix} \mathbf{i} \\ y_{-1} \\ y_{o} \\ y_{1} \\ \mathbf{i} \end{bmatrix} = \begin{bmatrix} \mathbf{i} & \mathbf{i} & \mathbf{i} \\ \dots & H_{-1,0} & \dots \\ H_{0,-1} & H_{0,0} & H_{0,1} \\ \dots & H_{1,0} & \dots \\ \mathbf{i} & \mathbf{i} & \mathbf{i} \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ u_{-1} \\ u_{o} \\ u_{1} \\ \mathbf{i} \end{bmatrix}$$

Each $H_{i,j}$ is an infinite-dimensional SISO system.

Fact: Dynamics are spatially invariant \Rightarrow H is Toeplitz

The input-output relation can be written as a *convolution over the actuator/sensor index*:

$$y_i = \sum_{j=-\infty}^{\infty} \bar{H}_{(i-j)} u_j,$$

The limit of large actuator sensor array:

$$\frac{\partial \psi}{\partial t}(x,t) = c \frac{\partial^2 \psi}{\partial x^2}(x,t) + u(x,t) \qquad \qquad \psi_x = \int_{-\infty}^{\infty} H_{x-\zeta} u_{\zeta} d\zeta,$$

Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

 $u_i(t) := u_{(i_1,...,i_n)}(t), \qquad \qquad y_i(t) := y_{(i_1,...,i_n)}(t).$

 $i := (i_1, \ldots, i_n)$ a spatial multi-index, $i \in \mathbb{G} := \mathbb{G}_1 \times \ldots \times \mathbb{G}_n$.

Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

 $u_i(t) := u_{(i_1,...,i_n)}(t), \qquad \qquad y_i(t) := y_{(i_1,...,i_n)}(t).$

 $i := (i_1, \ldots, i_n)$ a spatial multi-index, $i \in \mathbb{G} := \mathbb{G}_1 \times \ldots \times \mathbb{G}_n$. Linear input-output relations: A genera

A general linear system from u to y:

$$y_{i} = \sum_{j \in \mathbb{G}} H_{i,j} u_{j}, \quad \Leftrightarrow \quad y_{(i_{1},...,i_{n})} = \sum_{j_{1} \in \mathbb{G}_{1}} \dots \sum_{j_{n} \in \mathbb{G}_{n}} H_{(i_{1},...,i_{n}),(j_{1},...,j_{n})} u_{(j_{1},...,j_{n})},$$

Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

 $u_i(t) := u_{(i_1,...,i_n)}(t), \qquad \qquad y_i(t) := y_{(i_1,...,i_n)}(t).$

 $i := (i_1, ..., i_n)$ a spatial multi-index, $i \in \mathbb{G} := \mathbb{G}_1 \times ... \times \mathbb{G}_n$. Linear input-output relations: A general

A general linear system from
$$u$$
 to y :

$$y_i = \sum_{j \in \mathbb{G}} H_{i,j} u_j, \quad \Leftrightarrow \quad y_{(i_1,...,i_n)} = \sum_{j_1 \in \mathbb{G}_1} \dots \sum_{j_n \in \mathbb{G}_n} H_{(i_1,...,i_n),(j_1,...,j_n)} u_{(j_1,...,j_n)},$$

Spatial Invariance:

Assumption 1: Set of spatial indices = commutative group

 $\mathbb{G} := \mathbb{G}_1 \times \ldots \times \mathbb{G}_n$, each \mathbb{G}_i a commutative group.

Remark: "spatial shifting" of signals

 $(S_{\sigma}u)_i := u_{i-\sigma}$ Compare with: Time shift by τ $(S_{\tau}u)(t) := u(t-\tau)$

Assumption 2: Spatial invariance \longleftrightarrow Commute with spatial shifts

 $\forall \sigma \in \mathbb{G}, \qquad H S_{\sigma} = S_{\sigma} H \quad \Leftrightarrow \qquad S_{\sigma}^{-1} H S_{\sigma} = H$

Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

• Vehicular platoons: signals index over \mathbb{Z} .

Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

- Vehicular platoons: signals index over \mathbb{Z} .
- Channel flow: Signals indexed over $\{0,1\}\times\mathbb{Z}$:

$$y_{(l,i)} = \sum_{j=-\infty}^{\infty} H_{(l-0,i-j)} u_{(0,j)} + \sum_{j=-\infty}^{\infty} H_{(l-1,i-j)} u_{(1,j)}, \qquad l = 0, 1.$$
Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

- Vehicular platoons: signals index over \mathbb{Z} .
- Channel flow: Signals indexed over $\{0,1\}\times\mathbb{Z}$:

$$y_{(l,i)} = \sum_{j=-\infty}^{\infty} H_{(l-0,i-j)} u_{(0,j)} + \sum_{j=-\infty}^{\infty} H_{(l-1,i-j)} u_{(1,j)}, \qquad l = 0, 1.$$

Remark: The input-output mapping of a spatially invariant system can be rewritten:

$$y_i = \sum_{j \in \mathbb{G}} \bar{G}_{i-j} u_j, \quad \Leftrightarrow \quad y_{(i_1,\dots,i_n)} = \sum_{j_1 \in \mathbb{G}_1} \dots \sum_{j_n \in \mathbb{G}_n} \bar{G}_{(i_1-j_1,\dots,i_n-j_n)} u_{(j_1,\dots,j_n)}.$$

A spatial convolution

Symmetry in Dynamical Systems and Control Design

- Many-body systems always have some inherent dynamical symmetries: e.g. equations of motion are invariant to certain coordinate transformations
- **Question:** Given an unstable dynamical system with a certain symmetry, is it possible to stabilize it with a controller that has the same symmetry? (i.e. without "breaking the symmetry")
- Answer: Yes! (Fagnani & Willems '93)

Symmetry in Dynamical Systems and Control Design

- Many-body systems always have some inherent dynamical symmetries: e.g. equations of motion are invariant to certain coordinate transformations
- **Question:** Given an unstable dynamical system with a certain symmetry, is it possible to stabilize it with a controller that has the same symmetry? (i.e. without "breaking the symmetry")
- Answer: Yes! (Fagnani & Willems '93)

Remark: Spatial invariance is a dynamical symmetry This answer applies to optimal design as well

i.e.

