ABOUT THE COVER

The Computer Science Department’s faculty research supports many of the College of Engineering’s interdisciplinary efforts. The cover shows (top left) the interactive FogScreen that Professor Tobias Höllerer and his colleagues in the Four Eyes Lab (Imaging, Interaction, and Innovative Interfaces) are developing. The FogScreen is a novel immaterial projection display that produces a thin curtain of “dry” fog which serves as a translucent projection screen—anything that you can see on a computer screen can now float in the air. (http://ilab.cs.ucsb.edu/)

A student (lower right) uses a Bucky ball to interact with a 3-dimensional virtual interface in the Allosphere Research Facility, a 3-story high spherical space, housed in UCSB’s California NanoSystems Institute, in which fully immersive, interactive, stereoscopic/pluriphonic virtual environments can be experienced. The sphere has unique features such as true 3D 360-degree projection of visual and aural data, and sensing and camera tracking for interactivity. The sphere accommodates approximately fifteen people on a bridge suspended in the middle of the instrument. (http://www.mat.ucsb.edu/allosphere/)
Published at the College of Engineering
University of California
Santa Barbara, CA 93106-5130

Volume 18, Number 19, July 2008

One of a series of administrative publications of the
University of California, Santa Barbara

Produced by the College of Engineering,
Student and Academic Services

Glenn Beltz, Associate Dean for Undergraduate Studies
Peter Allen, Publications Director
Terri Ryan Coleman, Editor

The information in this announcement supersedes that in the
General Catalog. All announcements herein are subject to revision
without notice.

This publication is available electronically at:
www.engineering.ucsb.edu/current_undergraduates/
Undergraduate Students
The College of Engineering offers undergraduate degree programs in five disciplines: chemical engineering, computer engineering, computer science, electrical engineering, and mechanical engineering. Undergraduate applicants and students should direct all questions regarding programs and enrollment to the Office of Undergraduate Studies.

Graduate Students
Information regarding graduate programs offered in the College of Engineering may be obtained from the individual departments listed at right. The mailing address of each department is: Graduate Advisor, Name of Department, University of California, Santa Barbara, CA 93106.

General Catalog
The UC Santa Barbara General Catalog may be downloaded as a pdf file at: www.registrar.ucsb.edu and is available for purchase at www.ucsbstuff.com/

Graduate Degree Programs

<table>
<thead>
<tr>
<th>Department</th>
<th>Telephone</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering</td>
<td>893-8671</td>
<td>www.chemengr.ucsb.edu</td>
</tr>
<tr>
<td>Computer Science</td>
<td>893-4322</td>
<td>www.cs.ucsb.edu</td>
</tr>
<tr>
<td>Electrical and Computer Engr.</td>
<td>893-3114</td>
<td>www.ece.ucsb.edu</td>
</tr>
<tr>
<td>Materials</td>
<td>893-4601</td>
<td>www.materials.ucsb.edu</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>893-2239</td>
<td>www.me.ucsb.edu</td>
</tr>
</tbody>
</table>

UNIVERSITY OF CALIFORNIA, SANTA BARBARA MISSION STATEMENT
The University of California, Santa Barbara is a leading research institution that also provides a comprehensive liberal arts learning experience. Because teaching and research go hand in hand at UC Santa Barbara, our students are full participants in an educational journey of discovery that stimulates independent thought, critical reasoning, and creativity. Our academic community of faculty, students, and staff is characterized by a culture of interdisciplinary collaboration that is responsive to the needs of our multicultural and global society. Our commitment to public service is manifested through the creation and distribution of knowledge that advances the well-being of our state, nation, and world. All of this takes place within a living and learning environment like no other, as we draw inspiration, opportunity, and advantage from the beauty and resources of UC Santa Barbara's extraordinary location at the edge of the Pacific Ocean.

ACCREDITATION
The University of California, Santa Barbara is fully accredited by the Accrediting Commission for Senior Colleges and Universities, Western Association of Schools and Colleges, 985 Atlantic Ave., Suite 100, Alameda, California 94501, (510) 748-9001. Accreditation documents are available for review in the Office of the Executive Vice Chancellor, Cheadle Hall 5105A.

EQUAL OPPORTUNITY AND NONDISCRIMINATION
The University of California, in accordance with applicable Federal and State law and University policy, does not discriminate on the basis of race, color, national origin, religion, sex, gender identity, pregnancy1, disability, age, medical condition (cancer related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. This nondiscrimination policy covers admission, access, and treatment in University programs and activities.

Inquiries regarding the University’s student-related nondiscrimination policies may be directed to: Raymond Huerta, Acting Director, Office of Equal Opportunity, Telephone: (805) 893-3089.

1 Pregnancy includes pregnancy, childbirth, and medical conditions related to pregnancy or childbirth.
Contents

Message from the Deans.. 4

College
Honors Programs ... 5
Education Abroad Program.. 5
Student Organizations ... 5
Change of Major and Change of College 5
Degree Requirements.. 6
Minimal Progress Requirements ... 6
Five-Year B.S./M.S. Programs ... 6
Academic Conduct.. 8

Departments, Programs, Courses
Chemical Engineering ... 8
Computer Engineering .. 12
Computer Science .. 14
Electrical and Computer Engineering 19
Engineering Sciences ... 29
Materials .. 31
Mechanical Engineering... 35

Chemical Engineering ... 42
Computer Engineering .. 44
Computer Science ... 46
Electrical Engineering ... 48
Mechanical Engineering.. 50

Academic Year Calendar .. 52

College Policy on Academic Conduct Back Cover
Welcome to the College of Engineering at UC Santa Barbara. There are many reasons we are one of the top engineering schools in the nation. We bring together an amazing group of faculty at the top of their fields. UCSB professors are, in fact, among the most cited by their colleagues worldwide, a testament to the quality and creativity of their research. A high percentage of the faculty has been elected to the prestigious National Academy of Sciences and National Academy of Engineering. We have five Nobel Prize winners on this campus, four of whom are faculty in engineering and the sciences. We’re also home to an amazing group of smart, accomplished, high-energy students. These more than 1,300 undergraduates, pursuing a variety of interests, contribute greatly to the quality of the learning environment as well as to the overall richness of campus life.

We have crafted courses that balance theory and applied science so our students are well prepared for successful careers in academia and industry. Students especially interested in engineering and industry can take advantage of our Technology Management Program. Through coursework and “real world” experiences, the program gives our students insight into the world of technology from a business perspective. We want our students to understand what transforms a good technical idea into a good business idea. We want to give them a head start at attaining leadership positions in the technology business sector.

With a thriving interdisciplinary environment, our campus culture fosters creativity and discovery. A truly interdisciplinary culture allows all sorts of ideas to cross-fertilize and makes it easy for faculty to work effectively between disciplines to tackle big questions. Visiting scholars tell us they don’t often see the kind of openness among departments and ease of collaboration that they find here.

As part of the prestigious and well-established University of California system, we have the resources as well as the breadth and depth of talent to pursue new fields of scientific inquiry. We also bring an entrepreneurial attitude to our research, focusing on applications as much as discovery.

Our leading programs in areas as diverse as biotechnology, communications, computer security, materials, nanotechnology, networking, and photonic devices attest to the success of this approach.

At the core of this activity are our students, our central purpose. We encourage you to pursue every opportunity, both in and outside the classroom, to enhance your education. We have a talented and wise faculty and staff, equipped with extensive knowledge and diverse experience, to help you make decisions about courses and other activities as you pursue your degree. We look forward to having you in our classes, laboratories, and offices as you discover where your interests lead you.

Matthew Tirrell,
The Richard A Auhll Professor and Dean
College of Engineering

Glenn Beltz
Associate Dean for Undergraduate Studies
College of Engineering

The College of Engineering at UCSB is noted for its excellence in teaching, research, and service to the community. The college has an enrollment of approximately 1,300 undergraduate students and 700 graduate students with a full-time, permanent faculty of 137. This results in an excellent student to faculty ratio and a strong sense of community in the college.

Our laboratory facilities, both departmental and in our research centers, are state-of-the-art, and most are available to undergraduate as well as graduate students. UCSB has an unusually high proportion of undergraduates who are actively involved in faculty-directed research and independent study projects.

The college offers the bachelor of science degree in five disciplines: chemical engineering, computer engineering, computer science, electrical engineering, and mechanical engineering. Graduate degree programs are available in: chemical engineering, computer science, electrical and computer engineering, materials, and mechanical engineering. The undergraduate programs in chemical, electrical, and mechanical engineering are accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700. The computer science undergraduate program is accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700. The computer engineering program is not accredited by a Commission of ABET.

The curriculum for the bachelor of science degree is designed to be completed in four years. Completion of the four-year program provides students with the background to begin professional careers or to enter graduate programs in engineering or computer science, or professional schools of business, medicine, or law. Our curricula are specifically planned to retain both of these options and to assure that our graduates are equally well prepared to enter industry and graduate study. The college and the university offer a wide variety of career counseling and job placement services.

The Office of Undergraduate Studies in Harold Frank Hall, Room 1006, provides academic advising for all undergraduates in the college. Faculty and academic advisors for the individual majors are also provided by the respective departments. This publication contains detailed information about the various programs and schedules and is published yearly. Copies may be obtained by writing to the College of Engineering, Harold Frank Hall, Room 1006, University of California, Santa Barbara, California 93106-5130. Alternatively, it is available on the web at: www.engr.ucsb.edu/current_undergraduates

Mission Statement

The mission of the College of Engineering is to provide its students a firm grounding in scientific and mathematical fundamentals; experience in analysis, synthesis, and design of engineering systems; and exposure to current engineering practice and cutting edge engineering research and technology. A spirit of entrepreneurship in education, scholarly activity and participation in engineering practice infuses UCSB’s College of Engineering.

College of Engineering Honors Program

The Honors Program in the College of Engineering offers highly motivated, academically talented students an enriched academic experience. Students in the Honors Program will be encouraged to partake in early experiences in scholarship, such as honors sections of courses and other special seminars that provide for intimate exposure to faculty members and their research programs. In later years, direct participation in research projects, supplemented by graduate-level coursework in some cases, provides a higher degree of intensity to the academic experience. Students in the Honors Program will be provided opportunities to become peer mentors and tutors within the College.

Participation in the Honors Program offers preferential enrollment in classes for continuing students as well as graduate student library privileges. Housing is available to eligible first-year students in Scholars’ Halls located in several university-owned residence halls.

The College of Engineering invites approximately the top 10% of incoming freshmen into the Honors Program based on a combination of high school GPA and SAT or ACT scores. (Please note: eligibility criteria are subject to change at any time.) Transfer students with a UC transferable GPA of 3.6 or greater are invited to join the College Honors Program. Students who do not enter the College of Engineering with honors at the freshman level may petition to enter the program after attaining a cumulative GPA of 3.5 or greater during two consecutive quarters at UCSB.

Engineering honors students with upper division standing may, with faculty approval, enroll in their departmental Independent Studies course to research topics that will complement their major studies. College of Engineering Honors students may also enroll in special honors sections of general education courses offered by the College of Letters and Science.

Continued participation in the College Honors Program is dependent on maintaining a cumulative GPA of 3.5 or greater and active participation in both the academic and community service components of the Program.

Dean’s Honors

The College of Engineering gives public recognition to its outstanding undergraduate students by awarding Dean’s Honors at the end of each regular academic term to students who have earned a 3.5 grade-point average for the quarter and have completed a program of 12 or more letter-graded units. (Grades of Incomplete or Not Passed automatically disqualify students for eligibility for Dean’s Honors.) The Dean’s Honors List is posted quarterly, and the award is noted quarterly on the student’s permanent transcript.

Graduating students of the College of Engineering who have achieved distinguished scholarship while at the university may qualify for Honors, High Honors, or Highest Honors at graduation.

Tau Beta Pi

Tau Beta Pi is the nation’s oldest and largest engineering honor society. Its purpose is to honor academic achievement in engineering. Election to membership is by invitation only. To be eligible for consideration, students must be in the top one-eighth of their junior class or the top one-fifth of the senior class. Graduate students and faculty also belong to this honor society. In addition to regular meetings on campus, the organization participates in regional and national activities and sponsors local events, such as tutoring and leadership training, to serve the campus and community.

Education Abroad Program (EAP)

Students are encouraged to broaden their academic experience by studying abroad for a year, or part of a year, under the auspices of the University of California Education Abroad Program See the EAP web site for more information: www.eap.ucsb.edu

Student Organizations

Student chapters of a number of engineering professional organizations are active on the UCSB campus. Students interested in any of these organizations may contact the Office of Undergraduate Studies of the College of Engineering for more information.

- American Institute of Chemical Engineers
- American Society of Mechanical Engineers
- Association for Computing Machinery
- Engineering Student Council
- Engineers without Borders
- Institute of Electrical and Electronics Engineers
- Los Ingenieros (Mexican-American Engineering Society/Society of Hispanic Professional Engineers)
- National Society of Black Engineers
- Society for Advancement of Chicano and Native Americans in Science
- Society of Women Engineers
- Student Entrepreneurship Association

Change of Major and Change of College

Current UCSB students in a non-engineering major, as well as students wishing to change from one engineering major to another, are welcome to apply after the satisfactory completion of a pre-defined set of coursework (see below).
Students who have completed more than 105 units will not be considered for a change of major/change of college in engineering or computer science unless they can demonstrate that they will be able to complete all the degree requirements for the proposed program without exceeding 215 total units.

Chemical engineering. Before petitioning for a change of major to chemical engineering, the following courses or their equivalents must be completed: Mathematics 3A-B; Chemistry 1A-AL, 1B-BL; Engineering 3; Physics 1. Only a limited number of petitions will be approved, and selection for entry into the major will be based on UC grade point averages and applicable courses completed.

Computer Engineering. Students may petition to enter the Computer Engineering pre-major at any time Option 1 below has been met, or they may petition to enter the full major when the requirements in Option 2 have been met.

Option 1:
1. An overall UCSB grade point average of at least 3.0; AND
2. Satisfactory completion at UCSB of at least four core classes required as preparation for the Computer Engineering major with a grade point average of at least 3.0 in all core classes completed. The core classes are Mathematics 3A, 3B, 3C, 5A; Computer Science 10, 20, 40, 60; Electrical and Computer Engineering 2A, 2B, 2C, 15A, 15B. Once approved for the Computer Engineering pre-major, the student must meet the requirements for advancing to the full major.

Option 2:
1. An overall UCSB grade point average of at least 3.0; AND
2. Satisfactory completion at UCSB of at least six of the core classes with a grade point average of at least 3.0. If the student has not attained the minimum 3.0 grade point average with the first six core classes completed, all core classes subsequently completed will be included in the grade point average computation; OR
3. Satisfactory completion of all thirteen core classes with a University of California grade point average of at least 2.75.

Computer Science. Students planning to enter the pre-computer science program must complete at least 16 units of pre-major coursework at UCSB, including 8 units in computer science, with at least a 3.0 grade point average for all pre-major courses completed with the University of California. Students who have completed the entire computer science pre-major with at least a 2.75 University of California grade point average will be admitted to full major standing upon petition whether or not they have been officially declared pre-majors. Petitions for changing to the pre-computer science or computer science majors may be filed any time upon meeting the above requirements.

Electrical engineering. Students may petition to enter the Electrical Engineering major at any time both of the following requirements are met:

1. An overall UCSB grade point average of at least 3.0.
2. Satisfactory completion at UCSB, with a grade point average of 3.0 or better, of at least five classes, including at least two mathematics classes, from the following: Mathematics 5A-B-C, ECE 2A-B-C, ECE 15A-B. The calculation of the minimum GPA will be based on all classes completed from this list at the time of petitioning.

Mechanical engineering. Before petitioning for a change of major to mechanical engineering, six (6) of the following core courses or their equivalents must be completed: Math 3A-B-C; Math 5A-B-C; Physics 1-2; ME 14-15 (at least one of the six courses must include ME 14 or ME 15). Only a limited number of petitions will be approved, and selection for entry into the major will be based on UC grade point averages and applicable courses completed.

Degree Requirements

To be eligible for a bachelor of science degree from the College of Engineering, a student must meet two sets of requirements: university degree requirements and college degree requirements.

University Degree Requirements All undergraduate students must satisfy university academic residency, UC Entry Level Writing Requirement, American history and institutions, unit, and scholarship requirements.

College Undergraduate Degree Requirements All undergraduate students must satisfy the preparation for the major, the major, the general education, and scholarship requirements. Preparation for the major and the major requirements for each program offered by the College of Engineering appear in the program sections of this catalog. General Education requirements can be found in the College of Engineering General Education booklet.

Advanced Placement Credit Students who complete special advanced placement courses in high school and who earn scores of 3, 4, or 5 on the College Board Advanced Placement and International Baccalaureate Examination taken before high school graduation will receive 2, 4, or 8 units of credit toward graduation at UCSB for each such test completed with the required scores, provided scores are reported to the Office of Admissions. The specific unit values assigned to each test, course equivalents, and the applicability of this credit to the General Education requirements, are presented in the chart on page 7.

Note: Advanced Placement credit earned prior to entering the university will not be counted toward the minimum cumulative progress requirements (see General Catalog for more details).

International Baccalaureate Credit Students completing the International Baccalaureate (IB) diploma with a score of 30 or above will receive 30 quarter units total toward their UC undergraduate degree. The university grants 8 quarter units for certified IB Higher Level examinations on which a student scores 5, 6, or 7. The university does not grant credit for standard level exams. The application of this credit to the General Education requirements and course equivalents for these exams are listed in the UCSB General Catalog.

Note: International Baccalaureate Examination credit earned prior to entering the university will not be counted toward maximum unit limitation either for selection of a major or for graduation.

Minimal Progress Requirements

A student in the College of Engineering will be placed on academic probation if the total number of units passed at UCSB is fewer than that prescribed by the prevailing academic Senate regulation regarding Minimum Cumulative Progress (see the UCSB General Catalog for more information). At least three-fourths of the minimum number of academic units passed must include courses prescribed for the major.

The following courses may be counted toward the unit minimums: courses repeated to raise C-, D, or F grades; courses passed by examination; courses graded IP (In Progress); courses passed during summer session at UCSB or at another accredited college or university and transferred to UCSB.

Students must obtain the approval of the dean of engineering to deviate from these requirements. Approval normally will be granted only in the case of medical disability, severe personal problems, or accident.

Students enrolled in dual-degree programs must submit their proposed programs of study to the dean of engineering for approval. The individual programs must contain comparable standards of minimal academic progress.

Five-Year B.S./M.S. Degree Programs

Computer Engineering. A combined B.S./M.S. program in Computer Engineering provides an opportunity for outstanding undergraduates to earn both degrees in five years. The M.S. degree will be earned in either the Department of Computer Science or the Department of Electrical and Computer Engineering, while the B.S. degree is earned in Computer Engineering. Additional information about this program is available from the Undergraduate Studies Office and interested students should contact the Office early in their junior year, because the junior year class schedule will be different from other undergraduates. Transfer students should notify the Office of their interest in the program at the earliest possible opportunity. In addition to fulfilling undergraduate degree requirements, B.S./M.S. degree candidates must meet Graduate Division degree requirements, including university requirements for academic residence and units of coursework as described in the chapter “Graduate Education at UCSB” in the UCSB General Catalog.

Computer Science. A combined B.S./M.S. program in computer science provides an opportunity for outstanding undergraduates to earn both degrees in five years. Additional infor-
<table>
<thead>
<tr>
<th>Advanced Placement Exam with Score of 3, 4, or 5</th>
<th>Units Awarded</th>
<th>General Education Course</th>
<th>UCSB Course Equivalent (You may not enroll in these courses for credit at UCSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government and Politics</td>
<td>4</td>
<td>D: 1 course</td>
<td>Political Science 12</td>
</tr>
<tr>
<td>American History</td>
<td>8</td>
<td>D: 1 course</td>
<td>no equivalent</td>
</tr>
<tr>
<td>Art History</td>
<td>8</td>
<td>F: 1 course</td>
<td>Art History 1</td>
</tr>
<tr>
<td>*Art Studio 2D Design Portfolio</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>*Art Studio 3D Design Portfolio</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>*Art Studio Drawing Portfolio</td>
<td>8</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>8</td>
<td>C: 1 course</td>
<td>EMB 20, MCDB 20, Natural Science 1C</td>
</tr>
<tr>
<td>Chemistry</td>
<td>8</td>
<td>C: 1 course #</td>
<td>Natural Science 1B</td>
</tr>
<tr>
<td>Comparative Government and Politics</td>
<td>8</td>
<td>D: 1 course</td>
<td></td>
</tr>
<tr>
<td>+Computer Science A</td>
<td>2</td>
<td>none</td>
<td></td>
</tr>
<tr>
<td>+Computer Science AB</td>
<td>4</td>
<td>C: 1 course #</td>
<td>Computer Science 5PA, Computer Science 5NM</td>
</tr>
<tr>
<td>Economics–Microeconomics</td>
<td>4</td>
<td>D: 1 course</td>
<td></td>
</tr>
<tr>
<td>*English–Composition and Literature or Language and Composition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>Entry Level Writing Req.</td>
<td>Writing 1, 1E, 1LK</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>Writing 2</td>
<td>Writing 1, 1E, 1LK, 2E, 2LK</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>Writing 2, 50</td>
<td>Writing 1, 1E, 1LK, 2E, 2E, 2LK, 50, 50E, 50LK</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>4</td>
<td>C: 1 course</td>
<td>Environmental Studies 2</td>
</tr>
<tr>
<td>French Language</td>
<td>8</td>
<td>E: 1 course</td>
<td>no equivalent</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>B</td>
<td>French 1-3</td>
</tr>
<tr>
<td>With score of 4</td>
<td>8</td>
<td>B</td>
<td>French 1-4</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>B</td>
<td>French 1-5</td>
</tr>
<tr>
<td>French Literature</td>
<td>8</td>
<td>B</td>
<td>French 1-5</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>B</td>
<td>French 1-5</td>
</tr>
<tr>
<td>With score of 4 or 5</td>
<td>8</td>
<td>B</td>
<td>French 1-6</td>
</tr>
<tr>
<td>German Language</td>
<td>8</td>
<td>B</td>
<td>German 1-3</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>B</td>
<td>German 1-4</td>
</tr>
<tr>
<td>With score of 4 or 5</td>
<td>8</td>
<td>B</td>
<td>German 1-4</td>
</tr>
<tr>
<td>Human Geography</td>
<td>4</td>
<td>none</td>
<td>no equivalent</td>
</tr>
<tr>
<td>Latin: Vergil</td>
<td>4</td>
<td>B</td>
<td>Latin 1-3</td>
</tr>
<tr>
<td>Latin: Catullus–Horace</td>
<td>4</td>
<td>B</td>
<td>Latin 1-3</td>
</tr>
<tr>
<td>*Mathematics–Calculus AB (or AB subscore of BC exam)</td>
<td>4</td>
<td>C: 1 course #</td>
<td>Mathematics 3A, 15, 34A, or equivalent</td>
</tr>
<tr>
<td>°+*Mathematics–Calculus BC</td>
<td>8</td>
<td>C: 2 courses</td>
<td>Mathematics 3A, 3B, 15, 34A, 34B, or equivalent</td>
</tr>
<tr>
<td>Music–Theory</td>
<td>8</td>
<td>F: 1 course</td>
<td>Music 11</td>
</tr>
<tr>
<td>°Physics–B</td>
<td>8</td>
<td>C: 1 course #</td>
<td>Physics 10, Natural Science 1A</td>
</tr>
<tr>
<td>°Physics–C (Mechanics)</td>
<td>4</td>
<td>C: 1 course #</td>
<td>Physics 6A</td>
</tr>
<tr>
<td>°Physics–C (Electricity and Magnetism)</td>
<td>4</td>
<td>C: 1 course #</td>
<td>Physics 6B</td>
</tr>
<tr>
<td>Psychology</td>
<td>4</td>
<td>D: 1 course</td>
<td>Psychology 1</td>
</tr>
<tr>
<td>Spanish Language</td>
<td>8</td>
<td>B</td>
<td>Spanish 1-3</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>B</td>
<td>Spanish 1-4</td>
</tr>
<tr>
<td>With score of 5</td>
<td>8</td>
<td>B</td>
<td>Spanish 1-5</td>
</tr>
<tr>
<td>Spanish Literature</td>
<td>8</td>
<td>B</td>
<td>Spanish 1-5</td>
</tr>
<tr>
<td>With score of 3</td>
<td>8</td>
<td>B</td>
<td>Spanish 1-5</td>
</tr>
<tr>
<td>With score of 4 or 5</td>
<td>8</td>
<td>B</td>
<td>Spanish 1-5</td>
</tr>
<tr>
<td>Statistics</td>
<td>4</td>
<td>C: 1 course #</td>
<td>Communication 87, EMB 30, Geography 17, PSTAT 5AA-ZZ, Psychology 5, Sociology 3</td>
</tr>
<tr>
<td>World History</td>
<td>8</td>
<td>none</td>
<td>no equivalent</td>
</tr>
</tbody>
</table>

* A maximum of 8 units EACH in art studio, English, mathematics, music, and physics is allowed.
Also satisfies the quantitative relationship requirement in Area C.
+ Maximum credit for computer science exams is 4 units.
† Consult the mathematics department about optional higher placement in calculus.
* If you received a score of 5 on Mathematics–Calculus AB, see www.math.ucsb.edu/ugrad/placement.php
mation about this program is available from the computer science graduate program assistant or online at www.cs.ucsb.edu/programs/under-grad/bsms/cs.shtml. Interested students may apply after completing at least 3 but no more than 8 upper-division computer science courses. In addition to fulfilling undergraduate degree requirements, B.S./M.S. degree candidates must meet Graduate Division degree requirements, including university requirements for academic residence and units of coursework.

Electrical Engineering. A combined B.S./M.S. program in Electrical Engineering provides an opportunity for outstanding undergraduates to earn both degrees in five years. Interested students should contact the Office of Undergraduate Studies early in the junior year, because the junior year class schedule will be different from other undergraduates. Transfer students should notify the Office of their interest in the program at the earliest opportunity. In addition to fulfilling undergraduate degree requirements, B.S./M.S. degree candidates must meet Graduate Division degree requirements, including university requirements for academic residence and units of coursework.

Materials. A combined B.S. Engineering/M.S. Materials program provides an opportunity for outstanding undergraduates in chemical, electrical, or mechanical engineering to earn both of these degrees in five years. This program enables students to develop all of the requisite knowledge in their core engineering disciplines and to complement this with a solid background in materials. This combination provides highly desirable training from an industrial employment perspective and capitalizes on the strengths of our internationally renowned materials department.

Beginning Fall 2008, there is a new five-year option for students who are pursuing a B.S. in Chemistry in the College of Letters and Science to complete an M.S. degree in Materials. Interested students should contact the Undergraduate Advisor in the Department of Chemistry & Biochemistry for additional information.

B.S./M.A. Program with Economics. A program which combines a B.S. in any engineering major (including computer science) with a master of arts in economics with an emphasis in business economics provides an opportunity for outstanding engineering undergraduates to earn both degrees in five years. Information about this program is available in the College of Engineering Undergraduate Studies Office or from the Department of Economics. Interested students should inform the Undergraduate Office of their interest in the program at the end of the sophomore year in order to plan their upper-division classes differently from other engineering undergraduates. After completing undergraduate degree requirements in an engineering program, students in this joint program must fulfill master’s degree requirements for the degree in economics.

College Policy on Academic Conduct

It is expected that all students in the College of Engineering, as well as those who take courses within the College, understand and subscribe to the ideal of academic integrity. To provide guidance on this, the College of Engineering has adopted a policy on expected academic conduct, a full copy of which appears on the back cover of this Announcement. As an example, it is not acceptable by default to work collaboratively on a homework assignment. In computer programming courses, a mere preliminary discussion of an assignment can lead to similarities in the final program that are detectable by sophisticated plagiarism detection software (see http://www.cs.berkeley.edu/~aiken/moss.html).

Instructors who have established that academic misconduct has occurred in their class have a variety of options at their disposal, which range from allowing the student to redo the work and/or assigning a failing grade to referring the case to the UCSB Judicial Affairs Office for either a letter of warning or a formal hearing before the Student-Faculty Committee on Student Conduct. Instructors are encouraged to discuss these remedies in further detail with the Associate Dean for Undergraduate Studies in the College of Engineering. Moreover, students who have been suspended because of academic misconduct charges are encouraged to work with the College of Engineering Undergraduate Office to develop an amended schedule that will permit the timeliest possible completion of a degree program.

Chemical Engineering

Department of Chemical Engineering, Engineering II, Room 3357; Telephone (805) 893-3412 Web site: www.chemengr.ucsb.edu

Chair: Michael F. Doherty Vice-Chair: Dale Seborg

Faculty

Bradley Chmelka, Ph.D., UC Berkeley, Professor (self-assembled materials, polymers, porous and composite solids, heterogeneous catalysts, magnetic resonance)

Patrick S. Daugherty, Ph.D., University of Texas at Austin, Assistant Professor (protein engineering and design, combinational molecular biology, gene targeting, viral vector engineering)

Michael F. Dougherty, Ph.D., Cambridge University, Professor (process design and synthesis, separations, crystal engineering)

Francis J. Doyle III, Ph.D., California Institute of Technology, Mellichamp Professor of Process Control (process control, systems biology, nonlinear dynamics)

Glenn Fredrickson, Ph.D., Stanford University, Professor (polymer theory, block copolymers, phase transitions, statistical mechanics, glass transitions, composite media)

Michael J. Gordon, Ph.D., California Institute of Technology, Assistant Professor (surface physics, scanning probe microscopy, nanoscale materials, plasmonics, laser spectroscopy)

Jacob Israelachvili, Ph.D., University of Cambridge, Professor (surface and interfacial phenomena, adhesion, colloidal systems, surface forces, bio-adhesion, friction) *1

Edward J. Kramer, Ph.D., Carnegie Mellon University, Professor (microscopic fundamentals of fracture polymers, diffusion in polymers, and polymer surfaces, interfaces and thin films) *1

L. Gary Leal, Ph.D., Stanford University, Schlinger Distinguished Professor in Chemical Engineering (fluid mechanics, physics of complex fluids, rheology) *1

Glenn E. Lucas, Ph.D., Massachusetts Institute of Technology, Professor (structural materials, mechanical properties) *2

Eric McFarland, Ph.D., Massachusetts Institute of Technology, M.D., Harvard Medical School, Professor (catalysis, combinatorial material science, sensors, charge and energy transfer)

Samir Mitragotri, Ph.D., Massachusetts Institute of Technology, Associate Professor (drug delivery and diagnostics, bio-membrane transport, membrane biophysics, biomedical ultrasound)

Baron G. Peters, Ph.D., UC Berkeley, Assistant Professor (molecular simulation, chemical kinetics, catalytic reaction mechanisms, nucleation, electron transfer)

Susannah Scott, Ph.D., Iowa State University, Professor (heterogeneous catalysis, surface organometallic chemistry, analysis of electronic structure and stoichiometric reactivity to determine catalytic function) *3

Dale E. Seborg, Ph.D., Princeton University, Professor (process dynamics and control, monitoring and fault detection, system identification)

M. Scott Shell, Ph.D. Princeton, Assistant Professor (molecular simulation, statistical mechanics, complex materials, protein biophysics)

Todd M. Squires, Ph.D., Harvard, Assistant Professor (fluid mechanics, microfluidics, microcirculation, complex fluids)

Theofanis G. Theofanous, Ph.D., University of Minnesota, Professor, Center for Risk Studies and Safety Director (transport phenomena in multiphase systems, risk analysis) *2

Matthew V. Tirrell, Ph.D., University of Massachusetts, Auhll Professor (bioengineering, polymer science and engineering) *1

Joseph Zasadzinski, Ph.D., University of Minnesota, Professor (surface and interfacial phenomena, high resolution microscopy, biomaterials) *1 Joint appointment with the Department of Materials.

*2 Joint appointment with the Department of Mechanical Engineering.

*3 Joint appointment with the Department of Chemistry and Biochemistry.

Emeriti Faculty

Sanjoy Banerjee, Ph.D., University of Waterloo, Professor (transport processes, multiphase systems, process safety) *2

Owen T. Hanna, Ph.D., Purdue University,
We live in a technological society which provides many benefits including a very high standard of living. However, our society must address critical problems that have strong technological aspects. These problems include: meeting our energy requirements, safeguarding the environment, ensuring national security, and delivering health care at an affordable cost. Because of their broad technical background, chemical engineers are uniquely qualified to make major contributions to the resolution of these and other important problems. Chemical engineers develop processes and products that transform raw materials into useful products.

The department's undergraduate chemical engineering program is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700.

Mission Statement

The program in Chemical Engineering has a dual mission:

- **Education.** Our program seeks to produce chemical engineers who will contribute to the process industries worldwide. Our program provides students with a strong fundamental technical education designed to meet the needs of a changing and rapidly developing technological environment.
- **Research.** Our program seeks to develop innovative science and technology that addresses the needs of industry; the scientific community, and society.

Educational Objectives for the Undergraduate Program

- We expect our graduates to become innovative, competent, contributing engineers in the process industries.
- We expect our graduates to demonstrate their flexibility and adaptability in the workplace, so that they remain effective engineers, take on new responsibilities, and assume leadership roles.
- We expect at least 15% of our graduates to continue their education by obtaining advanced degrees.

Program Outcomes

Upon graduation, students in the chemical engineering B.S. degree program are expected to:

1. Acquire the fundamental knowledge of mathematics, computing, science, and engineering needed to practice chemical engineering and the ability to apply this knowledge to identify, formulate, and solve chemical engineering problems;
2. Acquire the ability to design and conduct experiments and to analyze and interpret data;
3. Acquire the ability to design a system, component, or process to meet desired specifications; and the ability to use modern engineering tools necessary for engineering practice;
4. To become proficient in at least one area of chemical engineering beyond the basic fundamentals as preparation for a continuing process of lifelong learning;
5. Acquire the ability to function productively in multidisciplinary teams working towards common goals; the ability to communicate effectively through written reports and oral presentations;
6. Acquire the broad education necessary to understand the impact of engineering solutions in a global/societal context; a knowledge of contemporary issues; an understanding of professional and ethical responsibility; and a recognition of the need for and the ability to engage in lifelong learning.

