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The Setting

The Plant has spatially distributed dynamics
The controller also has spatially distributed dynamics

For a given plant structure,
what’s the inherent structure of the Centralized Controller?

If we want to constrain the controller’s architecture,
what type of constraints lead to tractable problems?
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The Approach

WE WILL TAKE A BROAD VIEW OF spatially distributed dynamics

Systems described by Partial Differential Equations (PDEs)
Continuous Space

Dynamical systems over lattices and graphs
Discrete Space
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Part I

What you get for free:

The inherent structure of the centralized controller for
spatially distributed plants
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Vehicular Platoons
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• Maintain constant small slot length L.

• Reject the effect of disturbances {wi} (wind gusts, road conditions, etc...)
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w�1 w1 w2wo

Objective: Design a controller for each vehicle to:

• Maintain constant small slot length L.

• Reject the effect of disturbances {wi} (wind gusts, road conditions, etc...)

Warning: Designs based on two vehicle models may lack “string stability”,

i.e. disturbances get amplified as they propagate through the platoon.

Problem Structure:

• Actuators: each vehicle’s throttle input.

• Sensors: position and velocity of each vehicle.
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Vehicular Platoons Set-up

xi: i’th vehicle’s position.

� � � � � � � �
� ⇥ � ⇥ � ⇥

⇥ ⇥ ⇥ ⇥

. . .
L L L

x�1 xo x1 x2

. . .

w�1 w1 w2wo

x̃i := xi � xi�1 � L� C

x̃1,i := x̃i

x̃2,i := ˙̃xi



Vehicular Platoons (Optimal LQR)
Centralized LQR design (Melzer & Kuo ’70, Athans & Levine ’66)
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Inherent Localization: Bamieh et. al, TAC ’02, Motee et. al. ’07
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Vehicular Platoons Set-up

xi: i’th vehicle’s position.

� � � � � � � �
� ⇥ � ⇥ � ⇥

⇥ ⇥ ⇥ ⇥

. . .
L L L

x�1 xo x1 x2

. . .

w�1 w1 w2wo

x̃i := xi � xi�1 � L� C

x̃1,i := x̃i

x̃2,i := ˙̃xi

Structure of generalized plant:

H =
�

H11 H12
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The generalized plant has a Toeplitz structure!

H
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z = F(H,C) w
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Optimal Controller for Vehicular Platoon

Example: Centralized H2 optimal controller gains for a 50 vehicle platoon

(From: Shu and Bamieh ’96)
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Figure 1: Position error feedback gains for a 50 vehicle platoon
Remarks:

• For large platoons, optimal controller is approximately Toeplitz

• Optimal centralized controller has some inherent decentralization (“localization”)

Controller gains decay away from the diagonal
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Example: Centralized H2 optimal controller gains for a 50 vehicle platoon

(From: Shu and Bamieh ’96)
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Figure 1: Position error feedback gains for a 50 vehicle platoon
Remarks:

• For large platoons, optimal controller is approximately Toeplitz

• Optimal centralized controller has some inherent decentralization (“localization”)

Controller gains decay away from the diagonal

Q: Do the above 2 results occur in all “such” problems?

11



Simple Example; Distributed LQR Control of Heat Equation

⇤

⇤t
⇥(x, t) = c

⇤2

⇤x2
⇥(x, t) + u(x, t) �⇥ d

dt
⇥̂(�, t) = �c�2⇥̂(�, t) + û(�, t)

Solve the LQR problem with Q = qI, R = I. The corresponding ARE family:

�2c�2 p̂(�)� p̂(�)2 + q = 0,

and the positive solution is:

p̂(�) = �c�2 +
�

c2�4 + q.

Remark: In general P̂ (�) an irrational function of �, even if Â(�), B̂(�) are rational.

i.e. PDE systems have optimal feedbacks which are not PDE operators.

Let {k(x)} be the inverse Fourier transform of the function {�p̂(�)}.
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Then optimal (temporally static) feedback

u(x, t) =
�

R
k(x� �) ⇥(�, t) d�

!"#$%

!

Remark: The “spread” of {k(x)} indicates information required from distant sensors.
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Distributed LQR Control of Heat Equation (Cont.)

Important Observation: {k(x)} is “localized”. It decays exponentially!!

k̂(�) = c�2 �
�

c2�4 + q.
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Important Observation: {k(x)} is “localized”. It decays exponentially!!

k̂(⇥) = c⇥2 �
⌥

c2⇥4 + q.
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This can be analytically extended by:

k̂e(s) = cs2 �
⌥

c2s4 + q,

which is analytic in the strip
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s ⇤ C ; Im{s} <

⇧
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⌥

c2s4 + q,

which is analytic in the strip

⇧
s ⇤ C ; Im{s} <

⇧
2
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⇤ q
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⌅1
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⌃
.