For best achievable performance, need only consider spatially-invariant controllers

The Standard Problem of Optimal and Robust Control

The standard problem:

Signal norms:

$$||w||_p^p := \sum_{i \in \mathbb{G}} \int_{\mathbb{R}} |w_i(t)|^p dt = \sum_{i \in \mathbb{G}} ||w||_p^p$$

 $z = \mathcal{F}(H,C) w$

The Standard Problem of Optimal and Robust Control

The standard problem:

Signal norms:

$$||w||_p^p := \sum_{i \in \mathbb{G}} \int_{\mathbb{R}} |w_i(t)|^p dt = \sum_{i \in \mathbb{G}} ||w||_p^p$$

 $z \;=\; \mathcal{F}(H,C) \; w$

Induced system norms:

$$\|\mathcal{F}(G,C)\|_{p-i} := \sup_{w \in L^P} \frac{\|z\|_p}{\|w\|_p}$$

The \mathcal{H}^2 norm:

$$\|\mathcal{F}(G,C)\|_{\mathcal{H}^2}^2 = \|z\|_2^2 = \sum_{i\in\mathbb{G}} \|z_i\|_{L^2}^2,$$

with impulsive disturbance input $w_i(t) = \delta(i)\delta(t)$.

The Standard Problem of Optimal and Robust Control

The standard problem:

Signal norms:

$$||w||_p^p := \sum_{i \in \mathbb{G}} \int_{\mathbb{R}} |w_i(t)|^p dt = \sum_{i \in \mathbb{G}} ||w||_p^p$$

 $z \;=\; \mathcal{F}(H,C) \; w$

Induced system norms:

$$\|\mathcal{F}(G,C)\|_{p-i} := \sup_{w \in L^P} \frac{\|z\|_p}{\|w\|_p}$$

The \mathcal{H}^2 norm:

$$\|\mathcal{F}(G,C)\|_{\mathcal{H}^2}^2 = \|z\|_2^2 = \sum_{i\in\mathbb{G}} \|z_i\|_{L^2}^2,$$

with impulsive disturbance input $w_i(t) = \delta(i)\delta(t)$.

Note: In the platoon problem: finite system norm \Rightarrow string stability.

Question: Are spatially-varying controllers better than spatially-invariant ones? **Answer:** If plant is spatially invariant, no!

Question: Are spatially-varying controllers better than spatially-invariant ones? **Answer:** If plant is spatially invariant, no!

LSI := The class of Linear Spatially-Invariant systems.

LSV := The class of Linear Spatially-Varying systems.

Compare the two problems:

Theorem 1. If the plant and performance objectives are spatially invariant, i.e. if the generalized plant *G* is spatially invariant, then the best achievable performance can be approached with a spatially invariant controller. More precisely

$$\gamma_{si} = \gamma_{sv}.$$

Related Problem: *Time-Varying vs. Time-Invariant Controllers*

Fact: For time-invariant plants, time-varying controllers offer no advantage over timeinvariant ones! *for norm minimization problems*

Proofs based on use of YJBK parameterization. Convert to

$$\gamma_{ti} := \inf_{\substack{Q \in LTI}} \|T_1 - T_2 Q T_3\| \qquad \gamma_{tv} := \inf_{\substack{Q \in LTV}} \|T_1 - T_2 Q T_3\|,$$

 T_1, T_2, T_3 determined by plant, therefore time invariant.

Related Problem: *Time-Varying vs. Time-Invariant Controllers*

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-invariant ones! *for norm minimization problems*

Proofs based on use of YJBK parameterization. Convert to

$$\begin{array}{llll} \gamma_{ti} & := & \inf & \|T_1 - T_2 Q T_3\| & & \gamma_{tv} & := & \inf & \|T_1 - T_2 Q T_3\| \\ & & \mathsf{stable} \ Q \\ & & Q \in LTI & & & & & \\ \end{array} \qquad \begin{array}{lll} \gamma_{tv} & := & \inf & \|T_1 - T_2 Q T_3\| \\ & & \mathsf{stable} \ Q \\ & & & Q \in LTV & & \\ \end{array}$$

 T_1, T_2, T_3 determined by plant, therefore time invariant.

- The H[∞] case: (Feintuch & Francis, '85), (Khargonekar, Poolla, & Tannenbaum, '85). A consequence of Nehari's theorem
- The l^1 case: (Shamma & Dahleh, '91). Using an averaging technique
- Any induced ℓ^p norm: (Chapellat & Dahleh, '92). Generalization of the averaging technique

Idea of proof: After YJBK parameterization:

 $\gamma_{si} := \inf_{\substack{\text{stable } Q \\ Q \in LSI}} \|T_1 - T_2 Q T_3\| \geq \gamma_{sv} := \inf_{\substack{\text{stable } Q \\ Q \in LSV}} \|T_1 - T_2 Q T_3\|$

Let \bar{Q} achieve a performance level $\bar{\gamma} = ||T_1 - T_2 \bar{Q} T_3||$.