Undergraduate Program

Courses required for the pre-major or major, inside or outside of the Department of Chemical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

Bachelor of Science—Chemical Engineering

Note: Schedules should be planned to meet both General Education and major requirements. Detailed descriptions of these requirements are presented in the College of Engineering General Education booklet and pages 42-43 of this publication. A minimum of 194 units is required for graduation.

Preparation for the major

Students in the minor are required to meet a set of minimum unit and grade-point requirements, and a set of General Education requirements. Preparation for the major courses are: Engineering 3, Chemical Engineering 1A, 10; Chemistry 1A-B-C or 2A-B-C, 1AL-BL-CL or 2AC-BC-CC, 6AL-BB, 109A-B-C; Mathematics 3A-B-C, 5A-B-C, and Physics 1, 2, 3, 4, & 3L, 4L.

Upper-division major

Seventy-eight upper-division units are required of which sixty-six are specified: Chemical Engineering 110A-B, 119, 120A-B-C, 128, 132A-B-C, 140A-B, 152A, 172, 180A-B, 184A-B; Chemistry 113B-C; Materials 100B or 101. Twelve units of technical electives selected from a wide variety of upper-division science and engineering courses are also required. The list of approved technical electives is included on curriculum sheets. Prior approval of technical electives must be obtained from the student’s faculty advisor and the technical elective worksheet must be submitted to the department by spring quarter of the junior year.

Transfer students who have completed most of the lower-division courses listed above and are entering the junior year of the chemical engineering program may take Chemical Engineering 10 concurrently with Chemical Engineering 120A in the fall quarter.

Chemical Engineering Courses

LOWER DIVISION

1A. Engineering and the Scientific Method

(1) STAFF

Engineering and its relationship to basic science, with specific examples from engineering practice. Analysis and synthesis of engineering education. Career opportunities for chemical engineering graduates. Seminar/discussion format with guest lecturers and current engineering issues/experiences from students’ other freshman engineering/science classes.

10. Introduction to Chemical Engineering

(3) DOYLE, GORDON

Prerequisites: Chemistry 1A-B-C; Mathematics 3A-B-C; and Engineering 2. Chemical Engineering majors only. Elementary principles of chemical engineering. The major topics discussed include material and energy balances, stoichiometry, and thermodynamics.

99. Introduction to Research

(1-2) STAFF

Prerequisites: consent of instructor and undergraduate advisor.

May be repeated for credit to a maximum of 6 units. Students are limited to 5 units per quarter and 30 units total in all 98/99/198/199/199DC/199RA courses combined.

Directed study, normally experimental, to be arranged with individual faculty members. Course offers exceptional students an opportunity to participate in a research group.

UPPER DIVISION

102. Biomaterials and Biosurfaces

(3) ISRAELACHVILI

Recommended Preparation: Basic physical chemistry, chemistry, physics, thermodynamics and biology. Not open for credit to students who have completed Chemical Engineering 121. Fundamentals of natural and artificial biomaterials and biosurfaces with emphasis on molecular level structure and function and the interactions of biomaterials and surfaces with the body. Design issues of grafts and biopolymers. Basic biological and biochemical systems reviewed for nonbiologists.

110A. Chemical Engineering Thermodynamics

(3) STAFF

Prerequisite: Chemical Engineering 10; Mathematics 5A; Engineering majors only.

Use of the laws of thermodynamics to analyze processes encountered in engineering practice, including cycles and flows. Equations-of-state for describing properties of fluids and mixtures. Applications, including engines, turbines, refrigeration and power plant cycles, phase equilibria, and chemical-reaction equilibria.

110B. Chemical Engineering Thermodynamics

(3) STAFF

Prerequisite: Chemical Engineering 110A; Mathematics 5A; Engineering majors only.

Extension of Chemical Engineering 110A to cover mixtures and multiphase equilibrium. Liquid-vapor separations calculations are emphasized. Introduction to equations of state for mixtures.

119. Current Events in Chemical Engineering

(1) STAFF

Prerequisites: Chemical Engineering 110A-B. Assigned readings in technical journals on current events of interest to chemical engineers. Student groups present oral reports on reading assignments pertaining to new technologies, discoveries, industry challenges, society/government issues, professional and ethical responsibilities.

120A. Transport Processes

(4) SQUIRES, ZASADZINSKI, MITAGOTRI, TIRRELL
120B. Transport Processes
(3) ZASADZINSKI, MITAGOTRI, TIRRELL
Prerequisites: Mathematics 5A-B-C, and Physics 4.
Introductory course in the mathematical analysis of conductive, convective, and radioactive heat transfer, with practical applications to design of heat exchange equipment and use.

120C. Transport Processes
(3) PETERS, ZASADZINSKI, MITAGOTRI, TIRRELL
Prerequisites: Mathematics 5A-B-C, and Physics 4.
Introductory course in the fundamentals of mass transfer with applications to the design of mass transfer equipment.

121. Colloids and Biosurfaces
(3) ISRAELACHVILI
Recommended Preparation: Basic physical chemistry, chemistry, physics, thermodynamics and biology.
Not open for credit to students who have completed Chemistry 102.
Basic forces and interactions between atoms, molecules, small particles and extended surfaces. Special features and interactions associated with (soft) biological molecules, biomaterials and surfaces: lipids, proteins, fibrous molecules (DNA), biological membranes, hydrophobic and hydrophilic interactions, bio-specific and non-equilibrium interactions.

124. Advanced Topics in Transport Phenomena/Safety
(3) BANERJEE, THEOFANOUS
Prerequisites: Chemical Engineering 120A-B-C or Mechanical Engineering 151A-B; and Mechanical Engineering 152A.
Same course as ME 124.

125. Principles of Bioengineering
(3) MITRAGOtRI
Not open for credit to students who have completed Chemical Engineering 125A-B.
Applications of engineering to biological and medical systems. Introduction to drug delivery, tissue engineering, and modern biomedical devices. Design and applications of these systems are discussed.

128. Separation Processes
(3) SCOTT
Prerequisites: Chemical Engineering 10 and 110A-B; open to College of Engineering majors only.
Basic principles and design techniques of equilibrium-stage processes. Emphasis is placed on binary distillation, liquid-liquid extraction, and multicomponent distillation.

132A. Analytical Methods in Chemical Engineering
(4) DAUGHERTY, FREDICKSON, SQUIRES
Prerequisites: Mathematics 5A-B.
Develop analytical tools to solve elementary partial differential equations and boundary value problems. Separation of variables, method of characteristics, Sturm-Liouville theory, generalized Fourier analysis, and computer math tools.

132B. Computational Methods in Chemical Engineering
(3) SANDALL
Prerequisites: Mathematics 5A-B-C.
Numerical methods for solution of linear and nonlinear algebraic equation sets, interpolation and numerical integral, and optimization, initial-value problems in ordinary differential equations and boundary-value problems. Emphasis on development of computational tools for chemical engineering applications.

132C. Statistical Methods in Chemical Engineering
(3) SEBORG
Prerequisites: Mathematics 5A-B-C.
Probability concepts and distributions, random variables, error analysis, point estimation and confidence intervals, hypothesis testing, development of empirical chemical engineering models using regression techniques, design of experiments, process monitoring based on statistical quality control techniques.

136. Introduction to Multiphase Flows
(3) THEOFANOUS
Prerequisites: Chemical Engineering 120A-B-C, or Mechanical Engineering 151C and 152A.
Same course as ME 136.
Development from basic concepts and techniques of fluid mechanics and heat transfer, to local behavior in multiphase flows. Key multiphase phenomena, related physics. Extension of local conservation principles to useful formulations in multiphase flows. Modeling approaches. Practical examples.

138. Risk Assessment and Management
(3) THEOFANOUS
Prerequisites: Chemical Engineering 120A-B-C, or Mechanical Engineering 151B and 152A.
Same course as ME 138.
Conceptual foundations of risk and its utility for decision making. Determinism, statistical inference, and uncertainty in safety goals and approaches to risk management. Generalized methodology and tools for assessing risks in the industrial, ecological, and public health context.

140A. Chemical Reaction Engineering
(3) MCFARLAND, SCOTT
Prerequisites: Chemical Engineering 110A and 120A-B.
Fundamentals of chemical reaction engineering with emphasis on kinetics of homogeneous and heterogeneous reacting systems. Reaction rates and reaction design are linked to chemical conversion and selectivity. Batch and continuous reactor designs with and without catalysts are examined.

140B. Chemical Reaction Engineering
(2) CHEMLEK, McFARLAND
Prerequisites: Chemical Engineering 110A, 120A-B and 140A.
Thermodynamics, kinetics, mass and energy transport considerations associated with complex homogeneous and heterogeneous reacting systems. Catalysts and catalytic reaction rates and mechanisms. Adsorption and reaction at solid surfaces, including effects of diffusion in porous materials. Chemical reactors using heterogeneous catalysts.

141. The Science and Engineering of Energy Production
(3) STAFF
Prerequisites: Chemical Engineering 110A and 140A.
Equivalent upper-division coursework in thermodynamics and kinetics from outside of department will be considered.
A framework for understanding the energy problems facing society with a focus on the science and engineering principles of the major alternatives for the future. Emphasis will be on the physical and chemical fundamentals of energy conversion technologies.

152A. Process Dynamics and Control
(4) SEBORG, DOYLE
Prerequisites: Chemical Engineering 120A-B-C and 140A.
Development of theoretical and empirical models for chemical and physical processes, dynamic behavior of processes, transfer function and block diagram representation, process instrumentation, control system design and analysis, stability analysis, computer simulation of controlled processes.

152B. Advanced Process Control
(3) SEBORG
Prerequisites: Chemical Engineering 152A.
The theory, design, and experimental application of advanced process control strategies including feedforward control, cascade control, enhanced single-loop strategies, and model predictive control. Analysis of multi-loop control systems. Introduction to on-line optimization.

154. Engineering Approaches to Systems Biology
(3) DOYLE
Prerequisites: Chemical Engineering 171 and Mathematics 5A-B-C.
Introduction of engineering tools and methods to solve problems in systems biology. Emphasis is placed on integrative approaches that address multi-scale and multi-rate phenomena in biological regulation. Modeling, optimization, and sensitivity analysis tools are introduced.

160. Introduction to Polymer Science
(3) KRAMER
Prerequisites: Chemistry 107A-B or 109A-B.
Same course as Materials 160.
Introductory course covering synthesis, characterization, structure, and mechanical properties of polymers. The course is taught from a materials perspective and includes polymer thermodynamics, chain architecture, measurement and control of molecular weight as well as crystallization and glass transitions.

171. Introduction to Biochemical Engineering
(3) DAUGHERTY
Prerequisites: Chemical Engineering 140A and Chemistry 105C.
Introduction to bioengineering covering enzyme and microbial growth and chemical kinetics with emphasis on the application of chemical engineering principles to the design and operation of industrial microbial processes.

172. Molecular and Cellular Biology for Engineers
(3) DAUGHERTY
Prerequisites: Chemical Engineering 140A and Chemistry 105C.
Molecular and cellular biology will be introduced using engineering fundamentals. Topics include protein structure and function, transcription, translation, post-translational processing, cellular organization, molecular transport and trafficking, metabolic and protein networks, modification of cellular information, and molecular and cellular engineering.

180A-B. Chemical Engineering Laboratory
(3-4) STAFF
Prerequisites: Chemical Engineering 110A and 120A-B (for 180A-B); Chemical Engineering 128 and 140A (for 180B).
Experiments in thermodynamics, fluid mechanics, heat transfer, mass transfer, reactor kinetics, and chemical processing. Experimental design, analysis of results, and preparation of reports.

184A. Design of Chemical Processes
(3) Doherty
Prerequisites: Chemical Engineering 110A-B; 120A-B-C; 140A; and 152A.

184B. Design of Chemical Processes
(3) DOHERTY
Prerequisites: Chemical Engineering 110A-B; 120A-B-C; 140A; 152A; and Chemical Engineering 184A.
The solution to comprehensive plant design problems. Use of computer process simulators. Optimization of plant design, investment and operations.

194. Group Studies for Advanced Students
(1-4) STAFF
Prerequisites: consent of instructor. Limited to majors in the College of Engineering.
Check with department for quarters offered.
Group studies intended for small number of advanced students who share an interest in a topic not included in the regular departmental curriculum.

196. Undergraduate Research
(2-4) STAFF
Prerequisites: Upper-division standing. completion of 2 upper-division courses in Chemical Engineering; consent of the instructor.
Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated for up to
to 12 units. Not more than 3 units may be applied to departmental electives. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research projects.

198. Independent Studies in Chemical Engineering
(1-5) STAFF
Prerequisites: consent of instructor; upper-division standing; completion of two upper-division courses in chemical engineering. Must have a minimum 3.0 grade-point-average for the preceding three quarters. May be repeated up to five units. Students are limited to five units per quarter and 30 units total in all 98/99/198/199/1990/199A courses combined. Directed individual studies.

GRADUATE COURSES

202. Biomaterials and Biosurfaces
(3) ISRAELACHVILI
Prerequisites: consent of instructor.
Same course as BMSE 202.
Recommended preparation: prior biochemistry, physical chemistry, and organic chemistry.
Fundamentals of natural and artificial biomaterials and biosurfaces with emphasis on molecular level structure and function and the interactions of biomaterials and surfaces with the body. Design issues of grafts and biopolymers. Basic biological and biochemical systems reviewed for nonbiologists.

210A. Fundamentals and Applications of Classical Thermodynamics and Statistical Mechanics
(4) DOHERTY, ZASADZINSKI, SHELL
Not open for credit to students who have completed Chemical Engineering 210.
Fundamental concepts in classical thermodynamics and statistical mechanics for engineering students. Establishes the framework within which applied problems can be solved using methodologies that start with molecular level understanding.

210B. Advanced Topics in Equilibrium Statistical Mechanics
(3) FREDICKSON
Same course as Materials 214. Not open for credit to students who have completed Chemical Engineering 214.
Application of the principles of statistical mechanics and thermodynamics to treat classical fluid systems at equilibrium. Topics include liquid state theory, computer simulation methods, critical phenomena and scaling principles, interfacial statistical mechanics, and electrolyte theory.

210C. Topics in Non-equilibrium Statistical Mechanics
(3) FREDICKSON
Not open for credit to students who have completed Chemical Engineering 215.
An introduction to the non-equilibrium statistical mechanics of classical fluid systems. Topics include: time correlation functions, linear response theory, kinetic theory of gases, Brownian motion, polymer dynamics, generalized hydrodynamics, non-equilibrium thermodynamics, and kinetics of phase transformations.

211A. Matrix Analysis and Computation
(4) STAFF
Prerequisite: consent of instructor.

211C. Numerical Solution of Partial Differential Equations—Finite Difference Methods
(4) STAFF
Prerequisite: consent of instructor.
Same course as Computer Science 211C, ECE 210C, Geology 251C, ME 210C and Mathematics 206C. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language. Finite difference methods for hyperbolic, parabolic and elliptic PDE’s, with application to problems in science and engineering. Convergence, consistency, order and stability of finite difference methods. Dissipation and dispersion. Finite volume methods. Software design and adaptivity.

211D. Numerical Solution of Partial Differential Equations—Finite Element Methods
(4) STAFF
Prerequisite: consent of instructor.
Same course as Computer Science 211D, ECE 210D, Geology 251D, ME 210D, and Mathematics 206D. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language. Weighted residual and finite element methods for the solution of hyperbolic, parabolic and elliptic partial differential equations, with application to problems in science and engineering. Error estimates. Standard and discontinuous Galerkin methods.

212. Risk Assessment and Management
(3) THEOFANOUS
Prerequisites: consent of instructor.
Same course as ME 212.

216A. Introduction to Magnetic Resonance Spectroscopy Techniques
(3) CHIMELKA
Prerequisite: consent of instructor.
An introduction to magnetic resonance theory and experimental techniques, with emphasis on quantum-mechanical descriptions of basic NMR methods for solid-state applications.

216B. Advanced Methods of Magnetic Resonance with Applications to Materials Science
(3) CHIMELKA
Prerequisite: consent of instructor.
This course is intended to provide an understanding of advanced methods of magnetic resonance spectroscopy and imaging, emphasizing new applications to current issues in materials research.

218. Introduction to Multiphase Flows
(3) STAFF
Prerequisite: consent of instructor.
Same course as ME 218.

220A. Advanced Transport Processes—Laminar Flow and Convective Transport Processes
(4) LEAL
Prerequisite: consent of instructor.

220B. Advanced Transport Processes—Laminar Flow and Convective Transport Processes
(3) LEAL
Prerequisite: consent of instructor.
Continuation of CHE 220A. Viscous flows. Application of scaling and asymptotic methods to transport problems and fluid motions; Weak convection effects; Bond number theory for fluid mechanics and transport processes. Introduction to linear stability theory for interfacial and buoyancy-driven flows.

220C. Advanced Transport Processes—Mass Transfer
(3) ZASADZINSKI
Basic principles of diffusion processes, multicomponent systems, diffusion with chemical reaction, penetration and surface renewal theories, turbulent transport.

221. Turbulent Flow
(3) STAFF
Prerequisites: Chemical Engineering 220A-B or Mechanical Engineering 220A-B.
Same course as ME 223.
Nature and origin of turbulence, boundary layer mechanics law of the wall, wakes, and jets, transport of properties, statistical turbulence, measurement problems, stratification effects. Application of principles to practical problems is stressed.

222A. Colloids and Interfaces I
(3) URALEV
Prerequisite: consent of instructor.
Same course as Materials 222A and BMSE 222A.
Introduction to the various intermolecular interactions in solutions and in colloidal systems: Van der Waals, electrostatic, hydrophobic, solvation, H-bonding. Introduction to colloidal systems: particles, micelles, polymers, etc. Surfaces: wetting, contact angles, surface tension, etc.

222B. Colloids and Interfaces II
(3) ZASADZINSKI
Prerequisite: consent of instructor.
Same course as Materials 222B.
Recommended preparation: Materials 222A or Chemical Engineering 222A.

224. Microfluidic Physics
(3) SQUIRES
This course explores the physical effects underlying microfluidic systems, including viscous flows, the transport of suspended molecules and particles (advection, diffusion, reaction, and non-Newtonian effects), capillary effects in multi-phase systems, linear and nonlinear electrokinetic effects (electrophoresis, dielectrophoresis, induced-charge electrokinetics).

226. Level Set Methods
(4) GIBOU
Prerequisite: Computer Science 211C, or Chemical Engineering 211C, or ECE 210C, or ME 210C.
Same course as CMPSC 216, ECE 226 and ME 226. Mathematical description of the level set method and design of the numerical methods used in its implementations (ENO-WENO, Godunov, Lax-Friedrich, etc.). Introduction to the Ghost Fluid Method. Applications in CFD, Materials Sciences, Computer Vision and Computer Graphics.

230A. Advanced Theoretical Methods in Engineering
(4) CHIMELKA, FREDICKSON, LEAL, PETERS
Prerequisite: consent of instructor.

Rheology of Complex Fluids

An introduction to molecular and microscale theories for the viscoelastic behavior of complex fluids: suspensions, colloidal dispersions, liquid crystals, dilute polymer solutions.

Rheology of Complex Fluids

Continuation of CHE 238A. Emphasis of the second term is on concentrated systems and polymeric liquids, reption theory and extensions of reptation theories to complex architectures in the linear viscoelastic regime. Nonlinear Rheology for polymers.

Advanced Catalysis

Seminar

May be repeated for credit.

Computer Engineering

Computer Engineering Major, Harold Frank Hall, Room 4157; Telephone (805) 893-5615 or (805) 893-8292 E-mail: info@ce.ucsb.edu Web site: www.ce.ucsb.edu

Director: Frederic T. Chong Vice Director: Patrick Yue

Faculty

Kevin Almeroth, Ph.D., Georgia Institute of Technology, Associate Professor (computer networks and protocols, large-scale multimedia systems, performance evaluation and distributed systems)

Kausav Banerjee, Ph.D., UC Berkeley, Associate Professor (high performance VLSI and mixed signal system-on-chip designs and their design automation methods; single electron transistors; 3D and optoelectronic integration)

Forrest D. Brewer, Ph.D., University of Illinois at Urbana-Champaign, Professor (VLSI and computer system design automation, theory of design and design representations, symbolic techniques in high level synthesis)

Tevfik Bultan, Ph.D., University of Maryland, College Park, Associate Professor (specification and automated analysis of computer systems, computer-aided verification, model checking)

Steven E. Butner, Ph.D., Stanford University, Professor (computer architecture, VLSI design of CMOS and gallium-arsenide ICs with emphasis on distributed organizations and fault-tolerant structures)

Edward Chang, Ph.D., Stanford University, Associate Professor (multimedia systems, database systems, and distributed systems)

Kwang-Ting (Tim) Cheng, Ph.D., UC Berkeley, Professor (design automation, VLSI testing, design synthesis, design verification, algorithms)

Frederic T. Chong, Ph.D., Massachusetts Institute of Technology, Professor (computer architecture, novel computing technologies, quantum computing, embedded systems, and architectural support for system security and reliability)

Chandra Krintz, Ph.D., University of California, San Diego, Assistant Professor (dynamic and adaptive compilation systems, high-performance internet (mobile) computing, runtime and compiler optimizations for Java/CL, efficient mobile program transfer formats)

Malgorzata Marek-Sadowska, Ph.D., Technical University of Warsaw, Poland, Professor (design automation, computer-aided design, integrated circuit layout, logic synthesis)

P. Michael Melliar-Smith, Ph.D., University of Cambridge, Professor (fault tolerance, formal specification and verification, distributed systems, communication networks and protocols, asynchronous systems)

Louise E. Moser, Ph.D., University of Wisconsin, Professor (distributed systems, computer networks, software engineering, fault-tolerance, formal specification and verification, performance evaluation)

Behroz Parhami, Ph.D., UC Los Angeles, Professor (parallel architectures and algorithms, computer arithmetic, computer design, dependable and fault-tolerant computing)

Volkan Rodoplu, Ph.D., Stanford University, Assistant Professor (wireless networks, energy-efficient and device-adaptive communications)

Tim Sherwood, Ph.D., UC San Diego, Assistant Professor (computer architecture, dynamic optimization, network and security processors, embedded systems, program analysis and characterization, and hardware support of software systems)

Li-C. Wang, Ph.D., University of Texas at Austin, Associate Professor (design verification, testing, computer-aided design of microprocessors)

Richard Wolski, Ph.D., UC Davis/Livermore, Associate Professor (high-speed CMOS IC design, cell-based RF CAD methodology and integrated biomedical sensors)

Ben Zhao, Ph.D., University of California, Berkeley, Assistant Professor (computer/overlay mobile networking, large-scale distributed systems, operating systems, network simulation and modeling)

Heather Zheng, Ph.D., University of Maryland, College Park, Assistant Professor (wireless/mobile ad hoc networking, cognitive radio and dynamic spectrum networks, multimedia communications, security, game theory, algorithms, network simulation and modeling)

The Computer Engineering major’s objective is to educate broadly based engineers with an understanding of digital electronics, computer
Mission Statement
To prepare our students to reach their full potential in computer engineering research and industrial practice through a curriculum emphasizing the mathematical tools, scientific basics, fundamental knowledge, engineering principles, and practical experience in the field.

Educational Objectives
The Computer Engineering Program seeks to impart to each student:
1. Broad knowledge in the fundamental theories, techniques, and tools relating to computer engineering.
2. The ability to apply computer engineering principles in solving problems, creating products, and improving performance in hardware and software applications.
3. A continuing commitment to the advancement of science, lifelong education, professionalism, and interest in education and mentoring for the coming generations of students
4. An understanding of the social, business, technical, and human context of the world in which their engineering contributions will be utilized.

Program Outcomes
Upon completion of this program, students will have:
1. Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and engineering necessary to facilitate specialized professional training at an advanced level. Developed a recognition of the need for and the ability to engage in lifelong learning.
2. Experienced in-depth training in state-of-the-art specialty areas in computer engineering.
3. Benefited from hands-on, practical laboratory experiences where appropriate throughout the program. The laboratory experiences will be closely integrated with coursework and will make use of up-to-date instrumentation and computing facilities. Students will have completed both hardware-oriented and software-oriented assignments.
4. Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired during their course of study. These challenges may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and test a system, analyze experimental results, and draw logical conclusions from them.
5. Learned to function well in multidisciplinary teams and collaborative environments. To this end, students must develop communication skills, both written and oral, through teamwork and classroom participation.
6. Completed a well-rounded and balanced education through required studies in selected areas of fine arts, humanities, and social sciences. This outcome provides for the ability to understand the impact of engineering solutions in a global and societal context. A required course in engineering ethics will have prepared students for making professional contributions while maintaining institutional and individual integrity.

Admission to the Major
Requirements for Advancing to the Computer Engineering Major from the Computer Engineering Pre-Major
Students intending to major in computer engineering should declare the pre-major when applying for admission to the university. It is strongly recommended that incoming freshmen complete a computer programming class prior to enrollment at UCSB. We recommend a Java course with emphasis in programming or a C++ programming course.

Program Outcomes
Upon completion of this program, students will have:
1. Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and engineering necessary to facilitate specialized professional training at an advanced level. Developed a recognition of the need for and the ability to engage in lifelong learning.
2. Experienced in-depth training in state-of-the-art specialty areas in computer engineering.
3. Benefited from hands-on, practical laboratory experiences where appropriate throughout the program. The laboratory experiences will be closely integrated with coursework and will make use of up-to-date instrumentation and computing facilities. Students will have completed both hardware-oriented and software-oriented assignments.
4. Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired during their course of study. These challenges may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and test a system, analyze experimental results, and draw logical conclusions from them.
5. Learned to function well in multidisciplinary teams and collaborative environments. To this end, students must develop communication skills, both written and oral, through teamwork and classroom participation.
6. Completed a well-rounded and balanced education through required studies in selected areas of fine arts, humanities, and social sciences. This outcome provides for the ability to understand the impact of engineering solutions in a global and societal context. A required course in engineering ethics will have prepared students for making professional contributions while maintaining institutional and individual integrity.

Bachelor of Science—Computer Engineering
The curriculum contains a core required of all computer engineers, a choice of at least 32 units of senior year elective courses including completion of two out of eight elective sequences and a senior year capstone design project.
Because the Computer Engineering degree program is conducted jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering, several of the upper-division courses have equivalent versions offered by ECE or CMPSC. These courses are considered interchangeable, but only one such course of a given equivalent ECE/CMPSC pair may be taken for credit.
Courses required for the major, whether inside or outside of the Departments of Electrical and Computer Engineering must be taken for letter grades. They cannot be taken for the passed/not passed grading option.

Preparation for the major
All undergraduate Computer Engineering majors are required to meet a set of minimum unit and grade-point requirements and a set of General Education requirements which are common to all undergraduate majors in the College of Engineering. In addition, required preparation for the major consists of the following lower-division courses (or their equivalents if taken elsewhere): Chemistry 1A-B, 1AL-BL; Computer Science 10, 20, 40, 60; ECE 2A-B-C, 15A-B; Mathematics 3A-B-C, 5A; Physics 1, 2, 3, 4, 3L, 4L.
The program academic advisor can suggest a recommended study plan for Computer Engineering freshmen and sophomores. Each student is assigned a departmental faculty advisor who must be consulted in planning the junior and senior year programs.
Upper-division major
The upper-division requirements consist of a set of required courses and a minimum of 32 units of additional departmental elective courses comprised of at least two sequences chosen from a set of eight specialty sequences. Each sequence must consist of two or more courses taken from the same course/sequence group. The department electives must also include a capstone design project (CMPSC 189A-B/ECE 189A-B). Upper-division courses required for the major are: Computer Science 130A, 170; ECE 152A-B, 154, either ECE 139 or PSTAT 120A; and Engineering 101.
The required departmental electives are taken primarily in the senior year; they permit students to develop depth in specialty areas of their choice. A student’s elective course program and senior project must be approved by a departmental faculty advisor. A variety of elective programs will be considered acceptable. Sample programs include those with emphasis in: computer-aided design (CAD); computer systems design; computer networks; distributed systems; programming languages; real-time computing and control; multimedia; and very large-scale integrated (VLSI) circuit design.
The defined sequences from which upper-division departmental electives may be chosen are:

- Computer-Aided Design (CAD): ECE 156A-B
- Computer Systems Design: ECE/CMPSC 153A, ECE 153D
- Computer Networks: ECE 155A/CMPSC 176A, ECE 155B/CMPSC 176B
- Distributed Systems: ECE 151/CMPSC 171 and one or both of the Computer Networks courses
- Programming Languages: CMPSC 160, 162
- Real-Time Computing & Control: ECE 147A-B, 157
- Multimedia: ECE 178, ECE/CMPSC 181B, ECE 160/CMPSC 182
- VLSI: ECE 124A, 124D

Satisfactory Progress and Prerequisites

A majority of Computer Science and Electrical and Computer Engineering courses have prerequisites which must be completed successfully. Successful completion of prerequisite classes requires a grade of C or better in Mathematics 3A-B-C and a grade of C- or better in ECE classes. Students will not be permitted to take any ECE or CMPSC course if they received a grade of F in one or more of its prerequisites. Students who fail to maintain a grade-point average of at least 2.0 in the major may be denied the privilege of continuing in the major.

Computer Engineering Courses

See listings for Computer Science starting on page 16 and Electrical and Computer Engineering Departments starting on page 22.

Computer Science

Department of Computer Science,
Harold Frank Hall, Room 2104;
Telephone (805) 893-4321
Web site: www.cs.ucsb.edu

Chair: Amir El Abbadi
Vice Chair: Tevfik Bultan

Faculty

Divyakant Agrawal, Ph.D., State University of New York at Stony Brook, Professor (distributed systems and databases)
Kevin Almeroth, Ph.D., Georgia Institute of Technology, Professor (computer networks and protocols, large-scale multimedia systems, performance evaluation and distributed systems)
Elizabeth Belding, Ph.D., University of California, Santa Barbara, Associate Professor (mobile wireless networking, ad hoc mobile networks and protocols, and multimedia systems and performance evaluation)
Tevfik Bultan, Ph.D., University of Maryland, College Park, Associate Professor (model checking, concurrency, web services, static analysis, software engineering)

Peter R. Cappello, Ph.D., Princeton University, Professor (Java/Internet-based parallel computing, multiprocessor scheduling, market-based resource allocation, self-directed learning)
Fred Carlin, Ph.D., University of California, Santa Barbara, Lecturer
Frederic T. Chong, Ph.D., Massachusetts Institute of Technology, Professor (computer architecture, novel computing technologies, quantum computing, embedded systems, and architectural support for system security and reliability)
Phillip Conrad, Ph.D., University of Delaware, Lecturer PSOE (computer science education, computer networks and communication, multimedia computing, transport protocols, web technologies)5
C. Michael Costanzo, Ph.D., University of California, Santa Barbara, Lecturer
Ömer Egecioglu, Ph.D., University of California, San Diego, Professor (bijective and enumerative combinatorics, parallel algorithms, approximation algorithms, combinatorial algorithms)
Amr El Abbadi, Ph.D., Cornell University, Professor (information systems, databases, fault-tolerant distributed systems)
Diana Franklin, Ph.D., University of California, Davis, Lecturer SOE (computer architecture, embedded systems, architectural support for reliability, undergraduate teaching methods for diverse populations)
Frederic Gibou, Ph.D., University of California, Los Angeles, Associate Professor (computational mathematics, modeling and simulations - materials science, multiphase flows; level-set methods, ghost-fluid methods, and interface problems; and image segmentation with applications to radiotherapy treatment planning and civil engineering)2
John R. Gilbert, Ph.D., Stanford University, Professor (combinatorial scientific computing, tools and software for computational science and engineering, numerical linear algebra, smart matter and systemic MEMS, distributed sensing and control)
Teofilo Gonzalez, Ph.D., University of Minnesota, Professor (multimessage multicasting, VLSI placement and routing algorithms, scheduling theory, design and analysis of algorithms)
Tobias Höllerer, Ph.D., Columbia University, Associate Professor (human computer interaction, computer graphics, virtual and augmented reality, wearable and ubiquitous computing)
Oscar H. Ibarra, Ph.D., University of California, Berkeley, Professor (design and analysis of algorithms, theory of computation, computational complexity, parallel computing)
Eliot Jacobson, Ph.D., University of Arizona, Tucson, Lecturer
Richard A. Kemmerer, Ph.D., University of California, Los Angeles, Professor (specification and verification of systems, computer system security and reliability, programming and specification language design, software engineering, secure mobile computing)
Chandra Krintz, Ph.D., University of California, San Diego, Assistant Professor (dynamic and adaptive compilation systems, high-performance internet (mobile) computing, runtime and compiler optimizations for Java/CL, efficient mobile program transfer formats)
Christopher Kruegel, Ph.D., Vienna University of Technology, Assistant Professor (computer and network security, malware detection, websecurity, program analysis, operating systems)
Linda R. Petzold, Ph.D., University of Illinois at Urbana–Champaign, Professor (computational science and engineering, multiscale numerical simulation, systems biology)2
Tim Sherwood, Ph.D., University of California, San Diego, Associate Professor (computer architecture, dynamic optimization, network and security processors, embedded systems, program analysis and characterization, hardware support of software systems)
Ambuj Singh, Ph.D., University of Texas at Austin, Professor (bioinformatics, databases, parallel and distributed systems)4
Terence R. Smith, Ph.D., Johns Hopkins University, Professor (spatial databases, techniques in artificial machine intelligence)3
Jianwen Su, Ph.D., University of Southern California, Professor (database systems and applications, web services)
Subhash Suri, Ph.D., Johns Hopkins University, Professor (algorithms, internet computing, computational geometry)
Matthew Turk, Ph.D., Massachusetts Institute of Technology, Professor (computer vision, human computer interaction, perceptual user interfaces, imaging systems)
Wim van Dam, Ph.D., University of Oxford and University of Amsterdam, Assistant Professor (quantum computation, quantum algorithms, quantum communication, quantum information theory)5
Giovanni Vigna, Ph.D., Politecnico di Milano, Associate Professor (computer and network security, network models and protocols, mobile code languages and systems, mobile agent security)
Yuan-Fang Wang, Ph.D., University of Texas at Austin, Professor (computer vision, computer graphics, artificial intelligence)
Richard Wolski, Ph.D., University of California, Davis/Livermore, Associate Professor (distributed systems, computational grid computing, on-line performance forecasting)
Tao Yang, Ph.D., Rutgers University, Professor (parallel and distributed systems, high performance scientific computing, cluster-based network services, Internet search)
Ben Zhao, Ph.D., University of California, Berkeley, Assistant Professor (overlay and peer-to-peer networks, large-scale distributed systems, mobile and wireless networks, system security)
Heather Zheng, Ph.D., University of Maryland, College Park, Assistant Professor (wireless/mobile/ad hoc networking, cognitive radio and dynamic spectrum networks, multimedia communications, security, game theory, algorithms, network simulation and modeling)

Emeriti Faculty

Alan G. Konheim, Ph.D., Cornell University, Professor (computer communications, computer systems, modeling and analysis, cryptography)
Marvin Marcus, Ph.D., University of California, Berkeley, Professor Emeritus (linear and
multilinear algebra, scientific computation, numerical algorithms)

Roger C. Wood, Ph.D., University of California, Los Angeles, Professor Emeritus (computer system modeling, design and analysis, computer architecture)*1
*1 Joint appointment with the Department of Electrical and Computer Engineering.