Therefore: ⌅M such that

|k(x)| ⇥ Me��|x|, for any � <

⇧
2

2

⇤ q

c2

⌅1
4
.

This results is true in general: under mild conditions

Solutions of AREs always inverse transform to exponentially decaying convolution

kernels
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Distributed Systems with Special Structure

• General Infinite-dimensional Systems Theory

– Well posedness issues (semi-group theory)

– Constructive (convergent) approximation techniques
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Distributed Systems with Special Structure

• General Infinite-dimensional Systems Theory

– Well posedness issues (semi-group theory)

– Constructive (convergent) approximation techniques

THEME: Make infinite-dimensional problems look like finite-dimensional ones

• Special Structure

– Distributed control and measurement (now more feasible)

– Regular (lattice) arrangement of devices

Together =� Spatial Invariance

– Control of “Vehicular Strings”, (Melzer & Kuo, 71)

– Discretized PDEs, (Brockett, Willems, Krishnaprasd, El-Sayed, ’74, ’81)

– “Systems over rings”, (Kamen, Khargonekar, Sontag, Tannenbaum, ...)

– Systems with “Dynamical Symmetry”, (Fagniani & Willems)

More recently:

– Controller architecture and localization, (Bamieh, Paganini, Dahleh)

– LMI techniques, localization, (D’Andrea, Dullerud, Lall)
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System Representations

All signals are spatio-temporal, e.g. u(x, t), ⌅(x, t), y(x, t), etc.
Spatially distributed inputs, states, and outputs

• State space description
d
dt⌅(x, t) = A ⌅(x, t) + B u(x, t)
y(x, t) = C ⌅(x, t) + D u(x, t)

A,B, C,D translation invariant operators
�⇥ spatially invariant system

• Spatio-temporal impulse response h(x, t)

y(x, t) =
� �

h(x� ⇥, t� ⇤) u(⇥, ⇤) d⇤ d⇥,

• Transfer function description

Y (�, ⇧) = H(�, ⇧) U(�, ⇧)
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Spatio-temporal Impulse Response

Spatio-temporal impulse response h(x, t)

y(x, t) =
� �

h(x� �, t� ⇥) u(�, ⇥) d⇥ d�,

Interpretation
h(x, t): effect of input on output a distance x away and time t later

Example: Constant maximum speed of effects
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Example: Distributed Control of the Heat Equation

� � � �

⇥ ⇥ ⇥ ⇥ ⇥

uo u1 u2u�1u�2
y�1 yo y1 y2

ui: input to heating elements. yi: signal from temperature sensor.

Dynamics are given by:

�

⇧⇧⇧⇧⇤

...

y�1

yo

y1
...

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇧⇤

... ...

. . . H�1,0 . . .
H0,�1 H0,0 H0,1

. . . H1,0 . . .
... ...

⇥

⌃⌃⌃⌃⌅

�

⇧⇧⇧⇧⇤

...

u�1

uo

u1
...

⇥

⌃⌃⌃⌃⌅

Each Hi,j is an infinite-dimensional SISO system.

Fact: Dynamics are spatially invariant� H is Toeplitz

The input-output relation can be written as a convolution over the actuator/sensor

index:

yi =
⇥⌥

j=�⇥
H̄(i�j) uj,
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The limit of large actuator sensor array:

⇤⇥

⇤t
(x, t) = c

⇤2⇥

⇤x2
(x, t) + u(x, t) ⇥x =

� ⇥

�⇥
Hx�� u�d�,
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Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

ui(t) := u(i1,...,in)(t), yi(t) := y(i1,...,in)(t).

i := (i1, . . . , in) a spatial multi-index, i ⇥ G := G1 � . . .� Gn.
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Spatial Invariance of Dynamics

Indexing of actuator and sensor signals:

ui(t) := u(i1,...,in)(t), yi(t) := y(i1,...,in)(t).

i := (i1, . . . , in) a spatial multi-index, i ⌃ G := G1 ⇥ . . .⇥ Gn.

Linear input-output relations: A general linear system from u to y:

yi =
X

j⌃G
Hi,j uj, ⇧ y(i1,...,in) =

X

j1⌃G1

. . .
X

jn⌃Gn

H(i1,...,in),(j1,...,jn) u(j1,...,jn),

Spatial Invariance:

Assumption 1: Set of spatial indices = commutative group

G := G1 ⇥ . . .⇥ Gn, each Gi a commutative group.

Remark: “spatial shifting” of signals

(S�u)i := ui�� Compare with: Time shift by ⇥ (S⇥u)(t) := u(t� ⇥)

Assumption 2: Spatial invariance ⇤⌅ Commute with spatial shifts

⌥� ⌃ G, H S� = S� H ⇧ S�1
� HS� = H
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Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

• Vehicular platoons: signals index over Z.



Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

• Vehicular platoons: signals index over Z.