Idea of proof: After YJBK parameterization:

 $\gamma_{si} := \inf_{\substack{Q \in LSI}} \|T_1 - T_2 Q T_3\| \geq \gamma_{sv} := \inf_{\substack{Q \in LSV}} \|T_1 - T_2 Q T_3\|$

Let \bar{Q} achieve a performance level $\bar{\gamma} = ||T_1 - T_2 \bar{Q} T_3||$. Averaging \bar{Q} :

 $\bullet~$ If $\mathbb G$ is finite: define

$$Q_{av} := \frac{1}{|\mathbb{G}|} \sum_{\sigma \in \mathbb{G}} \sigma^{-1} \bar{Q} \sigma. \rightarrow Q_{av} \text{ is spatially invariant, i.e. } \forall \sigma \in \mathbb{G}, \ \sigma^{-1} Q_{av} \sigma = Q_{av}$$

Then

$$\begin{aligned} \|T_{1} - T_{2}Q_{av}T_{3}\| &= \|T_{1} - T_{2}\left(\frac{1}{|\mathbb{G}|}\sum_{\sigma\in\mathbb{G}}\sigma^{-1}\bar{Q}\sigma\right)T_{3}\| &= \left\|\frac{1}{|\mathbb{G}|}\sum_{\sigma\in\mathbb{G}}\sigma^{-1}\left(T_{1} - T_{2}\bar{Q}T_{3}\right)\sigma\right\| \\ &\leq \frac{1}{|\mathbb{G}|}\sum_{\sigma\in\mathbb{G}}\left\|\sigma^{-1}\left(T_{1} - T_{2}\bar{Q}T_{3}\right)\sigma\right\| &= \|T_{1} - T_{2}\bar{Q}T_{3}\| \end{aligned}$$

• If \mathbb{G} is infinite, take a sequence of finite subsets $M_1 \subset M_2 \subset \cdots$, with $\bigcup_n M_n = \mathbb{G}$

Then define:
$$Q_n := \frac{1}{|M_n|} \sum_{\sigma \in M_n} \sigma^{-1} \bar{Q} \sigma.$$

,

 Q_n converges weak * to a spatially-invariant Q_{av} with the required norm bound.

Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

Channel

$$u_i = \sum_j C_{i-j} y_j$$

Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

Channel

$$u_i = \sum_j C_{i-j} y_j$$

Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators

Consider the following geometry of sensors and actuators:

- Sensor
- Actuator

What kind of spatial invariance do optimal controllers have?

Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators (Cont.)

Consider the following geometry of sensors and actuators:

- Sensor
- Actuator

Each "cell" is a 1-input, 2-output system.

underlying group is $\mathbb{Z}\times\mathbb{Z}$

Transform Methods

Consider the following PDE with distributed control:

$$\frac{\partial \psi}{\partial t}(x_1, \dots, x_n, t) = \mathcal{A}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \psi(x_1, \dots, x_n, t) + \mathcal{B}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) u(x_1, \dots, x_n, t)$$
$$y(x_1, \dots, x_n, t) = \mathcal{C}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right) \psi(x_1, \dots, x_n, t),$$

where $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are matrices of polynomials in $\frac{\partial}{\partial x_i}$.

Consider also combined PDE difference equations such as:

$$\frac{\partial \psi}{\partial t}(x_1, \dots, x_m, k_1, \dots, k_n, t) = \mathcal{A}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}, z_1^{-1}, \dots, z_n^{-1}\right) \psi(x_1, \dots, x_n, k_1, \dots, k_n, t) + \mathcal{B}\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}, z_1^{-1}, \dots, z_n^{-1}\right) u(x_1, \dots, x_n, k_1, \dots, k_n, t)$$

We only require that the spatial variables x, k, belong to a commutative group Taking the Fourier transform:

$$\hat{\psi}(\lambda,t) := \int_{\mathbb{G}} e^{-j < \lambda, x >} \psi(x,t) \, dx,$$

The above system equations become:

$$\frac{d\hat{\psi}}{dt}(\lambda,t) = \mathcal{A}(\lambda)\,\hat{\psi}(\lambda,t) + \mathcal{B}(\lambda)\,\hat{u}(\lambda,t)$$
$$\hat{y}(\lambda,t) = \mathcal{C}(\lambda)\,\hat{\psi}(\lambda,t),$$

where $\lambda \in \hat{\mathbb{G}}$, the dual group to \mathbb{G} .

Remark: This can be thought of as a parameterized family of finite-dimensional systems.

The Fourier transform converts:

spatially-invariant operators on $\mathcal{L}_2(\mathbb{G}) \longrightarrow \mathbb{C}$ multiplication operators on $\mathcal{L}_2(\hat{\mathbb{G}})$

group: Gdual group: GTransform \mathbb{R} \mathbb{R} Fourier Transform \mathbb{Z} $\partial \mathbb{D}$ Z-Transform $\partial \mathbb{D}$ \mathbb{Z} Fourier Series \mathbb{Z}_n \mathbb{Z}_n Discrete Fourier Transform

In general:

and the transforms preserve \mathcal{L}_2 norms:

$$\|f\|_{2}^{2} = \int_{\mathbb{G}} |f(x)|^{2} dx = \int_{\hat{\mathbb{G}}} |\hat{f}(\lambda)|^{2} d\lambda = \|\hat{f}\|_{2}^{2}$$

The Fourier transform converts:

spatially-invariant operators on $\mathcal{L}_2(\mathbb{G}) \longrightarrow \mathbb{C}$ multiplication operators on $\mathcal{L}_2(\hat{\mathbb{G}})$

group: Gdual group: GTransform \mathbb{R} \mathbb{R} Fourier Transform \mathbb{Z} $\partial \mathbb{D}$ Z-Transform $\partial \mathbb{D}$ \mathbb{Z} Fourier Series \mathbb{Z}_n \mathbb{Z}_n Discrete Fourier Transform