John Hershberger, Ph.D.
B.S. Manjunath, Ph.D., (Electrical and Computer Engineering)
P. Michael Melliar-Smith, Ph.D. (Electrical and Computer Engineering)
Kenneth Rose, Ph.D. (Electrical and Computer Engineering)
Klaus Schauser, Ph.D.

The Department of Computer Science offers programs leading to the degrees of bachelor of arts and bachelor of science in computer science, and the M.S. and Ph.D. in computer science. The B.A. is a College of Letters and Science major; the B.S. is a College of Engineering major. The B.S. degree program in computer science is accredited by the Computing Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700.

One of the most important aspects of the Computer Science program at UCSB is the wealth of “hands-on” opportunities for students. UCSB has excellent computer facilities. Campus Instructional Computing makes accounts available to all students. Computer Science majors and premajors use the workstations in the Computer Science Instructional Lab and Engineering Computing Infrastructure computing facilities. Students doing special projects can gain access to machines at the NSF Supercomputing Centers via the Internet.

Additional computing facilities are available for graduate students in the Graduate Student Laboratory. Students working with faculty have access to the specialized research facilities within the Department of Computer Science. The undergraduate major in computer science has a dual purpose: to prepare students for advanced studies and research and to provide training for a variety of careers in business, industry, and government.

Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. A faculty advisor is also available to help with academic program planning. A department publication, Computer Science Undergraduate Brochure, describes degree offerings and degree requirements.

Computer Engineering Major

This major is offered jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering. For information about this major, refer to the section on Computer Engineering.

Mission Statement

The Computer Science department seeks to prepare undergraduate and graduate students for productive careers in industry, academia, and government, by providing an outstanding environment for teaching and research in the core and emerging areas of the discipline. The department places high priority on establishing and maintaining innovative research programs that enhance educational opportunity.

Program Goals for Undergraduate Programs

The goal of the computer science undergraduate program is to prepare future generations of computer professionals for long-term careers in research, technical development, and applications. Baccalaureate graduates, ready for immediate employment, are trainable for most computer science positions in government and a wide range of industries. Outstanding graduates interested in highly technical careers, research, and/or academia, should be prepared to further their education in graduate school.

The primary computer science departmental emphasis is on computer program design, analysis and implementation, with both a theoretical foundation and a practical component.

Program Outcomes for Undergraduate Programs

The program enables students to achieve, by the time of graduation:

- An ability to apply knowledge of computing and mathematics appropriate to computer science.
- An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution.
- An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.
- An ability to function effectively on teams to accomplish a common goal.
- An understanding of professional, ethical, and social responsibilities.
- An ability to communicate effectively.
- An ability to analyze the impact of computing on individuals, organizations, and society, including ethical, legal, security, and social ramifications.
- Recognition of the need for, and an ability to engage in continuing professional development.
- An ability to use current techniques, skills, and tools necessary for computing practice.
- An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the trade-offs involved in design choices.
- An ability to apply design and development principles in the construction of software systems of varying complexity.

Admission to the Major

Students intending to major in computer science should declare a computer science pre-major when applying for admission to the university.

Computer Science majors and pre-majors have priority when registering in all Computer Science courses. Students who declare the computer science pre-major or major are responsible for satisfying major requirements in effect at the time of their declaration. When students have completed the required pre-major courses, they must petition to change from pre-major to major status. Students cannot be accepted into the computer science major unless they have successfully completed the computer science preparation for the major course.

Courses required for the pre-major or major, lower- or upper-division, inside or outside of the Department of Computer Science, must be taken for letter grades.

Undergraduate Program

Bachelor of Science—Computer Science

Note: Schedules should be planned to meet both General Education and major requirements. Detailed descriptions of these requirements are presented in the College of Engineering General Education booklet and pages 46-47 of this publication.

A minimum of 180 units is required for graduation.

Admission to the full BS major is contingent upon the prior completion of the courses listed in the preparation for the major with at least a 2.75 cumulative grade point average.

Preparation for the major—B.S.

Required: Mathematics 3A-B-C and 5A-B; Computer Science 10, 20, 30, 40, 50, and 60; and Probability and Statistics 120A.

Students with no previous programming background should take CMPSC 5MA before taking CMPSC 10. CMPSC 5MA is not included in the list of preparation for the major courses but may be counted as a free elective.

Students applying for major status in the BS program who have completed more than 105 units will not be considered for a change of major/change of college unless they can demonstrate that they will be able to complete all of the degree requirements for the proposed program without exceeding 215 units.

Students may petition to enter the computer science pre-major at any time Option A below has been met, or they may petition to enter the full major when Option B has been met.

Option A: Satisfactory completion at UCSB of at least four unit courses required for the computer science preparation for the major, including at least two computer science courses, with a University of California grade point average of at least 3.0 in all the preparation for the major courses taken.

Option B: Satisfactory completion of all the preparation for the major requirements with a University of California grade point average of at least 2.75.

Please note: Pre-major status does not guarantee admission to major status. To be admitted
to the major, the student must complete the pre-major courses with a minimum grade point average of 2.75. All courses required for the preparation for the major must be taken for a letter grade. No exceptions will be made to the minimum 2.75 GPA rule.

Upper-division major

The following courses are required: Computer Science 111 or 140, 130A-B, 138, 154, 160, 162, 170; Electrical and Computer Engineering 152A; and Probability and Statistics 120B. In addition, at least 20 units of major field electives are required. Prior approval of these electives must be obtained from the faculty advisor. In addition, the following courses are required: Engineering 101, Physics 1, 2, 3, 3L, and at least 8 units of science electives. Lists of approved major field electives and science electives are available in the computer science office and on the web at: www.cs.ucsb.edu/undergraduate

Bachelor of Arts—Computer Science
The College of Letters and Science offers a bachelor of arts degree in computer science, with emphases in computational biology, computational economics, and computational geography. For information about this major, refer to the College of Letters and Science section of the UCSB General Catalog.

Computer Science Courses

LOWER DIVISION

5AA-ZZ. Introduction to Computer Programming

- **Franklin**
- Not open for credit to students who have completed Computer Science 10 or Engineering 3.
- May not be repeated with a different suffix.
- Introduction to programming and the organization of computers. Basic programming concepts, algorithms, data and control structures, debugging, program design, documentation, structured programming.

10. Computer Programming

- **SU**
- Prerequisite: Mathematics 3A.
- Students with no prior programming background are encouraged to take Computer Science 5A before 10.
- Introduction to programming and computers. Basic programming concepts: algorithms, data and control structures, debugging, program design, documentation, structured programming, object-oriented programming.

11AA-ZZ. Programming Language Laboratory

- **Franklin**
- Different sections may be repeated. Sections not always offered.
- Recommended preparation: knowledge of at least one programming language.
- A self-paced course to allow a student who already possesses a working knowledge of at least one programming language an opportunity to learn other languages of interest.

12. Programming Methods in C

- **Franklin**
- Prerequisites: Computer Science 5 or 10 or Engineering 3.
- Not open for credit to students who have completed Computer Science 11C, 22, or 60.
- Introduction to the UNIX system, C programming language, and data structures. Topics include: introduction to the UNIX system, C shell and shell scripts; UNIX file system and utilities; stacks, queues, lists, and trees.

20. Programming Methods

- **AGRAWAL**
- Prerequisite: Computer Science 10 and Mathematics 3B.
- Programming techniques as follows: specification, representation, and manipulation of basic data structures such as stacks, queues, lists, trees, sets, arrays, etc. Searching and sorting techniques, predicate logic and program correctness; induction and recursion; running time analysis. Students write several medium-sized object-oriented programs.

30. Introduction to Computer Systems

- **SHERWOOD, ZHENG**
- Prerequisite: Engineering 3 or Computer Science 5AA-ZZ or 10; and, Mathematics 3C.
- Not open for credit to students who have completed ECE 75 or 158.
- Basic computer organization, assembly language programming, Gates, combinational circuits, flip-flops and the design and analysis of sequential circuits.

40. Foundations of Computer Science

- **SU**
- Prerequisites: Computer Science 10 or 12; and Mathematics 3C.
- Propositional predicate logic, set theory, functions and relations, counting, mathematical induction and recursion (generating functions).

50. Programming Project

- **CAPPELLO**
- Prerequisites: Computer Science 10 and 20.
- Program design (modularization, designing for changeability, robustness, and testability), basic software engineering practices, principles of user interface design. Students design, implement, and test one or two extensive object-oriented programs.

60. Introduction to C, C++, and UNIX

- **HOLLERER**
- Prerequisite: Computer Science 20.
- Reduced credit of 2 units will be given to students who have completed Computer Science 12.
- Syntax and semantics of C and C++. Introduction to basic UNIX utilities and tools. Students complete several small projects that exercise their understanding of the material presented in class.

95AA-ZZ. Undergraduate Seminar in Computer Science

- **SU**
- Prerequisites: Open to pre-computer science and pre-computer engineering majors only; consent of instructor.
- Seminars on introductory topics in computer science. These seminars provide an overview of the history, technology, applications, and impact in various areas of computer science, including: A. Foundations, B. Software Systems, C. Programming languages and software engineering, D. Information management, E. Architecture, F. Networking, G. Security, H. Scientific computing, I. Intelligent and interactive systems, J. History. N. General.

**UPPER DIVISION

111. Introduction to Computational Science

- **PETZOLD**
- Prerequisites: Mathematics 5B; and, Computer Science 12 or 60.
- Not open for credit to students who have completed Computer Science 110A.
- Introduction to computational science, emphasizing basic numerical algorithms and the informed use of mathematical software. Matrix computation, systems of linear and nonlinear equations, interpolation and zero finding, differential equations, numerical integration. Students learn and use the Matlab language.

123. Overview of Computer Systems: Hardware and Software

- **EL ABRAD**
- Prerequisites: Computer Science 20 and 60.

130A. Data Structures and Algorithms I

- **GONZALES**
- Prerequisites: Computer Science 20, 40 and 60; PSTAT 120 or ECE 139; open to computer science, computer engineering, and electrical engineering majors only.
- The study of data structures and their applications. Correctness proofs and techniques for the design of correct programs. Internal and external searching. Hashing and height-balanced trees. Analysis of sorting algorithms. Memory management. Graph traversal techniques and their applications.

130B. Data Structures and Algorithms II

- **GONZALES**
- Prerequisites: Computer Science 40 and 130A.
- Design and analysis of computer algorithms. Correctness proofs and solution of recurrence relations. Design techniques: divide and conquer, greedy strategies, dynamic programming, branch and bound, backtracking, and local search. Applications of techniques to problems from several disciplines. NP-completeness.

138. Automata and Formal Languages

- **EGCGIOGlU**
- Prerequisites: Computer Science 40; open to computer science and computer engineering majors only.
- Not open for credit to students who have completed Computer Science 136.
- Formal languages, finite automata and regular expressions; properties of regular languages; pushdown automata and context-free grammars; properties of context-free languages; introduction to computability and unsolvability (Turing machines) and computational complexity.

140. Parallel Scientific Computing

- **GILBERT**
- Prerequisites: Mathematics 5B and Computer Science 20; and, Computer Science 12 or 60.
- Not open for credit to students who have completed Computer Science 110B.
- Fundamentals of high performance computing and parallel algorithm design for numerical computation. Topics include parallel architecture and clusters, parallel programming with message-passing libraries and threads, program parallelization, memory management, parallel performance evaluation and optimization, parallel numerical algorithms and applications with different performance trade-offs.

153A. Hardware/Software Interface

- **KRINTZ**
- Prerequisite: Computer Science 130A with a minimum grade of C-.
- Same course as ECE 152A.
- Machine-level structures implementing the operating system abstraction; memory-mappers, multi-level interrupts, direct memory access techniques. Lowest-level software/file/structure networks: micro-kernels, interpreters, emulators, threaded-code, real-time scheduling, compilation and cross-compilation techniques; system initialization; validation and debugging, in-circuit testing.

154. Computer Architecture

- **SHERWOOD, CHOnG**
- Prerequisite: ECE 152A.
- Not open for credit to students who have received credit for ECE 154.
- Introduction to the architecture of computer systems. Topics include: central processing units, memory systems, channels and controllers, peripheral devices, interrupt systems, software versus hardware trade-offs.

160. Translation of Programming Languages

- **SHERWOOD, BULTAN**
- Prerequisites: Computer Science 30 or 123; Computer Science 136 or 138; open to computer science and computer engineering majors only.
Study of the structure of compilers. Topics include: lexical analysis; syntax analysis including LL and LR parsers; type checking; run-time environments; intermediate code generation; and compiler-construction tools.

162. Programming Languages
(4) KRINTZ
Prerequisite: Computer Science 130A; open to computer science and computer engineering majors only.

Concepts of programming languages: scopes, parameters, type checking; run-time management; control flow, exception handling; encapsulation and modularization mechanism; reusability through generality and inheritance; type systems, procedural, object-oriented, functional, and logic programming languages.

165A. Artificial Intelligence
(4) TURK
Prerequisite: Computer Science 130A

Introduction to the field of artificial intelligence which attempts to understand and build intelligent systems. Topics include AI programming languages, search, knowledge representation and reasoning, planning, perception, and intelligent agents.

165B. Machine Learning
(4) SMITH
Prerequisite: Computer Science 130A.

Covers the most important techniques of machine learning (ML) and includes discussions of: well-posed learning problems; artificial neural networks; concept learning and general to specific ordering; decision tree learning; genetic algorithms; Bayesian learning; analytical learning; and others.

167. Introduction to Bioinformatics
(4) SINGH
Prerequisite: Computer Science 130B.

Not open to students who have completed Computer Science 190.

Review of the fundamentals of molecular biology and genetics; pairwise sequence alignment: dynamic programming, database searching, multiple sequence alignment; microarray data analysis; protein structure alignment; phylogeny construction: distance and character based methods; other current topics.

170. Operating Systems
(4) ZHAO, WOLSKI
Prerequisites: Computer Science 130A or 125; and, Computer Science 154 or ECE 154; open to computer science, computer engineering, and EE majors only.

Basic concepts of operating systems. The notion of a process; interprocess communication and synchronization; input-output, file systems, memory management.

171. Distributed Systems
(4) EL ABBADI
Prerequisite: Computer Science 170.

Not open for credit to students who have completed ECE 151.

Distributed systems architecture, distributed programming, network of computers, message passing, remote procedure calls, group communication, naming and membership problems, asynchrony, logical time, consistency, fault-tolerance, and recovery.

172. Software Engineering
(4) BULSTAN
Prerequisite: Computer Science 130A; open to computer science majors only.

Not open for credit to students who have completed Computer Science 189A.

Recommended preparation: Computer Science 130B.

Software engineering is concerned with long-term, large-scale programming projects. Software management, cost estimates, problem specification and analysis, system design techniques, system testing and performance evaluation, and system maintenance. Students will design, manage, and implement a medium-sized project.

174A. Fundamentals of Database Systems
(4) SU
Prerequisite: Computer Science 130A.

Database system architectures, relational data model, relational algebra, relational calculus, SQL, QBE, query processing, integrity constraints (key constraints, referential integrity), database design, ER and object-oriented data model, functional dependencies, lossless join and dependency preserving decompositions, Boyce-Codd and Third Normal Forms.

174B. Design and Implementation Techniques of Database Systems
(4) SU
Prerequisite: Computer Science 130B.

Queries and processing, optimizer, cost models, execution plans, rewiring rules, access methods, spatial indexing, transactions, ACID properties, concurrency control, serializability, two-phase locking, timestamping, logging, checkpointing, transaction abort and commit, crash recovery, distributed databases.

176A. Introduction to Computer Communication Networks
(4) ALMEROOTH, BELDING
Prerequisites: PSTAT 120A or ECE 139; open to computer science, computer engineering, and electrical engineering majors only.

Not open for credit to students who have completed Computer Science 176 or ECE 155 or ECE 152A.

Recommended preparation: PSTAT 120B.

Basic concepts in networking, the OSI model, error detection codes, flow control, routing, medium access control, and high-speed networks.

176B. Network Computing
(4) ZHAO, VIGNA
Prerequisite: Computer Science 176A.

Not open for credit to students who have completed ECE 152B or 154W.

Focus on networking technologies used in the Internet. The OSI model is used as a guide for exploring and understanding how the Internet works. Topics include snooping packets in the network, socket programming, and implementing application-layer protocols.

176C. Advanced Topics in Internet Computing
(4) BELDING, ZHENG
Prerequisite: Computer Science 176B.

General overview of wireless and mobile networking, multimedia, security multicast, quality of service, IPv6, and web caching. During the second half of the course, one or more of the above topics are studied in greater detail.

177. Computer Security
(4) KEMMERER
Prerequisite: Computer Science 170 (may be taken concurrently).

Introduction to the basics of computer security and privacy. Analysis of technical difficulties of producing secure computer information systems that provide guaranteed controlled sharing. Examination and critique of current systems, methods, certification.

178. Introduction to Cryptography
(4) EGELOGLU
Prerequisite: Computer Science 10 and PSTAT 120A or 121A or equivalent courses.

An introduction to the basic concepts and techniques of cryptography and cryptanalysis. Topics include: The Shannon Theory, classical systems, the enigma machine, the data encryption standard, public key systems, digital signatures, file security.

180. Computer Graphics
(4) STAFF
Prerequisite: Computer Science 130B or consent of instructor.

Overview of OpenGL graphics standard, OpenGL state machine, other 3D graphics libraries, 3D graphics pipeline, 3D transformations and clipping, color shading model, modeling shadow algorithms, texturing, curves and curved surfaces, graphics hardware, interaction devices and techniques.

181B. Introduction to Computer Vision
(4) WANG, TURK
Prerequisite: Upper-division standing.

Same course as ECE 181B.

Overview of computer vision problems and techniques for analyzing the content images and video. Topics include image formation, edge detection, image segmentation, pattern recognition, texture analysis, optical flow, stereo vision, shape representation and recovery techniques, issues in object recognition, and case studies of practical vision systems.

182. Multimedia Computing
(4) ALMEROOTH
Prerequisite: Computer Science 176B.

Not open for credit to students who have completed ECE 160.

Introduction to multimedia and applications. Topics include streaming media, conferencing, webcasting, digital libraries, multimedia system architectures, standards (including JPEG and MPEG), and multimedia storage and retrieval. A key emphasis is on using the Internet for delivery of multimedia data.

185. Human-Computer Interaction
(4) HOLLERER
Prerequisite: open to computer science, computer engineering, and electrical engineering majors.

Recommended preparation: proficiency in the Java C++ programming language, some experience with user interface programming.

The study of human-computer interaction enables system architects to design useful, efficient, and enjoyable computer interfaces. This course teaches the theory, design guidelines, programming practices, and evaluation procedures behind effective human interaction with computers.

186. Theory of Computation
(4) IBBARRA
Prerequisite: Computer Science 138; open to computer science majors only.

Not open for credit to students who have completed Computer Science 172.

Student groups design a significant computer-based project. Groups work independently with interaction among groups via interface specifications and informal meetings.

189A. Senior Computer Systems Project
(4) BULSTAN
Prerequisite: senior standing in Computer Engineering, Electrical Engineering, or Computer Science; consent of instructor.

Not open for credit to students who have completed Computer Science 172.

Student groups design and implement a significant computer-based project. Groups work independently with interaction among groups via interface specifications and informal meetings.

191A-ZZ. Special Topics in Computer Science
(4) STAFF
Prerequisite: consent of instructor.

May be repeated with consent of the department chair.

Courses provide for the study of topics of current interest in computer science.

A. Foundations
B. Software Systems
C. Programming languages and software engineering
D. Information management
E. Architecture
F. Networking
G. Security
H. Scientific computing
I. Intelligent and interactive systems
J. General

192. Projects in Computer Science
(4) STAFF
Prerequisite: consent of instructor.

Students must have a minimum 3.0 GPA. May be repeated with consent of the department chair but...
only 4 units may be applied to the major.
Projects in computer science for advanced undergraduate students.

193. Internship in Industry
(1-4) STAFF
Prerequisites: consent of instructor and department chair.
Not more than 4 units per quarter; may not be used as a field elective and may not be applied to science electives. May be repeated with faculty/Chair approval to a maximum of 4 units.
Special projects for selected students. Offered in conjunction with selected industry and research firms under direct faculty supervision. Prior departmental approval required. Written proposal and final report required.

196. Undergraduate Research
(2-4) STAFF
Prerequisites: upper-division standing, consent of the instructor.
Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated for up to 12 units. No more than 4 units may be applied to departmental electives.
Research opportunities for undergraduate students. Students will be expected to give regular oral presentations, actively participate in a weekly seminar, and prepare at least one written report on their research.

199. Independent Studies in Computer Science
(1-4) STAFF
Prerequisites: upper-division standing, must have completed at least two upper-division courses in computer science.
Must have a minimum 3.0 grade-point average for the preceding three quarters. May be repeated with consent of chair. Students are limited to 5 units per quarter and 30 units total in all 198/199 courses combined.
Independent study in computer science for advanced students.

GRADUATE COURSES

209. Logic and Applications in Computer Science
(4) SU
Propositional logic, first order logic, completeness, compactness, incompleteness, undecidability; selected topics from finite model theory, theorem proving, logic programming, program verification, databases, computational complexity.

211A. Matrix Analysis and Computation
(4) STAFF
Prerequisite: consent of instructor.
Same course as ECE 210A, ME 210A, Mathematics 206A, Chemical Engineering 211A, and Geology 251A. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language. Graduate level-matrix theory with introduction to matrix computations: SVD’s, pseudoinverses, variational characterization of eigenvalues, perturbation theory, direct and iterative methods for matrix computations.

211B. Numerical Simulation
(4) PETZOLD
Prerequisite: consent of instructor.

211C. Numerical Solution of Partial Differential Equations—Finite Difference Methods
(4) STAFF
Prerequisite: consent of instructor.

211D. Numerical Solution of Partial Differential Equations—Finite Element Methods
(4) STAFF
Prerequisite: consent of instructor.
Same course as ECE 210D, ME 210D, Mathematics 206D, Chemical Engineering 211D, and Geology 251D. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language. Weighted residual and finite element methods for the solution of hyperbolic, parabolic, and elliptical partial differential equations, with application to problems in science and engineering. Error estimates. Standard and discontinuous Galerkin methods.

216. Level Set Methods
(4) GIBOU
Prerequisite: Computer Science 211C, or Chemical Engineering 211C, or ECE 210C, or ME 210C.
Same course as Chemical Engineering 226, ECE 226, and ME 216.
Mathematical description of the level set method and design of the numerical methods used in its implementations (ENO-WENO, Godunov, Lax-Friedrich, etc.). Introduction to the Ghost Fluid Method. Applications in CFD, Materials Sciences, Computer Vision and Computer Graphics.

220. Theory of Computation and Complexity
(4) IBARRA
Prerequisite: Computer Science 186.
Topics include: models of computation; time and space complexity classes (e.g., P, NP, Co-NP, and PSPACE), efficient reducibilities, complete problems; lower bounds; the polynomial hierarchy.

225. Information Theory
(4) VAN DAM
Prerequisites: ECE 140 or PSTAT 120A-B.
Same course as ECE 205A.
Entropy, mutual information, and Shannon’s coding theorems; lossless source coding, Huffman, Shannon-Fano-Elias, and arithmetic codes; Channel capacity; rate-distortion theory, and lossy source coding; source-channel coding; algorithmic complexity and information; applications of information theory in various fields.

230. Approximations, NP-Completeness and Algorithms
(4) GONZALEZ
Prerequisites: Computer Science 130A-B.
Epsilon approximations, PTAS and FPTAS. Techniques for the design of approximation algorithms. P NP-complete problems, polynomial transformations, Turing reductions, strong NP-completeness, NP-hardness and inapproximability results. Topics in algorithms include: amortized analysis, advanced graph algorithms and data structures.

231. Topics in Combinatorial Algorithms
(4) SURI
Prerequisite: Computer Science 130B.
Advanced topics in algorithm design, including network flows, matchings in graphs, linear and integer programming.

234. Randomized Algorithms
(4) EGEICHLER
Prerequisite: Computer Science 186.
Randomized algorithms and applications: Las Vegas and Monte Carlo type algorithms, randomized algorithms for graph problems, matchings, data structures, problems from computational geometry, number theory and primality testing, distributed algorithms, hashing and fingerprinting, random generation, Markov chains and rapid mixing.

235. Computational Geometry
(4) SURI
Prerequisites: Computer Science 130A-B.
Algorithms and lower bound techniques in computational geometry; decision tree models of computation; geometric searching; point location and range search; convex hull and maxima of a point set; proximity algorithms; geometric intersections.

240A. Applied Parallel Computing
(4) GILBERT
Prerequisites: Computer Science 154 and 160.
Interdisciplinary introduction to applied parallel computing on modern supercomputers. Topics include applications-oriented architectural issues, MPI, parallel MATLAB, and parallel numerical algorithms. A course project emphasizes understanding the realities and myths of what is possible on the world’s fastest machines.

240B. Parallel Computing and Program Parallelization
(4) YANG
Prerequisites: Computer Science 130A and 160.
Parallel programming; representation of parallelism, program dependence analysis, loop transformation, program and data partitioning, locality optimization; task scheduling and load balancing; parallelizing compilers and run-time support.

254. Advanced Computer Architecture
(4) SHERWOOD
Prerequisite: Computer Science 154 or ECE 154.
Advanced instruction set architectures, pipelining, dynamic scheduling, branch prediction, superscalar issue, out-of-order execution, memory-hierarchy design, advanced cache architectures, and prefetching. Several real designs are dissected and simulators are developed for performing quantitative evaluations of design decisions.

260. Advanced Topics in Translation
(4) STAFF
Prerequisites: Computer Science 160 and 162.
Theoretical aspects of translation. Topics include: data flow analysis; control flow analysis; interprocedural analysis; optimization; type systems.

263. Modern Programming Languages and Their Implementation
(4) KRINZ
Prerequisites: Computer Science 154, 160, and 162.
Recommended preparation: Computer Science 260.
Topics central to modern programming languages and their implementation: garbage collection, memory system performance; characteristics and optimization of object-oriented languages; type systems and type inference; run-time compilation.

265. Advanced Topics in Machine Intelligence
(4) STAFF
Prerequisite: Computer Science 165A.
May be repeated for credit.
Topics covered include advanced programming techniques for representing and reasoning about complex objects and various applications of such techniques, including expert systems, natural language processors, image understanding systems, and machine learning.

266. Formal Specification and Verification
(4) KEMMERER
Prerequisites: Computer Science 130A-B; Computer Science 186.
Introduction to existing specification and verification systems, and the underlying theory and techniques of verifying the correctness of algorithms with respect to specifications. This subject can be considered as the combination of specification and verification techniques, programming language semantics, and formal logic.

267. Automated Verification
(4) BULTAN
Prerequisites: Computer Science 130A-B and 138.
Covers automated verification algorithms and tools. Topics include: temporal logics, fixpoint
characterizations of temporal properties, model checking, symbolic verification, explicit-state verification, verification using automated theorem provers, automated abstraction.

270. Operating Systems
(4) WOLSKI
Prerequisite: Computer Science 170.
Course covers the fundamentals of operating systems and the various tools used to solve them. Of primary interest is the issue of fault-tolerance. Topics include event ordering, locks, global states, agreement, fault tolerance, and peer-to-peer systems.

271. Advanced Topics in Distributed Systems
(4) EL ABBADI
Prerequisite: Computer Science 170.
Principles of software engineering disciplines emphasizing requirements analysis, specification design, coding, testing and correctness proofs, maintenance, and management. Students will use a number of software engineering tools.

272. Software Engineering
(4) BULTAN
Prerequisite: Computer Science 172.
This course covers the fundamentals in distributed systems and the various tools used to solve them. Of primary interest is the issue of fault-tolerance. Topics include event ordering, locks, global states, agreement, fault tolerance, and peer-to-peer systems.

273. Data and Knowledge Bases
(4) SU
Prerequisite: Computer Science 186.
The focus is on the study of relational and post-relational data models and their query languages of different styles (algebraic, calculus, and deductive): complexity, expressive power, optimization, and database design.

274. Advanced Topics in Database Systems
(4) AGRARAL, EL ABBADI
Prerequisite: Computer Science 170.
Topics include: data models, semantics; data integrity; database design; serializability theory, concurrency control; recovery, distributed databases.

275. Advanced Topcis in Networking
(4) BELDING, ZHAO
Prerequisite: Computer Science 176A or 176B.
Course focuses on advanced topics in networking. Topics may include, but are not limited to: Internet analysis, routing techniques, multimedia, approaches for network performance enhancements, and communication over new technologies.

276. Advanced Topics in Security
(4) VIGNA
Prerequisite: Computer Science 177.
This course covers the fundamentals in distributed systems and the various tools used to solve them. Of primary interest is the issue of fault-tolerance. Topics include event ordering, locks, global states, agreement, fault tolerance, and peer-to-peer systems.

280. Computer Graphics
(4) HOLLERER
Prerequisite: Computer Science 180.
Special topics in computer graphics including: curves and curved surfaces, visual perception of colors and color models; shading models; shadow generation; texture mapping; solid textures; stereographics; helmet-mounted display; graphics hardware/architecture; solid modeling; physically-based modeling; fractals and graphlets; volume rendering; scientific visualization.

281B. Advanced Topics in Computer Vision
(4) WANG, TURK
Prerequisite: Computer Science 180.
Advanced topics in computer vision: image sequence analysis, spatio-temporal filtering, camera calibration and hand-eye coordination, robot navigation, shape representation, physically-based modeling, regularization theory, multi-sensory fusion, biological models, expert vision systems, and other topics selected from recent research papers.

284. Mobile Computing
(4) BELDING
Prerequisite: Computer Science 176A or 176B.
Recommended preparation: Computer Science 276. Course focuses on mobile computing. Topics may include, but are not limited to: mobile network characteristics, types of mobile networks, challenges and solutions in mobile computing, and power conservation techniques.

290AA-ZZ. Special Topics in Computer Science
(4) STAFF
Prerequisite: consent of instructor.
These courses provide for the study of topics of current interest in computer science. Special topics are coded as follows:
A. Foundations
B. Software Systems
C. Programming Languages and Software Engineering
D. Information Management
E. Architecture
F. Networking
G. Security
H. Scientific computing
I. Intelligent and interactive systems
J. General
K. Computer Systems Modeling and Analysis
L. General

596. Directed Research
(2-12) STAFF
Research, either experimental or theoretical, may be undertaken by properly qualified graduate students under the direction of a faculty member.

597. Individual Studies for M.S.
Comprehensive Examinations and Ph.D. Examinations
(1-12) STAFF
No unit credit allowed toward advanced degree.

598. Master's Thesis Research and Preparation
(1-12) STAFF
Prerequisite: consent of graduate advisor.
For research underlying the thesis and writing of the thesis.

599. Ph.D. Dissertation Research and Preparation
(1-12) STAFF
Prerequisite: consent of chair of student's doctoral committee.
Research and preparation of dissertation.