• Channel flow: Signals indexed over {0, 1}� Z :

y(l,i) =
⇥�

j=�⇥
H(l�0,i�j) u(0,j) +

⇥�

j=�⇥
H(l�1,i�j) u(1,j), l = 0, 1.

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
� � � � � � � � �

�
�
�
�
�

�
�

�
�
�
�

�
�

� � � � � � � � �
⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥



Examples of Spatial Invariance

Generally: Spatial invariance easily ascertained from basic physical symmetry!

• Vehicular platoons: signals index over Z.

• Channel flow: Signals indexed over {0, 1}� Z :

y(l,i) =
⇥�

j=�⇥
H(l�0,i�j) u(0,j) +

⇥�

j=�⇥
H(l�1,i�j) u(1,j), l = 0, 1.

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
� � � � � � � � �

�
�
�
�
�

�
�

�
�
�
�

�
�

� � � � � � � � �
⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Remark: The input-output mapping of a spatially invariant system can be rewritten:

yi =
�

j⇤G
Ḡi�j uj, ⇥ y(i1,...,in) =

�

j1⇤G1

. . .
�

jn⇤Gn

Ḡ(i1�j1,...,in�jn) u(j1,...,jn).

A spatial convolution

13



Symmetry in Dynamical Systems and Control Design

• Many-body systems always have some inherent dynamical symmetries:

e.g. equations of motion are invariant to certain coordinate transformations

• Question: Given an unstable dynamical system with a certain symmetry,

is it possible to stabilize it with a controller that has the same symmetry?

(i.e. without “breaking the symmetry”)

• Answer: Yes! (Fagnani & Willems ’93)



Symmetry in Dynamical Systems and Control Design

• Many-body systems always have some inherent dynamical symmetries:

e.g. equations of motion are invariant to certain coordinate transformations

• Question: Given an unstable dynamical system with a certain symmetry,

is it possible to stabilize it with a controller that has the same symmetry?

(i.e. without “breaking the symmetry”)

• Answer: Yes! (Fagnani & Willems ’93)

Remark: Spatial invariance is a dynamical symmetry

This answer applies to optimal design as well

i.e.

For best achievable performance, need only consider spatially-invariant controllers
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The Standard Problem of Optimal and Robust Control
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z = F(H,C) w

The standard problem:

Signal norms:

�w�p
p :=

�

i⇥G

⇥

R
|wi(t)|pdt =

�

i⇥G
�w�p

p

Induced system norms:

�F(G, C)�p�i := sup
w⇥LP

�z�p

�w�p
.

The H2 norm:

�F(G, C)�2
H2 = �z�2

2 =
�

i⇥G
�zi�2

L2,

with impulsive disturbance input wi(t) = �(i)�(t).



The Standard Problem of Optimal and Robust Control

H

C

��

⇥

�

wz

uy

z = F(H,C) w

The standard problem:

Signal norms:

⇥w⇥p
p :=

�

i⇥G

⇥

R
|wi(t)|pdt =

�

i⇥G
⇥w⇥p

p

Induced system norms:

⇥F(G, C)⇥p�i := sup
w⇥LP

⇥z⇥p

⇥w⇥p
.

The H2 norm:

⇥F(G, C)⇥2H2 = ⇥z⇥22 =
�

i⇥G
⇥zi⇥2L2,

with impulsive disturbance input wi(t) = �(i)�(t).

Note: In the platoon problem: finite system norm � string stability.
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Spatially-Invariant vs. Spatially-Varying Controllers

Question: Are spatially-varying controllers better than spatially-invariant ones?

Answer: If plant is spatially invariant, no!



Spatially-Invariant vs. Spatially-Varying Controllers

Question: Are spatially-varying controllers better than spatially-invariant ones?

Answer: If plant is spatially invariant, no!

LSI := The class of Linear Spatially-Invariant systems.

LSV := The class of Linear Spatially-Varying systems.

Compare the two problems:

�si := inf �F(G, C)�p�i

stabilizing C

C ⇥ LSI

�sv := inf �F(G, C)�p�i

stabilizing C

C ⇥ LSV

The best achievable performance

with spatially-invariant controllers

The best achievable performance

with spatially-varying controllers

Theorem 1. If the plant and performance objectives are spatially invariant, i.e. if

the generalized plant G is spatially invariant, then the best achievable performance

can be approached with a spatially invariant controller. More precisely

�si = �sv.