In general:

and the transforms preserve \mathcal{L}_2 norms:

$$\|f\|_{2}^{2} = \int_{\mathbb{G}} |f(x)|^{2} dx = \int_{\hat{\mathbb{G}}} |\hat{f}(\lambda)|^{2} d\lambda = \|\hat{f}\|_{2}^{2}$$

The system operation is then spatially decoupled or "block diagonalized":

 $\frac{\partial}{\partial t}\psi(x,t) = A \psi(x,t) + B u(x,t)$ $y(x,t) = C \psi(x,t) + D u(x,t)$

A distributed, spatially-invariant system

 $\begin{array}{rcl} \frac{d}{dt}\hat{\psi}(\lambda,t) &=& \hat{A}(\lambda)\hat{\psi}(\lambda,t) + \hat{B}(\lambda)\hat{u}(\lambda,t) \\ \hat{y}(\lambda,t) &=& \hat{C}(\lambda)\hat{\psi}(\lambda,t) + \hat{D}(\lambda)\hat{u}(\lambda,t) \end{array}$

A parameterized family of finite-dimensional systems

TRANSFORM METHODS

In physical space

After spatial Fourier trans. (FT)

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n$$
$$y_n = C_n \star \psi_n$$

$$\frac{d}{dt}\hat{\psi}(\theta) = \hat{A}(\theta) \hat{\psi}(\theta) + \hat{B}(\theta) \hat{u}(\theta)$$
$$\hat{y}(\theta) = \hat{C}(\theta) \hat{\psi}(\theta)$$

TRANSFORM METHODS

In physical space

After spatial Fourier trans. (FT)

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n$$
$$y_n = C_n \star \psi_n$$

$$\frac{d}{dt}\hat{\psi}(\theta) = \hat{A}(\theta) \hat{\psi}(\theta) + \hat{B}(\theta) \hat{u}(\theta)$$
$$\hat{y}(\theta) = \hat{C}(\theta) \hat{\psi}(\theta)$$

IMPLICATIONS

Dynamics are decoupled by FT

(The A, B, C operators are "diagonalized")

TRANSFORM METHODS

In physical space

After spatial Fourier trans. (FT)

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n$$
$$y_n = C_n \star \psi_n$$

$$\frac{d}{dt} \hat{\psi}(\theta) = \hat{A}(\theta) \ \hat{\psi}(\theta) + \hat{B}(\theta) \ \hat{u}(\theta) \hat{y}(\theta) = \hat{C}(\theta) \ \hat{\psi}(\theta)$$

IMPLICATIONS

- Dynamics are decoupled by FT
- Quadratic forms preserved by FT

In physical space

After spatial Fourier trans. (FT)

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n \qquad \qquad \frac{d}{dt}\hat{\psi}(\theta) = \hat{A}(\theta) \ \hat{\psi}(\theta) + \hat{B}(\theta) \ \hat{u}(\theta) y_n = C_n \star \psi_n \qquad \qquad \frac{d}{dt}\hat{\psi}(\theta) = \hat{C}(\theta) \ \hat{\psi}(\theta) + \hat{B}(\theta) \ \hat{u}(\theta)$$

IMPLICATIONS

-

- Dynamics are decoupled by FT
- Quadratic forms preserved by FT

(The A, B, C operators are "diagonalized") Quadratically optimal control \Longrightarrow problems are equivalent for FT

• Yields a parametrized family of mutually independent problems

In physical space

After spatial Fourier trans. (FT)

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n \qquad \qquad \frac{d}{dt}\hat{\psi}(\theta) = \hat{A}(\theta) \ \hat{\psi}(\theta) + \hat{B}$$
$$y_n = C_n \star \psi_n \qquad \qquad \hat{y}(\theta) = \hat{C}(\theta) \ \hat{\psi}(\theta)$$

IMPLICATIONS

- Dynamics are decoupled by FT
- Quadratic forms preserved by FT

$$\frac{d}{dt}\hat{\psi}(\theta) = \hat{A}(\theta) \hat{\psi}(\theta) + \hat{B}(\theta) \hat{u}(\theta)$$
$$\hat{y}(\theta) = \hat{C}(\theta) \hat{\psi}(\theta)$$

(The A, B, C operators are "diagonalized") Quadratically optimal control \Longrightarrow problems are equivalent for FT

Yields a parametrized family of mutually independent problems

TRANSFER FUNCTIONS

operator-valued transfer function $\mathcal{H}(s) = \mathcal{C} \left(sI - \mathcal{A} \right)^{-1} \mathcal{B}$

spatio-temporal transfer function $H(s,\theta) = \hat{C}(\theta) \left(sI - \hat{A}(\theta)\right)^{-1} \hat{B}(\theta)$ In physical space

After spatial Fourier trans. (FT)

 $\hat{u}(\theta)$

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n \qquad \qquad \frac{d}{dt}\hat{\psi}(\theta) = \hat{A}(\theta) \hat{\psi}(\theta) + \hat{B}(\theta) \\ y_n = C_n \star \psi_n \qquad \qquad \hat{y}(\theta) = \hat{C}(\theta) \hat{\psi}(\theta)$$

IMPLICATIONS

- Dynamics are decoupled by FT
- Quadratic forms preserved by FT

(The
$$A, B, C$$
 operators are "diagonalized")
 \implies Quadratically optimal control
problems are equivalent for FT

• Yields a parametrized family of mutually independent problems

TRANSFER FUNCTIONS

operator-valued transfer function $\mathcal{H}(s) = \mathcal{C} \left(sI - \mathcal{A} \right)^{-1} \mathcal{B}$ spatio-temporal transfer function $H(s,\theta) = \hat{C}(\theta) \left(sI - \hat{A}(\theta)\right)^{-1} \hat{B}(\theta)$

A multi-dimensional system with temporal, but not spatial causality

Optimal Control of Infinite Platoons

ISS GOOD APPROXIMATION OF LARGE BUT FINITE PLATOONS

MAIN IDEA: EXPLOIT SPATIAL INVARIANCE

NOT STABILIZABLE AT $\theta = 0$

Parameterized ARE solutions yield "localized" operators!