Electrical & Computer Engineering

Department of Electrical and Computer Engineering, Building 380, Room 101; Telephone (805) 993-2269 or (805) 993-3821; Web site: www.ece.ucsb.edu

Chair: Jerry Gibson
Vice Chair: Joao Hespanha

Faculty
Kaustav Banerjee, Ph.D., UC Berkeley, Professor (high speed processing, VLSI and mixed signal system-on-chip designs and their design automation methods; single electron transistors; 3D and optoelectronic integration)
Daniel J. Blumenthal, Ph.D., University of Colorado at Boulder, Professor (fiber-optic networks, wavelength and subcarrier division multiplexing, photonic packet switching, signal processing in semiconductor optical devices, wavelength conversion, microwave photonics)
John E. Bowers, Ph.D., Stanford University, Professor (high-speed photonics and electronic devices and integrated circuits, fiber optic communication, semiconductors, laser physics and mode-locking phenomena, compound semiconductor materials and processing)
Forrest D. Brewer, Ph.D., University of Illinois at Urbana-Champaign, Professor (VLSI and computer system design automation, theory of design and design representations, symbolic techniques in high level synthesis)
Elliott Brown, Ph.D., California Institute of Technology, Professor (RF system modeling and design; solid state and biomedical ultrasonics; thermal management of solid state power devices)

Steven E. Butner, Ph.D., Stanford University, Professor (computer architecture, VLSI design of CMOS and gallium-arseenide ICs with emphasis on distributed organizations and fault-tolerant structures)

Shivkumar Chandrasekaran, Ph.D., Yale University, Associate Professor (numerical analysis, numerical linear algebra, scientific computation)

Edward Chang, Ph.D., Stanford University, Associate Professor (multimedia systems, database systems, and distributed systems)

Kwang-Ting (Tim) Cheng, Ph.D., UC Berkeley, Professor (design automation, VLSI testing, design synthesis, design verification, algorithms)

Larry A. Coldren, Ph.D., Stanford University, Kavli Professor in Optoelectronics and Sensors, Director of Optoelectronics Technology Center (semiconductor integrated optoelectronics, vertical-cavity lasers, widely-tunable lasers, optical fiber communication, growth and planar processing, flexible)

Nadir Dagli, Ph.D., Massachusetts Institute of Technology, Professor (design, fabrication, and modeling of photonic integrated circuits, ultrafast electrooptic modulators, solid state microwave and millimeter wave devices; experimental study of ballistic transport in quantum confined structures)

Steven P. DenBaars, Ph.D., University of Southern California, Professor (metalorganic vapor phase epitaxy, optoelectronic materials, compound semiconductors, indium phosphide and gallium nitride, photonic devices)

Jerry Gibson, Ph.D., Southern Methodist University, Professor (digital signal processing, data, speech, image and video compression, and communications via multi-use networks, data embedding, adaptive filtering)

Arthur C. Gossard, Ph.D., UC Berkeley, Professor (epitaxial crystal growth, artificially structured materials, semiconductor structures for optical and electronic devices, quantum confinement structures)

Joao Hespanha, Ph.D., Yale University, Professor (hybrid and switched systems, supervisory control, control of computer networks, probabilistic games, the use of vision in feedback control)

Evelyn Hu, Ph.D., Columbia University, Professor, Scientific Co-Director of California NanoSystems Institute, Director of Institute for Quantum Engineering, Science and Technology (high-resolution fabrication techniques for semiconductor device structures, process-related materials damage, contact/contact interface, superconducitivity)

Ronald Itis, Ph.D., UC San Diego, Professor (digital spread spectrum communications, spectral estimation and adaptive filtering)

Herbert Kroemer, Dr. rer. nat., University of Göttingen, Donald W. Whittier Professor in Electrical Engineering, 2000 Physics Nobel Laureate (general solid-state and device physics, heterostructures, molecular beam epitaxy, compound semiconductor materials and devices, superconducitivity)

Hua Lee, Ph.D., UC Santa Barbara, Professor (image system optimization, high-performance image formation algorithms, synthetic-aperture radar and sonar systems, acoustic microscopy, microwave nondestructive evaluation, dynamic vision systems)

Michael Liebling, Ph.D., Ecole Polytechnique Fédérale de Lausanne, Assistant Professor (image processing, optical microscopy, In Vivo biological imaging)

Upamanyu Madhow, Ph.D., University of Illinois, Professor (spread-spectrum and multiple-access communications, space-time coding, and internet protocols)

B.S. Manjunath, Ph.D., University of Southern California, Professor (image processing, computer vision, pattern recognition, neural networks, learning algorithms, content based search in multimedia databases)

Malgorzata Marek-Sadowska, Ph.D., Technical University of Warsaw, Poland, Professor (design automation, computer-aided design, integrated circuit layout, logic synthesis)

P. Michael Melliar-Smith, Ph.D., University of Cambridge, Professor (fault tolerance, formal specification and verification, distributed systems, communication networks and protocols, asynchronous systems)

Umesh Mishra, Ph.D., Cornell University, Professor (high-speed transistors, semiconductor device physics, quantum electronics, wide band gap materials and devices, design and fabrication of millimeter-wave devices, in situ processing and integration techniques)

Louise E. Moser, Ph.D., University of Wisconsin, Professor (distributed systems, computer networks, software engineering, fault-tolerance, formal specification and verification, performance evaluation)

Christopher J. Palmstrom, Ph.D. Leeds University, Professor (spintronics, metallization of semiconductors, thin film analysis, dissimilar materials epitaxial growth, and molecular beam & chemical beam epitaxial growth of metallic compounds, functional materials, magnetic materials and compound semiconductors).

Behrooz Parhami, Ph.D., UC Los Angeles, Professor (parallel architectures and algorithms, computer arithmetic, computer design, dependable and fault-tolerant computing)

Pierre M. Petroff, Ph.D., UC Berkeley, Professor (self assembling nanostructures in semiconductors and ferromagnetic materials, spectroscopy of nanostructures, nanostructure devices, semiconductor device reliability)

Lawrence Rabiner, Ph.D., Massachusetts Institute of Technology, Professor (digital signal processing: intelligent human-machine interaction, digital signal processing, speech processing and recognition; telecommunications)

Volkan Rodoplu, Ph.D., Stanford University, Assistant Professor (wireless networks, energy-efficient and device-adaptive communications)

Mark J.W. Rodwell, Ph.D., Stanford University, Professor, Director of Compound Semiconductor Research Laboratories, Director of National Nanofabrication Users Network (heterojunction bipolar transistors, high frequency integrated circuit design, electronics beyond 100 GHz)

Kenneth Rose, Ph.D., California Institute of Technology, Professor, Co-Director of Center for Information Processing Research (information theory, source and channel coding, image coding, communications, pattern recognition)

John J. Shynk, Ph.D., Stanford University, Professor (adaptive filtering, array processing, wireless communications, blind equalization, neural networks)

Roy Smith, Ph.D., California Institute of Technology, Professor (robust control with an emphasis on the modeling, identification, and control of uncertain systems, applications and experimental work including process control, flexible structures, automotive systems, semiconductor manufacturing, levitated magnetic bearings and dynamic aeromaneuvering of interplanetary spacecraft)

Andrew Teel, Ph.D., UC Berkeley, Professor (control design and analysis for nonlinear dynamical systems, input-output methods, actuator nonlineairities, applications to aerospace problems)

Li C. Wang, Ph.D., University of Texas, Austin, Associate Professor (design verification, testing, computer-aided design of microprocessors)

Pochi Yeh, Ph.D., California Institute of Technology, Professor (phase conjugation, nonlinear optics, dynamic holography, optical computing, optical interconnection, neural networks, and image processing)

Robert York, Ph.D., Cornell University, Professor (high-power/high-frequency devices and circuits, quas-optics, antennas, electromagnetic theory, microwave circuits and devices and circuits, dynamics, microwave photonics)

Patrick Yue, Ph.D., Stanford University, Associate Professor (high-speed CMOS IC design, cell-based RF CAD methodology and integrated biomedical sensors)

Emeriti Faculty

Jorge R. Fontana, Ph.D., Stanford University, Professor Emeritus (quantum electronics, particularly lasers, interaction with charged particles)

Allen Gersho, Ph.D., Cornell University, Professor, Director of Center for Information Processing Research (speech, audio, image, and video compression, quantization and signal compression techniques, and speech processing)

Glenn R. Heidbreder, D. Eng., Yale University, Professor Emeritus (communication theory, signal processing in radar and digital communication systems, digital image processing)

Petur V. Kokotovic, Ph.D., USSR Academy of Sciences, Professor, Director of Center for Control Engineering and Computation, Director of Center for Robust Nonlinear Control of Aeroengines (sensitivity analysis, singular perturbations, large-scale systems, non-linear systems, adaptive control, automatic and jet engine control)

Stephen I. Long, Ph.D., Cornell University, Professor (semiconductor devices and integrated circuits for high speed digital and RF analog applications)

George L. Matthaei, Ph.D., Stanford University, Professor Emeritus (circuit design techniques for passive and active microwave,
millimeter-wave and optical integrated circuits, circuit problems of high-speed digital integrated circuits)

James L. Merz, Ph.D., Harvard University, Professor Emeritus (optical properties of semiconductors, including guide-waved and integrated optical devices, semiconductor lasers, optoelectronic devices, native defects in semiconductors, low-dimensional quantum structures) *1

Sanjit K. Mitra, Ph.D., UC Berkeley, Professor (digital signal and image processing, computer-aided design and optimization)

Venkatesh Narayanamurti, Ph.D., Cornell University, Professor Emeritus (transport, semiconductor heterostructures, nanostructures, scanning tunneling microscopy and ballistc electron emission microscopy, phonon physics)

Philip F. Ording, D. Eng., Yale University, Professor Emeritus (general device physics, solar cells, charge-coupled devices)

Ian B. Rhodes, Ph.D., Stanford University, Professor (mathematical system theory and its applications with emphasis on stochastic control, communication, and optimization problems, especially those involving decentralized information structures or parallel computational structures)

John G. Skalnik, D. Eng., Yale University, Professor Emeritus (solar cells, general device technology, effects of non-ideal structures)

Glen Wade, Ph.D., Stanford University, Professor Emeritus (optical, microwave, and acoustical systems theory and experiments, with emphasis on acoustic imaging, computer processing; enhancement of images; computer image reconstruction)

Roger C. Wood, Ph.D., UC Los Angeles, Professor Emeritus (computer system modeling, design, and analysis, computer architecture, and instructional use of computers) *2

*1 Joint appointment with the Department of Materials

*2 Joint appointment with the Department of Computer Science

Affiliated Faculty

David Awschalom, Ph.D. (Physics)

Elizabeth Belding-Royer, Ph.D. (Computer Science)

Francesco Bullo, Ph.D. (Mechanical Engineering)

Francis Doyle, Ph.D., (Chemical Engineering)

Oscar Ibarra, Ph.D., (Computer Science)

Mustafa Khannah, Ph.D. (Mechanical Engineering)

Chandra Krintz, Ph.D., (Computer Science)

Eric McFarland, Ph.D., (Chemical Engineering)

Shoji Nakamura, Ph.D. (Materials)

Bradley E. Paden, Ph.D. (Mechanical Engineering)

Tim Sherwood, Ph.D., (Computer Science)

Electrical and Computer Engineering is a broad field encompassing many diverse areas such as computers and digital systems, control, communications, computer engineering, electronics, signal processing, electromagnetics, electro-optics, physics and fabrication of electronic and photonic devices. As in most areas of engineering, knowledge of mathematics and the natural sciences is combined with engineering fundamentals and applied to the theory, design, analysis and implementation of devices and systems for the benefit of society.

The Department of Electrical and Computer Engineering offers programs leading to the degrees of bachelor of science in electrical engineering or bachelor of science in computer engineering. (Please see the “Computer Engineering” section for further information.) The undergraduate curriculum in electrical engineering is designed to provide students with a solid background in mathematics, physical sciences, and traditional electrical engineering topics as presented above. A wide range of program options, including computer engineering; microwaves; communications, control, and signal processing; and semiconductor devices and applications, is offered. The department’s electrical engineering undergraduate program is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700.

Graduate studies leading to the M.S. and Ph.D. degrees in electrical and computer engineering are offered in three major areas of specialization: computer engineering; communications, control, and signal processing; and electronics and photonics.

The undergraduate major in electrical engineering prepares students for a wide range of positions in business, government, and private industrial research, development, and manufacturing organizations. The graduate programs offer educational opportunities at an advanced level, leading at the M.S. level to increased career opportunities in the foregoing positions, and at the Ph.D. level to careers in research and teaching and positions of professional leadership.

Students who complete a major in electrical engineering may be eligible to pursue a California teaching credential. Interested students should consult the credential advisor in the Graduate School of Education.

Under the direction of the Associate Dean for Undergraduate Studies, academic advising services are jointly provided by advisors in the College of Engineering, as well as advisors in the department. Students who plan to change to a major in the department should consult the ECE student office. Departmental faculty advisors are assigned to students to assist them in choosing senior elective courses.

Counseling is provided to graduate students through the ECE graduate advisor. Individual faculty members are also available for help in academic planning.

Mission Statement

The Electrical Engineering program seeks to provide a comprehensive, rigorous and accredited educational program for the graduates of California’s high schools and for postgraduate students, both domestic and international. The department has a dual mission:

• Education. We will develop and produce excellent electrical and computer engineers who will support the high-tech economy of California and the nation. This mission requires that we offer a balanced and timely education that includes not only strength in the fundamental principles but also experience with the practical skills that are needed to contribute to the complex technological infrastructure of our society. This approach will enable each of our graduates to continue learning throughout an extended career.

• Research. We will develop relevant and innovative science and technology through our research that addresses the needs of industry, government and the scientific community. This technology can be transferred through our graduates, through industrial affiliations, and through publications and presentations.

We provide a faculty that is committed to education and research, is accessible to students, and is highly qualified in their areas of expertise.

Educational Objectives

1. We expect our graduates to make positive contributions to society in fields including, but not limited to, engineering.

2. We expect our graduates to have acquired the ability to be flexible and adaptable, showing that their educational background has given them the foundation needed to remain effective, take on new responsibilities and assume leadership roles.

3. We expect some of our graduates to pursue their formal education further, including graduate study for master’s and doctoral degrees.

Program Outcomes

The EE program expects our students upon graduation to have:

1. Acquired strong basic knowledge and skills in those fundamental areas of mathematics, science, and electrical engineering that are required to support specialized professional training at the advanced level and to provide necessary breadth to the student’s overall program of studies. This provides the basis for lifelong learning.

2. Experienced in-depth training in state-of-the-art specialty areas in electrical engineering. This is implemented through our senior electives. Students are required to take two sequences of at least two courses each at the senior level.

3. Benefited from imaginative and highly supportive laboratory experiences where appropriate throughout the program. The laboratory experience will be closely integrated with coursework and will make use of up-to-date instrumentation and computing facilities. Students should experience both hardware-oriented and simulation-oriented exercises.

4. Experienced design-oriented challenges that exercise and integrate skills and knowledge acquired in several courses. These may include design of components or subsystems with performance specifications. Graduates should be able to demonstrate an ability to design and conduct experiments as well as analyze the results.

5. Learned to function well in teams. Also, students must develop communication skills, written and oral, both through team and
6. Completed a well-rounded and balanced privilege of continuing in the major, (2) a large elective programs will be considered acceptable. A wide variety of departmental requirements. A wide variety of courses are taken primarily in the senior year, 137A-B, 139, 152A; and Engineering 101, and Computer Engineering 130A-B, 132, 134, 2AC-BC; Mathematics 3A-B-C and 5A-B-C; Physics 1A-B or 2A-B, 1AL-BL or 2AC-BC; Mathematics 3A-B-C and 5A-B-C; Physics 1, 2, 3, 4, 5, 3L, 4L, 5L; and Computer Science 12. Qualified students may substitute Physics 21-25 for Physics 1-5 after obtaining permission from the Physics Department. The department academic advisor can suggest a recommended study plan for electrical engineering freshmen and sophomores. Each student is assigned a departmental faculty advisor who must be consulted in planning the junior and senior year programs. Upper-division major The upper-division requirements consist of a set of required courses and a minimum of 32 units of additional departmental elective courses selected from a wide variety of specialized courses. All departmental elective programs must contain at least two sequences, each consisting of two or more related courses. Required upper-division courses for the major are: Electrical and Computer Engineering 130A-B, 132, 134, 137A-B, 139, 152A; and Engineering 101. The required 32 units of departmental electives are taken primarily in the senior year, and they permit students to develop depth in specialty areas of their choice. A student’s elective course program must be approved by a departmental faculty advisor. The advisor will check the program to ensure satisfaction of the departmental requirements. A wide variety of elective programs will be considered acceptable. Three matters should be noted: (1) students who fail to attain a grade-point average of at least 2.0 in the major may be denied the privilege of continuing in the major, (2) a large majority of electrical and computer engineering courses have prerequisites which must be completed successfully. Successful completion of prerequisite courses means receiving a grade of C- or better in prerequisite courses except for Mathematics 3A-B-C and Mathematics 5A and 5B which require a grade of C or better to apply these courses as prerequisites, (3) courses required for the pre-major or major, inside or outside of the Department of Electrical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades. Bachelor of Science—Computer Engineering This major is offered jointly by the Department of Computer Science and the Department of Electrical and Computer Engineering. For information about this major, refer to the section on Computer Engineering. Electrical & Computer Engineering Courses Many of the ECE courses are restricted to ECE majors only. Please check the quarterly Schedule of Classes. Instructor and quarter offered are subject to change.

LOWER DIVISION

1. Ten Puzzling Problems in Computer Engineering (1) FARHAMI
 Prerequisite: open to pre-computer engineering only. Seminar, 1 hour.
 • Gaining familiarity with, and motivation to study, the field of computer engineering, through puzzle-like problems that represent a range of challenges facing computer engineers in their daily problem-solving efforts and at the frontiers of research.
 2A. Circuits, Devices, and Systems (3) YORK
 Prerequisites: Mathematics 3A-B-C with a minimum grade of C; and, Mathematics 5A with a minimum grade of C (may be taken concurrently); Physics 3 or 23 (may be taken concurrently); open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture, 3 hours; laboratory, 4 hours.
 • Introduction to basic circuit analysis. KCL, KVL, nodal analysis, superposition, independent and dependent sources; diodes and I-V characteristics; basic op-amp circuits; first-order transient analysis; AC analysis and phasors. Introduction to the use of test instruments.
 2B. Circuits, Devices, and Systems (3) YORK
 Prerequisites: ECE 2A with a grade of C- or better; open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture, 3 hours; laboratory, 4 hours.
 • Second order circuits. Laplace transform and solution of steady state and transient circuit problems in the s-domain; Bode plots; Fourier series and transforms; filters. Transistor as a switch; load lines; simple logic gates; latches and flip-flops.
 2C. Circuits, Devices, and Systems (3) YORK
 Prerequisites: ECE 2B with a grade of C- or better (may be taken concurrently); open to electrical engineering, computer engineering, and pre-computer engineering majors only. Lecture, 3 hours; laboratory, 4 hours.
 • Two-port network parameters; small-signal models of nonlinear devices; transistor amplifier circuits; frequency response of amplifiers; non-ideal op-amps; modulation, bandwidth, signals; Fourier analysis.
 4. Design Project for Freshmen (4) STAFF
 Prerequisites: Mathematics 3A-B-C and Physics 1 with minimum grade of C; Engineering 3 with a minimum grade of C-. Lecture, 3 hours; laboratory, 3 hours.
 This first course on design gives an intuitive introduction to engineering design. Learn how to take an idea of a system and convert it to a working model. Use hardware and software for building a system.

15A. Fundamentals of Logic Design (3) MARLAD
 Prerequisites: ECE 2A with a minimum grade of C; open to electrical engineering, computer engineering, and pre-computer engineering majors only.
 • Not open for credit to students who have completed ECE 15. Lecture, 3 hours; discussion, 1 hour.
 • Boolean algebra, logic of propositions, minterm and maxterm expansions, Karnaugh maps, Quine-McCluskey methods, multi-level circuits, combinational circuit design and simulation, multiplexers, decoders, programmable logic devices.

15B. Computer Organization (3) KASTNER
 Prerequisites: ECE 15A with a minimum grade of C; open to electrical engineering, computer engineering, and pre-computer engineering majors only.
 • Not open for credit to students who have completed Computer Science 30 or ECE 15. Lecture, 3 hours; discussion, 1 hour.
 • Basic memory and processor organization, instruction set architecture, assembly language programming, number systems, arithmetic, data transfer and control flow instructions, procedures, memory management, program execution.

94AA-ZZ. Group Studies in Electrical and Computer Engineering (1-4) STAFF
 Prerequisite: consent of instructor.
 • Group studies intended for small number of advanced students who share an interest in a topic not included in the regular departmental curriculum.

UPPER DIVISION

121A-B. The Practice of Science (3-4) HU, AWASHALOM
 Prerequisites: consent of instructor (for 121A); ECE 121A or Physics 121A; consent of instructor (for 121B).
 • Same course as Physics 121A-B. Lecture, 3 hours (for 121A): Lecture, 4 hours (for 121B).
 • Provides experience in pursuing careers within science and engineering through discussions with researchers, lectures on ethics, funding, intellectual property, and commercial innovation. Students prepare a focused research proposal that is pursued in the second quarter of the course.

124A. VLSI Principles (4) BANEJEE
 Prerequisites: ECE 132 (may be taken concurrently) and ECE 152A with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 3 hours.
 • Introduction to CMOS digital VLSI design: CMOS devices and manufacturing technology; transistor level design of static and dynamic logic gates and components; circuit characteristics: delay, noise margins, and power dissipation; combinational and sequential circuits; arithmetic operations and memories.

124B. Integrated Circuit Design and Fabrication (4) BOWERS
 Prerequisite: ECE 132 with a minimum grade of C. Lecture, 4 hours; laboratory, 3 hours.
 • Theory, fabrication, and characterization of solid state devices including P-N junctions, capacitors, bipolar and MOS devices. Devices are fabricated using modern VLSI processing techniques including lithography, oxidation, diffusion, and vaporization. Physics and performance of processing steps are discussed and analyzed.
124C. Integrated Circuit Design and Fabrication (4) BOWERS
Prerequisites: ECE 124B and ECE 137A with a minimum grade of C- in all. Lecture, 4 hours; laboratory, 2 hours.
Design, simulation, fabrication, and characterization of NMOS integrated circuits. Circuit design and layout is performed using commercial layout software. Circuits are fabricated using modern VLSI processing technologies. Circuit and discrete device electrical performance are analyzed.

124D. VLSI Architecture and Design (4) BREWER
Prerequisite: ECE 124A with a minimum grade of C-. Lecture, 3 hours; laboratory, 2 hours.
Practical issues in VLSI circuit design, padpin limitations, clocking and interfacing standards, electrical packaging for high-speed and high-performance design. On-chip noise and crosstalk, clock and power distribution, architectural and circuit design constraints, interconnection limits and transmission line effects.

125. High Speed Digital Integrated Circuit Design (4) BANERJEE
Prerequisite: ECE 124A or 137A with a minimum grade of C- in either. Lecture, 4 hours.
Introduction to and applied electromagnetics and wave phenomena in high frequency electron circuits and systems. Waveguide transmission lines, elements of electrostatics and magnetostatics and applications, plane waves, examples and applications to RF, microwave, and optical systems.

135. Optical Fiber Communication (4) DAVENPORT
Prerequisites: ECE 132 and 134 with a minimum grade of C- in both. Lecture, 3 hours; discussion, 1 hour.
Optical fiber as a transmission medium, dispersion and nonlinear effects, fiber transmission, fiber and semiconductor optical amplifiers and lasers, optical modulators, photo detectors, optical receivers, wavelength division multiplexing components, optical fiber basic transmission system analysis and design.

137A. Circuits and Electronics I (4) RODWELL
Prerequisites: ECE 2A-B-C, 130A, and 132 with a minimum grade of C- in all; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours.
Analysis and design of single stage and multistage transistor circuits including biasing, gain, impedances and maximum signal levels.

137B. Circuits and Electronics II (4) RODWELL
Prerequisites: ECE 2C and 137A with a minimum grade of C- in both; open to EE majors only. Lecture, 3 hours; laboratory, 3 hours.
Analysis and design of single stage and multistage transistor circuits at low and high frequencies. Transistor response. Analysis and design of feedback circuits. Stability criteria.

139. Probability and Statistics (4) ILITIS
Prerequisite: Open to Electrical Engineering, Computer Engineering and pre-Computer Engineering majors only. Lecture, 3 hours; discussion, 2 hours.
Fundamentals of probability, conditional probability, Bayes rule, random variables, functions of random variables, expectation and high-order moments, Markov chains, hypothesis testing.

140. Random Processes for Engineering (4) ILITIS
Prerequisites: ECE 130A-B and 139 each with a minimum grade of C-; open to EE majors only. Lecture, 3 hours; discussion, 2 hours.
Random processes, characteristic functions, central limit theorem, spectral analysis, linear systems with random inputs, representation of bandlimited processes, Poisson process, simple queueing systems.

141A. Introduction to MicroElectromechanical Systems (MEMS) (3) MACDONALD, TURNER
Prerequisites: ME 104 and 163; or, ECE 130A and 137A; with a minimum grade of C- in both. Lecture, 3 hours; discussion, 2 hours.
Same course as ME 414A. Lecture, 3 hours.
Analysis of MEMS actuators and displacement sensors with emphasis on the analysis of capacitor-based sensing and actuation. Analysis and design of operational-amplifier models and circuits for capacitor sensors including feedback concepts. Vibration analysis of MEMS structures including wave equations for “string” and bar structures. MEMS scaling concepts.

141B. Semiconductor Processing and Device Characterization with Laboratory (4) MACDONALD
Prerequisites: ME 141A or ECE 141A; and, Chemistry 1B-1L.
Same course as ME 414B. Lecture, 2 hours; laboratory, 6 hours.
Introduction to semiconductor processing for MEMS. Description and analysis for key semiconductor devices and equipment used for MEMS. Design and fabrication of MEMS capacitor-actuator and accelerometers; includes a description of MEMS characterization tools.

141C. Introduction to Microfluidics and BioMEMS (3) MEHINTH
Prerequisites: ME 141A or ECE 141A; open to ME and EE majors only.
Same course as ME 414C. Lecture, 3 hours.
Introduces physical phenomena associated with microscale/nanoscale fluid mechanics, microfluids, and bioMEMS. Analytical methods and numerical simulation tools are used for analysis of microfluids.

144. Electromagnetic Fields and Waves (4) YORK
Prerequisite: ECE 134 with a minimum grade of C-. Lecture, 3 hours; laboratory, 3 hours.
Waves on transmission lines, Maxwell’s equations, skin effect, propagation and reflection of electromagnetic waves, microwave integrated circuit principles, metal and dielectric waveguides, resonant cavities, antennas, nonlinear effects. Microwave device examples and experience with modern microwave and CAD software.

145A. Communication Electronics (5) LONG
Prerequisites: ECE 137A-B with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 6 hours.
Analog communication circuits 1 MHz to 1GHz with emphasis on receivers. S-parameter design techniques, nonideal components, distortion, amplifier design and characterization, system level analysis.

145B. Communication Electronics (5) LONG
Prerequisite: ECE 145A with a minimum grade of C-; EE majors only. Lecture, 3 hours; laboratory, 6 hours.
Analog communication circuits 1 MHz to 1GHz with emphasis on receivers. Design and evaluation of RF components: mixers, oscillators, PLL, IF amplifier, FM demodulator, frequency synthesizer.

145C. High Speed Bipolar Mixed Signal and Communication IC Design (4) RODWELL
Prerequisites: ECE 137A-B with a minimum grade of C- in both. Lecture, 4 hours; laboratory, 6 hours.

146A. Analog Communication Theory and Techniques (5) ILITIS
Prerequisites: ECE 130A-B and 140 with a minimum grade of C- in all; open to EE majors only. Lecture, 3 hours; laboratory, 6 hours.
Modulation theory, AM, FM, PM, and analog pulse modulation and demodulation techniques. System noise and performance calculations.

146B. Digital Communication Theory and Techniques (5) SHYNK
Prerequisites: ECE 130A-B, 140 and 146A with minimum grade of C-; open to EE majors only. Lecture, 4 hours; laboratory, 6 hours.

147A. Feedback Control Systems - Theory and Design (5) TEEL, SMITH
Prerequisites: ECE 130A-B-C with a minimum grade of C- in each; open to EE and computer engineering majors only. Lecture, 3 hours; laboratory, 6 hours.
Feedback systems design, specifications in time and frequency domains. Analysis and synthesis of closed loop systems. Computer aided analysis and design.

147B. Digital Control Systems - Theory and Design (5) SMITH, TEEL
Prerequisite: ECE 147A with a minimum grade of C-; open to EE and computer engineering majors only. Lecture, 3 hours; laboratory, 6 hours.
Controllability, pole assignment, state feedback, space description of linear systems; observability, transfer functions.

1.4. Applications of Signal Analysis and Processing

Prerequisites: ECE 130A-B with a minimum grade of C- in both. Lecture, 3 hours; discussion, 2 hours.

A sequence of engineering applications of signal analysis and processing techniques; in communications, image processing, analog and digital filter design, signal detection and parameter estimation, holography and tomography, Fourier optics, and microwave and acoustic sensing.

1.19. Active and Passive Network Synthesis

Prerequisites: upper-division standing; open to EE majors only. Lecture, 3 hours; discussion, 1 hour.

This course combines the areas of electronics and network theory in the subject of passive and active network design. Topics include passive synthesis, optimization techniques, approximations to ideal filters, distributed networks, sensitivity, and the modern design techniques, and applications of active filters.

1.51. Distributed Systems

Prerequisite: Computer Science 170 with a minimum grade of C-.

Not open for credit to students who have completed Computer Science 171. Lecture, 3 hours; discussion, 1 hour.

Distributed systems architecture, distributed programming techniques, message passing, remote procedure calls, group communication and membership, naming, asynchrony, causality, consistency, fault-tolerance and recovery, resource management, scheduling, monitoring, testing and debugging.

1.52A. Digital Design Principles

Prerequisites: ECE 15 or 15A or Computer Science 30 with a minimum grade of C- in each course; open to electrical engineering, computer engineering, and computer science majors only. Lecture, 3 hours; laboratory, 6 hours.

Design of synchronous digital systems: timing diagrams, propagation delay, latches and flip-flops, shift registers and counters, Mealy/Moore finite state machines, Verilog, 2-phase clocking, timing analysis, CMOS implementation, 5-RAM, RAM-based designs, ASAM charts, state minimization.

1.52B. Digital Design Methodologies

Prerequisites: ECE 152A with a minimum grade of C-; open to EE, computer engineering, and computer science majors only. Lecture, 3 hours; discussion, 6 hours.

Design methodologies of digital systems, the register and processor levels. Design of functional subsystems, including arithmetic processors, hardwired and microprogrammed control units, memory systems, and bus systems. System organization including communication, input/output systems, and multiple CPU systems.

1.52A. Hardware/Software Interface

Prerequisite: Computer Science 130A with a minimum grade of C-.

Same course as Computer Science 153A. Lecture, 3 hours; laboratory, 1 hour.

Machine-level structures implementing the operating system abstraction; memory-mappers, multi-level interrupts, direct memory access techniques. Lowest-level software/hardware structures: micro-kernels, interpreters, emulators, threaded-code, real-time scheduling. Compilation and cross-compilation techniques; system initialization; validation and debugging; in-circuit testing.

1.52B. Sensor and Peripheral Interface Design

Prerequisites: ECE 152B and 153A with a minimum grade of C- in both. Lecture, 3 hours; laboratory, 3 hours.

Hardware description languages; field-programmable logic and ASIC design techniques. Mixed-signal techniques. VHDL and Verilog interfaces; video and audio signal acquisition, processing and generation, communication and network interfaces.

1.54. Introduction to Computer Architecture

Prerequisites: ECE 152A with a minimum grade of C-; open to EE, computer engineering, and computer science majors only.

Not open for credit to students who have completed Computer Science 154. Lecture, 3 hours; discussion, 1 hour.

1.55A. Introduction to Computer Networks

Prerequisite: ECE 154 with a minimum grade of C-.

Not open for credit to students who have completed Computer Science 157A or 157B, or ECE 155. Lecture, 3 hours; discussion, 1 hour.

Topics in this course include network architectures, protocols, wired and wireless networks, transmission media, multiplexing, switching, framing, error detection and correction, flow control, routing, congestion control, TCP/IP, DNS, email, World Wide Web, network security, socket programming in C/C++.

1.55B. Network Computing

Prerequisites: ECE 155A with a minimum grade of C-; and, Computer Science 5JA or 10 or 11JA with a minimum grade of C-.

Not open for credit to students who have completed Computer Science 176 or 176A, or ECE 155A. Lecture, 3 hours; discussion, 1 hour.

Topics in this course include client/server computing, threads, Java applets, Java sockets, Java RMI, Java servlets, Java Server Pages, Java Database Connectivity, Enterprise Java Beans, Hypertext Markup Language, extensible Markup Language, Web Services, programming networked applications in Java.

1.56A. Digital Design with VHDL and Synthesis

Prerequisite: ECE 152A with a minimum grade of C-.

Lecture, 3 hours; laboratory, 3 hours.

Introduction to VHDL basic elements. VHDL simulation concepts. VHDL concurrent statements with examples and applications. VHDL subprograms, packages, libraries and design units. Writing VHDL for synthesis. Writing VHDL for finite state machines. Design case study.

1.56B. Computer-Aided Design of VLSI Circuits

Prerequisites: ECE 152A with a minimum grade of C-.

Lecture, 3 hours; laboratory, 3 hours.

Introduction to computer-aided simulation and synthesis tools for VLSI. VLSI system design flow, role of CAD tools, layout synthesis, circuit simulation, logic simulation, logic synthesis, behavior synthesis and test synthesis.

1.58. Digital Signal Processing

Prerequisites: ECE 130A-B with a minimum grade of C- in both; open to EE majors only.

Lecture, 3 hours; laboratory, 3 hours. Discrete signals and systems, convolution, z-transforms, discrete Fourier transforms, digital filters.

1.60. Multimedia Systems

Prerequisites: upper-division standing; open to EE, computer engineering, computer science, and creative studies majors only. Lecture, 3 hours; laboratory, 3 hours.

Introduction to multimedia and applications, including WWW, image/video databases and video streaming. Covers media content analysis, media data organization and indexing (image/video databases), and media data distribution and interaction (video-on-demand and interactive TV).

1.62A. The Quantum Description of Electronic Materials

Prerequisites: ECE 130A-B and 134 with a minimum grade of C- in all; open to EE and materials majors only.

1.62B. Fundamentals of the Solid State

Prerequisites: ECE 162A with a minimum grade of C-; open to EE and materials majors only.

Same course as Materials 162B. Lecture, 3 hours; discussion, 1 hour.

1.62C. Optoelectronic Materials and Devices

Prerequisites: ECE 162A-B with a minimum grade of C-; open to electrical engineering and materials majors only. Lecture, 3 hours; discussion, 1 hour.

1.78. Introduction to Digital Image and Video Processing

Prerequisites: ECE 152A with a minimum grade of C-; open to EE, computer engineering, and computer science majors with upper-division standing.

Lecture, 3 hours; discussion, 1 hour.

Basic concepts in image and video processing. Topics include image formation and sampling, image transforms, image enhancement, and image and video compression including JPEG and MPEF coding standards.

1.81A. Introduction to Robotics: Robot Mechanics

Prerequisites: Same course as ME 170A.

Recommended preparation: ME 16. Lecture, 3 hours; laboratory, 3 hours.

1.81B. Introduction to Computer Vision

Prerequisites: Upper-division standing.

Same course as Computer Science 181B.

Overview of computer vision problems and techniques for analyzing the content of images.
and video. Topics include image formation, edge detection, image segmentation, pattern recognition, texture analysis, optical flow, stereo vision, shape representation and recovery techniques, issues in object recognition, and case studies of practical vision systems.