16



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Related Problem: Time-Varying vs. Time-Invariant Controllers

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-

invariant ones! for norm minimization problems

Proofs based on use of YJBK parameterization. Convert to

�ti := inf ⇤T1 � T2QT3⇤
stable Q
Q ⇥ LTI

�tv := inf ⇤T1 � T2QT3⇤
stable Q
Q ⇥ LTV

,

T1, T2, T3 determined by plant, therefore time invariant.
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Related Problem: Time-Varying vs. Time-Invariant Controllers

Fact: For time-invariant plants, time-varying controllers offer no advantage over time-

invariant ones! for norm minimization problems

Proofs based on use of YJBK parameterization. Convert to

�ti := inf ⇤T1 � T2QT3⇤
stable Q
Q ⇥ LTI

�tv := inf ⇤T1 � T2QT3⇤
stable Q
Q ⇥ LTV

,

T1, T2, T3 determined by plant, therefore time invariant.

• The H� case: (Feintuch & Francis, ’85), (Khargonekar, Poolla, & Tannenbaum,

’85). A consequence of Nehari’s theorem

• The ⇥1 case: (Shamma & Dahleh, ’91). Using an averaging technique

• Any induced ⇥p norm: (Chapellat & Dahleh, ’92). Generalization of the averaging

technique

17



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Idea of proof: After YJBK parameterization:

�si := inf ⌅T1 � T2QT3⌅
stable Q
Q ⇤ LSI

⇥ �sv := inf ⌅T1 � T2QT3⌅
stable Q
Q ⇤ LSV

,

Let Q̄ achieve a performance level �̄ = ⌅T1 � T2Q̄T3⌅.



Spatially-Invariant vs. Spatially-Varying Controllers (Cont.)

Idea of proof: After YJBK parameterization:

�si := inf ⌃T1 � T2QT3⌃
stable Q
Q ⌅ LSI

⇥ �sv := inf ⌃T1 � T2QT3⌃
stable Q
Q ⌅ LSV

,

Let Q̄ achieve a performance level �̄ = ⌃T1 � T2Q̄T3⌃.
Averaging Q̄:

• If G is finite: define

Qav :=
1

|G|
�

�⇤G
⇥�1Q̄⇥. ⇤ Qav is spatially invariant, i.e. ⇧⇥ ⌅ G, ⇥�1Qav ⇥ = Qav

Then

⌅T1 � T2QavT3⌅ = ⌅T1 � T2

 
1

|G|
X

�⇤G
��1Q̄�

!
T3⌅ =

‚‚‚‚‚
1

|G|
X

�⇤G
��1 `T1 � T2Q̄T3

´
�

‚‚‚‚‚

⇥
1

|G|
X

�⇤G

‚‚‚��1 `T1 � T2Q̄T3

´
�
‚‚‚ = ⌅T1 � T2Q̄T3⌅

18



• IfG is infinite, take a sequence of finite subsetsM1 ⇥ M2 ⇥ · · · , with
⇥

n

Mn = G
,

Then define: Qn :=
1

|Mn|
�

�⇥Mn

��1Q̄�.

Qn converges weak � to a spatially-invariant Qav with the required norm bound.
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Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

⇤⇥
⌅�⇥

⇥

⇥

�
C1 Co

C�1

C�2. . . . . .

⇥

�

⇥

�

⇥

�

⇥

�

Channel

y�1
uo

yo
u�1 u1 u2

y1 y2

ui =
�

j

Ci�j yj
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Implications of the Structure of Spatial Invariance

Poiseuille flow stabilization:

⇤⇥
⌅�⇥

⇥

⇥

�
C1 Co

C�1

C�2. . . . . .

⇥

�

⇥

�

⇥

�

⇥

�

Channel

y�1
uo

yo
u�1 u1 u2

y1 y2

ui =
�

j

Ci�j yj
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Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators

Consider the following geometry of sensors and actuators:

• Sensor

Actuator

What kind of spatial invariance do optimal controllers have?
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Implications of the Structure of Spatial Invariance (Cont.)

Uneven distribution of sensors and actuators (Cont.)

Consider the following geometry of sensors and actuators:

• Sensor

Actuator

Each “cell” is a 1-input, 2-output system. underlying group is Z� Z
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Transform Methods

Consider the following PDE with distributed control:

⇤⇥

⇤t
(x1, . . . , xn, t) = A

�
⇥

⇥x1
,..., ⇥

⇥xn

⇥
⇥(x1, . . . , xn, t) + B

�
⇥

⇥x1
,..., ⇥

⇥xn

⇥
u(x1, . . . , xn, t)

y(x1, . . . , xn, t) = C
�

⇥
⇥x1

,..., ⇥
⇥xn

⇥
⇥(x1, . . . , xn, t),

where A,B, C are matrices of polynomials in ⇥
⇥xi
.