Consider unbounded domains, i.e. $\mathbb{G} = \mathbb{R}$ (or \mathbb{Z}).

Theorem 2. Consider the parameterized family of Riccati equations:

 $A^*(\lambda)P(\lambda) + P(\lambda)A(\lambda) - P(\lambda)B(\lambda)R(\lambda)B^*(\lambda)P(\lambda) + Q(\lambda) = 0, \qquad \lambda \in \widehat{\mathbb{G}}.$

Under mild conditions: there exists an analytic continuation P(s) of $P(\lambda)$ in a region

 $\{|Im(s)| < \alpha\}, \quad \alpha > 0.$

Convolution kernel resulting from Parameterized ARE has exponential decay. That is, they have some degree of inherent decentralization (*"localization"*)!

Parameterized ARE solutions yield "localized" operators!

Consider unbounded domains, i.e. $\mathbb{G} = \mathbb{R}$ (or \mathbb{Z}).

Theorem 2. Consider the parameterized family of Riccati equations:

 $A^*(\lambda)P(\lambda) + P(\lambda)A(\lambda) - P(\lambda)B(\lambda)R(\lambda)B^*(\lambda)P(\lambda) + Q(\lambda) = 0, \qquad \lambda \in \widehat{\mathbb{G}}.$

Under mild conditions: there exists an analytic continuation P(s) of $P(\lambda)$ in a region

 $\{|Im(s)| < \alpha\}, \quad \alpha > 0.$

Convolution kernel resulting from Parameterized ARE has exponential decay. That is, they have some degree of inherent decentralization (*"localization"*)! Comparison:

- Modal truncation: In the transform domain, ARE solutions decay algebraically.
- **Spatial truncation:** In the spatial domain, convolution kernel of ARE solution decays exponentially.

Therefore: Use transform domain to design $\forall \lambda$. Approximate in the spatial domain!

EXAMPLE: one dimensional array of systems indexed in \mathbb{Z} .

 ψ_n : the state of the system in the *n*'th cell

total state: {..., $\psi_{-1}, \psi_o, \psi_1, \ldots$ }

EXAMPLE: one dimensional array of systems indexed in \mathbb{Z} .

 ψ_n : the state of the system in the *n*'th cell

total state: {..., $\psi_{-1}, \psi_o, \psi_1, \ldots$ }

$$\frac{d}{dt}\psi_n = \sum_m A_{n-m} \psi_m + \sum_m B_{n-m} u_m$$
$$y_n = \sum_m C_{n-m} \psi_n$$

EXAMPLE: one dimensional array of systems indexed in \mathbb{Z} .

 ψ_n : the state of the system in the *n*'th cell

total state: {..., $\psi_{-1}, \psi_o, \psi_1, \ldots$ }

$$\frac{d}{dt}\psi_n = \sum_m A_{n-m} \psi_m + \sum_m B_{n-m} u_m$$

$$y_n = \sum_m C_{n-m} \psi_n$$

$$\downarrow$$

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n$$

$$y_n = C_n \star \psi_n$$

Observer based controller has the following structure:

Plant

Controller

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n$$

$$y_n = C_n \star \psi_n$$

$$u_i = K_i \star \psi_i$$

$$\frac{d}{dt}\hat{\psi}_n = A_n \star \hat{\psi}_n + B_n \star u_n$$

$$+ L_n \star (y_n - \hat{y}_n)$$

Observer based controller has the following structure:

Plant

Controller

$$\frac{d}{dt}\psi_n = A_n \star \psi_n + B_n \star u_n$$

$$y_n = C_n \star \psi_n$$

$$u_i = K_i \star \psi_i$$

$$\frac{d}{dt}\hat{\psi}_n = A_n \star \hat{\psi}_n + B_n \star u_n$$

$$+ L_n \star (y_n - \hat{y}_n)$$

REMARKS:

• Optimal Controller is "locally" finite dimensional.

Observer based controller has the following structure:

Plant

Controller

REMARKS:

- Optimal Controller is "locally" finite dimensional.
- The gains $\{K_i\}, \{L_i\}$ are localized (exponentially decaying) \rightarrow "spatial truncation"
DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

Observer based controller has the following structure:

Plant

Controller

REMARKS:

- Optimal Controller is "locally" finite dimensional.
- The gains $\{K_i\}, \{L_i\}$ are localized (exponentially decaying) \rightarrow "spatial truncation"
- After truncation, local controller need only receive information from neighboring subsystems.

DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

Observer based controller has the following structure:

Plant

Controller

REMARKS:

- Optimal Controller is "locally" finite dimensional.
- The gains $\{K_i\}, \{L_i\}$ are localized (exponentially decaying) \rightarrow "spatial truncation"
- After truncation, local controller need only receive information from neighboring subsystems.
- Quadratically optimal controllers are inherently distributed and semi-decentralized (*localized*)

Outline

Examples

Vehicular Platoons Heat Equation with Distributed Control

Spatially-Invariant Plants

Optimal Controllers are Inherently Spatially Invariant Optimal Centralized Controllers are Inherently Localized

Spatially-Varying Plants

Localized Plants over Arbitrary Networks Notions of Distance and Spatial Decay Central LQR Controllers are Inherently Localized PhD Thesis of Nader Motee Motee & Jadbabaie, *Optimal control of spatially distributed systems*