181C. Introduction to Robotics: Robot Control
(4) PAUDE
Prerequisite: ECE 2A-B-C with a minimum grade of C-; or ME 104.
Same course as ME 170C. Lecture, 2 hours; laboratory, 4 hours.
Overview of robot control technology from open-loop manipulators and sensing systems, to single-joint servos and multi-joint robots, with associated adaptive force and position control using feedback from machine vision and touch sensing systems. Design emphasis on accurate tracking accomplished with minimal algorithm complexity. (If, may not be offered every year)

183. Nonlinear Phenomena
(4) TEEL
Prerequisites: Physics 105A or ME 163 or upper-division standing in EE.
Same course as Physics 106 and ME 169. Not open for credit to students who have completed ECE 163C.
Lecture, 3 hours; discussion, 1 hour.
An introduction to nonlinear phenomena. Flows and bifurcations in one and two dimensions, chaos, fractals, strange attractors. Applications to physics, engineering, chemistry, and biology.

188A. Senior Electrical Engineering Project
(4) STAFF
Prerequisites: completion of at least 4 upper-division EE courses with a GPA of 3.0 or higher; open to EE and computer engineering, majors only; consent of instructor.
Student groups design a significant project based on the knowledge and skills acquired in earlier coursework and integrate their technical knowledge through a practical design experience. The project is evaluated through written reports, oral presentations, and demonstrations of performance.

188B. Senior Electrical Engineering Project
(4) STAFF
Prerequisites: ECE 188A with a minimum grade of C-, electrical engineering and computer engineering majors only.
Student groups design a significant project based on the knowledge and skills acquired in earlier coursework and integrate their technical knowledge through a practical design experience. The project is evaluated through written reports, oral presentations, and demonstrations of performance.

190. Special Topics in Electrical and Computer Engineering
(1-5) STAFF
Prerequisite: consent of instructor. Variable hours.
Graduate research projects or independent studies to be arranged between students and staff members. See M.S. degree requirements, plans 1 and 2, regarding number of units which may be used for M.S. degree.

207. Research Projects or Independent Studies
(1-5) STAFF
Prerequisite: consent of instructor. Variable hours.
Graduate research projects or independent studies to be arranged between students and staff members. See M.S. degree requirements, plans 1 and 2, regarding number of units which may be used for M.S. degree.

201A. Matrix Analysis and Computation
(4) CHANDRAKARAN
Prerequisite: consent of instructor.
Same course as Computer Science 211A, Mathematics 206A, ME 210A, Chemical Engineering 211A, and Geology 251A. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language. Lecture, 4 hours.
Graduate-level matrix theory with introduction to matrix computations. SVD’s, pseudoinverses, variational characterization of eigen values, perturbation theory, direct and iterative methods for matrix computations.

209B. Numerical Simulation
(4) STAFF
Prerequisite: consent of instructor.
Same course as Computer Science 211B, Mathematics 206B, ME 210B, Chemical Engineering 211B and Geology 251B. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language. Lecture, 4 hours.

210C. Numerical Solution of Partial Differential Equations—Finite Difference Methods
(4) STAFF
Prerequisite: consent of instructor.
Same course as Computer Science 211C, Mathematics 206C, ME 210C, Chemical Engineering 211C and Geology 251C. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language. Lecture, 4 hours.

210D. Numerical Solution of Partial Differential Equations—Finite Element Methods
(4) STAFF
Prerequisite: consent of instructor.
Same course as Computer Science 211D, Mathematics 206D, ME 210D, Chemical Engineering 211D and Geology 251D. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language. Lecture, 4 hours.

211A. Engineering Quantum Mechanics
M.S.
(4) STAFF
Prerequisites: ECE 162A-B. Students must have some knowledge of linear algebra.
Same course as Materials 211A. Lecture, 4 hours.
Wave-particle duality; bound states; uncertainty relations; expectation values and operators; variational principle; eigenfunction expansions; perturbation theory. I. Treatment matches needs and background of ECE and Materials students emphasizing solid state or quantum electronics.

211B. Engineering Quantum Mechanics
II
(4) STAFF
Prerequisite: ECE 211A or Materials 211A, or ECE
215A or Materials 206A.
Same course as Materials 211B. Lecture, 4 hours.
Continuation of course ECE 211A: symmetry and degeneracy, electrons in crystals, angular momentum; perturbation theory II; transition probabilities; quantized fields and radiative transitions; magnetic fields, electron spin, indistinguishable particles.

215A. Fundamentals of Electronic Solids I
(4) BROWN
Prerequisite: ECE 162A or 162B.
Same course as Materials 206A. Lecture, 4 hours.

215B. Fundamentals of Electronic Solids II
(4) BROWN
Prerequisite: ECE 162A or 162B.
Same course as Materials 206B. Lecture, 4 hours.
Phonons, electron scattering, electronic transport, selected optical properties, heterostructures, effective mass, quantum wells, two-dimensional electron gas, quantum wires, deep levels, crystal binding.

216B. Defects in Semiconductors
(4) STAFF
Prerequisites: ECE 162A-B.
Same course as Materials 216. Lecture, 3 hours.

217. Molecular Beam Epitaxy and Band Gap Engineering
(3) GOSSARD
Prerequisites: ECE 162A-B and 213.
Same course as Materials 217. Lecture, 3 hours.
Fundamentals and recent research developments in the growth and properties of thin crystalline films of electronic and optical materials by the process of molecular beam epitaxy. Artificially structured materials with quantized electron confinement and artificially engineered electronic band structure properties.

218A. Communication Electronics
(4) LONG
Prerequisites: ECE 137A-B or equivalent.
Analog communication circuits 1 MHz to 1 GHz with emphasis on receivers. S-parameter design techniques, noise and distortion, amplifier design and characterization, system level analysis.

218B. Communication Electronics
(4) LONG
Prerequisite: ECE 218A.
Analog communication circuits 1 MHz to 1 GHz with emphasis on receivers. Design and evaluation of RF components: mixers, oscillators, PLL, IF amplifier, FM demodulator, frequency synthesis.

218C. High Speed Bipolar Mixed Signal and Communication IC Design
(4) RODWELL
Prerequisites: ECE 137A-B or equivalent; graduate standing.

219. CMOS & RF INTEGRATED CIRCUIT DESIGN
(4) YUE
Prerequisite: ECE 137A and 137B.
Recommended Preparation: ECE 145A/121A and ECE 145B/121B.
Covers the design and analysis of radio-frequency integrated systems at the transistor level using state-of-the-art CMOS technology. Focuses on system-level trade-offs in transceiver design, practical RF circuit techniques, and physical understanding for device parasitics.

220A. Semiconductor Device Processing
(4) STAFF
Prerequisite: ECE 132 or equivalent.
Same course as Materials 215A. Lecture, 3 hours; discussion, 1 hour.
Intensive theoretical and laboratory instruction in solid-state device and integrated circuit fabrication. Topics include 1) semiconductor material properties and characterization; 2) phase diagrams; 3) diffusion; 4) thermal oxidation; 5) vacuum processes; 6) thin-film deposition; 7) scanning electron microscopy. Both gallium arsenide and silicon technologies are presented.

220B-C. Semiconductor Device Processing
(4-4) HU
Prerequisite: ECE 220A.
Same course as Materials 215B-C. Lecture, 3 hours; discussion 1 hour.
Continued theoretical and laboratory instruction in the fundamentals, the design, the fabrication, and the characterization of junction and field-effect devices. Topics will include bipolar characterization, design, fabrication; avalanche testing. The laboratory effort initiated in ECE 220A will be continued in these two quarters.

221A. Semiconductor Device Physics I
(4) MISHRA
Prerequisites: ECE 132 and 162A-B. Lecture, 4 hours.
Band diagrams, P-N junctions and heterojunctions; current flow by drift and diffusion; bipolar transistors; recombination and generation. Schottky barriers; heterostructures.

221B. Semiconductor Device Physics II
(4) MISHRA
Prerequisites: ECE 215A and 221A. Lecture, 4 hours.
More advanced continuation of ECE 221A: field effect transistors, quantum wells and superlattices; tunneling;avalanche and the Ghost Fluid Method. Physical limitations of bipolar and field effect transistors; two-dimensional current flow problems.

224A. VLSI Project Design
(4) BREWER
Prerequisites: ECE 152A and 124A or equivalent.
Lecture, 4 hours.
Design, planning and layout of a CMOS/ Mixed-Signal VLSI Integrated Circuit for fabrication, characterization and test. Layout rules, topological, and physical issues in the design of integrated systems. Students team plans, design and test a VLSI project.

224B. VLSI Project Testing
(4) BUTNER
Prerequisite: ECE 224A. Lecture, 2 hours; laboratory, 2 hours.
Test equipment and testing techniques. Methods for diagnosing design problems. Students perform laboratory testing of their fabricated designs from ECE 224A.

225. High Speed Digital Integrated Circuit Design
(4) BARNEER
Prerequisite: ECE 124A or 137A. Lecture, 4 hours.
Advanced digital VLSI design: CMOS scaling, nanoscale issues including variability, thermal management, interconnects, reliability, non-clocked, locked and self-timed logic gates; clocked storage elements; high-speed components, PLLs and DLLs; clock and power distribution; memory systems; signaling and I/O design; low-power design.

226. Level Set Methods
(4) GIBOU
Prerequisite: Computer Science 211C or Chemical Engineering 211C or ECE 210C or ME 210C.
Same course as Chemical Engineering 226, Computer Science 211C, and Mechanical Engineering 216.
Mathematical description of the level set method and design of the numerical methods used in its implementations (ENO-WENO, Godunov, Lax-Friedrich, etc.). Introduction to PDEs and Level Set Methods. Applications in CFD. Materials Sciences, Computer Vision and Computer Graphics.

227A. Semiconductor Lasers I
(4) COLDREN
Prerequisites: ECE 162A-B-C or 144. Lecture, 4 hours.
Review of semiconductor physics, growth technology, and materials properties; double heterostructure and quantum-well laser structures; carrier and photon rate equations; light vs. current characteristics; scattering and transmission matrices; compound cavity, distributed Bragg reflector, and distributed feedback lasers.

227B. Semiconductor Lasers II
(4) COLDREN
Prerequisites: ECE 227A and 215A. Lecture, 4 hours.
Gain and spontaneous emission vs. injection current in semiconductors; nonradiative recombination; strained-layer quantum wells. Dynamic characteristics of lasers including differential and large signal analysis of the rate equations, noise and linewidth, carrier transport and feedback effects.

227C. Photonic Integrated Circuits
(4) COLDREN
Prerequisites: ECE 227A-B. Lecture, 4 hours.
Introduction to optical networks and the photonic integrated circuit examples, including tunable lasers with in-line gratings and contra- and co-directional couplers; ring lasers; numerical analysis techniques.

228A. Fiber Optic Communications
(4) BOWERS
Prerequisites: ECE 162A-B-C, 135, 144. Lecture, 4 hours.
Optical fiber structures and guided modes. Effect of dispersion, attenuation and fiber nonlinearities. Basic transmission design including loss and rise time budgets. Optical transmission system essentials and requirements. Introduction to WDM and TDM components and technologies.

228B. Fiber Optic Components and Systems
(4) BOWERS
Prerequisite: ECE 228A. Lecture, 4 hours.
Practical design and fiber characteristics. Optical transmitters, optical amplifiers, optical isolators, optical switches, wavelength converters, regenerators, optical multiplexers, and demultiplexers. Advanced transmission link design and performance including bit error rate and signal to noise ratio and fiber transmission impairments.

228C. Optical Networks
(4) BOWERS
Prerequisite: ECE 228B. Lecture, 4 hours.
Introduction to optical network architectures including long-haul, wide-area, metro and access networks. First generation networks including SONET and Gigabit Ethernet. Second generation networks including optical circuit switched network concepts, control plane, protection switching, routing wavelength assignment, and network management and control.

229. Hybrid Systems
(4) HEPBURN
Prerequisite: graduate standing in mechanical engineering, chemical engineering, electrical & computer engineering.
Recommended preparation: ECE 147A or similar course.
Introduction to systems that combine continuous dynamics with discrete logic. Topics include a modeling framework that combines elements from automata theory and differential equations, simulation tools, analysis and design techniques for hybrid systems and applications of hybrid control systems.

230A-B. Linear Systems I, II
(4-4) KOKOTOVIC, BAMEH
Prerequisites: ME 210A (for 230A); ECE 140; and, ECE 230A or ME 243A, and ME 210A (for 230B).
Same course as ME 243A-B. Lecture, 4 hours.
Preparation: ECE 147A or similar course.

252. Embedded System Design
(4) KASTNER
Lecture. 4 hours.

254A. Advanced Computer Architecture: Supercomputers
(4) MILLIAR-SMITH
Prerequisite: ECE 154. Lecture, 4 hours.

254B. Advanced Computer Architecture: Parallel Processing
(4) PARHAMI
Prerequisite: ECE 254A. Lecture, 4 hours.

254C. Advanced Computer Architecture: Distributed Systems
(4) MILLIAR-SMITH

255A. VLSI Testing Techniques
(4) CHENG
Prerequisites: ECE 152A, knowledge of C language, data structures and algorithms. Lecture, 4 hours.

256A. Introduction to Design Automation
(4) MAREK-SADOWSKA
Prerequisites: ECE 124A or ECE 224A; knowledge of C language; Algorithms and Data Structures, equivalent to Computer Science 130A-B. Lecture, 2 hours; laboratory, 2 hours.
Overview of physical level design automation. Partitioning, placement, routing and structured design of VLSI and PC-board structures. Techniques will include graph theoretic algorithms, integer linear programming, force-directed and simulated annealing heuristics.

256B. Logic Design Automation
(4) BREWER
Lecture, 4 hours.
Principles and techniques of signal compression system basic quantization theory, linear prediction, pulse-code modulation, transform and subband coding, entropy coding, and vector quantization. Techniques and algorithms for efficient trade-offs between fidelity, bit-rate, and complexity. Applications to speech, audio, image and video compression.

243A. Digital Communication Theory
(4) SHYNYK
Prerequisite: ECE 146B. Lecture, 4 hours.
Review of probability and random waveforms, optimum receiver principles, efficient signal processing bounds on error probability, convolutional coding, channel capacity, emphasis on geometric approach to signal description.

243B. Advanced Digital Communication Theory
(4) SHYNYK
Prerequisite: ECE 243A. Lecture, 4 hours.
Bandlimited channels and optimal receiver for ISI channels; linear feedback, blind, and adaptive equalization; multichannel and multicarrier systems; spread-spectrum signals; direct sequence and frequency hopping; Hadamard channels and diversity techniques; multiple-access communications.

245. Adaptive Filter Theory
(4) SHYNYK
Prerequisites: ECE 140, 158, and 210A (may be taken concurrently). Lecture, 4 hours.

247. System Identification
(4) KOKOTOVIC
Prerequisite: ECE 239A. Lecture, 4 hours.
Identification, closed-loop probing, autotuning, model validation, iterative identification and the describing function method.

248. Kalman and Adaptive Filtering
(4) STAFF
Prerequisites: ECE 210A, 230A and 235 (may be taken concurrently). Lecture, 4 hours.

249. Adaptive Control Systems
(4) KOKOTOVIC
Prerequisites: ECE 239A and 247. Lecture, 4 hours.

250. Wireless Communication and Networking
(4) ALDOE
Prerequisites: ECE 155A and 146A. Lecture, 4 hours.
Overview of wireless networks, characteristics of wireless medium, physical layer operation (spread spectrum, UWB, OFDM, adaptive modulation, MIMO channel), cellular planning, mobility management, energy-efficient networking, GSM, CDMA, wireless LANs, ad hoc networks, wireless geolocation systems.

252B. Computer Arithmetic
(4) PARHAMI
Prerequisites: ECE 152A-B. Lecture, 4 hours.

estimation; Kalman filters; smoothing. The separation theorem; LQG compensator design. Computational considerations. Selected advanced topics.

232. Introductory Robust Control with Applications
(4) SMITH, KHANMASH
Prerequisites: ECE 230A or ME 255A, and ECE 230B or ME 243B (may be taken concurrently). Same course as ME 256.
Robust Control theory; uncertainty modeling; stability of systems in the presence of norm-bounded disturbances. Induced norm performance problems; structured singular value analysis; H-infinity control theory; model reduction; computer simulation based design projecting practical problems.

234. Modeling, Identification, and Validation for Control
(4) SMITH
Prerequisite: ECE 230A. Lecture, 3 hours.
Parametric and non-parametric models, open and closed-loop identification, bias and variance effects; model order selection, probing signal design, subspace identification, closed-loop probing, autotuning, model validation, iterative identification and design.

235. Stochastic Processes in Engineering
(4) ILTE
Prerequisites: ECE 140; graduate standing. Lecture, 4 hours.
A first-year graduate course in stochastic processes, including: review of basic probability; Gaussian, Poisson, and Wiener processes; wide-sense stationary processes; covariance function and power spectral density; linear systems driven by random inputs; basic Wiener and Kalman filter theory.

236. Nonlinear Control Systems
(4) KOKOTOVIC, TEEL
Same course as ME 236. Recommended preparation: ECE 230A. Lecture, 4 hours.
Analysis and design of nonlinear control systems. Focus on Lyapunov stability theory, with sufficient time devoted to contrasts between linear and nonlinear systems, input-output stability and the describing function method.

237. Nonlinear Control Design
(4) KOKOTOVIC, TEEL
Prerequisite: ECE 236 or ME 236. Same course as ME 237. Lecture, 4 hours.

238. Advanced Control Design Laboratory
(4) SMITH
Prerequisites: ECE 230A, and ECE 232A or ECE 237 or ME 237 or ECE 249 or ME 270A or Chemical Engineering 252. Lecture, 2 hours; laboratory, 6 hours.
A laboratory course requiring students to design and implement advanced control systems on a physical experiment. Experiments from any engineering or scientific discipline are chosen by the student.

240A. Optimal Estimation and Filtering
(4) SHYNYK
Prerequisites: ECE 140 and 210A. Lecture, 4 hours.

241. Multimedia Compression
(4) GIBSON
Prerequisites: ECE 140 or 235; and ECE 158. Not open for credit to students who have completed MAT 221. Lecture, 4 hours.
Covers the principle standards of speech, audio, still image and video compression with emphasis on system performance, key underlying algorithms and technologies, current applications and the projected future evolution of the standards.

242. Digital Signal Compression
(4) MADHOW
Prerequisites: ECE 140 or 235; and ECE 146B. Lecture, 3 hours.
Principles and techniques of signal compression systems. Basic quantization theory, linear prediction, pulse-code modulation, transform and subband coding, entropy coding, and vector quantization. Techniques and algorithms for efficient trade-offs between fidelity, bit-rate, and complexity. Applications to speech, audio, image and video compression.
260A. Principles of Quantum Electronics
Prerequisite: ECE 256A. Lecture, 3 hours; laboratory, 2 hours. Cad algorithms for VLSI logic and module level design. Special attention paid to timing, area, and power trade-offs. Cell design systems and associated lab with state of the art VLSI design tools. (W)

256C. Advanced VLSI Architecture and Design
Offered alternate years.
Prerequisites: ECE 224A or 256A or 258B or ECE 204A, and consent of instructor.
Large scale VLSI design with attention to performance constraints in real-world designs. Topics include: circuit modeling, communication parasitics, architecture optimization, and packaging. Large scale projects will be fabricated using silicon compilation tools.

256D. Algorithmic Logic Synthesis
(MAREK-SADOWSKA)
Prerequisite: ECE 256A. Lecture, 4 hours.
Algorithmic extension of logic synthesis and techniques. Topics covered include: two and multilevel minimization, technology mapping, logic partitioning, and testable logic.

257A. Fault Tolerant Computing
(4) STAFF
Prerequisites: ECE 152A-B. Lecture, 3 hours.

258A. Advanced Digital Signal Processing
(4) STAFF
Prerequisite: ECE 158. Lecture, 4 hours.
Digital filter design, discrete random signals, effects of finite word length arithmetic, fast Fourier transform and applications, power spectrum estimation.

258B. Multirate Digital Signal Processing
(4) STAFF
Prerequisites: ECE 158 and ECE 258A. Lecture, 4 hours.
Multirate digital filter theory, polyphase decomposition, decimator and interpolator design, efficient implementations, orthogonal transforms, wavelet transform, analysis and synthesis filter banks, quadrature mirror filter banks, transmultiplexer, subband decomposition, applications.

258C. VLSI Digital Signal Processing Systems
(4) STAFF
Prerequisites: ECE 158 and ECE 258A. Lecture, 4 hours.
Characteristics and representations of signal processing programs, iteration bound, pipelining and parallel processing, retiming and unfolding transformations, fast convolution algorithms, algorithmic strength reductions in filters and transforms. (Offered every even-numbered year)

259A. Digital Speech Processing
(RABINER)
Prerequisite: ECE 158 and ECE 242. Lecture, 4 hours.

259B. Fundamentals of Speech Recognition
(RABINER)
Prerequisite: ECE 158 and ECE 242. Lecture, 4 hours.
Course covers the fundamental design principles of automatic speech recognition systems, including speech detection, time alignment and normalization (including dynamic time warping methods), distortion measures, the Hidden Markov Model (HMM), grammar networks and the use of Finite State Network representations. (Offered alternate years)

260A. Principles of Quantum Electronics
(4) YEH
Prerequisite: ECE 144A or 162C. Lecture, 4 hours.
Energy levels in atoms, ions, and molecules. Interaction between radiation and quantized systems. Stimulated emission devices. Optical resonators. Lasers. (Offered alternate years)

267. Confined Electrons and Photons in Semiconductor Structures
(3) PETROFF
Prerequisite: Materials 162A-B or ECE 162A-B.
Same course as Materials 257. Lecture, 3 hours.
The properties of 1D, 2D and 3D confined electrons in semiconductor are reviewed. Properties of photons in microcavities and photonic crystals are introduced. Applications of photonic crystals to light extraction and modifications of the emitter properties are developed.

268. Internet Computing and Web Technologies
(4) CHANG
Prerequisite: ECE 160. Lecture, 4 hours.
Some fundamental technologies that enable the Internet and the World Wide Web including media formats and data representation, server architecture, http, internet services and a substantial course project of building and deploying an Internet-scale service prototype.

271A. Principles of Optimization
(4) CHANDRABABU
Prerequisite: ECE 210A (may be taken concurrently).
Lecture, 4 hours.

271B. Numerical Optimization Methods
(4) STAFF
Prerequisite: ECE 210A. Lecture, 4 hours.

271C. Dynamic Optimization
(4) HESPANHA
Prerequisite: ECE 210A or 271B. Lecture, 4 hours.

277B. Pattern Recognition
(4) ROSE
Prerequisites: ECE 130C or 140. Lecture, 4 hours.
Principles and design of pattern recognition systems. Statistical classifiers: discriminant functions; Bayes, minimum-risk, k-nearest neighbors. Perceptrons. Clustering and estimation; criteria; k-means, fuzzy, hierarchical, graph-theoretic, simulated and deterministic annealing, maximum likelihood and Bayesian methods; nonparametric methods. Overview of applications.

278A. Digital Image Processing
(4) MANJUNATH
Prerequisites: ECE 158 or ECE 178. Lecture, 4 hours.
Two-dimensional signals and systems. Two-dimensional Fourier and z-transforms. Discrete Fourier transform, two-dimensional digital filters. Image processing backends, image enhancement and restoration. Special image processing software available for laboratory experimentation.

278C. Imaging Systems
(4) LEE
Prerequisites: ECE 158 and 178. Lecture, 4 hours.
Generalized holography, backward techniques, resolution limit, X-ray tomography, diffraction tomography, NMR imaging, synthetic-aperture radar, active sonar imaging, acoustical microscopy, imaging algorithms, motion estimation and tracking.

279A. Computer System Performance Evaluation
(4) MOSER
Prerequisites: ECE 140, 154, and Computer Science 170. Lecture, 4 hours.

281B. Advanced Topics in Computer Vision
(4) MANJUNATH
Prerequisite: ECE 181B. Lecture, 3 hours.
Same course as Computer Science 281B. Advanced topics in computer vision: image sequence analysis, spatiotemporal filtering, camera calibration and hand-eye coordination, robot navigation, shape representation, physically-based modeling, multi-sensor fusion, biological models, expert vision systems, and other topics selected from recent research papers.

282. Error Correcting Codes
(4) ROSE
Prerequisite: ECE 130C or 140. Lecture, 3 hours.
Principles and techniques for combating channel errors in data transmission or storage. Introduction to Galois fields. Linear block codes (particularly Hamming, BCH, Reed-Solomon). Convolution codes. Encoding and decoding algorithms (including spectral methods, maximum likelihood and Viterbi decoding.)

290. Ethics in Academic and Industrial Research
(2) SMITH
Prerequisite: consent of instructor. Lecture, 2 hours.
Case study/analysis format addressing ethical issues in research conduct: moral reasoning, authorship, scholarship, copyright, misconduct, fraud, falsification, mentor/protégé relationships, confidentiality, patents, consulting, conflicts of interest, funding and control of research, reviewing and editing, sexual relationships in the workplace.

293. Internship in Industry
Staff
Prerequisite: consent of department.
May be repeated to a maximum of 6 units. Variable hours.
Special projects for selected students. Offered in conjunction with engineering practice in selected industrial and research firms, under direct faculty supervision.

295. Group Studies: Controls, Dynamical Systems, and Computation
(1-12) STAFF
Same course as Chemical Engineering 295.
Computer Science 592, and MR 295. Seminar. 1 hour.
A series of weekly lectures given by university staff and outside experts in the fields of control systems, dynamical systems, and computation.

493. Internship in Industry
(1-12) STAFF
Prerequisite: Graduate student standing; open to EE and computer engineering majors only.
Special projects for selected students. Offered in conjunction with engineering practice in selected industrial and research firms, under direct faculty supervision.

502. Teaching of Electrical and Computer Engineering
(1-4) STAFF
Open to electrical and computer engineering teaching assistants only. No unit credit allowed toward advanced degree. Variable hours.
Courses and techniques for teaching electrical engineering or computer engineering gained through actual teaching of lecture courses, leading discussion sections, and/or teaching engineering laboratories. Meetings will be held as needed to discuss problems, methods, and procedures.
Engineering Sciences

Engineering Sciences, Office of the Associate Dean for Undergraduate Studies, Harold Frank Hall, Room 1006; Telephone (805) 893-2809
Web site: www.engr.ucsb.edu/engrsci
Chair & Associate Dean for Undergraduate Studies: Glenn E. Beltz
Associate Dean for Technology Management Programs: Gary S. Hansen

Faculty

* Kevin C. Almeroth, Ph.D., Georgia Institute of Technology, Associate Professor
* Glenn E. Beltz, Ph.D., Harvard, Professor
* John E. Bowers, Ph.D., Stanford University, Professor
* Steven P. DenBaars, Ph.D., University of Southern California, Professor
* Edward N. Dodson, Ph.D., Stanford University, Lecturer
* Gary S. Hansen, Ph.D., University of Michigan, Associate Professor
* Keith T. Kedward, Ph.D., University of Wales, Professor
* David Seibold, Ph.D., Michigan State University, Professor
* Technology Management Program faculty

The Engineering Sciences program at UCSB serves as a focal point for the cross-disciplinary educational environment that prevails in each of our five degree-granting undergraduate programs (chemical engineering, computer engineering, computer science, electrical engineering, and mechanical engineering). The courses offered in this academic unit are designed to cultivate well-educated, innovative engineers and scientists with excellent management and entrepreneurial skills and attitudes oriented to new technologies.

One of the missions of the Engineering Sciences program is to provide coursework commonly needed across other educational programs in the College of Engineering. For example, courses in computer programming, computation, ethics, engineering writing, engineering economics, science communication to the public, and even an aeronautics-inspired art course are offered.

Technology Management Program

The Engineering Sciences program serves as a home to courses associated with UCSB’s emerging Technology Management Program (TMP). The TMP was designed to meet the standards of today’s business world while simultaneously redefining both business and engineering education with a comprehensive curriculum for the next generation of managers and founders of tomorrow’s new technology ventures. The College of Engineering has sought to be on the cutting edge of entrepreneurial education, and TMP’s curriculum and outreach programs will continue this tradition, including networking with California’s top business and entrepreneurial leaders, an evening lecture series, a business plan competition, and other events, as we build new educational programs for students and the regional business community.

Technology Entrepreneurship Certificate

The Technology Entrepreneurship Certificate (TEC) was developed to prepare highly motivated students for entrepreneurial business careers through a rigorous and integrated set of courses. It is available to engineering, science and other technologically oriented undergraduate and graduate students at UCSB.

To complete the certificate, students must complete: 1) ENGR 185A/285A or ENGR 191A-B/291A-B, and 2) ENGR 185B/285B or ENGR 185D/285D; each with a grade of B or better; 3) satisfactorily complete three units of ENGR 102A-B-C or ENGR 202A-B-C; and 4) complete a combination of 4-units of other designated TMC courses.

Applications and additional information about the TEC Program are available on-line at: www.tmp.ucsb.edu/ or in the TMP Office: Building 937.

Engineering Sciences Courses

LOWEr DIVISION

3. Introduction to Matlab and C Programming

Prerequisites: consent of instructor.

May be repeated for credit if there is no duplication of course content. Seminar, 3 hours. Instruction in these courses may be carried out by lecture, by laboratory, or by a combination of the two. These courses provide a critical review of research in various areas of electrical and computer engineering.

596. Directed Research

(2-12) STAFF
Research, either experimental or theoretical. May be undertaken by properly qualified graduate students under the direction of a faculty member.

597. Individual Studies for M.S. Comprehensive Examinations and Ph.D. Examinations

(1-12) STAFF
No unit credit allowed toward advanced degree. Enrollment limited to 24 units per exam. Individual studies for M.S. comprehensive examinations and Ph.D. examinations. Maximum of 12 units per quarter. S/U grading. Instructor is normally student’s major professor or chair of doctoral committee.

598. Master’s Thesis Research and Preparation

(1-12) STAFF
Prerequisite: consent of graduate advisor.

For research underlying the thesis and writing of the thesis.

599. Ph.D. Dissertation Research and Preparation

(1-12) STAFF
Prerequisite: consent of chair of student’s doctoral committee.

Research and preparation of dissertation.
into business. Class uses case studies, lectures, and computer modeling skills that prepare engineering, science and technology business environments and sustainability within Asia. Establish historical context; governmental structures, policy and influence; capability investments and yield by local and foreign companies; operating models in leveraging Asian economies’ resources and related experiences.

191AA-ZZ. Professional Seminar in New Technology Management (2) STAFF
Prerequisite: senior standing.
Courses provide for the study of topics of current interest in the areas of entrepreneurship, business, engineering management, ethics, social, political, and other issues related to the successful practice of engineering.

191A. Entrepreneurial Opportunities in Healthcare and Life Sciences (2) STAFF
Prerequisite: senior standing.
Overview of the new venture creation process. Analysis of new business opportunities, development of new value propositions, team building, venture financing, new venture planning, and protecting intellectual property, business formation, and other issues relevant to the entrepreneurial process.

191B. Entrepreneurial Opportunities in IT and Telecom (2) STAFF
Prerequisite: Upper-division standing.
This course is intended for students with an interest in the identification of new products and services in the IT and Telecom environment. The course involves interaction with industry professionals and executives.

191C. Critical Issues in Early Stage Healthcare and Life Science Companies (2) STAFF
Prerequisite: senior standing.
Course includes visits to companies and talks by professionals in the field, providing an in-depth overview of the current state of the industry and its future prospects.

191D. Critical Issues in Early Stage IT and Telecom Companies (2) STAFF
Prerequisite: Upper-division standing.
This course is designed for students interested in the identification of new products and services in the IT and Telecom environment. It involves interaction with industry professionals and executives.

192. Designing Solutions for Healthcare and Life Sciences Opportunities (2) STAFF
Prerequisite: senior standing.
Students identify specific solutions for business opportunities in the healthcare industry. The course involves interaction with healthcare professionals and industry executives.

193A. Entrepreneurial Opportunities in IT and Telecom (2) STAFF
Prerequisite: Upper-division standing.
This course is designed for students interested in the identification of new products and services in the IT and Telecom environment. It involves interaction with industry professionals and executives.

193B. Designing Solutions for IT and Telecom (2) STAFF
Prerequisite: Upper-division standing.
Students design specific solutions for business opportunities in the IT and Telecom industry, considering technological and market feasibility.

193C. Critical Issues in Early Stage Healthcare and Life Science Companies (2) STAFF
Prerequisite: senior standing.
Course includes visits to companies and talks by professionals in the field, providing an in-depth overview of the current state of the industry and its future prospects.

199. Independent Studies in Engineering (1-5) STAFF
Prerequisite: Upper-division standing; consent of instructor.
Students must have a minimum 3.0 GPA for the preceding three quarters. May be repeated for credit to a maximum of 15 units.

GRADUATE COURSES
202AA-ZZ. Special Topics in Engineering, Business, and Society (1) STAFF
Prerequisite: graduate standing.
May be repeated for credit if there is no duplication of course content.

203. Graduate Research Writing (3) STAFF
Prerequisite: graduate standing in the College of Engineering.
Analysis and practice of the forms of postgraduate writing. Documents studied include dissertations, dissertation proposals, and defense, professional papers, oral presentations, abstracts, and project research reports. Peer review process is analyzed. Written and oral assignments in discussion/workshop format.

285A. The Art of the CEO: Business Skills for Future Leaders (4) HANSEN
An introductory business course in strategic thinking, negotiations, marketing, finance and modeling skills that prepare engineering, science and non-technical students for successful entry into business. Uses case studies, lectures, and computer simulation.

285B. New Venture Creation: Entrepreneurship (4) HANSEN
Overview of the new venture creation process. Analysis of new business opportunities, development of new value propositions, team building, venture financing, new venture planning, and protecting intellectual property, business formation, and other issues relevant to the entrepreneurial process.

285C. Business Planning for New Technology Ventures (4) HANSEN
Prerequisites: Engineering 285A; and, Engineering 285B or 285D.
Analysis and creation of a business plan for a new business venture including demand forecasting, financial modeling, selling of the new business idea, and other issues for current business conditions.