Consider also combined PDE difference equations such as:

⇤⇥

⇤t
(x1, . . . , xm, k1, . . . , kn, t) = A

�
⇥

⇥x1
,..., ⇥

⇥xn
, z�1

1 , . . . , z�1
n

⇥
⇥(x1, . . . , xn, k1, . . . , kn, t)

+ B
�

⇥
⇥x1

,..., ⇥
⇥xn

, z�1
1 , . . . , z�1

n

⇥
u(x1, . . . , xn, k1, . . . , kn, t)

We only require that the spatial variables x, k, belong to a commutative group

Taking the Fourier transform:

⇥̂(�, t) :=
⇤

G
e�j<�,x>⇥(x, t) dx,
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The above system equations become:

d⇥̂

dt
(�, t) = A (�) ⇥̂(�, t) + B (�) û(�, t)

ŷ(�, t) = C (�) ⇥̂(�, t),

where � � Ĝ, the dual group to G.
Remark: This can be thought of as a parameterized family of finite-dimensional

systems.
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BLOCK DIAGONALIZATION BY FOURIER TRANSFORMS

The Fourier transform converts:

spatially-invariant operators on L2(G) �⇥ multiplication operators on L2(Ĝ)

In general:

group: G dual group: Ĝ Transform

R R Fourier Transform

Z ⇥D Z-Transform

⇥D Z Fourier Series

Zn Zn Discrete Fourier Transform

and the transforms preserve L2 norms:

⇤f⇤2
2 =

�

G
|f (x)|2dx =

�

Ĝ
|f̂ (�)|2d� = ⇤f̂⇤2

2



BLOCK DIAGONALIZATION BY FOURIER TRANSFORMS

The Fourier transform converts:

spatially-invariant operators on L2(G) �⇥ multiplication operators on L2(Ĝ)

In general:

group: G dual group: Ĝ Transform

R R Fourier Transform

Z ⇤D Z-Transform

⇤D Z Fourier Series

Zn Zn Discrete Fourier Transform

and the transforms preserve L2 norms:

⇤f⇤2
2 =

�

G
|f (x)|2dx =

�

Ĝ
|f̂ (�)|2d� = ⇤f̂⇤2

2

The system operation is then spatially decoupled or “block diagonalized”:

⇤
⇤t⇥(x, t) = A ⇥(x, t) + B u(x, t)

y(x, t) = C ⇥(x, t) + D u(x, t)

A distributed,

spatially-invariant system

�⇥

d
dt⇥̂(�, t) = Â(�)⇥̂(�, t) + B̂(�)û(�, t)

ŷ(�, t) = Ĉ(�)⇥̂(�, t) + D̂(�)û(�, t)

A parameterized family

of finite-dimensional systems

11



TRANSFORM METHODS

In physical space

d

dt
⇥n = An ⇤ ⇥n + Bn ⇤ un

yn = Cn ⇤ ⇥n

After spatial Fourier trans. (FT)

d

dt
⇥̂(�) = Â(�) ⇥̂(�) + B̂(�) û(�)

ŷ(�) = Ĉ(�) ⇥̂(�)
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TRANSFORM METHODS

In physical space

d

dt
⇥n = An ⇤ ⇥n + Bn ⇤ un

yn = Cn ⇤ ⇥n

After spatial Fourier trans. (FT)

d

dt
⇥̂(�) = Â(�) ⇥̂(�) + B̂(�) û(�)

ŷ(�) = Ĉ(�) ⇥̂(�)

IMPLICATIONS

• Dynamics are decoupled by FT (The A, B, C operators are “diagonalized” )

• Quadratic forms preserved by FT =⇥ Quadratically optimal control

problems are equivalent for FT

• Yields a parametrized family of mutually independent problems

TRANSFER FUNCTIONS

operator-valued transfer function spatio-temporal transfer function

H(s) = C (sI �A)�1B H(s, �) = Ĉ(�)
�
sI � Â(�)

⇥�1
B̂(�)



TRANSFORM METHODS

In physical space

d

dt
⇥n = An ⇤ ⇥n + Bn ⇤ un

yn = Cn ⇤ ⇥n

After spatial Fourier trans. (FT)

d

dt
⇥̂(�) = Â(�) ⇥̂(�) + B̂(�) û(�)

ŷ(�) = Ĉ(�) ⇥̂(�)

IMPLICATIONS

• Dynamics are decoupled by FT (The A, B, C operators are “diagonalized” )

• Quadratic forms preserved by FT =⇥ Quadratically optimal control

problems are equivalent for FT

• Yields a parametrized family of mutually independent problems

TRANSFER FUNCTIONS

operator-valued transfer function spatio-temporal transfer function

H(s) = C (sI �A)�1B H(s, �) = Ĉ(�)
�
sI � Â(�)

⇥�1
B̂(�)

A multi-dimensional system with temporal, but not spatial causality

12



M. JOVANOVIĆ, UCSB 31

Optimal Control of Infinite Platoons

☞ GOOD APPROXIMATION OF LARGE BUT FINITE PLATOONS

MAIN IDEA: EXPLOIT SPATIAL INVARIANCE

LA:

⇧
����������⌥

����������⌃

⇤
�̇n

⌅̇n

⌅
=

�
0 1 � T�1

0 0

⇥ �
�n

⌅n

⇥
+

�
0
1

⇥
un, n ⇤ Z

  ⌦SPATIAL Z�-TRANSFORM

⇤
�̇�

⌅̇�

⌅
=

�
0 1 � e�j�

0 0

⇥ �
��

⌅�

⇥
+

�
0
1

⇥
u�, 0 ⇥ ⇥ < 2⇤

☞ NOT STABILIZABLE AT ⇥ = 0



Parameterized ARE solutions yield “localized” operators!