Spatially Distributed Dynamical Systems

- Engineered systems involve finite number of subsystems.
- Infinite-dimensional abstractions allows for a precise mathematical Analysis.
- Our focus will be on spatially distributed linear systems:

$$\frac{d}{dt}\psi(i,t) = (A\psi)(i,t) + (Bu)(i,t)$$
$$y(i,t) = (C\psi)(i,t) + (Du)(i,t)$$

 ψ, u, y : state, input, and output variables

i: spatial variable

t: temporal variable

A, B, C, D: infinite-dimensional matrices

Spatially Distributed Dynamical Systems

• Spatially decaying (SD) matrices

$$\begin{array}{rcl} \displaystyle \frac{d}{dt}\psi &=& A\psi \ + \ Bu \\ \displaystyle y &=& C\psi \ + \ Du \end{array} \end{array}$$

Infinite-dimensional matrices: $A, B, C, D : \ell_2 \to \ell_2$

$$A = (a_{i,j}) = \begin{pmatrix} \vdots & a_{i-1,j} \\ \dots & a_{i,j-1} & a_{i,j} & a_{i,j+1} & \dots \\ & & a_{i+1,j} \\ \vdots & & & \end{pmatrix}$$

Banach spaces: $\ell_p := \{x : ||x||_p < \infty\}$ where $||x||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$

Spatially Decaying (SD) Operators

• In many applications the corresponding matrices are spatially decaying: $A = (a_{ij})$

Spatially Decaying (SD) matrices

Optimal Control of Spatially Decaying Systems

Structural Properties of Spatially Decaying Systems:

minimize
$$\int_{0}^{\infty} \langle \psi, Q\psi \rangle + \langle u, Ru \rangle dt$$

subject to:
$$\frac{d}{dt}\psi = A\psi + Bu$$

$$u = K\psi$$

Our goal:

Assume that the corresponding LQR problem is optimizable and exponentially detectable. If A, B, Q, R are spatially decaying (SD), then K is also SD.

Locality Features of the Optimal Controller

• The state feedback $K = (K_{ij})$ is SD:

7

Coupling function

• Properties of a coupling characteristic function:

- $\chi_{\alpha}(0) = 1$ for all $\alpha \ge 0$ and $\chi_0(x) = 1$ for all $x \ge 0$.
- Continuous and nondecreasing in x.
- $\chi_{\alpha}(x+y) \leq \chi_{\alpha}(x) \chi_{\alpha}(y)$ (submultiplicative)

Examples:

- Sub-exponential: $\chi_{lpha}(x) = e^{lpha |x|^{eta}}$, $0 \le eta < 1$
- Polynomial: $\chi_{\alpha}(x) = (1 + |x|)^{\alpha}$

• Logarithm:
$$\chi_{lpha}(x) = \left(\log(e + |x|) \right)^{lpha}$$

• Product of coupling functions, e.g. $\chi_{\alpha}(x) = e^{\alpha |x|^{\beta}} (1 + |x|)^{\alpha}$

Subspace of Spatially Decaying Operators

• Consider the following subspace of infinite-dimensional matrices:

 $\mathcal{S}^{\infty}_{\tau}(\mathscr{C}) = \{A : |||A|||_{\tau} < \infty\}$

• An operator norm can be defined:

$$|||A|||_{\alpha} = \max\left(\sup_{k}\sum_{i} ||a_{ki}||\chi_{\alpha}(\operatorname{dis}(k,i)), \sup_{i}\sum_{k} ||a_{ki}||\chi_{\alpha}(\operatorname{dis}(k,i))\right)$$

• Structure of this subspace:

```
egin{aligned} &(\mathcal{S}^\infty_{	au}(\mathscr{C}), \|\|.\|) 	ext{ for all } AB \|\| &\leq \|\|A\|\| \ \|\|B\|\| \ &	ext{ for all } A, B \in \mathcal{S}^\infty_{	au}(\mathscr{C}). \end{aligned}
```

Banach Algebra of Spatially Decaying Operators

 $(\mathcal{S}^{\infty}_{ au}(\mathscr{C}), |||.|||)$ forms a Banach Algebra

- Properties: For all $A, B \in \mathcal{S}^{\infty}_{\tau}(\mathscr{C})$, it follows
 - Closed under addition: $A + B \in S^{\infty}_{\tau}(\mathscr{C})$
 - Closed under multiplication: $AB \in \mathcal{S}^{\infty}_{\tau}(\mathscr{C})$
 - Closed under inversion: $A^{-1} \in \mathcal{S}^{\infty}_{\tau}(\mathscr{C})$
 - Convergence of Cauchy sequences

Spectral Properties of SD operators

Theorem (Groechenig 2006):

Assume that χ_{lpha} satisfies

$$\lim_{n \to \infty} \chi_{\alpha}(nx)^{\frac{1}{n}} = 1$$

and the weak growth condition

$$\chi_{\alpha}(x) \ge C(1+|x|)^{\delta}$$
 for some $0 < \delta \le 1$.

Then

The spectral radius w.r.t. the Banach Algebra $= \rho_{\mathcal{S}_{\tau}}(A) = \rho_{\ell_2}(A) = ||A||_{2,2}$

for all $A = A^* \in \mathcal{S}^{\infty}_{\tau}$. Consequently,

$$\sigma_{\mathcal{S}^{\infty}_{\tau}}(A) = \sigma_{\ell_2}(A).$$

for all $A \in \mathcal{S}^{\infty}_{\tau}$.