285D. New Product Development (4) BOWERS
Prerequisite: senior standing.
New product development requires technical and non-technical business persons to work across disciplines. Instruction is provided in a wide range of topics concerning customer driven product innovation. Students learn new product development processes, tools, techniques and organizational structures.

285F. Business Skills: Asia: new Venture Planning for the (2) STAFF
Prerequisite: graduate standing.
May be repeated for credit if there is no duplication of course content.

Analysis and practice of the forms of postgraduate writing. Documents studied include dissertations, dissertation proposals, and defense, professional papers, oral presentations, abstracts, and project research reports. Peer review process is analyzed. Written and oral assignments in discussion/workshop format.
Larry A. Coldren, Ph.D., Stanford University, Kavli Professor in Optoelectronics and Sensors, Director of Optoelectronics Technology Center (semiconductor integrated optics, optoelectronics, molecular beam epitaxy, microfabrication) *1

Steven P. DenBaars, Ph.D., University of Southern California, Professor (metalorganic chemical vapor deposition (MOCVD) of semiconductors, IR to blue lasers and LEDs, high power electronic materials and devices) *1

Anthony Evans, Ph.D., Imperial College, London, Professor, Director of Center for Multifunctional Materials and Structures (thermstructural materials, ultralight structures, multifunctional materials and devices, actuating structures) *2

Arthur C. Gossard, Ph.D., UC Berkeley, Professor (epitaxial growth, artificially synthesized semiconductor microstructures, semiconductor devices) *1

Craig Hawker, Ph.D., University of Cambridge, Professor, Director of Materials Research Laboratory (synthetic polymer chemistry, nanotechnology, materials science) *5

Alan J. Heeger, Ph.D., UC Berkeley, Professor, Director of Institute for Polymers and Organic Solids, 2000 Chemistry Nobel Laureate (condensed-matter physics, conducting polymers) *4

Evelyn Hu, Ph.D., Columbia University, Professor, Director of Institute for Quantum Engineering, Science, and Technology, Scientific Co-Director of California NanoSystems Institute (high-resolution fabrication techniques for semiconductor device structures, process-related materials damage, contact/interface studies, superconductivity) *1

Jacob N. Israelachvili, Ph.D., University of Cambridge, Professor (adhesion, friction surface forces, colloids, biosurface interactions) *3

Edward J. Kramer, Ph.D., Carnegie Mellon University, Professor (fracture and diffusion in polymers, polymer surfaces, interfaces, and thin films) *3

Herbert Kroemer, Dr. Rer. Nat., University of Göttingen, Donald W. Whittier Professor of Electrical Engineering, 2000 Physics Nobel Laureate (device physics, molecular beam epitaxy, heterojunctions, compound semiconductors) *1

Frederick F. Lange, Ph.D., Pennsylvania State University, ALCOA Professor of Materials (processing, ceramics, microstructure, mechanical properties)

Carlos G. Levi, Ph.D., University of Illinois at Urbana-Champaign, Professor (matrices processing, and microstructure evolution, coatings, composites, functional inorganics) *2

Robert M. McMeeking, Ph.D., Brown University, Professor (mechanics of materials, fracture mechanics, plasticity, computational mechanics, process modeling) *2

Frederick F. Milstein, Ph.D., UC Los Angeles, Professor (crystal mechanics, bonding, defects, mechanical properties) *2

Shuji Nakamura, Ph.D., University of Tokushima, Cree Professor of Solid State Lighting and Displays (gallium nitride, blue lasers, white LED, solid state illumination, bulk GaN substrates)

G. Robert Odette, Ph.D., Massachusetts Institute of Technology, Professor (fundamental deformation and fracture, materials in extreme environments, structural reliability, and high-performance composites) *2

Chris Palmstrom, Ph.D., University of Leeds, Professor (atomic level control of interfacial phenomena, in-situ STM, surface and thin film analysis, metallization of semiconductors, dissimilar materials epitaxial growth, molecular beam and chemical beam epitaxial growth of metallic compounds)

Pierre M. Petroff, Ph.D., UC Berkeley, Professor (semiconductor interfaces, defects physics, epitaxy of self assembled quantum structures, quantum dots and nanomagnets, spectroscopy of semiconductor nanostructures) *1

Philip A. Pincus, Ph.D., UC Berkeley, Professor (theoretical aspects of self-assembled biomolecular structures, membranes, polymers, and colloids) *4

Cyrus R. Safinya, Ph.D., Massachusetts Institute of Technology, Professor (biophysics, supramolecular assemblies of biological molecules, non-viral gene delivery systems)

Omer A. Saleh, Ph.D., Princeton University, Assistant Professor (single-molecule biophysics, motor proteins, DNA-protein interactions)

Ram Seshadri, Ph.D., Indian Institute of Science, Professor (inorganic materials, preparation and magnetism of bulk solids and nanoparticles, patterned materials)

Hyongsuk (Tom) Soh, Ph.D., Stanford, Assistant Professor (directed evolution of biological molecules, supramolecular assemblies, integrated biosensors)

Nicola A. Spaldin, Ph.D., UC Berkeley, Professor (computational electronic and magnetic materials)

James S. Speck, Sc.D., Massachusetts Institute of Technology, Professor (nitrile semiconductors, III-V semiconductors, ferroelectric and high-K films, microstructural evolution, extended defects, transmission electron microscopy, x-ray diffraction)

Susanne Steimer, Ph.D., University of Stuttgart, Professor (functional oxide thin films, structure-property relationships, scanning transmission electron microscopy and spectroscopy)

Galen Stucky, Ph.D., Iowa State University, Professor (biomaterials, composites, materials synthesis, electro-optical materials catalysis) *5

Matthew V. Tirrell, Ph.D., University of Massachusetts, Aullih Professor (bioengineering, polymer science and engineering) *3

Chris Van de Walle, Ph.D., Stanford University, Professor (novel electronic materials, wide-band-gap semiconductors, oxides)

Claude Weisbuch, Ph.D., Universite Paris VII, Ecole Polytechnique-Palaiseau, Professor (semiconductor physics: fundamental and applied optical studies of quantized electronic structures and photonic-controlled structures; electron spin resonance in semiconductors, optical semiconductor microcavities, photonic bandgap materials)

Fred Wudl, Ph.D., UC Los Angeles, Professor (optical and electro-optical properties of conjugated polymers, organic chemistry of fullerenes, and design and preparation of self-mending polymers)
Francis W. Zok, Ph.D., McMaster University, Professor (mechanical and thermal properties of materials and structures)

Emeriti Faculty
Anthony K. Cheetham, Ph.D., Oxford University, Professor, (catalysis, optical materials, X-ray, neutron diffraction) *5
James L. Merz, Ph.D., Harvard University, Professor Emeritus *1
Noel C. MacDonald, Ph.D., UC Berkeley, Kavli Professor in MEMS Technology (microelectromechanical systems, applied physics, nano-fabrication, electron optics, materials, mechanics, surface analysis) *2
* 1 Joint appointment with the Department of Electrical and Computer Engineering.
* 2 Joint appointment with the Department of Mechanical Engineering.
* 3 Joint appointment with the Department of Chemical Engineering.
* 4 Joint appointment with the Department of Physics.
* 5 Joint appointment with the Department of Chemistry and Biochemistry.

Affiliated Faculty
Glenn H. Fredrickson, Ph.D. (Chemical Engineering)
James S. Langer, Ph.D. (Physics)
L. Gary Leal, Ph.D. (Chemical Engineering)
Glenn E. Lucas, Ph.D. (Chemical Engineering, Mechanical Engineering)
John McGauley, Ph.D.
Joseph A. N. Zasadzinski, Ph.D. (Chemical Engineering)

The Department of Materials was conceptualized and built under two basic guidelines: to educate graduate students in advanced materials and to introduce them to novel ways of doing research in a collaborative, multidisciplinary environment. Advancing materials technology today—either by creating new materials or improving the properties of existing ones—requires a synthesis of expertise from the classic materials fields of metallurgy, ceramics, and polymer science, and such fundamental disciplines as applied mechanics, chemistry, biology, and solid-state physics. Since no individual has the necessary breadth and depth of knowledge in all these areas, solving advanced materials problems demands the integrated efforts of scientists and engineers with different backgrounds and skills in a research team. The department has effectively transferred the research team concept, which is the operating mode of the high technology industry, into an academic environment.

The department has major research groups working on a wide range of advanced inorganic and organic materials, including advanced structural alloys, ceramics and polymers; high performance composites; thermal barrier coatings and engineered surfaces; organic, inorganic and hybrid semiconductor and photonic material systems; catalysts and porous materials, magnetic, ferroelectric and multiferroic materials; biomaterials and biosurfaces, including biomedical and relevant systems; colloids, gels and other complex fluids; lasers, LEDs and optoelectronic devices; packaging systems; microscale engineered systems, including MEMS. The groups are typically multidisciplinary involving faculty, postdoctoral researchers and graduate students working on the synthesis and processing, structural characterization, property evaluation, microstructure-property relationships and mathematical models relating micro-mechanisms to macro-behavior. The department has close collaborations with, and a number of faculty have joint appointments in, the Departments of Mechanical Engineering (mechanics and design), Chemical Engineering (fluids and environmental effects), Electrical and Computer Engineering (electronic devices), Physics, Chemistry and Biochemistry, and the BMSE Program.

Materials Courses

LOWER DIVISION
10. Materials in Society, the Stuff of Dreams
(4) GOSSARD
Not open to engineering, pre-computer science, or computer science majors. Lecture, 3 hours; discussion 1 hour.
A survey of new technological substances and materials, the scientific methods used in their development, and their relation to society and the economy. Emphasis on uses of new materials in the human body, electronics, optics, sports, transportation, and infrastructure.

UPPER DIVISION
100A. Structure and Properties I
(3) STAFF
Prerequisites: Chemistry 1A-B; Physics 4; and, Mathematics 5A-B-C. Lecture, 3 hours.

100B. Structure and Properties II
(3) STAFF
Prerequisite: Materials 100A.
Not open for credit to students who have completed Materials 101. Lecture, 3 hours.

100C. Fundamentals of Structural Evolution
(3) STAFF
Prerequisites: Materials 100A or ECE 132; and, Materials 100B or Chemical Engineering 185 or ME 180. Lecture, 3 hours.

101. Introduction to the Structure and Properties of Materials
(3) STAFF
Prerequisite: upper-division standing.
Not open for credit to students who have completed Materials 100B.

135. Biophysics and Biomolecular Materials
(3) STAFF
Prerequisites: Physics 5 or 6C or 25. Same course as Physics 135.
Structure and function of cellular molecules (lipids, nucleic acids, proteins, and carbohydrates). Genetic engineering techniques of molecular biology. Biomolecular materials and biomedical applications (e.g., bio-sensors, drug delivery systems, gene carrier systems).

160. Introduction to Polymer Science
(3) KRAMER
Prerequisites: Chemistry 107A-B or 109A-B. Same course as Chemical Engineering 160.
Introductory course covering synthesis, characterization, structure, and mechanical properties of polymers. The course is taught from a materials perspective and includes polymer thermodynamics, chain architecture, measurement and control of molecular weight as well as crystallization and glass transitions.

162A. The Quantum Description of Electronic Materials
(4) HU
Prerequisites: ECE 130A-B and 134 with a minimum grade of C- in all; open to EE and materials majors only. Same course as ECE 162A.

162B. Fundamentals of the Solid State
(4) COLDREN
Prerequisites: ECE 162A with a minimum grade of C-; open to EE and materials majors only. Same course as ECE 162B.

185. Materials in Engineering
(3) LEVI, ODETE
Prerequisite: Materials 100B or 101. Same course as ME 185. Lecture, 3 hours.
Introduces the student to the main families of materials and the principles behind their development, selection, and behavior. Discusses the generic properties of metals, ceramics, polymers, and composites more relevant to structural applications. The relationship of properties to structure and processing is emphasized in every case.

186. Manufacturing and Materials
(3) LEVI
Prerequisites: ME 15 and 151C; and, Materials 100B or 101. Same course as ME 186. Lecture, 3 hours.
Introduction to the fundamentals of common manufacturing processes and their interplay with the structure and properties of materials as they are transformed into products. Emphasis on process understanding and the key physical concepts and basic mathematical relationships involved in each of the processes discussed.

GRADUATE COURSES

200A. Thermodynamic Foundation of Materials
(4) KRAMER
Lecture, 4 hours.
The microscopic statistical mechanical foundations of the macroscopic thermodynamics of materials, with applications to ideal and non-ideal gases, electrons and photons in solids, multicomponent solutions, phase equilibria in single and multicomponent systems, and capillarity.

200B. Electronic and Atomic Structure of Materials
(4) VAN DE WALLE
Lecture, 4 hours.
The free electron model; electron levels in periodic

200C. Structure Evolution

(4) LEVI
Lecture, 4 hours.

201. Thermodynamics and Phase Equilibria

(2) STAFF
Prerequisite: consent of instructor.
Same course as ME 262. Lecture, 3 hours.
Advanced thermodynamics with emphasis on phase equilibria, properties of solutions, and multicomponent systems.

203. Transition Metal Oxides

(3) CHEETHAM
Same course as Chemistry 267. Lecture, 3 hours.
Introduction to transition metal oxides. Ligand field theory. Structural basis of magnetism.

204. Introduction to Magnetism and Magnetic Materials

(3) SPALDIN

205. Wide-Band Gap Materials and Devices

(3) NAKAMURA
Lecture, 3 hours.
Optical and electrical properties of GaAs, ZnSe, SiC, and diamond. Applications of wide-band gap materials in devices. Materials growth techniques of MOCVD, CVD, and MBE are discussed. Applications of these materials in blue lasers, LEDs (UV, blue, green, and white) are emphasized.

206A. Fundamentals of Electronic Solids I

(4) KROEMER, PETROFF
Prerequisite: ECE 162A-B.
Same course as ECE 215A.

206B. Fundamentals of Electronic Solids II

(4) GOSSARD
Prerequisite: ECE 162A-B.
Same course as ECE 215B.
Phonons, electron scattering, electronic transport, selected optical properties, heterostructures, effective mass, quantum wells, two-dimensional electron gas, quantum wires, deep levels, and crystal binding.

207. Mechanics of Materials

(2) STAFF
Same course as Mechanical Engineering 219.
Lecture, 3 hours.
Matrices and tensors, stress deformation and flow, compatibility conditions, constitutive equations, field equations and boundary conditions in fluids and solids, applications in solid and fluid mechanics.

208. Crystallography and Structure Determination

(3) STAFF
Prerequisite: consent of instructor.
Not open for credit to students who have completed Materials 209B. Lecture, 3 hours.
Topics in structure determination: structure factors, integrated intensities, data collection, the phase problem, Patterson synthesis, direct methods, structure refinement, Debye-Waller factors, thermal diffuse scattering and extinction. Rietveld analysis of powder diffraction data. Synchrotron x-rays, neutron diffraction, electron diffraction, non-crystalline materials.

209A. Crystallography and Diffraction Fundamentals

(3) SPECK
Diffraction theory; Fourier transformation, schrodinger equation, Maxwell'sequations, kinematical theory, Fresnel diffraction, Fraunhofer diffraction, scattering of x-rays, electrons and neutrons by isolated atoms and assemblies of atoms, pair correlation and radial distribution functions. Basic symmetry operations, point groups, space groups.

209B. X-Ray Diffraction II: Advanced Methods

(3) SPECK
Prerequisite: consent of instructor. Lecture, 3 hours.

209BL. X-Ray Diffraction I: Principles and Practice

(3) SESHADRI
Laboratory, 3 hours.
Exposes students to practical aspects of powder and single crystal x-ray diffraction, including the determination and refinement of crystal structures.

209C. Electron Microscopy II: Crystalline Materials

(3) STAFF
Prerequisite: consent of instructor. Lecture, 3 hours.
Electron microscopy to study defect structures, elastic and inelastic scattering, kinematics theory of image contrast, bright and dark field imaging, two-beam conditions, contrast from imperfections, dynamical theory of diffraction and image contrast. Howie Whellan equations, dispersion surface.

209CL. Electron Microscopy I: Principles and Practice

(4) STEINER
Recommended preparation: students should show a need for TEM in their research. Part of the course involves analysis of student's own samples. Students encouraged to enroll in Fundamentals of MATL 209D before or after or MATL 209C/Lecture, 2.5 hours; laboratory, 3 hours. Laboratory course with lecture component. Topics include: TEM alignment, basic functions, electron diffraction and reciprocal space, basic imaging, bright field and dark field, diffraction contrast, quantitative analysis of defects, HREM imaging and simulation. Course also involves TEM sample preparation.

211A. Engineering Quantum Mechanics I

(4) STAFF
Prerequisites: ECE 162A-B, 213.
Same course as ECE 211A. Lecture, 3 hours.
Elasticity, phonons, electron-phonon interactions, degeneracy, crystalline solids, metals, semiconductors, quantum confinement, quantum well structures. Applications of these concepts to engineering problems.

211B. Engineering Quantum Mechanics II

(4) STAFF
Prerequisites: ECE 211A or Materials 211A, or ECE 215A or Materials 206A.
Same course as ECE 211B. Lecture, 4 hours.
Continuation of Materials 211A; symmetry and degeneracy; electrons in crystals, angular momentum; perturbation theory I; transition probabilities; quantized fields and radiative transitions; magnetic fields; electron spin; indistinguishable particles.

214. Advanced Topics in Equilibrium Statistical Mechanics

(3) STAFF
Same course as Chemical Engineering 210B. Not open for credit to students who have completed Chemical Engineering 214.
Recommended preparation: a course in physical chemistry. Lecture, 3 hours.
Application of the principles of statistical mechanics and thermodynamics to treat classical fluid systems at equilibrium. Topics include liquid state theory, computer simulation methods, critical phenomena and scaling principles, interfacial statistical mechanics, and electrolyte theory.

215A. Semiconductor Device Processing

(4) STAFF
Prerequisites: ECE 132 or equivalent.
Same course as ECE 220A. Lecture, 3 hours; discussion, 1 hour.
Introduction to the theoretical and laboratory instruction in solid-state device and integrated circuit fabrication. Topics include 1) semiconductor material properties and characterization; 2) phase diagrams; 3) diffusion; 4) thermal oxidation; 5) vacuum processes; 6) thin-film deposition; 7) scanning electron microscopy. Both gallium arsenide and silicon technologies are presented.

215B-C. Semiconductor Device Processing

(4) GOSSARD
Prerequisite: Materials 215A.
Same course as ECE 220BC. Lecture, 3 hours, discussion, 1 hour.
Continued theoretical and laboratory instruction in the fundamentals, the design, the fabrication, and the characterization of junction and field-effect devices. Topics will include bipolar characterization, design, fabrication, and testing. The laboratory effort initiated in Materials 215A will be continued in these two quarters.

216. Defects in Semiconductors

(3) STAFF
Prerequisites: ECE 162A-B.
Same course as ECE 216B. Lecture, 3 hours.

217. Molecular Beam Epitaxy and Band Gap Engineering

(3) GOSSARD
Prerequisites: ECE 162A-B, and 213.
Same course as ECE 217. Lecture, 3 hours. Fundamentals and recent research developments in the growth and properties of thin crystalline films of electronic and optical materials by the process of molecular beam epitaxy. Articulated structured materials with quantized electronic confinement and artificially engineered electronic band structure properties. (normally offered alternate years)

218. Introduction to Inorganic Materials

(3) CHEETHAM
Prerequisite: Chemistry 274.
Same course as Chemistry 277.
Structures of inorganic materials: close-packing, linking of simple polyhedra. Factors that control structure: ionic radii, covalency, ligand field effects, metal-metal bonding, electron/atom ratios. Structure-property relationships in e.g. spinels, garnets, perovskites, rutiles, fluorites, zeolites, B-aluminas, graphites, common inorganic glasses.

219. Phase Transformations

(3) STAFF
Prerequisite: consent of instructor. Lecture, 3 hours.
Introduction to the unifying concepts underlying phase transformations in metals, ceramics, polymers, and electronic materials. Includes the thermodynamics, kinetics, crystallography and microstructural characteristics of displacive and diffusional transformations. Role of elastic, compositional, configurational, electrical, magnetic and gradientenergy contributions.

220. Mechanical Behavior of Materials

(3) ZOK, ODEN
Intensive course in fracture toughness. Prerequisites: Materials 207; consent of instructor.
Concepts of stress and strain. Deformation of metals, polymers, and ceramics. Elasticity,

221. Introduction to Structural Materials (3) ZOK
Not open for credit to students who have completed Materials 220. Lecture, 3 hours.
Introduction to structure-property relations in engineering materials, including polymers, metals, and ceramics. Elastic, plastic, and creep deformation. Fracture processes. Strengthening and toughening mechanisms.

222A. Colloids and Interfaces I (3) ISRAELACHVILI
Prerequisite: consent of instructor. Same course as Chemical Engineering 222A and BMSE 222A. Lecture, 3 hours.
Introduction to the various intermolecular interactions in solutions and colloidal systems: Van der Waals, electrostatic, hydrophobic, solvation, H-bonding. Introduction to colloidal systems: particles, micelles, polymers, etc. Surfaces: wetting, contact angles, surface tension, etc.

222B. Colloids and Interface II (3) STAFF
Prerequisite: consent of instructor. Lecture, 3 hours.

224. Optical and Luminescent Materials (3) CLARKE
Lecture, 2 hours.
Description of the principles underlying the optical and luminescent behavior of materials illustrated with applications drawn from phosphors, optical fibers, optical memories, and electro-optical components and immuno-assay techniques. Fundamental concepts of absorption and emission, and their relation to electronic structure and crystal properties.

225. Introduction to Electronic Materials (3) SPALDIN
Prerequisite: Materials 100A and 100C or equivalent. Not open for credit to students who have completed Materials 162B or ECE 162B. Lecture, 3 hours.

226. Electrical and Functional Crystals and Ceramics (3) CLARKE
Lecture, 3 hours.
Description of the principles underlying the behavior of functional crystals and ceramics, ranging from dielectrics, piezoelectrics, ferroelectrics to linear and nonlinear materials. Fundamental concepts, tensorial and mathematical description of functional behavior, properties, defects, and applications.

227. Metal-Organic Chemical Vapor Deposition (3) DENBAARS
Lecture, 3 hours.
Electronic and optical properties of thin films grown by vapor phase transport techniques. Growth mechanisms, kinetics and thermodynamics of vapor phase epitaxy. Special emphasis on the process of metalorganic vapor phase epitaxy for optoelectronic materials and devices. (normally offered alternate years)

228. Computational Materials (3) CLARKE
Lecture, 3 hours.
Basic computational techniques and their application to simulating the behavior of materials. Techniques include: finite difference methods, Monte Carlo, molecular dynamics, cellular automata, and simulated annealing. (normally offered alternate years)

230. Elasticity (3) REILLY
Prerequisite: Materials 207 or ME 219; consent of instructor.
Same course as ME 220. Lecture, 3 hours.

232. Plasticity (3) STAFF
Prerequisite: Materials 207.
Same course as ME 232. Lecture, 3 hours.
Plastic, creep, and relaxation behavior of solids. Mechanics of inelasticly strained bodies; plastic strain-stress laws; flow potentials. Torsion and bending of prismatic bars, expansion of thick shells, plane plastic flow, slip line theory. Variational formulations, approximate methods. (normally offered alternate years)

234. Fracture Mechanics (3) STAFF
Prerequisites: Materials 207.
Same course as ME 275. Lecture, 3 hours.

238A. Rheology of Polymeric Liquids (3) STAFF
Same course as Chemical Engineering 238A.
An introduction to molecular and microscale theories for the viscoelastic behavior of complex fluids: suspensions, colloidal dispersions, liquid crystals, dilute polymer solutions.

238B. Rheology of Polymers and Liquids (3) STAFF
Same course as Chemical Engineering 238B.
Continued emphasis on the second term is on concentrated systems and polymeric liquids, reptation theory and extensions of reptation theories to complex architectures in the linear-viscoelastic regime. Nonlinear Rheology for polymers.

240. Finite Element Structural Analysis (3) STAFF
Prerequisites: Materials 207 or equivalent.
Lecture, 3 hours.
Continuation of Materials 238A: Emphasis of the fundamental concepts are presented for the design of inorganic materials (zeolites, mesoporous materials, and epitaxial films) via chemical routes, and the processing of powders to form engineering shapes. The latter stresses fundamentals for manipulating the forces between particles that control rheological properties, particle packing and the plastic/elastic transition.

251A. Processing of Inorganic Materials (3) LANGE
Prerequisite: consent of instructor.
Same course as Chemical Engineering 219A.
Not open for credit to students who have completed Materials 251A. Lecture, 3 hours.
Fundamental concepts are developed. (normally offered alternate years)

253. Liquid Crystal Materials (4) SAFINTA
Prerequisite: consent of instructor. Lecture, 3 hours; laboratory, 2 hours.
Thermotropic and lyotropic liquid crystals (LCs). Classification and phase transitions. LCs in display technology. Laboratory experimentation using X-ray diffraction and polarized optical microscopy to characterize LC phases.

261. Composite Materials (3) ZOK
Prerequisite: consent of instructor.
Same course as ME 265. Lecture, 3 hours.

262. Structural Ceramics (3) STAFF
Prerequisite: consent of instructor.
Same course as Chemical Engineering 262. Lecture, 3 hours.

263. Thin Films and Multilayers (3) EVANS
Lecture, 3 hours.

265. Nanophase and Nanoparticulate Materials (3) SESHAHRI
Prerequisite: Materials 218 or equivalent. Lecture, 2.5 hours.
Introduction to graduate student to nanophase and nanoparticulate inorganic materials and their applications. Emphasis on how the properties of materials change when their size is diminished. The manner in which nanomaterials (particularly nanoparticulate materials) bridge the world of molecules with the world of solids is shown. Preparation, characterization and applications of nanomaterials is an integral part of the course.

267. Confined Electrons and Photons in Semiconductor Structures (3) PETROFF
Prerequisites: Materials 162A-B or ECE 162A-B.
Same course as ECE 267. Lecture, 3 hours.
The properties of 1D, 2D and 3D confined electrons in semiconductors are reviewed. Properties of photons in microcavities and photonic crystals are introduced. Applications of photonic crystals to light extraction and modifications of the emitter properties are developed.

271A. Synthesis and Properties of Macromolecules (3) STAFF
Prerequisite: consent of instructor.
Not open for credit to students who have completed Materials 273B. Lecture, 3 hours.
Basics of preparation of polymers and macromolecular assemblies, and characterization of large molecules and assemblies. Discussion of chemical structure, bonding, and reactivity.

271B. Structure and Characterization of Complex Fluids (3) SAFINTA
Not open for credit to students who have completed Materials 280. Lecture, 3 hours.
Structure, phase behavior, and phase transitions in complex fluids. Characterization techniques including x-ray and neutron scattering, and light and microscopy methods. Systems include colloidal and surfactant dispersions (e.g., polybals, microemulsions, and micelles), polymeric solutions and biomolecular
271C. Properties of Macromolecules (3) KRAMER
Not open for credit to students who have completed Materials 210. Lecture, 3 hours.

273. Experiments in Macromolecular Materials (3) STAFF
Not open for credit to students who have completed Materials 273C. Lecture, 3 hours; laboratory, 4 hours.

274. Solid State Inorganic Materials (3) STAFF
Prerequisite: Chemistry 173A-B or equivalent.
Same course as Chemistry 274. Lecture, 3 hours.
An introductory course describing the synthesis, physical characterization, structure, electronic properties and uses of solid state materials.

276A. Biomolecular Materials I: Structure and Function (3) SAFINYA
Prerequisite: consent of instructor. Lecture, 3 hours.

276B. Biomolecular Materials II: Applications (3) SAFINYA
Prerequisite: Physics 135 or Materials 276A. Lecture, 3 hours.

277. Synthesis of Biomolecular Materials (3) STAFF
Prerequisite: consent of instructor. Lecture, 3 hours.
Methods of preparation of biopolymers and biomolecular assemblies. Uses of biological techniques to engineer biomaterials. Uses of chemical techniques to prepare biological molecules as well as artificial biomimetic materials. Comparison of biological, chemical, and mixed synthesis for different applications. (normally offered alternate years)

278. Interactions in Biomolecular Complexes (3) SAFINYA
Prerequisite: consent of instructor. Lecture, 3 hours.
Focuses on the interactions, structures, and functional properties of complexes comprised of supramolecular assemblies of biological molecules. Systems addressed include lipid membranes, lipid-DNA complexes, and assemblies of proteins of the cell cytoskeleton.

284. Synthetic Chemistry of Macromolecules (3) STAFF
Prerequisite: consent of instructor.
Same course as Chemistry 285. Lecture, 3 hours.

286AA- ZZ. Special Topics in Inorganic Materials (3) STAFF
Prerequisite: consent of instructor. Lecture, 3 hours.
This course will be offered on an irregular basis and will concern in-depth discussions of advanced topics in inorganic materials.

287AA- ZZ. Special Topics in Macromolecular Materials (3) STAFF
Prerequisite: consent of instructor. Lecture, 3 hours.
This course will be offered on an irregular basis and will concern in-depth discussions of advanced topics in macromolecular materials.

288AA- ZZ. Special Topics in Electronic Materials (3) STAFF
Prerequisite: consent of instructor. Lecture, 3 hours.
This course will be offered on an irregular basis and will concern in-depth discussions of advanced topics in electronic materials.

290. Research Group Studies (1-12) STAFF
Prerequisite: consent of student's doctoral committee.
Fulfills tutorial requirement for Ph.D. candidates. A written proposal for each tutorial must be approved by the department chair.

298. Master's Thesis Research and Preparation (1-12) STAFF
Prerequisite: consent of graduate advisor. S/U grading only. Preparation, variable hours; tutorial, 1-3 hours.
For research underlying the thesis and writing of the thesis.

299. Ph.D. Dissertation Research and Preparation (1-12) STAFF
Prerequisite: consent of chair of student's doctoral committee. S/U grading only. Preparation, variable hours; tutorial, 1-3 hours.
Research and preparation of the dissertation.

Mechanical Engineering

Department of Mechanical Engineering, Engineering B, Room 2355; Telephone (805) 893-2430
Web site: www.me.ucsb.edu
Chair: George Homsy
Vice Chairs: Francesco Bullo and Kimberly Turner

Faculty
Karl J. Aström, Ph.D., Royal Institute of Technology, Sweden, Professor (control engineering and education)
Bassam Bamieh, Ph.D., Rice University, Professor (control systems design with applications to fluid flow problems)
Glenn E. Beltz, Ph.D., Harvard, Professor (solid mechanics, materials, aeronautics, engineering education)
Ted D. Bennett, Ph.D., UC Berkeley, Associate Professor (thermodynamic, laser processing)
David Bothman, B.S., UC San Diego, Lecturer
Francesco Bullo, Ph.D., California Institute of Technology, Associate Professor (motion planning and coordination, control systems, distributed and adaptive algorithms)
David R. Clarke, Ph.D., University of Cambridge, Professor (electrical ceramics, thermal barrier coatings, piezoelectroscopy, mechanics of microelectronics) *3
Anthony G. Evans, Ph.D., Imperial College, London, Professor, Director of Center for Multifunctional Materials and Structures (thermoostructural materials, ultralight structures, multifunctional materials and devices, actuating structures) *3
Frederic Gibou, Ph.D., University of California, Los Angeles, Associate Professor (computational science and engineering) *2
Gary S. Hansen, Ph.D., University of Michigan, Associate Professor (technology management program)
George Homsy, Ph.D., University of Illinois, Professor (hydrodynamic stability, thermal convection, thin film hydrodynamics, flow in microgeometries and in porous media, polymer fluid mechanics)
Keith T. Kedward, Ph.D., University of Wales, Professor (design of composite systems)
Mustafa Khammassh, Ph.D., Rice University, Professor (robust analysis and synthesis of control systems and controls in biological systems)
Stephen Lagouette, M.S., University of California, Los Angeles, Lecturer (biomedical engineering design)
Carlos Levi, Ph.D., University of Illinois at Urbana-Champaign, Professor (conceptual design, synthesis and evolution in service of structural and inorganic materials, especially for high temperature applications) *3
Glenn E. Lucas, Ph.D., Massachusetts Institute of Technology, Professor (mechanical properties of structural materials, environmental effects, structural reliability) *1
Eric F. Matthews, Ph.D., California Institute of Technology, Professor (heat transfer, fluid mechanics, rheology)
Stephen R. McLean, Ph.D., University of Washington, Professor (fluid mechanics, physical oceanography, sediment transport)
Robert M. McMeeking, Ph.D., Brown University, Professor (mechanics of materials, fracture mechanics, plasticity, computational mechanics) *3
Eckart Meiburg, Ph.D., University of Karlsruhe, Professor (computational fluid dynamics, fluid mechanics)
Carl D. Meinhardt, Ph.D., University of Illinois at...
Urbana-Champaign, Associate Professor (wall turbulence, microfluidics, flows in complex geometries)

Igor Mezic, Ph.D., California Institute of Technology, Professor (applied mechanics, non-linear dynamics, fluid mechanics, applied mathematics)

Frederick Milstein, Ph.D., UC Los Angeles, Professor (mechanical properties of materials) *3

Jeffrey M. Moehlis, Ph.D., University of California, Berkeley, Associate Professor (nonlinear dynamics, fluid mechanics, biological dynamics, applied mathematics)

G. Robert Odette, Ph.D., Massachusetts Institute of Technology, Professor (deformation and fracture, high performance materials for use in severe environments) *3

Bradley E. Paden, Ph.D., UC Berkeley, Professor (control theory, kinematics, robotics)

Sumita Pennathur, Ph.D., Stanford University, Assistant Professor (application of microfabrication techniques and micro/nano scale flow phenomena)

Linda R. Petzold, Ph.D., University of Illinois at Urbana–Champaign, Professor, Director of Computational Science and Engineering Graduate Emphasis (computational science and engineering; systems biology) *2

Hyongskok Tom Soh, Ph.D., Stanford University, Associate Professor (micro-electromechanical systems, integrated biosensors, multi-functional biomaterials)

Theofanis G. Theofanous, Ph.D., University of Minnesota, Professor, Director of Center for Risk Studies and Safety (nuclear and chemical plant safety, multiphase flow, thermal hydrualics) *1

Kimberly L. Turner, Ph.D., Cornell University, Professor (microelectromechanical systems, dynamics, solid mechanics, measurement and characterization of microsystems motion and device parameters)

Megan Valentine, Ph.D., Harvard University, Assistant Professor (single-molecule biophysics, cell mechanics, motor proteins, biomaterials)

Henry T. Yang, Ph.D., Cornell University, Professor (aerospace structures, structural dynamics and stability, transonic flutter and aerelasticity, intelligent manufacturing systems)

Walter W. Yuen, Ph.D., UC Berkeley, Professor (thermal science, radiation heat transfer, heat transfer with phase change, combustion)

Noel C. MacDonald, Ph.D., UC Berkeley, Kavli Professor in MEMS Technology (microelectromechanical systems, applied physics, materials, mechanics, nanofabrication) *3

Ekkehard P. Marschall, Dr. Ing., Technische Hochschule Hannover, Professor Emeritus (thermodynamics, heat and mass transfer, desalination, energy conversion, experimental techniques)

Thomas P. Mitchell, Ph.D., California Institute of Technology, Professor Emeritus (theoretical and applied mechanics)

Marshall Tulin, M.S., Massachusetts Institute of Technology, Professor Emeritus, Ocean Engineering Laboratory Director (hydrodynamics, aerodynamics, turbulence, cavitation phenomena, drag reduction in turbulent flows)

James P. Vanyo, Ph.D., UC Los Angeles, Professor Emeritus (rotating nondrig bodies, fluid dynamics)

*1 Joint appointment with the Department of Chemical Engineering.