Consider unbounded domains, i.e. G = R (or Z).
Theorem 2. Consider the parameterized family of Riccati equations:

A�(⇥)P (⇥) + P (⇥)A(⇥) � P (⇥)B(⇥)R(⇥)B�(⇥)P (⇥) + Q(⇥) = 0, ⇥ ⇥ Ĝ.

Under mild conditions:

there exists an analytic continuation P (s) of P (⇥) in a region

{|Im(s)| < �}, � > 0.

Convolution kernel resulting from Parameterized ARE has exponential decay.

That is, they have some degree of inherent decentralization (“localization”)!



Parameterized ARE solutions yield “localized” operators!

Consider unbounded domains, i.e. G = R (or Z).
Theorem 2. Consider the parameterized family of Riccati equations:

A�(⇥)P (⇥) + P (⇥)A(⇥) � P (⇥)B(⇥)R(⇥)B�(⇥)P (⇥) + Q(⇥) = 0, ⇥ ⇥ Ĝ.

Under mild conditions:

there exists an analytic continuation P (s) of P (⇥) in a region

{|Im(s)| < �}, � > 0.

Convolution kernel resulting from Parameterized ARE has exponential decay.

That is, they have some degree of inherent decentralization (“localization”)!

Comparison:

• Modal truncation: In the transform domain, ARE solutions decay algebraically.

• Spatial truncation: In the spatial domain, convolution kernel of ARE solution

decays exponentially.

Therefore: Use transform domain to design ⇤⇥. Approximate in the spatial domain!
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DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

EXAMPLE: one dimensional array of systems indexed in Z.

� � � �

⇥ ⇥ ⇥ ⇥ ⇥

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

u0 u1 u2u�1u�2

y�1 y0 y1 y2

cell #0cell # -1 cell # 1 cell # 2

�n: the state of the system in the n’th cell total state: {. . . , ��1, �o, �1, . . .}



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

EXAMPLE: one dimensional array of systems indexed in Z.

� � � �

⇥ ⇥ ⇥ ⇥ ⇥

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

u0 u1 u2u�1u�2

y�1 y0 y1 y2

cell #0cell # -1 cell # 1 cell # 2

�n: the state of the system in the n’th cell total state: {. . . , ��1, �o, �1, . . .}

d

dt
�n =

�

m

An�m �m +
�

m

Bn�m um

yn =
�

m

Cn�m �n



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

EXAMPLE: one dimensional array of systems indexed in Z.

� � � �

⇥ ⇥ ⇥ ⇥ ⇥

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

u0 u1 u2u�1u�2

y�1 y0 y1 y2

cell #0cell # -1 cell # 1 cell # 2

�n: the state of the system in the n’th cell total state: {. . . , ��1, �o, �1, . . .}

d

dt
�n =

�

m

An�m �m +
�

m

Bn�m um

yn =
�

m

Cn�m �n

⇥
d

dt
�n = An ⇥ �n + Bn ⇥ un

yn = Cn ⇥ �n
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DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

⇥

�

⇥

�

⇥

�

⇥

�

⇥

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

�

yo uou�1
y�1 y1 u1

y2 u2u�2

Observer based controller has the following structure:

Plant

d

dt
�n = An ⇥ �n + Bn ⇥ un

yn = Cn ⇥ �n

Controller

ui = Ki ⇥ �̂i

d

dt
�̂n = An ⇥ �̂n + Bn ⇥ un

+ Ln ⇥ (yn � ŷn)



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

⇥

�

⇥

�

⇥

�

⇥

�

⇥

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

�

yo uou�1
y�1 y1 u1

y2 u2u�2

Observer based controller has the following structure:

Plant

d

dt
�n = An ⇥ �n + Bn ⇥ un

yn = Cn ⇥ �n

Controller

ui = Ki ⇥ �̂i

d

dt
�̂n = An ⇥ �̂n + Bn ⇥ un

+ Ln ⇥ (yn � ŷn)

REMARKS:

• Optimal Controller is “locally” finite dimensional.



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS
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�
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Observer based controller has the following structure:
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d

dt
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Controller
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d

dt
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+ Ln ⇥ (yn � ŷn)

REMARKS:

• Optimal Controller is “locally” finite dimensional.