Applications of the Spectral Properties

Lemma:

Assume that $A = A^* \in S^{\infty}_{\tau}$ is the infinitesimal generator of e^{At} and e^{At} is exponentially stable. Then

$$||e^{At}|||_{\alpha} \leq C e^{-\mu t}$$

for some $C, \mu > 0.$

- The result holds for any exponentially stable semigroup.
- The unique solution of the Lyapunov equation is SD:

$$P(t)\phi = \int_0^t e^{A^*s} Q e^{As} \phi ds$$

Form a Cauchy sequence

Simulations

• Coupled systems:
$$\dot{x}_k = A_{kk} x_k + B_{kk} u_k + \sum_{i=1}^N A_{ki} x_i$$
, $N = 200$

• In quadratic cost functional, the weighting matrices are defined as: $\int -1 \quad \text{if} \quad i \sim i$

(graph Laplacian)
$$Q_{ij} = \begin{cases} -1 & \text{if } i \sim j \\ d_{ii} & \text{if } i = j \end{cases}$$
, $R = I$

Exponentially Decaying Couplings

• The coupling function is $\chi_{\alpha}(x) = e^{\alpha x}$ where $\alpha = 0.1823$

• Optimal state-feedback: $u_k = K_{kk} x_k + \sum_{i \neq k} K_{ki} x_i$

Algebraically Decaying Couplings

- The coupling function is $\chi_{lpha}(x) = (1 + 0.1x)^{lpha}$ where $\alpha = 4$
- Optimal state-feedback: $u_k = K_{kk} x_k + \sum_{i \neq k} K_{ki} x_i$

Nearest Neighbor Couplings

• Optimal state-feedback: $u_k = K_{kk} x_k + \sum_{i \neq j} K_{ki} x_i$

Spatial Truncation vs. Performance Loss

Spatial truncation of the optimal controller: $[K_T]_{ki} = \begin{cases} [K]_{ki} & \text{if } \operatorname{dis}(k,i) \leq T \\ \mathbf{0} & \text{if } \operatorname{dis}(k,i) > T. \end{cases}$

- Stabilizing truncation length:
 - Exp. decaying: $T_s = 7.9785$
 - Algeb. decaying: $T_s = 2.9603$
 - Nearest Neighbor: $T_s = 15.0934$

Performance criteria:

$$\left| \frac{\operatorname{Trace}(P_T) - \operatorname{Trace}(P)}{\operatorname{Trace}(P)} \right| \times 100$$

 $(A+BK_T)^* P_T + P_T (A+BK_T) + Q + K_T^* RK_T = 0$ where

Part II

What you can impose

Architectural constraints that lead to convex optimal control problems

Controller Constraints that Lead to Convex Problems The YJBK Parameterization

Funnel Causality

Controller Architecture

Centralized vs. Decentralized control: An old and difficult problem

CENTRALIZED:

BEST PERFORMANCE EXCESSIVE COMMUNICATION

FULLY DECENTRALIZED:

WORST PERFORMANCE NO COMMUNICATION

LOCALIZED:

MANY POSSIBLE ARCHITECTURES

Reasoning with the YJBK Parameterization

Let G be a stable MIMO plant

• All stabilizing controllers (Internal Model Control)

 $K = Q(I + GQ)^{-1}$ Q stable

• If *G* and *Q* belong to a CLASS closed under additions, multiplications, inversions Then $Q \in \text{CLASS} \Leftrightarrow K \in \text{CLASS}$ Reasoning with the YJBK Parameterization

Let G be a stable MIMO plant

All stabilizing controllers (Internal Model Control)

 $K = Q(I + GQ)^{-1}$ Q stable

- If *G* and *Q* belong to a CLASS closed under additions, multiplications, inversions Then $Q \in \text{CLASS} \Leftrightarrow K \in \text{CLASS}$
- Optimal design becomes

 $\inf_{Q \text{ stable, } Q \in \text{CLASS}} \|H - UQV\|$

 $\textbf{Convex CLASS} \Rightarrow \textbf{Convex problem}$

Reasoning with the YJBK Parameterization

Let G be a stable MIMO plant

All stabilizing controllers (Internal Model Control)

 $K = Q(I + GQ)^{-1}$ Q stable

- If *G* and *Q* belong to a CLASS closed under additions, multiplications, inversions Then $Q \in \text{CLASS} \Leftrightarrow K \in \text{CLASS}$
- Optimal design becomes

 $\inf_{\substack{Q \text{ stable, } Q \in \text{CLASS}}} \|H - UQV\|$

 $\textbf{Convex CLASS} \Rightarrow \textbf{Convex problem}$

If G is unstable, use a factorization $G = NM^{-1}$, XM - YN = I

All stabilizing controllers

$$K = (Y + MQ)(X + NQ)^{-1}$$
 Q stable

Spatio-temporal Impulse Response

Spatio-temporal impulse response h(x, t)

$$y(x,t) = \iint h(x-\xi,t-\tau) \ u(\xi,\tau) \ d\tau \ d\xi,$$

Interpretation

 $h(\boldsymbol{x},t)$: effect of input on output a distance \boldsymbol{x} away and time t later

Example: Constant maximum speed of effects

Funnel Causality

Def: A system is *funnel-causal* if impulse response h(.,.) satisfies

h(x,t) = 0 for t < f(x), where f(.) is (1) non-ne

is (1) non-negative (2) f(0) = 0(3) $\{f(x), x \ge 0\}$ and $\{f(x), x \le 0\}$ are concave

i.e. supp(h) is a "funnel shaped" region

Properties of funnel causal systems

Let S_f be a funnel shaped set

- $\operatorname{supp}(h_1) \subset S_f \& \operatorname{supp}(h_2) \subset S_f \quad \Rightarrow \quad \operatorname{supp}(h_1 + h_2) \subset S_f$
- $\operatorname{supp}(h_1) \subset S_f \& \operatorname{supp}(h_2) \subset S_f \quad \Rightarrow \quad \operatorname{supp}(h_1 * h_2) \subset S_f$
- $(I+h_1)^{-1}$ exists & supp $(h_1) \subset S_f \implies supp ((I+h_1)^{-1}) \subset S_f$

i.e.