*2 Joint appointment with the Department of Computer Science.

*3 Joint appointment with the Department of Materials.

Affiliated Faculty

Hector Ceniceros (Mathematics)

Patricia Holden (Bren School of Environmental Science and Management)

Arturo Keller (Bren School of Environmental Science and Management)

Gary Leal (Chemical Engineering)

Sally MacIntyre (Ecology, Evolution & Marine Biology)

The undergraduate mechanical engineering program offers a balanced curriculum, including both theory and application, as well as preparation in basic science, math, computing and writing; a comprehensive set of engineering science and laboratory courses; and a series of engineering design courses starting in the freshman year and concluding with a three course sequence in the senior year. Our students gain hands-on expertise with state-of-the-art tools of computational design, analysis, and manufacturing that are increasingly used in industry, government, and academic institutions. In addition, the Department has a 15-unit elective track program that allows students to gain depth in areas listed below, while maintaining appropriate breadth in the basic stem areas of the discipline.

The undergraduate program in mechanical engineering is accredited by the Engineering Accreditation Commission of ABET, 111 Market Place, Suite 1050, Baltimore, MD 21202-4012 – telephone: (410) 347-7700.

Qualified students who wish to pursue advanced engineering education may enroll in the M.S. or Ph.D. programs. The department offers programs leading to the degrees of master of science and doctor of philosophy, with a specialization in any of the following major areas: dynamical systems and controls; computational science and engineering; solid mechanics and structures; thermo-fluid sciences and materials; micro/nano scale science (including MEMS). The curricula for all of the major areas emphasize education in broad principles and fundamentals. At the same time, programs of study and research are flexible and tailored to accommodate the individual needs and interests of the students. Interdisciplin-
Program Outcomes

Upon graduation, students in the mechanical engineering B.S. degree program:
1. Should possess a solid foundation in, and be able to apply the principles of, mathematics, science, and engineering to solve problems and have the ability to learn new skills relevant to his/her chosen career.
2. Have the ability to conduct and analyze data from experiments in dynamics, fluid dynamics, thermal science and materials, and should have been exposed to experimental design in at least one of these areas.
3. Should have experienced the use of current software in problem solving and design.
4. Should demonstrate the ability to design useful products, systems, and processes.
5. Should be able to work effectively on teams.
6. Should have an understanding of professional and ethical responsibilities.
7. Should be able to write lab reports and design reports and give effective oral presentations.
8. Should have the broad background in the humanities and the social sciences, which provides an awareness of contemporary issues and facilitates an understanding of the global and societal impact of engineering problems and solutions.
9. Should be a member of the American Society of Mechanical Engineers.

Undergraduate Program
Bachelor of Science—Mechanical Engineering

Note: Schedules should be planned to meet both General Education and major requirements. Detailed descriptions of these requirements are presented in the College of Engineering General Education booklet and pages 50-51 of this publication. A minimum of 185 units is required for graduation.

Preparation for the major

All undergraduate majors in the department are required to meet a set of minimum unit and grade-point requirements and a set of General Education requirements which are common to all undergraduate majors in the College of Engineering. In addition, required preparation for the major consists of the following lower-division courses (or their equivalents if taken elsewhere): Engineering 3; Mechanical Engineering 6, 10, 14, 15, 16, 17; Chemistry 1A-B or 2A-B; Mathematics 3A-B-C, 5A-B-C; Physics 1, 2, 3, 4, and 3L, 4L. Students who are not Mechanical Engineering majors will generally be permitted to take lower division mechanical engineering courses, subject to meeting prerequisites and grade-point average requirements, availability of space, and consent of the instructor.

Upper-division major

The following 79 units are required: Materials 101; Mechanical Engineering 104, 105, 140A, 151A-B-C, 152A-B, 153, 154, 155A, 156A-B, 163, 189A-B-C, and 15 units of departmental electives and 13 units of general education or free electives. Requirements total 185 units.

The mechanical engineering elective courses allow students to acquire more in-depth knowledge in one of several areas of specialization, such as those related to: the environment; design and manufacturing; thermal and fluid sciences; structures, mechanics, and materials; and dynamics and controls. A student's specific elective course selection is subject to the approval of the department advisor.

Courses required for the pre-major or major, inside or outside of the Department of Mechanical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

Research Opportunities

Upper-division undergraduates have opportunities to work in a research environment with faculty members who are conducting current research in the various fields of mechanical engineering. Students interested in pursuing undergraduate research projects should contact individual faculty members in the department.

Mechanical Engineering Courses

LOWER DIVISION

6. Basic Electrical and Electronic Circuits
 (2) KHAMASSI, S.HH
 Prerequisites: Physics 3-3L; Mathematics 3C, open to ME majors only.
 Not open for credit to students who have completed ECE 2A or 2B, or ECE 6A or 6B.
 Introduction to basic electrical circuits and electronics. Includes Kirchhoff’s laws, phasor analysis, circuit elements, operational amplifiers, and transistor circuits.

 (4) LAUGUETTE
 Prerequisite: ME majors only.
 Introduction to engineering graphics, CAD, and freehand sketching. Develop CAD proficiency using advanced 3-D software. Graphical presentation of design: views, sections, dimensioning, and tolerancing.

11. Introductory Concepts in Mechanical Engineering
 (1) BOTHMAN, FIELDS, EVANS, BRUCH, BELTZ
 Prerequisite: lower-division standing.
 The theme question of this course is “What do mechanical engineers do?” Survey of mechanical and environmental engineering applications. Lectures by mechanical engineering faculty and practicing engineers.

12. Manufacturing Processes
 (1) STAFF
 Prerequisite: ME majors only.
 Processes used to convert raw material into finished objects. Overview of manufacturing processes including: casting, forging, machining, presswork, plastic and composite processing. Videos, demonstrations, and tours illustrate modern industrial practice. Selection of appropriate processes.

125. Introduction to Machine Shop
 (1) BOTHMAN
 Prerequisite: ME majors only.
 Basic machine shop skills course. Students learn to work safely in a machine shop. Students are introduced to the use of hand tools, the lathe, the milling machine, drill press, saws, and precision measuring tools. Students apply these skills by completing a project.

14. Statics
 (4) BELTZ, MILSTEIN, TURNER
 Prerequisite: Physics 1 and Mathematics 3B; open to ME majors only.

Introduction to applied mechanics. Forces, moments, couples, and resultants; vector algebra; construction of free body diagrams; equilibrium in 2- and 3-dimensional systems; analysis of frames, machines, trusses and beams; distributed forces; friction.

15. Strength of Materials
 (4) TURNER, MCLEAN, BAIMIE
 Prerequisites: Physics 3; ME 14; and, Mathematics 5C; (may be taken concurrently); open to ME majors only.
 hooke’s law and properties of structural materials. Methods of sections and virtual work and energy methods. Design applications to engineering structures, problems of tension, torsion, flexure and combined loading. Design beyond the elastic limit.

 (4) TURNER, MCLEAN, BAIMIE
 Prerequisites: Physics 3; ME 14; and, Mathematics 5C; (may be taken concurrently); open to ME majors only.
 Not open for credit to students who have completed ME 163A.

17. Mathematics of Engineering
 (3) MOHLS, MCLEAN, HOMST
 Prerequisites: Engineering 3; Mathematics 5B (may be taken concurrently); open to ME majors only.
 Engineering applications of mathematical methods. Topics include ordinary differential equations, linear algebra, calculus, Fourier analysis, and partial differential equations.

95. Introduction to Mechanical Engineering
 (1-4) STAFF
 Prerequisite: consent of instructor.
 May be repeated for credit to a maximum of 6 units.
 Participation in projects in the laboratory or machine shop. Projects may be student- or faculty-originated depending upon student interest and consent of faculty member.

97. Mechanical Engineering Design Projects
 (1-4) STAFF
 Prerequisite: consent of instructor.
 May be repeated for maximum of 12 units, variable hours.
 Course offers students opportunity to work on established departmental design projects. Pr NP grading, does not satisfy technical elective requirement.

99. Introduction to Research
 (1-3) STAFF
 Prerequisite: consent of instructor.
 May be repeated for maximum of 6 units, variable hours.
 Directed study to be arranged with individual faculty members. Course offers exceptional students an opportunity to participate in a research group.

UPPER DIVISION

100. Professional Seminar
 (1) STAFF
 Prerequisite: undergraduate standing.
 May be repeated for up to 3 units. May not be used as a departmental elective.
 A series of weekly lectures given by university staff and outside experts in all fields of mechanical and environmental engineering.

104. Sensors, Actuators and Computer Interfacing
 (3) BAIMIE, PAIDEN
 Prerequisites: ME 6, open to ME majors only.
 Interfacing of mechanical and electrical systems and mechatronics. Basic introduction to sensors, actuators and computer interfacing and control. Transducers and measurement devices, actuators, A/D and D/A conversion, signal conditioning and
filtering. Practical skills developed in weekly lab exercises.

105. Mechanical Engineering Laboratory (3) BENNETT, MCLEAN
Prerequisites: ME 151B, 152B, 163; and, Materials 100B or 101; open to ME majors only.
Introduction to fundamental laboratory measurement techniques and reporting skills. Experiments from thermosciences, fluid mechanics, mechanics, materials science and environmental engineering. Introduction to modern data acquisition and analysis techniques.

106A. Advanced Mechanical Engineering Laboratory (3) KHANNA, BAMIHE
Prerequisite: ME 155A.
An advanced lab course with experiments in dynamical systems and feedback control design. Students design, troubleshoot, and perform detailed, multi-session experiments.

106B. Mechanics, Materials and Structures Laboratory (3) ZOK, EVANS
Prerequisites: ME 15; ME 154; ME 156A; and Materials 100B or 101.
Experiments on mechanical behavior of materials and structures. Assessment of analytical and finite element methods for mechanical design, with applications to optimization of lightweight structures.

110. Aerodynamics and Aeronautical Engineering (3) BELZ, MEINHARDT
Prerequisites: ME 14 and 152A.
Concepts from aerodynamics, including lift and drag analysis for airfoils as well as aircraft sizing/scaling issues. Structural mechanical concepts are applied to practical aircraft design. Intended for students considering a career in aeronautical engineering.

112. Energy Conversion (3) MARSH, MATHYS
Prerequisite: ME 151C and 152; or, Chemical Engineering 110B and 120A.
Overview of energy usage and production from prehistory to present times (technical, environmental, and societal issues). Technical analysis of the modern means of energy production (fossil, nuclear, hydro, wind, solar, geothermal, biomass, etc.). Operating principles, hardware, engineering issues, environmental impact, etc.

114. Water Supply and Pollution Control (3) MCLEAN
Prerequisite: ME 152A or Chemical Engineering 120A.

119. Introduction to Coastal Engineering (3) MCLEAN
Prerequisite: ME 152A.
Quantitative description of waves and tides: refraction, shoaling, nearshore circulation. Sediment characteristics and transport; equilibrium beach profile; shoreline protection.

124. Advanced Topics in Transport Phenomena/Safety (3) BARNES
Prerequisites: Chemical Engineering 120A-B-C, or ME 151A-B and ME 152A.
Same course as Chemical Engineering 124.

125AA-ZZ. Special Topics in Mechanical Engineering (3) STAFF
Prerequisite: consent of instructor.
May be repeated for credit to a maximum of 12 units provided letter designation is different, but only 4 units may be applied toward the major.
Individual courses each concentrating on one area in the following subjects: applied mechanics, cad/cam, controls, design, environmental engineering, fluid mechanics, materials science, mechanics of solids and structures, ocean and coastal engineering, robotics, theoretical mechanics, thermal sciences, and recent developments in mechanical engineering.

128. Design of Biomedical Devices (3) LAGUETTE
Prerequisite: Mechanical Engineering 10, 14, 15, 16, and 153, open to ME majors only.
Introductory course addresses the challenges of biomedical device design, prototyping and testing, material considerations, regulatory requirements, design control, human factors and ethics.

134. Advanced Thermal Science (3) MATHYS, YUEN, HOMSYS
Prerequisite: ME 151C.
This class will address advanced topics in fluid mechanics, heat transfer, and thermodynamics. Topics of interest may include combustion, phase change, experimental techniques, materials processing, manufacturing, engines, HVAC, non-Newtonian fluids, etc.

136. Introduction to Multiphase Flows (3) THEOFANOUS
Prerequisites: Chemical Engineering 120A-B-C, or ME 151C and 152A.
Same course as Chemical Engineering 136.
Development from basic concepts and techniques of fluid mechanics and heat transfer, to local behavior in multiphase flows. Key multiphase phenomena, related physics. Extension of local conservation principles to usable formulations in multiphase flows. Modeling approaches. Practical examples.

138. Risk Assessment and Management (3) THEOFANOUS
Prerequisites: Chemical Engineering 120A-B-C, or Chemical Engineering 120A-B-C.
Same course as Chemical Engineering 138.

140A. Numerical Analysis in Engineering (3) HOMYS, MOELIS, GIBOU, MEIBURG
Prerequisites: ME 17 or Chemical Engineering 132A; open to ME and Chemical Engineering majors only.
Numerical analysis and analytical solutions of problems described by linear and nonlinear differential equations with an emphasis on MATLAB. First- and second order differential equations; systems of differential equations; linear algebraic equations, matrices and eigenvalues; boundary value problems; finite differences. (F)

140B. Introduction to Numerical Analysis in Mechanical Engineering (3) BRUCH, MOELIS, GIBOU, MEIBURG
Prerequisites: ME 140A; open to ME and Chemical Engineering majors only.
Analysis of engineering problems formulated in terms of partial differential equations. Solutions of these mathematical models by means of analytical and numerical methods. Physical interpretation of the results.

141A. Introduction to MicroElectroMechanical Systems (MEMS) (3) TURNER, PENNAHUR
Prerequisites: ME 10 and 16D; or, ECE 130A and 137A, with a minimum grade of C- in both.
Same course as ECE 141A.
Analysis of MEMS actuators and displacement sensors, with emphasis on the analysis of capacitor-based sensing and actuation. Analysis and design of operational-amplifier models and circuits for capacitor sensors including feedback concepts. Vibration analysis of MEMS structures including wave equations, ‘string’ and bar structures. MEMS scaling concepts.

141B. MEMS: Semiconductor Processing and Device Characterization with Laboratory (4) TURNER, PENNAHUR
Prerequisites: ME 141A or ECE 141A; and, Chemistry 18-BL.
Same course as ECE 141B.
Lectures and laboratory on semiconductor processing for MEMS. Description and analysis of key semiconductor and equipment used for MEMS. Design and fabrication of MEMS capacitor-actuator and accelerometers, includes a description of MEMS characterization tools.

141C. Introduction to Microfluidics and BioMEMS (3) MEINHARDT
Prerequisites: ME 141A or ECE 141A; open to ME and EE majors only.
Same course as ECE 141C.
Introduces physical phenomena associated with microscale/nanoscale fluid mechanics, microfluidics, and bioMEMS. Analytical methods and numerical simulation tools are used for analysis of microfluids.

151A. Thermosciences 1 (3) BENNETT, HOMYS, YUEN
Prerequisites: Physics 2; ME 14; and, Mathematics 5C; open to ME majors only.
Basic concepts in thermodynamics, system analysis, energy, thermodynamic laws, and cycles.

151B. Thermosciences 2 (3) YUEN, BENNETT
Prerequisites: ME 151A and 152A; open to ME majors only.
Introduction to heat transfer process, steady and unsteady state conduction, multidimensional analysis. Introduction to convective heat transfer.

151C. Thermosciences 3 (3) HOMYS, BENNETT
Prerequisites: ME 151B and 152B; open to ME majors only.
Convective heat transfer, external and internal flow, forced and free convection, phase change, heat exchangers. Introduction to radiative heat transfer.

152A. Fluid Mechanics (3) HOMYS, MATHYS, PENNAHUR
Prerequisites: Mathematics 5C and ME 16; open to ME majors only.
Introduction to the fundamental concepts in fluid mechanics and basic fluid properties. Basic equations of fluid flow. Dimensional analysis and similarity. Hydrodynamics.

152B. Fluid Mechanics (3) MEINHARDT, PENNAHUR
Prerequisite: ME 152A; open to ME majors only.
Incompressible viscous flow. Boundary-layer theory. Introductory considerations for one-dimensional incompressible flow.

153. Introduction to Mechanical Engineering Design (3) BELZ, TURNER, KEWARD, LAGUETTE
Prerequisites: ME 10 and 16; open to ME majors only.

154. Design and Analysis of Structures (3) MCLEAN, KEWARD, SHUGAR
Prerequisites: ME 15 and 16; open to ME majors only.
Introductory course in structural analysis and design. The theories of matrix structural analysis and finite element analysis for the solution of analytical and design problems in structures are emphasized. Lecture material includes structural theory compatibility method, slope deflection method, displacement method and virtual work. Topics include applications to bars, beams, trusses, frames, and solids.

155A. Control System Design (3) BAMIHE, ASTROM, BUI
Prerequisite: ME 17; ME 140A (may be taken concurrently); and MEE 163.
The discipline of control and its application. Dynamics and feedback. The mathematical models: transfer functions and state space descriptions. Simple control design (PID). Assessment of a control problem, specification, fundamental limitations, cosedesign of system and control.
155B. Control System Design

(3) PADEN, BULLO
Prerequisite: ME 155A.
Application of analytical methods to control system modeling and design. State-space modeling, controllability and observability. System specification and limitations, loop gain, classical design and the optimal linear quadratic regulator. Sampled-data implementation.

156A. Mechanical Engineering Design I

(3) LUCAS, EVANS, BELTZ, TURNER
Prerequisites: ME 151C, 152B, 153 and 154; and, Materials 100B or 101; open to ME majors only.
The rational selection of engineering materials, and the utilization of Ashby-charts, stress, strain, strength and fatigue failure consideration as applied to the design of machine elements. Lectures also support the development of system design concepts using assigned projects and involve the preparation of engineering reports and drawings.

156B. Mechanical Engineering Design II

(3) KEOWARD
Prerequisites: ME 156A; open to ME majors only.
Machine elements including gears, bearings, and shafts. Stress analysis, area moment, rivets, adhesives and welding. Machine dynamics and fatigue. Design for reliability and safety. Codes and standards. Topics covered are applied in practical design projects.

158. Computer Aided Design and Manufacturing

(3) BOTHMAN
Prerequisites: ME 10 and 156A; open to ME majors only.
Engineering applications using advanced 3-D CAD software for plastic part design and tooling. Topics include an overview of the design for injection molded plastic parts, material selections and electronic tooling design via CAD and CNC system software. Emphasis is put into final design projects that are designed to be functional, manufacturable, and esthetically pleasing.

162. Introduction to Elasticity

(3) McMEEKING, BELTZ
Prerequisites: ME 15 and 140A.

(3) McMEEKING
Prerequisites: ME 16; open to ME majors only.
Not open for credit to students who have completed ME 163B.
Topics relating vibration in mechanical systems; exact and approximate methods of analysis, matrix methods, generalized coordinates and Lagrange’s equations, applications to systems. Basic feedback systems and controlled dynamic behavior.

166. Advanced Strength of Materials

(3) TURNER
Prerequisite: ME 15.

167. Structural Analysis

(3) STAFF
Prerequisites: ME 15 and 151C; and, Materials 100B or 101.
Topics relating to vibration in mechanical systems; exact and approximate methods of analysis, matrix methods, generalized coordinates and Lagrange’s equations, applications to systems. Basic feedback systems and controlled dynamic behavior.

170A. Introduction to Robotics: Robot Mechanics

(4) PADEN, BULLO
Same course as ECE 181A.
Recommended preparation: ME 16.

170C. Introduction to Robotics: Robot Control

(4) PADEN
Prerequisites: ECE 2A-B-C with a minimum grade of C- or, ME 104.
Same course as ECE 181C.
Overview of control robot technology from open-loop manipulators and sensing systems, to single-point servovalves and servomotors, to integrated adaptive force and position control using feedback from machine vision and touch sensing systems. Design emphasis on accurate tracking accomplished with minimal algorithm complexity.

173. Control Systems Synthesis

(3) BARMER
Prerequisite: ME 155A.
Not open for credit to students who have completed ECE 147A.
Pole-placement, observer design, observer-based compensation, frequency and time-domain techniques, internal model principle, linear quadratic regulators, modeling uncertainty in signals and systems, robust stability and performance, synthesis for robustness.

185. Materials in Engineering

(3) LEVEL, ODETT
Prerequisite: Materials 100B or 101.
Same course as Materials 185.
Introduces the student to the main families of materials and the principles behind their development, selection, and behavior. Discusses the generic properties of materials, ceramics, polymers, and composites and more relevant specific structural applications. The relationship of properties to structure and processing is emphasized in every case.

186. Manufacturing and Materials

(3) LEVEL, ODETT
Prerequisites: ME 15 and 151C; and, Materials 100B or 101.
Same course as Materials 186.
Introduction to the fundamentals of common manufacturing processes and their interplay with the structure and properties of materials as they are transformed into products. Emphasis on process understanding and the key physical concepts and basic mathematical relationships involved in each of the processes discussed.

189A-B. Capstone Mechanical Engineering Design Project

(2-2) LAGUETTE
Prerequisites: ME 153; and ME 156A (may be taken concurrently).
A three-quarter sequence with grades issued for each quarter. Students may not concurrently enroll in ME 197 and ME 189A-B-C with the same design project.

Students work in teams under the direction of a faculty advisor to tackle an engineering design project. Engineering communication, such as reports and oral presentations are covered. Course emphasizes practical, hands-on experience, and integrates analytical and design skills acquired in the companion ME 156 courses.

193. Internship in Industry

(1) STAFF
Prerequisite: consent of instructor and prior departmental approval needed.
Cannot be used as a departmental elective. May be repeated to a maximum of 2 units.
Students obtain credit for a mechanical engineering related internship and/or industrial experience under faculty supervision. A 6-10 page written report is required for credit.

197. Independent Projects in Mechanical Engineering Design

(1-4) STAFF
Prerequisites: ME 16; consent of instructor.
May be repeated to a maximum of 12 units. Variable hours. No more than 4 units may be used as departmental electives.
Special projects in design engineering. Course offers motivated students opportunity to synthesize academic skills by designing and building new machines.

199. Independent Studies in Mechanical Engineering

(1-5) STAFF
Prerequisites: consent of instructor; upper-division standing; completion of two upper-division courses in Mechanical Engineering.
Student must have a minimum of 3.0 grade-point average for the preceding three quarters and are limited to 5 units per quarter and 30 units total in all 98/99/198/199/199D/199A courses combined. No more than 4 units may be used as departmental electives. May be repeated to 12 units.
Directed individual study.

GRADUATE COURSES

200. Professional Seminar

(1) McMEEKING, MILSTEIN, ODETT
Prerequisite: graduate standing.
A series of weekly lectures given by university staff and outside experts in all fields of mechanical and environmental engineering.

200P. Master of Science Project

(3) STAFF
Prerequisite: graduate standing.
A ten-week research project on an advanced topic in Mechanical Engineering.

201. Advanced Dynamics

(3) MEZIC
Newton’s laws and symmetries, Newton, Laplace and principle of determinism; qualitative analysis of Newton’s equations of motion, Hamiltonian mechanics, one degree of freedom (DOF) systems, two DOF systems, motion in central fields, application to molecular dynamics, control of classical dynamical systems, Lagrangian mechanics, chaos and ergodic theory, rigid body motion.

202. Advanced Dynamics

(3) MEZIC
Prerequisite: ME 201; graduate standing.

203. Special Topics in Dynamical Systems

(3) MEZIC
Prerequisite: ME 201.
Geometric mechanics, volume-preserving dynamical systems, molecular dynamics; Infinite dimensional dynamics and finite dimensional approximations including incompressible Euler equations and point vortex theory, transport and fluid mixing, control of measure-preserving systems, equilibrium and non-equilibrium statistical mechanics methods for vortex gases.

207. Faculty Research Seminar

(1) BULLO
A series of bi-weekly presentations given by ladder faculty members to familiarize graduate students with current department research projects. This course is required to be taken by all graduate students within the first year of arrival.
210A. Matrix Analysis and Computation
(4) STAFF
Prerequisite: consent of instructor.
Same course as Computer Science 211A, ECE 210A, Mathematics 206A, Chemical Engineering 211A, and Geology 251A. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language.

Graduate level-matrix theory with introduction to matrix computations: SVD, pseudoinverses, variational characterization of eigenvalues, perturbation theory, direct and iterative methods for matrix computations.

210B. Numerical Simulation
(4) PEITZOLD
Prerequisite: consent of instructor.
Same course as Computer Science 211B, ECE 210B, Mathematics 206B, and Chemical Engineering 211B and Geology 251B. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language.

210C. Numerical Solution of Partial Differential Equations—Finite Difference Methods
(4) STAFF
Prerequisite: consent of instructor.
Same course as Computer Science 211C, ECE 210C, Mathematics 206C, Chemical Engineering 211C, and Geology 251C. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language.

210D. Numerical Solution of Partial Differential Equations—Finite Element Methods
(4) STAFF
Prerequisite: consent of instructor.
Same course as Computer Science 211D, ECE 210D, Mathematics 206D, Chemical Engineering 211D, and Geology 251D. Students should be proficient in basic numerical methods, linear algebra, mathematically rigorous proofs, and some programming language.

212. Risk Assessment and Management
(3) THEOFANOUS
Prerequisites: consent of instructor.
Same course as Chemical Engineering 212

Conceptual foundations of risk and its utility for decision making. Determinism, statistical inference, perturbation theory and averaging, Melnikov's methods, canards, applications from engineering, physics, chemistry, and biology.

216. Level Set Methods
(4) GIROU
Prerequisite: Computer Science 211C, or Chemical Engineering 211C, or ECE 210D, or ME 210D.
Same course as: Chemical engineering 226, ECE 226, and Computer Science 216.

Mathematical description of the level set method and design of the numerical methods used in its implementations (BNO-WENO, Godunov, Lax-Friedrich, etc.) Introduction to the Ghost Fluid Method. Applications in CFD, Materials Sciences, Computer Vision and Computer Graphics.

218. Introduction to Multiphase Flows
(3) THEOFANOUS
Prerequisite: consent of instructor.
Same course as Chemical Engineering 218.

219. Mechanics of Materials
(3) MCMEEKING
Same course as Materials 207.

Matrices and tensors, stress deformation and flow, compatibility conditions, constitutive equations, field equations and boundary conditions in fluids and solids, applications in solid and fluid mechanics.

220A-B. Fundamentals of Fluid Mechanics
(3) HOMESY, HOMMEHART
Prerequisites: ME 151A-B and 152A-B.

Introductory course in fluid mechanics. Basic equations of motion (continuity, momentum, energy, vorticity), coordinate transformations, "potential" fluids, thin airfoil theory, conformal mapping, vortex dynamics, boundary layers, stability theory, laminar/turbulent transition, turbulence. Inviscid/viscous, irrotational/rotational, incompressible/compressible flow examples.

221. Advanced Viscous Flow
(3) HOMESY
Prerequisite: ME 220A.

Review the Navier-Stokes equations in velocity, pressure, and vorticity variables. Analyze details of important low and moderate Reynolds number flow applications and then high Reynolds number flows with boundary layer phenomena. Compare exact, approximate, numerical, and experimental solution methods.

223. Turbulent Flow
(3) STAFF
Prerequisites: ME 220A-B or Chemical Engineering 220A-B.

Same course as Chemical Engineering 221. Nature and origin of turbulence, boundary layer mechanics law of the wall, wakes, and jets, transport of properties, statistics of turbulence, measurement problems, stratification effects. Application of principles to practical problems is stressed.

225AA-ZZ. Special Topics in Mechanical Engineering
(3) STAFF
Prerequisite: consent of instructor.

Specialized courses dealing with advanced topics and recent developments in one or more of the following areas: dynamic systems, control and robotics, fluid mechanics, materials science and engineering, ocean engineering, solid mechanics and structures, thermal sciences.

230. Elasticity
(3) BELTZ, MCMEEKING
Prerequisite: ME 219 or Materials 207; consent of instructor.

232. Plasticity
(3) MCMEEKING, MILSTEIN
Prerequisite: ME 219.

233A. Design of Composite Structures
(3) KEDWARD
Prerequisites: ME 230 or 275A.

Emphasis is placed on the differences of design with composites vis-à-vis the design of conventional metallic structures. The content is directed at the class of polymer-matrix composites.

234A, Structural Dynamics
(3) BRUCH

236. Nonlinear Control Systems
(4) KOKOTOVIC, TEEL

Same course as ECE 236. Recommended preparation: ECE 230A.

Analysis and design of nonlinear control systems. Focus on Lyapunov stability theory, with sufficient time devoted to contracts between linear and nonlinear systems, input-output stability and the describing function method.

237. Nonlinear Control Design
(4) KOKOTOVIC
Prerequisite: ECE 236 or ME 236.

Same course as ECE 237.

239. Conduction Heat Transfer
(3) STAFF
Prerequisite: undergraduate course in heat transfer.

Development of mathematical representation of conduction heat transfer and techniques available for analytical, analog, and numerical solutions.

240. Convective Heat Transfer
(3) STAFF
Prerequisite: undergraduate course in heat transfer.

Solutions to the momentum, continuity, and energy equations will be considered for both natural and forced convection. Applications to astrophysics, combustion, and plasma technology are discussed.

241. Radiative Energy Transfer
(3) STAFF
Prerequisite: undergraduate course in heat transfer.

The physical nature of radiation and of its interaction with matter, conservation principles in radiative transfer and their relation to molecular and convective processes, and thermodynamic equilibrium with consideration of nondimensional parameters is considered. Applications to astrophysics, combustion, and plasma technology are discussed.

243A-B. Linear Systems I, II
(4) KOKOTOVIC, BAMIYEH
Prerequisites: ME 210A (for 243A); ECE 140, and, ECE 290A or ME 243A; and ME 210A.

Same courses as ECE 230A-B.

Internal and external descriptions. Solution of state equations. Controllability and observability realizations. Pole assignment, observers, modern compensator design. Disturbance localization and decoupling. Least-
squares control. Least-squares estimation; Kalman filters; smoothing. The separation theorem; LQG controller design. Computational considerations. Selected additional topics.

244A. Advanced Theoretical Methods in Engineering
(4) FREIDRICKSON, CHIMELKA, LEAL
Prerequisite: consent of instructor.
Same course as Chemical Engineering 230A.

244B. Advanced Theoretical Methods in Engineering
(3) FREIDRICKSON
Prerequisites: ME 244A and consent of instructor.
Same course as Chemical Engineering 230B.
Advanced mathematical methods for engineers and scientists. Complex analysis, integral equations, mapping techniques. Liouville theory, calculus of variations, and conformal mapping techniques.

250. Advanced Thermodynamics
(2) MILSTEIN
Prerequisites: ME 151A-B.
An extended treatment of the fundamentals of classical thermodynamics, including availability and reversibility, the chemical potential, properties of matter, thermochemistry, chemical equilibrium of real gases and gas mixtures.

251. Statistical Thermodynamics
(3) MILSTEIN
Prerequisites: ME 151A-B.
An extended treatment of the fundamentals of statistical thermodynamics, equilibrium distributions, properties of gases, liquids, and solids.

252A. Computational Fluid Dynamics
(3) MEIBURG
Prerequisites: ME 210C or Computer Science 211C or ECE 210C or Mathematics 206C or Chemical Engineering 211C.

252B. Computational Fluid Dynamics
(3) MEIBURG
Prerequisites: ME 210C or Computer Science 211C or ECE 210C or Mathematics 206C or Chemical Engineering 211C.
Discussion of appropriate boundary conditions. Nonlinear convection dominated problems, curvilinear coordinates, basics of grid generation. Inviscid flow, boundary layer flow, incompressible Navier-Stokes flows.

252C. Computational Fluid Dynamics
(3) MEIBURG
Prerequisites: ME 210C or Computer Science 211C or ECE 210C or Mathematics 206C or Chemical Engineering 211C.

254. Optimal Control of Dynamic Systems
(3) BANERJEE
Prerequisite: ME 163B, 15SA, or equivalent.

256. Introductory Robust Control with Applications
(4) SMITH, KHAMPASH
Prerequisites: ECE 230A or ME 255A, and ECE 230B or ME 243B (may be taken concurrently).
Same course as ECE 232.
Robust Control theory; uncertainty modeling; stability of systems in the presence of norm-bounded perturbations; induced norm performance problems; structured singular value analysis; H-infinity control theory; model reduction; computer simulation based design project involving practical problems.