• The gains {Ki}, {Li} are localized (exponentially decaying)⇥ “spatial truncation”



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

⇥

�

⇥

�

⇥

�

⇥

�

⇥

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

�

yo uou�1
y�1 y1 u1

y2 u2u�2

Observer based controller has the following structure:

Plant

d

dt
�n = An ⇥ �n + Bn ⇥ un

yn = Cn ⇥ �n

Controller

ui = Ki ⇥ �̂i

d

dt
�̂n = An ⇥ �̂n + Bn ⇥ un

+ Ln ⇥ (yn � ŷn)

REMARKS:

• Optimal Controller is “locally” finite dimensional.

• The gains {Ki}, {Li} are localized (exponentially decaying)⇥ “spatial truncation”

• After truncation, local controller need only receive information from neighboring

subsystems.



DISTRIBUTED ARCHITECTURE OF QUADRATICALLY OPTIMAL CONTROLLERS

⇥

�

⇥

�

⇥

�

⇥

�

⇥

⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

�

yo uou�1
y�1 y1 u1

y2 u2u�2

Observer based controller has the following structure:

Plant

d

dt
�n = An ⇥ �n + Bn ⇥ un

yn = Cn ⇥ �n

Controller

ui = Ki ⇥ �̂i

d

dt
�̂n = An ⇥ �̂n + Bn ⇥ un

+ Ln ⇥ (yn � ŷn)

REMARKS:

• Optimal Controller is “locally” finite dimensional.

• The gains {Ki}, {Li} are localized (exponentially decaying)⇥ “spatial truncation”

• After truncation, local controller need only receive information from neighboring

subsystems.

• Quadratically optimal controllers are inherently distributed and semi-decentralized
(localized)
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Outline

Examples
Vehicular Platoons
Heat Equation with Distributed Control

Spatially-Invariant Plants
Optimal Controllers are Inherently Spatially Invariant
Optimal Centralized Controllers are Inherently Localized

Spatially-Varying Plants
Localized Plants over Arbitrary Networks

Notions of Distance and Spatial Decay
Central LQR Controllers are Inherently Localized

PhD Thesis of Nader Motee
Motee & Jadbabaie, Optimal control of spatially distributed systems
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Part II

What you can impose

Architectural constraints that lead to convex
optimal control problems
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Outline

Controller Constraints that Lead to Convex Problems
The YJBK Parameterization

Funnel Causality
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Controller Architecture

Centralized vs. Decentralized control: An old and difficult problem
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CENTRALIZED:
⇥

G0
⇥

G1
⇥

G2
⇥

����

K

⇤

⌅

⇤

⌅

⇤

⌅

BEST PERFORMANCE
EXCESSIVE COMMUNICATION

FULLY DECENTRALIZED:
⇥

G0
⇥

G1
⇥

G2
⇥

����

K0 K1 K2

⇤

⌅

⇤

⌅

⇤

⌅

WORST PERFORMANCE
NO COMMUNICATION

LOCALIZED:
⇥

G0
⇥

G1
⇥

G2
⇥

����

⇥
K0

⇥
K1

⇥
K2

⇥
����

⇤

⌅

⇤

⌅

⇤

⌅

MANY POSSIBLE ARCHITECTURES
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Reasoning with the YJBK Parameterization
Let G be a stable MIMO plant

All stabilizing controllers (Internal Model Control)

K = Q(I + GQ)�1 Q stable

If G and Q belong to a CLASS closed under
additions, multiplications, inversions

Then Q ⌅ CLASS ⇤ K ⌅ CLASS

Optimal design becomes

inf
Q stable, Q⇥CLASS

⇧H � UQV⇧

Convex CLASS ⇥ Convex problem
If G is unstable, use a factorization G = NM�1, XM � YN = I

All stabilizing controllers

K = (Y + MQ)(X + NQ)�1 Q stable

, DISC, June ’09 slide 8/8
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Spatio-temporal Impulse Response

Spatio-temporal impulse response h(x, t)

y(x, t) =
� �

h(x� �, t� ⇥) u(�, ⇥) d⇥ d�,

Interpretation
h(x, t): effect of input on output a distance x away and time t later

Example: Constant maximum speed of effects

7



Funnel Causality

Def: A system is funnel-causal if impulse response h(., .) satisfies

h(x, t) = 0 for t < f(x),
where
f(.) is (1) non-negative

(2) f(0) = 0
(3) {f(x), x ⇥ 0} and {f(x), x � 0} are concave

i.e. supp (h) is a “funnel shaped” region
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Funnel Causality (Cont.)