The class of funnel-causal systems is closed under *Parallel, Serial, & Feedback interconnections*

A Class of Convex Problems

- Given a plant G with supp $(G_{22}) \subset S_{f_g}$
- Let S_{f_k} be a set such that $S_{f_g} \subset S_{f_k}$ *i.e. controller signals travel at least as fast as the plant's*

Solve

 $\inf_{\substack{K \text{ stabilizing} \\ \text{supp}(K) \subset S_{f_k}}} \|\mathcal{F}(G;K)\|,$

YJBK Parameterization and the Model Matching Problem

 $L_f :=$ class of linear systems w/ impulse response supported in S_f

- Let $G_{22} \in L_{f_g}$ $G_{22} = NM^{-1}$ and XM - YN = I with $N, M, X, Y \in L_{f_g}$ and stable
- Let $S_{f_g} \subset S_{f_k}$
- Then all stabilizing controllers K such that $K \in L_{f_k}$ are given by

 $K = (Y + MQ)(X + NQ)^{-1},$

where Q is a stable system in L_{f_k} .

• The problem becomes

 $\begin{array}{ll} \inf & \|H - UQV\|, \\ Q \text{ stable} \\ Q \in L_{f_k} \end{array}$

A convex problem!

Coprime Factorizations

Bezout identity: Find K and L such that A + LC and A + BK stable $\begin{bmatrix} X & -Y \end{bmatrix} := \begin{bmatrix} A + LC & -B & L \\ \hline K & I & 0 \end{bmatrix}, \begin{bmatrix} M \\ N \end{bmatrix} := \begin{bmatrix} A + BK & B \\ \hline K & I \\ C & 0 \end{bmatrix},$ then $G = NM^{-1}$ and XM - YN = I,

f
$$\begin{cases} \bullet e^{tA}B, Ce^{tA} \text{ and } Ce^{tA}B \text{ are funnel causal} \end{cases}$$

• K and L are funnel causal (Easy!)

then all elements of Bezout identity are funnel-causal

$$\begin{bmatrix} A + BK & B \\ \hline C & 0 \\ K & 0 \end{bmatrix}$$

Example: Wave Equations with Input

1-d wave equation, $x \in \mathbb{R}$: $\partial_t^2 \psi(x,t) = c^2 \partial_x^2 \psi(x,t) + u(x,t)$ State space representation $\partial_t \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} = \begin{bmatrix} 0 & I \\ c^2 \partial_x^2 & 0 \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} u$ $\psi = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix}.$

The semigroup

$$e^{tA} = \frac{1}{2} \begin{bmatrix} T_{ct} + T_{-ct} & \frac{1}{c}R_{ct} \\ c\partial_x^2 R_{ct} & T_{ct} + T_{-ct} \end{bmatrix}.$$

 $R_{ct} :=$ spatial convolution with $\operatorname{rec}(\frac{1}{ct}x)$ $T_{ct} :=$ translation by ct

all components are funnel causal

e.g. the impulse response $h(x,t) = \frac{1}{2c} \operatorname{rec} \left(\frac{1}{ct} x \right)$.

Example: Wave Equations with Input (cont.)

 $\kappa :=$ spatial Fourier transform variable ("wave number")

$$A + BK = \begin{bmatrix} 0 & 1 \\ -c^2 \kappa^2 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \\ -c^2 \kappa^2 + k_1 & k_2 \end{bmatrix}.$$

Set $k_1 = 0$, then

$$\sigma(A+BK) = \bigcup_{\kappa \in \mathbb{R}} \left(k_2 \pm \frac{1}{2} \sqrt{k_2^2 - 4c^2 \kappa^2} \right) = \left[\frac{3}{2} k_2, \frac{1}{2} k_2 \right] \bigcup (k_2 + j\mathbb{R})$$

Similarly for A + LC. Therefore, choose e.g.

$$K = \begin{bmatrix} 0 & -1 \end{bmatrix}, \quad L = \begin{bmatrix} -1 \\ 0 \end{bmatrix}.$$

Elements of the Bezout Identity are thus:

$$\begin{bmatrix} X & -Y \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 & -1 \\ -c^2 \kappa^2 & 0 & -1 & 0 \\ \hline 0 & -1 & 1 & 0 \end{bmatrix},$$
$$\begin{bmatrix} M \\ N \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -c^2 \kappa^2 & -1 & 1 \\ \hline 0 & -1 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Equivalently

$$M = \frac{s^2 + c^2 \kappa^2}{s^2 + s + c^2 \kappa^2}, \qquad X = \frac{s^2 + 2s + c^2 \kappa^2 + 1}{s^2 + s + c^2 \kappa^2},$$
$$N = \frac{1}{s^2 + s + c^2 \kappa^2}, \qquad -Y = \frac{-c^2 \kappa^2}{s^2 + s + c^2 \kappa^2}.$$

How easily solvable are the resulting convex problems?

- In general, these convex problems are infinite dimensional *i.e. worse than standard half-plane causality*
- In certain cases, problem similar in complexity to half-plane causality e.g. H^2 with the causality structure below

(Voulgaris, Bianchini, Bamieh, SCL '03)

Generalizations

- Quick generalizations:
 - Several spatial dimensions
 - Spatially-varying systems
 funnel causality ↔ *non-decreasing speed with distance*
 - Use relative degree in place of time delay
- Quadratic Invariance (*Rotkowitz, Lall*)
- Arbitrary graphs (*Rotkowitz, Cogill, Lall*)
- How to solve the resulting convex problems

Related recent work:

• Anders Rantzer