260A. Materials Structures and Bonding
(3) MILSTEIN
Prerequisite: consent of instructor.
Crystal structures (Miller indices, Bravais lattices, symmetry operations). Modeling of atomic bonding, determination and applications of interatomic potentials, atomic basis for elastic moduli. Crystal anisotropy. Lattice statics and molecular dynamics computations.

262. Thermodynamics and Phase Equilibria
(3) ODIE, CLARKE, ZOK
Prerequisite: consent of instructor.
Same course as Materials 201.
Advanced thermodynamics with emphasis on phase equilibria, properties of solutions, and multicomponent systems.

264. Mechanical Behavior of Materials
(3) STAFF
Prerequisite: consent of instructor.
Same course as Materials 220.

265. Composite Materials
(3) ODIE, CLARKE, ZOK
Prerequisite: consent of instructor.
Same course as Materials 261.

271. Finite Element Structural Analysis
(3) MCMEEING
Prerequisite: ME 219.
Same course as Materials 240.

275. Fracture Mechanics
(3) ODIE, MCMEEING
Prerequisite: ME 219.
Same course as Materials 234.

285. Geophysical Fluid Dynamics
(3) MCLEAN
Prerequisite: ME 152A.

291A. Physics of Transducers
(3) SOH
Prerequisite: graduate standing.
Recommended preparation: ECE 220A (may be taken concurrently).
The use of concepts in electromagnetic theory and solid state physics to describe capacitive, piezoresistive, piezoelectric and tunneling transduction mechanisms and analyze their applications in microsystems technology.

292. Design of Transducers
(3) TURNER, PENNAHUT
Prerequisites: ME 291A and ECE 220A; graduate standing.
Design issues associated with microscale transduction. Electrodynamics, linear and nonlinear mechanical behavior, sensing methods, MEMS-specific fabrication design rules, and layout are all covered. Modeling techniques for electromechanical systems are also discussed.

295. Group Studies: Controls, Dynamical Systems, and Computation
(1-4) STAFF
Same course as ECE 295, Computer Science 592, and Chemical Engineering 295.
A series of weekly lectures given by university staff and outside experts in the fields of control systems, dynamical systems, and computation.

501. Teaching Assistant Practicum
(1-4) STAFF
Normally required of students serving as teaching assistants. No unit credit allowed towards advanced degree.
Practical experience in the various activities associated with teaching, including lecturing, supervision of laboratories and discussion sections, preparation and grading of homework and exams.

503. Research Assistant Practicum
(1-4) STAFF
Will not count as unit credit towards M.S. or Ph.D. degree in mechanical engineering.
Practical experience in the various activities associated with research, including experimental work, theoretical work and analyses, and assisting department faculty and other professional researchers in their duties.

596. Directed Research
(1-12) STAFF
Prerequisite: consent of instructor.
Not applicable to course requirement for M.S. and Ph.D. degree. S/U grading.
Experimental or theoretical research undertaken under the direction of a faculty member for graduate students who have not yet advanced to candidacy.

597. Individual Study for Ph.D. Qualifying Examination
(1-12) STAFF
Prerequisite: graduate standing.
Maximum of 12 units per quarter; enrollment limited to 24 units per examination. Instructor is normally student’s major advisor. S/U grading.
Individual studies for Ph.D. qualifying examination.

598. Master’s Thesis Research and Preparation
(1-12) STAFF
Prerequisite: consent of thesis advisor.
No unit credit allowed toward advanced degree. For research underlying the thesis and writing of the thesis.

599. Ph.D. Dissertation Research and Preparation
(1-12) STAFF
Prerequisite: consent of dissertation advisor.
No unit credit allowed toward advanced degree. For research and preparation of the dissertation.
CHEMICAL ENGINEERING

PREPARATION FOR THE MAJOR 80

<table>
<thead>
<tr>
<th>Units</th>
<th>CHEMICAL ENGINEERING</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E 1A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E 10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CHEM 1A, 1B, 1C or 2A, 2B, 2C</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CHEM 1AL, 1BL, 1CL or 2AC, 2BC, 2CC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CHEM 6AL-BL</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CHEM 109A-B-C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ENGR 3</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>MATH 3A-B-C, 5A-B-C</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PHYS 1, 2, 3, 3L, 4, 4L</td>
<td></td>
</tr>
</tbody>
</table>

UPPER DIVISION MAJOR 78

<table>
<thead>
<tr>
<th>Units</th>
<th>CHEMICAL ENGINEERING</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>E 110A-B</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>E 119</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E 120A-B-C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E 128</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>E 132A-B-C</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>E 140A-B</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>E 152A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E 172</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>E 180A-B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>E 184A-B</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CHEM 113B-C</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MATRL 101 or MATRL 100B*</td>
<td></td>
</tr>
</tbody>
</table>

* see note on next page

Technical Elective requirement 12

Prior approval of the student’s technical electives must be obtained from the student’s faculty adviser.

Approved Technical Elective Requirement classes:

<table>
<thead>
<tr>
<th>Units</th>
<th>CHEMICAL ENGINEERING</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH E 102 CHEM 145 MCDB 126A-B-C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 121 CHEM 147 MCDB 133</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 124 CHEM 150 MCDB 138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 125 ECE 130A-B-C ME 110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 136 ECE 183 ME 112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 138 ENGR 101 ME 114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 141 ENGR 103 ME 119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 152B ENGR 185A-B-C-D ME 128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 154 MATH 122A-B ME 134</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 160 MATRL 100A,C ME 169</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 171 MATRL 160 ME 185</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH E 198 MATRL 185 PHYS 123A-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 123 MCDB 101A-B PHYS 127AL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 126 MCDB 111 PHYS 127BL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHEM 142A-B-C</td>
<td></td>
</tr>
</tbody>
</table>

Technical electives taken:

Courses required for the major, inside or outside of the Department of Chemical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

UNIVERSITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Units</th>
<th>CHEMICAL ENGINEERING</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American History and Institutions – (one 4-unit course, may be counted as G.E. if selected from approved list)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UC Entry Level Requirement: English Composition Must be fulfilled within three quarters of matriculation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satisfied by:</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL EDUCATION

General Subject Areas

Area A: English Reading & Comprehension – (2 courses required)

A-1: ____________________ A-2: ____________________

Areas D & E: Social Sciences, Culture and Thought (2 courses minimum)

Areas F & G: The Arts, Literature (2 courses minimum, at least 1 from Area G)

G__________

2 additional courses from Areas D, E, F, or G

Special Subject Areas

(Please refer to the General Education Program Requirements booklet for more information)

Depth:

Ethnicity (1 course):

European Traditions (1 course):

Writing (4 courses required):

NON-MAJOR ELECTIVES 36

General Education and Free Electives taken:

TOTAL UNITS REQUIRED FOR GRADUATION 194
CHEMICAL ENGINEERING

FRESHMAN YEAR (51 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 1A</td>
<td>1</td>
<td>CHEM 1B or 2B</td>
<td>3</td>
<td>CHEM 1C or 2C</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>CHEM 1BL or 2BC</td>
<td>2</td>
<td>CHEM 1CL or 2CC</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>MATH 3B</td>
<td>4</td>
<td>MATH 3C</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 3</td>
<td>3</td>
<td>PHYS 1</td>
<td>4</td>
<td>PHYS 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>WRIT 2E or 50E</td>
<td>4</td>
<td>WRIT 50E or G.E. elective</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td></td>
<td></td>
<td>or ENGR 3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR (51 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 10</td>
<td>3</td>
<td>CH E 110A</td>
<td>3</td>
<td>CH E 110B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 109A</td>
<td>4</td>
<td>CHEM 6AL</td>
<td>3</td>
<td>CH E 132A</td>
<td>4</td>
</tr>
<tr>
<td>MATH 5A</td>
<td>4</td>
<td>CHEM 109B</td>
<td>4</td>
<td>CHEM 6BL</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>MATH 5B</td>
<td>4</td>
<td>CHEM 109C</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>PHYS 4</td>
<td>3</td>
<td>MATH 5C</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td></td>
<td>18</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

JUNIOR YEAR (47 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 119</td>
<td>1</td>
<td>CH E 120B</td>
<td>3</td>
<td>CH E 120C</td>
<td>3</td>
</tr>
<tr>
<td>CH E 120A</td>
<td>4</td>
<td>CH E 132C</td>
<td>3</td>
<td>CH E 140A</td>
<td>3</td>
</tr>
<tr>
<td>CH E 128</td>
<td>3</td>
<td>CHEM 113B</td>
<td>4</td>
<td>CH E 180A</td>
<td>3</td>
</tr>
<tr>
<td>CH E 132B</td>
<td>3</td>
<td>MATRL 101 or MATRL 100B*</td>
<td>3</td>
<td>CHEM 113C</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>G.E. Elective</td>
<td>3</td>
<td>Technical or Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

SENIOR YEAR (45 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH E 140B</td>
<td>3</td>
<td>CH E 180B</td>
<td>3</td>
<td>CH E 184B</td>
<td>3</td>
</tr>
<tr>
<td>CH E 152A</td>
<td>4</td>
<td>CH E 184A</td>
<td>3</td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>CH E 172</td>
<td>3</td>
<td>G.E. Elective</td>
<td>4</td>
<td>Technical or Free Electives</td>
<td>7</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>Technical or Free Electives</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td></td>
<td>14</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

* if applying to the BS/MS Materials program, juniors must take MATRL 100A in fall, MATRL 100B in winter, and MATRL 100C in spring.
PREPARATION FOR THE MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL, 1B, 1BL or 2A, 2AC, 2B, 2BC</td>
<td>10</td>
</tr>
<tr>
<td>CMPSC 10</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 20</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 40</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 60</td>
<td>4</td>
</tr>
<tr>
<td>ECE 1</td>
<td>1</td>
</tr>
<tr>
<td>ECE 2A-B-C</td>
<td>15</td>
</tr>
<tr>
<td>ECE 15A-B</td>
<td>6</td>
</tr>
<tr>
<td>MATH 3A-B-C, 5A</td>
<td>16</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L</td>
<td>16</td>
</tr>
</tbody>
</table>

UPPER DIVISION MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 130A</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 170</td>
<td>4</td>
</tr>
<tr>
<td>ECE 139 or PSTAT 120A</td>
<td>4</td>
</tr>
<tr>
<td>ECE 152A-B</td>
<td>10</td>
</tr>
<tr>
<td>ECE 154</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>3</td>
</tr>
</tbody>
</table>

Computer Engineering electives selected from the following list: 32

Prior approval of the student’s departmental electives must be obtained from the student’s faculty adviser.

Must include at least 2 sequences and 8 units of senior computer systems project CMPSC 189 A-B/ECE 189A-B.

UNIVERSITY REQUIREMENTS

American History and Institutions – (one 4-unit course) (may be counted as G.E. if selected from approved list)

UC Entry Level Requirement: English Composition

Must be fulfilled within three quarters of matriculation

Satisfied by:

GENERAL EDUCATION

General Subject Areas

Area A: English Reading & Comprehension – (2 courses required)

A-1: __________________________ A-2: __________________________

Areas D & E: Social Sciences, Culture and Thought

(2 courses minimum)

Areas F & G: The Arts, Literature

(2 courses minimum, at least 1 from Area G)

2 additional courses from Areas D, E, F, or G

Special Subject Areas

(Please refer to the General Education Program Requirements booklet for more information)

Depth:

Ethnicity (1 course):

European Traditions (1 course):

Writing (4 courses required):

NON-MAJOR ELECTIVES

48

General Education and Free Electives taken:

Courses required for the major, inside or outside of the Departments of Computer Science or Electrical and Computer Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

TOTAL UNITS REQUIRED FOR GRADUATION 189
COMPUTER ENGINEERING

FRESHMAN YEAR (51 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>CHEM 1B or 2B</td>
<td>3</td>
<td>CMPSC 10</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>CHEM 1BL or 2BC</td>
<td>2</td>
<td>ECE 1</td>
<td>1</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>MATH 3B</td>
<td>4</td>
<td>MATH 3C</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>PHYS 1</td>
<td>4</td>
<td>PHYS 2</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td>WRIT 2E or 50E</td>
<td>4</td>
<td>WRIT 50E or G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR (49 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 20</td>
<td>4</td>
<td>CMPSC 40</td>
<td>4</td>
<td>CMPSC 60</td>
<td>4</td>
</tr>
<tr>
<td>ECE 2A</td>
<td>5</td>
<td>ECE 2B</td>
<td>5</td>
<td>ECE 2C</td>
<td>5</td>
</tr>
<tr>
<td>MATH 5A</td>
<td>4</td>
<td>ECE 15A</td>
<td>3</td>
<td>ECE 15B</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>PHYS 4</td>
<td>3</td>
<td>ECE 139 or PSTAT 120A*</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>PHYS 4L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR (46 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 152A</td>
<td>5</td>
<td>CMPSC 130A</td>
<td>4</td>
<td>CMPSC 170</td>
<td>4</td>
</tr>
<tr>
<td>G.E. or Free Electives</td>
<td>12</td>
<td>ECE 154</td>
<td>4</td>
<td>ECE 152B</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G.E. or Free Electives</td>
<td>8</td>
<td>G.E. or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR (43 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPEN Electives</td>
<td>12</td>
<td>CMPEN Electives</td>
<td>8</td>
<td>CMPEN Electives</td>
<td>12</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
<td>ENGR 101</td>
<td>3</td>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

* PSTAT 120A is offered each quarter. ECE 139 is offered only in spring quarter. ECE 139 is better suited for future upper division electives for the Computer Engineering major.
Computer Science

Preparation for the Major

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 10</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 20</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 30</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 40</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 50</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 60</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A-B-C, 5A-B</td>
<td>20</td>
</tr>
<tr>
<td>PSTAT 120A</td>
<td>4</td>
</tr>
</tbody>
</table>

Upper Division Major

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 111 or 140</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 130A-B</td>
<td>8</td>
</tr>
<tr>
<td>CMPSC 138</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 154/ECE 154</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 160</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 162</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 170</td>
<td>4</td>
</tr>
<tr>
<td>ECE 152A</td>
<td>5</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>3</td>
</tr>
<tr>
<td>PSTAT 120B</td>
<td>4</td>
</tr>
</tbody>
</table>

Major Field Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC/MATH 109A-B-C</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 178</td>
<td>4</td>
</tr>
<tr>
<td>ECE 130A-B-C</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 111</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 180</td>
<td>4</td>
</tr>
<tr>
<td>ECE 140</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 140</td>
<td>8</td>
</tr>
<tr>
<td>CMPSC/ECE 153A</td>
<td>8</td>
</tr>
<tr>
<td>CMPSC 201B/ECE 181B</td>
<td>8</td>
</tr>
<tr>
<td>ECE 152B</td>
<td>8</td>
</tr>
<tr>
<td>CMPSC 165A-B</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 185</td>
<td>4</td>
</tr>
<tr>
<td>MATH 108A-B</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 167</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 186</td>
<td>4</td>
</tr>
<tr>
<td>MATH 119A-B</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 171/ECE 151</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 189A-B</td>
<td>4</td>
</tr>
<tr>
<td>MATH 124A-B</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 172</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 190AA-ZZ</td>
<td>4</td>
</tr>
<tr>
<td>PSTAT 122</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 174A-B</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 192</td>
<td>4</td>
</tr>
<tr>
<td>PSTAT 130</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 176A-B-C</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 196</td>
<td>4</td>
</tr>
<tr>
<td>PSTAT 132C</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 177</td>
<td>4</td>
</tr>
</tbody>
</table>

Non-Major Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1, 2, 3, 3L</td>
<td>12</td>
</tr>
<tr>
<td>Science Electives (see Dept. for list)</td>
<td>8</td>
</tr>
</tbody>
</table>

TOTAL UNITS REQUIRED FOR GRADUATION

180
COMPUTER SCIENCE

FRESHMAN YEAR (44 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>CMPSC 10</td>
<td>4</td>
<td>CMPSC 20</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>MATH 3B</td>
<td>4</td>
<td>MATH 3C</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1, 2, or G.E. Elective</td>
<td>4</td>
<td>PHYS 1</td>
<td>4</td>
<td>PHYS 2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRIT 1, 2, or G.E. Elective</td>
<td>4</td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR (48 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 30, 40 or 60</td>
<td>4</td>
<td>CMPSC 40 or 50</td>
<td>4</td>
<td>CMPSC 30, 40, 50 or 60</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 30, 40 or 60</td>
<td>4</td>
<td>MATH 5B</td>
<td>4</td>
<td>PSTAT 120A</td>
<td>4</td>
</tr>
<tr>
<td>MATH 5A</td>
<td>4</td>
<td>WRIT 50</td>
<td>4</td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>Science or Free Elective</td>
<td>4</td>
<td>Science or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JUNIOR YEAR (48 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 130A</td>
<td>4</td>
<td>CMPSC 130B</td>
<td>4</td>
<td>CMPSC / ECE 154</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 138</td>
<td>4</td>
<td>ECE 152A</td>
<td>5</td>
<td>PSTAT 120B</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>Free Elective</td>
<td>3</td>
<td>Field or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Science or Free Elective</td>
<td>4</td>
<td>G.E. Elective</td>
<td>4</td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SENIOR YEAR (40 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPSC 111 *</td>
<td>4</td>
<td>CMPSC 160</td>
<td>4</td>
<td>Field or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>CMPSC 170</td>
<td>4</td>
<td>CMPSC 162</td>
<td>4</td>
<td>Field or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>Field or Free Elective</td>
<td>4</td>
<td>ENGR 101</td>
<td>3</td>
<td>G.E. or Free Elective</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field or Free Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>12</td>
<td></td>
<td>15</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

* or you may take CMPSC 140 in winter quarter to satisfy this requirement.
ELECTRICAL ENGINEERING

PREPARATION FOR THE MAJOR

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL, 1B, 1BL or 2A, 2AC, 2B, 2BC</td>
<td>10</td>
</tr>
<tr>
<td>CMPSC 12</td>
<td>4</td>
</tr>
<tr>
<td>ECE 2A-B-C</td>
<td>15</td>
</tr>
<tr>
<td>ECE 15A</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3A-B-C, 5A-B-C</td>
<td>24</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L, 5, 5L</td>
<td>20</td>
</tr>
</tbody>
</table>

UNIVERSITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>193</td>
</tr>
</tbody>
</table>

- **American History and Institutions** – (one 4-unit course, may be counted as G.E. if selected from approved list)

- **UC Entry Level Requirement: English Composition**

- **Must be fulfilled within three quarters of matriculation**

Satisfied by:

GENERAL EDUCATION

General Subject Areas

- **Area A: English Reading & Comprehension** – (2 courses required)

 - **A-1:**

 - **A-2:**

- **Areas D & E: Social Sciences, Culture and Thought**

 - (2 courses minimum)

- **Areas F & G: The Arts, Literature**

 - (2 courses minimum, at least 1 from Area G)

 - **G**

- **2 additional courses from Areas D, E, F, or G**

Special Subject Areas

- **Approved Departmental Electives:**

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 124A-B-C-D ECE 148 ECE 178</td>
<td></td>
</tr>
<tr>
<td>ECE 125 ECE 149 ECE 181A-B-C</td>
<td></td>
</tr>
<tr>
<td>ECE 130C ECE 152B ECE 183</td>
<td></td>
</tr>
<tr>
<td>ECE 135 ECE 153A-B ECE 192 or 196 (4 unit combined max)</td>
<td></td>
</tr>
<tr>
<td>ECE 140 ECE 154 OR ECE 188A-B</td>
<td></td>
</tr>
<tr>
<td>ECE 141A-B-C ECE 155A-B ECE 194AA-ZZ(excluding ECE 194R)</td>
<td></td>
</tr>
<tr>
<td>ECE 144 ECE 156A-B ENGR 100, 103, 185A, 185B</td>
<td></td>
</tr>
<tr>
<td>ECE 145A-B-C ECE 158 185C, 185D (1 course max)</td>
<td></td>
</tr>
<tr>
<td>ECE 146A-B ECE 160 MATRL 100A, C</td>
<td></td>
</tr>
<tr>
<td>ECE 147A-B-C ECE 162A-B-C MATRL 100B or MATRL 101</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Electives taken:

- ECE 124A-B-C-D
- ECE 148
- ECE 178
- ECE 125
- ECE 149
- ECE 181A-B-C
- ECE 130C
- ECE 152B
- ECE 183
- ECE 135
- ECE 153A-B
- ECE 192 or 196 (4 unit combined max)
- ECE 140
- ECE 154
- OR ECE 188A-B
- ECE 141A-B-C
- ECE 155A-B
- ECE 194AA-ZZ(excluding ECE 194R)
- ECE 144
- ECE 156A-B
- ENGR 100, 103, 185A, 185B
- ECE 145A-B-C
- ECE 158
- 185C, 185D (1 course max)
- ECE 146A-B
- ECE 160
- MATRL 100A, C
- ECE 147A-B-C
- ECE 162A-B-C
- MATRL 100B or MATRL 101

MATH, SCIENCE, ENGR. ELECTIVE

Elective taken

- Courses required for the major, inside or outside of the Department of Electrical and Computer Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

NON-MAJOR ELECTIVES

General Education and Free Electives taken:

- **TOTAL UNITS REQUIRED FOR GRADUATION** 193
ELECTRICAL ENGINEERING

FRESHMAN YEAR (49 units)

<table>
<thead>
<tr>
<th></th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>CHEM 1B or 2B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>CHEM 1BL or 2BC</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 3</td>
<td>3</td>
<td>MATH 3B</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>PHYS 1</td>
<td>4</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td>WRIT 2E or 50E</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR (49 units)

<table>
<thead>
<tr>
<th></th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 2A</td>
<td>5</td>
<td>ECE 2B</td>
<td>5</td>
</tr>
<tr>
<td>MATH 5A</td>
<td>4</td>
<td>ECE 15A</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>MATH 5B</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>PHYS 4</td>
<td>3</td>
</tr>
<tr>
<td>Math/Science Elective*</td>
<td>4</td>
<td>PHYS 4L</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>16</td>
<td>13</td>
</tr>
</tbody>
</table>

JUNIOR YEAR (48 units)

<table>
<thead>
<tr>
<th></th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 130A</td>
<td>4</td>
<td>ECE 130B</td>
<td>4</td>
</tr>
<tr>
<td>ECE 132</td>
<td>4</td>
<td>ECE 137A</td>
<td>4</td>
</tr>
<tr>
<td>ECE 134 or ECE 152A</td>
<td>4/5</td>
<td>ECE Elective</td>
<td>4</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4/3</td>
<td>G.E. or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

SENIOR YEAR (47 units)

<table>
<thead>
<tr>
<th></th>
<th>FALL units</th>
<th>WINTER units</th>
<th>SPRING units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 134 or ECE 152A</td>
<td>4/5</td>
<td>ECE Electives</td>
<td>8</td>
</tr>
<tr>
<td>ECE Electives</td>
<td>8</td>
<td>G.E. or Free Electives</td>
<td>8</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4/3</td>
<td>G.E. or Free Electives</td>
<td>G.E. or Free Electives</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

One four-unit course from Math, Science or Engineering Elective list.
MECHANICAL ENGINEERING

<table>
<thead>
<tr>
<th>PREPARATION FOR THE MAJOR</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A, 1AL, 1B, 1BL or 2A, 2AC, 2B, 2BC</td>
<td>10</td>
</tr>
<tr>
<td>ENGR 3</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3A-B-C, 5A-B-C</td>
<td>24</td>
</tr>
<tr>
<td>ME 6</td>
<td>3</td>
</tr>
<tr>
<td>ME 10</td>
<td>4</td>
</tr>
<tr>
<td>ME 14</td>
<td>4</td>
</tr>
<tr>
<td>ME 15</td>
<td>4</td>
</tr>
<tr>
<td>ME 16</td>
<td>4</td>
</tr>
<tr>
<td>ME 17</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 1, 2, 3, 3L, 4, 4L</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UPPER DIVISION MAJOR</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td>66</td>
</tr>
<tr>
<td>MATRL 101 or MATRL 100B</td>
<td>3</td>
</tr>
<tr>
<td>ME 104</td>
<td>3</td>
</tr>
<tr>
<td>ME 105</td>
<td>3</td>
</tr>
<tr>
<td>ME 140A</td>
<td>3</td>
</tr>
<tr>
<td>ME 151A-B</td>
<td>6</td>
</tr>
<tr>
<td>ME 152A-B</td>
<td>6</td>
</tr>
<tr>
<td>ME 153</td>
<td>3</td>
</tr>
<tr>
<td>ME 154</td>
<td>3</td>
</tr>
<tr>
<td>ME 155A</td>
<td>3</td>
</tr>
<tr>
<td>ME 163</td>
<td>3</td>
</tr>
<tr>
<td>* see note on next page</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year	66
ME 151C	3
ME 156A-B	6
ME 189A-B-C	6
Engineering Electives	15

Prior approval of the student's departmental electives must be obtained from the student's faculty adviser. Note, the list of approved electives may change from year to year and that not all courses are offered each year.

Approved Engineering Electives:

CHEM 109A	ME 112	ME 158
CHEM 123	ME 114	ME 162
ECE 147A	ME 119	ME 166
ECE 181A,C	ME 124	ME 167
ENGR 100, 101, 103, 160, 177, 185A-B-C-D (max 1 course)	ME 125AA-ZZ	ME 168
ENV S 105	ME 134	ME 170A, C
MATRL 100A	ME 136	ME 173
MATRL 100C	ME 138	ME 185
MATRL 186	ME 140B	ME 186
ME 106A	ME 141A-B-C	ME 197
ME 110	ME 155B	ME 199

* Four units maximum from ME 197 and ME 199 combined.

Courses required for the major, inside or outside of the Department of Mechanical Engineering, cannot be taken for the passed/not passed grading option. They must be taken for letter grades.

UNIVERSITY REQUIREMENTS

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>American History and Institutions – (one 4-unit course, may be counted as G.E. if selected from approved list)</td>
</tr>
<tr>
<td>UC Entry Level Requirement: English Composition</td>
</tr>
<tr>
<td>* Must be fulfilled within three quarters of matriculation</td>
</tr>
<tr>
<td>Satisfied by:</td>
</tr>
</tbody>
</table>

GENERAL EDUCATION

General Subject Areas

Area A: English Reading & Comprehension – (2 courses required)

A-1: ___________ A-2: ___________

Areas D & E: Social Sciences, Culture and Thought

(2 courses minimum)

Areas F & G: The Arts, Literature

(2 courses minimum, at least 1 from Area G)

G ___________

2 additional courses from Areas D, E, F, or G

Special Subject Areas

(Please refer to the General Education Program Requirements booklet for more information)

Depth:

Ethnicity (1 course):

European Traditions (1 course):

Writing (4 courses required):

NON-MAJOR ELECTIVES | 44

General Education and Free Electives taken:

TOTAL UNITS REQUIRED FOR GRADUATION | 185
MECHANICAL ENGINEERING

FRESHMAN YEAR (49 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1A or 2A</td>
<td>3</td>
<td>CHEM 1B or 2B</td>
<td>3</td>
<td>MATH 3C</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1AL or 2AC</td>
<td>2</td>
<td>CHEM 1BL or 2BC</td>
<td>2</td>
<td>ME 10</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 3 or G.E. Elective</td>
<td>3/4</td>
<td>MATH 3B</td>
<td>4</td>
<td>PHYS 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 3A</td>
<td>4</td>
<td>PHYS 1</td>
<td>4</td>
<td>WRIT 50E, ENGR 3, or</td>
<td>3/4</td>
</tr>
<tr>
<td>WRIT 1E or 2E</td>
<td>4</td>
<td>WRIT 2E or 50E</td>
<td>4</td>
<td>G.E. Elective</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16/17</td>
<td></td>
<td>17</td>
<td></td>
<td>15/16</td>
</tr>
</tbody>
</table>

SOPHOMORE YEAR (46 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 5A</td>
<td>4</td>
<td>MATH 5B</td>
<td>4</td>
<td>MATH 5C</td>
<td>4</td>
</tr>
<tr>
<td>ME 14</td>
<td>4</td>
<td>ME 6</td>
<td>3</td>
<td>ME 16</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 3</td>
<td>3</td>
<td>ME 15</td>
<td>4</td>
<td>ME 17</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3L</td>
<td>1</td>
<td>PHYS 4</td>
<td>3</td>
<td>G.E. Elective</td>
<td>4</td>
</tr>
<tr>
<td>G.E. Elective</td>
<td>4</td>
<td>PHYS 4L</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

JUNIOR YEAR (48 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 104</td>
<td>3</td>
<td>MATRL 101 or</td>
<td>3</td>
<td>ME 105</td>
<td>3</td>
</tr>
<tr>
<td>ME 140A</td>
<td>3</td>
<td>MATRL 100B*</td>
<td>3</td>
<td>ME 153</td>
<td>3</td>
</tr>
<tr>
<td>ME 151A</td>
<td>3</td>
<td>ME 151B</td>
<td>3</td>
<td>ME 154</td>
<td>3</td>
</tr>
<tr>
<td>ME 152A</td>
<td>3</td>
<td>ME 152B</td>
<td>3</td>
<td>ME 155A</td>
<td>3</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4</td>
<td>ME 163</td>
<td>3</td>
<td>G.E. or Free Elective</td>
<td>4</td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

SENIOR YEAR (42 units)

<table>
<thead>
<tr>
<th>FALL</th>
<th>units</th>
<th>WINTER</th>
<th>units</th>
<th>SPRING</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 151C</td>
<td>3</td>
<td>ME 156B</td>
<td>3</td>
<td>ME 189C</td>
<td>2</td>
</tr>
<tr>
<td>ME 156A</td>
<td>3</td>
<td>ME 189B</td>
<td>2</td>
<td>Departmental Electives</td>
<td>6</td>
</tr>
<tr>
<td>ME 189A</td>
<td>2</td>
<td>Departmental Electives</td>
<td>6</td>
<td>G.E. or Free Electives</td>
<td>4</td>
</tr>
<tr>
<td>Departmental Electives</td>
<td>3</td>
<td>G.E. or Free Elective</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.E. or Free Elective</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td></td>
<td>15</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

* if applying to the BS/MS Materials program, juniors must take MATRL 100A in fall, MATRL 100B in winter, and MATRL 100C in spring.
Calendar, 2008-2009

Note: Dates subject to change without notice.

Undergraduate admission
Application filing period for undergraduate admission, to be filed with the University of California, Undergraduate Application Processing Service, P.O. Box 4010, Concord, CA 94524-4010.
Web site: www.universityofcalifornia.edu/apply

Undergraduate returning students
Application filing period for readmission, to be filed with the Office of the Registrar by undergraduate students who have been absent for one or more quarters, who withdrew during their last quarter of attendance at UCSB, or who cancelled or had their registration lapsed.

Registration begins

Quarter begins

Convocation

Pre–instructional activities:
Required testing, advising, meetings, and new student orientation

First day of instruction

Last day of instruction

Final examinations

Quarter ends

Commencement

Summer Sessions 2009

Registration begins: April 6, 2009
First day of instruction: June 22, 2009

Fall 2008

November 1–30, 2007

Winter 2009

July 1, 2008 - November 10, 2008

Spring 2009

October 1, 2008 - February 9, 2009

Holidays

- Labor Day: Monday, September 1, 2008
- Veterans' Day: Tuesday, November 11, 2008
- Thanksgiving: Thursday and Friday, November 27 and 28, 2008
- Christmas: Wednesday and Thursday, December 24 and 25, 2008
- New Year: Wednesday and Thursday, December 31, 2008 and January 1, 2009
- Martin Luther King, Jr.'s Birthday: Monday, January 19, 2009
- Presidents' Holiday: Monday, February 16, 2009
- Cesar Chavez Holiday: Friday, March 27, 2009
- Memorial Day: Monday, May 25, 2009
- Independence Day: Friday, July 3, 2009
College of Engineering Policy on Academic Conduct

The College of Engineering’s Academic Conduct Policy is compatible with that of the University of California, in that it is expected that students understand and subscribe to the ideal of academic integrity, and are willing to bear individual responsibility for their work. Any work (written or otherwise) submitted to fulfill an academic requirement must represent a student’s original work. Any act of academic dishonesty, such as cheating or plagiarism, will subject a person to University disciplinary action.

Cheating is defined by UCSB as the use, or attempted use, of materials, information, study aids, or services not authorized by the instructor of the course. The College of Engineering interprets this to include the unauthorized use of notes, study aids, electronic or other equipment during an examination or quiz; copying or looking at another individual’s examination or quiz; taking or passing information to another individual during an examination or quiz; taking an examination or quiz for another individual; allowing another individual to take one’s examination; stealing examinations or quizzes. Students working on take-home exams or quizzes should not consult students or sources other than those permitted by the instructor.

Plagiarism is defined by UCSB as the representation of words, ideas, or concepts of another person without appropriate attribution. The College of Engineering expands this definition to include the use of or presentation of computer code, formulae, ideas, or research results without appropriate attribution.

Collaboration on homework assignments (i.e., problem sets), especially in light of the recognized pedagogical benefit of group study, is dictated by standards that can and do vary widely from course to course and instructor to instructor. The use of old solution sets and published solution guides presents a similar situation. Because homework assignments serve two functions--helping students learn the material and helping instructors evaluate academic performance--it is usually not obvious how much collaboration or assistance from commonly-available solutions, if any, the instructor expects. It is therefore imperative that students and instructors play an active role in communicating expectations about the nature and extent of collaboration or assistance from materials that is permissible or encouraged.

Expectations of Members of the College of Engineering Academic Community

In their classes, faculty are expected to (i) announce and discuss specific problems of academic dishonesty that pertain particularly to their classes (e.g., acceptable and unacceptable cooperation on projects or homework); (ii) act reasonably to prevent academic dishonesty in preparing and administering academic exercises, including examinations, laboratory activities, homework and other assignments, etc.; (iii) act to prevent cheating from continuing when it has been observed or reported to them by students, chairs, or deans; and, (iv) clearly define for students the maximum level of collaboration permitted for their work to still be considered individual work.

In their academic work, students are expected to (i) maintain personal academic integrity; (ii) treat all exams and quizzes as work to be conducted privately, unless otherwise instructed; (iii) take responsibility for knowing the limits of permissible or expected cooperation on any assignment.