Properties of funnel causal systems

Let Sf be a funnel shaped set

• supp (h1) ⇥ Sf & supp (h2) ⇥ Sf ⇤ supp (h1 + h2) ⇥ Sf

• supp (h1) ⇥ Sf & supp (h2) ⇥ Sf ⇤ supp (h1 � h2) ⇥ Sf

• (I+h1)�1 exists & supp (h1) ⇥ Sf ⇤ supp
�
(I + h1)�1

⇥
⇥ Sf

i.e.
The class of funnel-causal systems is closed under
Parallel, Serial, & Feedback
interconnections
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A Class of Convex Problems

• Given a plant G with supp (G22) � Sfg

• Let Sfk
be a set such that Sfg � Sfk

i.e. controller signals travel at least as fast as the plant’s

Solve

inf
K stabilizing

supp (K) � Sfk

⇥F(G;K)⇥, G

K

��

⇥

�

wz

uy
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YJBK Parameterization and the Model Matching Problem

Lf := class of linear systems w/ impulse response supported in Sf

• Let G22 ⇤ Lfg

G22 = NM�1 and XM � Y N = I with N, M,X, Y ⇤ Lfg and stable
• Let Sfg ⇥ Sfk

• Then all stabilizing controllers K such that K ⇤ Lfk
are given by

K = (Y + MQ)(X + NQ)�1,

where Q is a stable system in Lfk
.

• The problem becomes

inf
Q stable
Q ⇤ Lfk

⌅H � UQV ⌅, A convex problem!
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Coprime Factorizations

Bezout identity: Find K and L such that A + LC and A + BK stable

�
X �Y

⇥
:=

⌃
A + LC �B L

K I 0

⌥
,

⇤
M
N

⌅
:=

�

�⌦
A + BK B

K I
C 0

 

�↵ ,

then G = NM�1 and XM � Y N = I,

If
⇧

• etAB, CetA and CetAB are funnel causal
• K and L are funnel causal (Easy!)

then all elements of Bezout identity are funnel-causal

⇤⇥
⌅�

K �

⇥

�

⇧⇤
A B
C 0
I 0

⇥

⌃⌅
� � �

�

�

�⌦
A + BK B

C 0
K 0

 

�↵
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Example: Wave Equations with Input

1-d wave equation, x � R: ⇥2
t �(x, t) = c2 ⇥2

x �(x, t) + u(x, t)

State space
representation

:
⇥t

⇧
�1

�2

⌃
=

⇧
0 I

c2⇥2
x 0

⌃ ⇧
�1

�2

⌃
+

⇧
0
I

⌃
u

� =
⇤

I 0
⌅ ⇧

�1

�2

⌃
.

The semigroup

etA =
1
2

⇧
Tct + T�ct

1
cRct

c⇥2
x Rct Tct + T�ct

⌃
.

Rct := spatial convolution with rec( 1
ctx)

Tct := translation by ct

all components are funnel causal

e.g. the impulse response h(x, t) = 1
2c rec

�
1
ctx

⇥
.

t 

x 

x=ct 

x=!ct 

G(x,t) 
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Example: Wave Equations with Input (cont.)

� := spatial Fourier transform variable (“wave number”)

A + BK =
⇧

0 1
�c2�2 0

⌃
+

⇧
0
1

⌃ �
k1 k2

⇥

=
⇧

0 1
�c2�2 + k1 k2

⌃
.

Set k1 = 0, then

⇥(A+BK) =
⌥

��R

⇤
k2 ±

1
2

�
k2
2 � 4c2�2

⌅
=

⇧
3
2
k2,

1
2
k2

⌃ ⌥
(k2+jR)

Similarly for A + LC. Therefore, choose e.g.

K =
�

0 �1
⇥
, L =

⇧
�1
0

⌃
.
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Elements of the Bezout Identity are thus:

�
X �Y

⇥
=

⇧

 ⌥
�1 1 0 �1
�c2�2 0 �1 0

0 �1 1 0

⌃

⌦� ,

⇤
M
N

⌅
=

⇧

   ⌥

0 1 0
�c2�2 �1 1

0 �1 1
1 0 0

⌃

⌦⌦⌦�
.

Equivalently

M = s2 + c2�2

s2 + s + c2�2,

N = 1
s2 + s + c2�2,

X = s2 + 2s + c2�2+1
s2 + s + c2�2 ,

�Y = �c2�2

s2 + s + c2�2.
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How easily solvable are the resulting convex problems?

• In general, these convex problems are infinite dimensional
i.e. worse than standard half-plane causality

• In certain cases, problem similar in complexity to half-plane causality
e.g. H2 with the causality structure below

(Voulgaris, Bianchini, Bamieh, SCL ’03)
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Generalizations

• Quick generalizations:

– Several spatial dimensions
– Spatially-varying systems

funnel causality� non-decreasing speed with distance
– Use relative degree in place of time delay

• Quadratic Invariance (Rotkowitz, Lall )

• Arbitrary graphs (Rotkowitz, Cogill, Lall )

• How to solve the resulting convex problems

Related recent work:

• Anders Rantzer
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